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Abstract

Identifying goal-relevant features in novel environments is a central challenge for efficient

behaviour. We asked whether humans address this challenge by relying on prior knowledge

about common properties of reward-predicting features. One such property is the rate of

change of features, given that behaviourally relevant processes tend to change on a slower

timescale than noise. Hence, we asked whether humans are biased to learn more when

task-relevant features are slow rather than fast. To test this idea, 295 human participants

were asked to learn the rewards of two-dimensional bandits when either a slowly or quickly

changing feature of the bandit predicted reward. Across two experiments and one preregis-

tered replication, participants accrued more reward when a bandit’s relevant feature

changed slowly, and its irrelevant feature quickly, as compared to the opposite. We did not

find a difference in the ability to generalise to unseen feature values between conditions.

Testing how feature speed could affect learning with a set of four function approximation

Kalman filter models revealed that participants had a higher learning rate for the slow fea-

ture, and adjusted their learning to both the relevance and the speed of feature changes.

The larger the improvement in participants’ performance for slow compared to fast bandits,

the more strongly they adjusted their learning rates. These results provide evidence that

human reinforcement learning favours slower features, suggesting a bias in how humans

approach reward learning.

Author summary

Learning experiments in the laboratory are often assumed to exist in a vacuum, where par-

ticipants solve a given task independently of how they learn in more natural circum-

stances. But humans and other animals are in fact well known to “meta learn”, i.e. to

leverage generalisable assumptions about how to learn from other experiences. Taking

inspiration from a well-known machine learning technique known as slow feature
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analysis, we investigated one specific instance of such an assumption in learning: the pos-

sibility that humans tend to focus on slowly rather than quickly changing features when

learning about rewards. To test this, we developed a task where participants had to learn

the value of stimuli composed of two features. Participants indeed learned better from a

slowly rather than quickly changing feature that predicted reward. Computational model-

ling of participant behaviour indicated that participants had a higher learning rate for

slowly changing features from the outset. Hence, our results support the idea that human

reinforcement learning reflects a priori assumptions about the reward structure in natural

environments.

Introduction

A remarkable amount of information is reaching our senses at any given time, yet often only a

small subset of it is relevant to our current goal. Determining which aspects of our environ-

ment are relevant is therefore a crucial challenge for learning goal-directed behaviour. But

addressing this challenge is hard. The space of possibilities is often too large to be explored

fully within the time limits we need to consider, and yet limiting attention to only a subset of

features risks ignoring relevant information [1, 2]. One approach to this problem is to not

learn every problem anew, but instead use knowledge of properties that have been relevant in

the past as a starting point, in the form of so-called priors, also known as inductive biases [3–

7]. Here, we study the role of one such prior in human learning, namely a bias to focus learn-

ing on slowly changing features in our environments, and their potential association to

rewards.

Analogous to the concept of a ‘prior’ in Bayesian statistics, priors are pre-existing beliefs

about the underlying structure of an environment, based on generalised past experiences or

evolutionary transmission [3, 8]. Previous research has shown that priors can expedite the

learning process by focusing information processing on what is common across many envi-

ronments [4, 9, 10]. The resulting decision-making biases are numerous [10–13] and can for

instance be observed in the form of adaptive heuristics that reflect constraints on time or

resources [14], or in the form of visual illusions that reflect the simplifying assumptions of our

visual system, such as that light tends to come from above [15]. Studying useful priors for

representation learning is also an active field of development in artificial intelligence [8, 16–

18], in particular for reinforcement learning (RL), where knowledge about which actions max-

imise reward and minimise punishment is acquired through a trial-and-error process [19].

While the RL framework has been very successful in furthering our understanding of learning

and decision-making, [20–23], it becomes notoriously inefficient in high dimensional environ-

ments [19]. This problem can be alleviated through a process known as representation learn-

ing, where learning is limited to a subset of features that help predict future rewards, known as

task states [19, 24–28]. The difficulties of learning the state space for each new problem de
novo have been widely recognized [29], underscoring the potential benefit of leveraging prior

knowledge.

A useful prior for reinforcement learning should therefore help quickly build appropriate

task states from rich perceptual observations in novel environments [8, 30]. A characteristic

shared across many environments is that the causal process generating observations develops

on a slower timescale than the sensory signals we observe [31–33]. For example, the appear-

ance of a ball flying toward you in a park might fluctuate rapidly as it passes through patches of

sun and shade, but its true colour will remain unchanged. Similarly, other relevant properties
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such as its speed and trajectory will change in a slower, continuous manner compared to low-

level perceptual features. In short, signal tends to vary more slowly than noise [34]. Conse-

quently, slow features are both more predictable, making them easier to learn from, and useful

for predicting future observations, therefore warranting greater attention [35, 36]. It follows

that a way to extract features relevant to building task states, while remaining impartial to the

exact nature of those features or the causal process underlying the perceptual observations, is

to focus on slowly changing features. Indeed, some research has shown that humans have a

bias toward perceiving slower speeds in the spatial domain [34, 37, 38]. This idea has gained

more traction in machine learning, where a slowness prior has been shown to enable the dis-

covery of task states from raw observations [8, 28, 39, 40].

A well-known implementation of this prior is Slow Feature Analysis (SFA), an unsuper-

vised learning algorithm that reduces the dimensionality of its input by identifying slowly

changing dimensions in the data [31, 41, 42]. SFA first isolates independent components in

the data and then extracts those components that change slowly, under the premise that slower

features are more meaningful representations of the data [31]. This insight has been shown to

be relevant for RL, for instance in the context of a spatial learning task where SFA can provide

a effective representation learning mechanism [43]. The same paper showed that the SFA

agent produced similar learning trajectories to rats solving a comparable task, underscoring

the relevance of a slowness prior for animals. Theoretical research also demonstrated that

extracting slow features can explain the activity of complex cells in the visual cortex, the forma-

tion of allocentric spatial maps in the hippocampus and can be implemented in a biologically

plausible network [44–48]. Hence, a slowness prior promises a domain-general and biologi-

cally plausible way to extract task states from environmental input.

Despite its potential for representation learning and the abundance of research in the

machine learning domain, studies on the slowness prior in human reinforcement learning are

largely lacking. Here we explored the idea that humans rely on a slowness prior during rein-

forcement learning. We developed a novel decision-making task, in which participants had to

repeatedly learn which of two stimulus features predicted reward. We manipulated the speed

of change of the features and asked whether participants were faster to learn when the relevant

feature changed slowly versus when it changed quickly. Across two experiments and one pre-

registered replication, as well as extensive model comparison, our results indicate that they do.

This finding enriches our understanding of human inductive biases in RL and can prompt fur-

ther studies about other such biases in human learning, as well as inform artificial intelligence

about how to best build human-like agents.

Results

We investigated whether humans have a prior to preferentially process slowly changing fea-

tures of the environment that impacts reinforcement learning. We hypothesised that given

such a prior, participants should be better at learning the task if reward-predictive features

changed slowly, rather than quickly. To test this, we developed a task that required participants

to learn the rewards associated with a set of visual stimuli characterized by two features, a col-

our and a shape (Fig 1A). During each trial of learning, participants saw a stimulus composed

of both features and decided between rejecting or accepting the stimulus. While rejecting

always led to a fixed reward of 50 coins, accepting led to reward between 0 to 100 coins that

was higher than 50 for half of all stimuli. Across trials, the two features changed independently

and with different speeds: one feature changed slowly (e.g., participants saw relatively similar

shapes from trial to trial), while the other feature changed quickly (e.g., participants saw rela-

tively distinct colours from trial to trial, Fig 1A). Our core manipulation was that in each block
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either the slowly-changing or the fast-changing feature was reward-predictive, while the other

had no relation to reward (relevant and irrelevant feature, respectively). The relevant feature

had a fixed relation to reward in each block, with the maximum reward of 100 assigned to one

position and decreasing rewards assigned to other positions based on their distance to the

maximum. This split the circular feature space into two semicircles: high- and low-reward (Fig

1B). Hence participants had to learn which feature was reward-predictive in general, and

which specific feature positions should be accepted vs rejected.

We first tested our hypothesis in two experiments, each with 50 participants (experiments 1

and 2), and then performed a preregistered replication of experiment 2 in a third sample of

195 participants (138 participants after exclusions, hereafter called the replication sample).

The key difference between experiments 1 and 2 was that experiment 2 included a demonstra-

tion of stimulus changes before each block. The experiments also differed in the number of tri-

als per block. Hence, in experiment 1 participants directly started reward learning, and could

observe which feature changed fast vs. slow while they also had to observe the reward out-

comes. In experiment 2 and the replication, we ensured participants knew how fast each fea-

ture would change before each block by displaying a sequence of 30 trials without reward that

participants observed passively before learning (Observation phase, see Fig 1D). Participants

were not informed about which feature was relevant in either experiment but had to learn it in

each block through trial and error from the Learning phase, as described above (experiment 1:

45 trials, experiment 2 and replication: 60 trials, Fig 1E). Due to the continuous reward struc-

ture, it was beneficial to generalise observed outcomes to nearby feature positions. We probed

Fig 1. Continuous reward features learning task. A: The two stimulus features and their possible speeds. Each jump of the arrows

indicates the change in the feature on a trial. The slow feature (here: shape) changes gradually, while the fast feature (here: colour) changes

randomly. The feature-speed mapping is only for illustration, in each block, either shape or colour could change slowly. B: The mapping of

reward onto the relevant feature space. The relevant feature (here: shape) determines the stimulus reward. The closer the stimulus shape is

to the maximum reward location, the higher the reward. The irrelevant feature (here: colour) was uncorrelated with reward. The feature-

reward mapping is only for illustration, in each block, either shape or colour could be relevant and the maximum reward location changed.

C: How feature speed and reward predictiveness were combined to form slow and fast blocks. Note that which feature was slow/relevant

was counterbalanced across blocks. D-F: Schematic of the three phases in each task block. In experiment 1, the observation phase D was

omitted and the learning and test phases were shorter.

https://doi.org/10.1371/journal.pcbi.1012568.g001
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generalisation of learned values at the end of each block in a Test phase in which participants

were asked to choose the more valuable stimulus among pairs of stimuli not seen during learn-

ing, without feedback (experiment 1: 15 trials, experiment 2 and replication: 36 trials, Fig 1F).

Participants performed eight blocks in total. In half of the blocks the slow feature was

reward-predictive (slow blocks), in the other half the fast feature was reward-predictive (fast

blocks, Fig 1C). Within each of these conditions, colour and shape were assigned as the rele-

vant feature an equal number of times.

The three experiments are accompanied by two preregistrations available on the Open Sci-

ence Framework (OSF)(https://osf.io/6dy8f). The first preregistration was submitted prior to

acquisition of any data. We used experiment 1 and 2 to refine the task and analysis. As a result,

we deviated from the first preregistration, however note that the hypothesis, core tenets of the

task and main analyses are maintained. To validate our results, we updated the preregistration

to reflect the changes to the task and analysis and then conducted a direct replication of experi-

ment 2 in strict adherence to this registration. This reregistration focused on 3 main effects:

the effect of feature speed on (1) collected rewards and (2) accuracy in the learning phase and

on (3) accuracy in the test phase. Three additional analyses that were less central were also

included, namely logistic mixed effect models testing the impact of (1) reward and (2) relevant

and irrelevant features on learning phase choices, as well as (3) the difference in reward

between stimuli on test phase choices. Finally, we included the intent to conduct a meta-analy-

sis across experiments in the registration. In the reregistration we defined a new performance-

based exclusion criterion, which led to an effective sample size of 138 participants after exclu-

sions in the replication. The computational models were not included in the preregistrations.

For more details on the preregistration see Text A in S1 Materials.

Participants learned feature rewards and generalised their knowledge

We first analysed participant choices to confirm learning of the feature-reward mapping. Par-

ticipants’ choice accuracy in the learning phase increased from around chance in the first ten

trials of a block to significantly above chance in the last ten trials in all three experiment sam-

ples (experiment 1: start = 52%, end = 67%, t(49) = 8.272 p< .001, experiment 2: start = 51%,

end = 74%, t(49) = 13.264 p< .001, replication: start = 51%, end = 75%, t(137) = 26.909

p< .001, Fig 2A). This increase in accuracy was accompanied by a gradual decrease in ‘accept’

choices throughout the learning phase, reducing from above 85% in the first ten trials to below

65% in the last ten trials across experiments (experiment 1: start = 85%, end = 64%, t(49) =

−10.276 p< .001; experiment 2: start = 87%, end = 62%, t(49) = −13.458 p< .001; replication:

start = 88%, end = 58%, t(137) = −28.385 p< .001, Fig 2B). Note that ‘accept’ choices allowed

participants to gather information on stimulus values and therefore were necessary for explo-

ration early in a block. Accordingly, participants learned with time to selectively reject low-

value stimuli, while they continued to accept high-value stimuli (Fig 2C). We confirmed par-

ticipants did not engage in simplified strategies by fitting two control models, one which cap-

tures possible biases for accept choices (Random Choice model), and one which can capture a

bias for one of the response keys (Random Key model). These models did not explain partici-

pant choices well, compared to the learning models discussed below (Fig 3A, details see below

and Methods). These results show that participants learned the feature-reward mapping.

We also found that participants could correctly identify the higher value stimulus in the test

phase, in which previously unseen feature positions were presented, for which participants

never witnessed reward feedback (mean accuracy significantly higher than the chance level of

50%, experiment 1: 71%, t(49) = 12.257 p< .001; experiment 2: 75%, t(49) = 17.378 p< .001;

replication: 75% t(137) = 32.038, p< .001). Further, participant choice probabilities reflected
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true stimulus values (Fig 2D). Hence, our data suggests that participants generalised values

successfully across task and stimulus differences between the two phases.

Learning improved when the relevant feature changed slowly

Having established that participants learned and generalised well in our task, we turned to our

main question, namely, whether reward learning and generalisation differed for slowly versus

fast-changing features. All mixed effect models used the maximal random effects structure that

converged. We first included all main effects and interactions between predictors in the fixed

effects and then tested whether removing them impacted model fit. Predictors were z-scored

and no response trials were excluded, see Methods for details. Full model descriptions includ-

ing effect sizes, confidence intervals and best fit models in the case when the effect of interest

did not contribute to the fit can be found in the Methods and in Tables A-N in S1 Materials.

Improved learning. We measured performance in the learning phase by subtracting the

cumulative reward expected by chance (50 per trial) from the cumulative reward obtained by

participants. In experiment 2 and the replication sample, in line with our hypothesis, the

cumulative reward gain was higher in slow compared to fast blocks (preregistered main test

1, experiment 2: MS = 248.62 ± 21.54, MF = 217.57 ± 22.43, t(49) = 2.17, p1−sided = .017,

d = 0.31, N slow>fast = 33/50; replication: MS = 270.19 ± 10.73, MF = 242.95 ± 10.96, t(137) =

2.65, p1−sided = .004, d = 0.23, N slow>fast = 86/138; Fig 3A and 3C). In experiment 1, in which

the observation phase was omitted and blocks were shorter, participants accumulated higher

reward on slow blocks, but the difference was not significant (MS = 128.11 ± 14.03, MF =

108.88 ± 14.97, t(49) = 1.57, p1−sided = .061, d = 0.22, N slow>fast = 30/50, Fig 3A and 3C). The

Fig 2. Participants learned and generalised the feature reward mapping. A: Proportion correct choices across trials increases in the

learning phase. The behaviour of two control models which capture aspects of random behaviour are shown in blue/green colours. B: The

proportion of accept choices in the learning phase reduces across trials. C: The proportion of accept choices depending on the true stimulus

reward, for every 15 trials from the start to the end of the block. Participants learn to selectively reject low-value stimuli. A-C: Curves were

averaged across 3 adjacent values. D: Proportion of choosing the right stimulus in the test trials, depending on the difference in value

between the right and left stimulus, shows sensitivity to the true reward value. Curves were averaged across 5 adjacent values. Grey ribbons

show the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1012568.g002
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learning benefit was also evident in an analysis of the average percent of correct choices in

slow vs fast blocks in experiment 2 and the replication sample, but not in experiment 1 (pre-

registered main test 2, experiment 1: MS = 60% ± 1.11, MF = 59% ± 1.13, t(49) = 1.14 p1−sided =

.130, d = 0.16, N slow>fast = 28/50; experiment 2: MS = 65.26% ± 1.24, MF = 63.54% ± 1.35, t

Fig 3. Participants learned better in slow blocks. A: Cumulative reward obtained in a block of the learning phase above a chance baseline

of 50 per trial is higher in slow than in fast blocks in all three samples. Separately for blocks where the slow feature (purple) and fast feature

(green) were relevant. Individual participant means in grey. B: Higher cumulative reward in slow compared to fast blocks is confirmed by a

meta-analysis across experiments. C: Cumulative reward obtained relative to a chance baseline of 50 on each trial increases more rapidly in

slow blocks in all three samples. Grey ribbons show the standard error of the mean. D: Visualisation of the difference in cumulative reward

between slow and fast blocks across trials. E: Mean accuracy in the test phase is higher in slow than in fast blocks in experiment 2, but not

experiment 1 and the replication. F: Meta-analysis results show that there is no consistent benefit in test phase generalisation for slow

blocks.

https://doi.org/10.1371/journal.pcbi.1012568.g003
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(49) = 1.98 p1−sided = .028, d = 0.28, N slow>fast = 30/50; replication: MS = 66.3% ± 0.6, MF =

65.0% ± 0.6, t(137) = 1.99, p1−sided = .024, d = 0.169, N slow>fast = 84/138, for the learning

curves in slow and fast blocks see Fig A in S1 Materials). A logistic mixed effects model pre-

dicting participant choices with fixed effects for condition (slow/fast), trial number, stimulus

value, and all two-way interactions showed that participant choices more closely reflected the

stimulus values in the slow compared to the fast blocks in all samples (preregistered supple-

mentary test 1, condition×value, experiment 1: β = 0.094, 95% CI = [0.016 to 0.173], likelihood

ratio test comparing to model without interaction: X2(1) = 5.46, p = .019; experiment 2: β =

0.120, 95% CI [0.048 to 0.191], X2(1) = 10.72, p = .002; replication: β = 0.106, 95% CI = [0.063

to 0.149], X2(1) = 23.32, p< .001). Additionally, meta-analytic results across the three experi-

ment samples showed that reward was robustly higher on slow blocks of the learning phase

(Hedge’s g = 0.204, 95% CI = [0.024 to 0.385], Z = 2.22, p = .026, Fig 3B, for a forest plot with

all statistics see Fig A in S1 Materials) with low heterogeneity between samples (τ2 = 0, I2 =

0.0%, 95% CI = [0.0%; 89.6%], Q = 0.01, p = .993). In sum, participants were better at using

stimulus values in slow relative to fast blocks and hence made more correct choices and accu-

mulated more rewards. This lends support to the idea that participants benefited when the rel-

evant feature was changing slowly.

Given that the slowness prior proposes that slow-changing features will be more likely to be

considered relevant, we hypothesised that the lower reward and accuracy on fast blocks could

result from incorrectly basing choices on the slow feature, even when it was irrelevant. To test

this, we used the feature positions for both the relevant and irrelevant feature, trial number,

and their interactions to predict participant choices separately for slow and fast blocks, using a

logistic mixed effects model. We found no significant effect of the irrelevant feature on choices

in either condition, across all samples (preregistered supplementary test 2, likelihood ratio test

comparing to model without irrelevant feature terms, experiment 1: slow: X2(4) = 5.07, p>
.05, fast: X2(4) = 6.16, p = .749; experiment 2: slow: X2(4) = 3.34, p> .05, fast: X2(4) = 10.92,

p = .110; replication: slow: X2(4) = 7.24, p = .495, fast: X2(4) = 2.73, p> .05). Note that the pre-

registration states that we do not run model comparison for this analysis. While we do not

exclude predictors based on model comparison, we do use it to assess the significance of

predictors.

No effect on generalisation. We next asked whether a difference between slow and fast

blocks was also evident in the test phase. While we did find that participants’ accuracy was

greater in slow versus fast blocks in experiment 2, we did not observe this effect in experiment

1 nor in the replication sample (preregistered main test 3, experiment 1: MS = 71.3% ± 2, MF =

71.5%±2, t(49) = 1.14, p1−sided = .130, d = 0.16, N slow>fast = 22/50; experiment 2: MS = 76% ±
1.6, MF = 74% ± 1.5, t(49) = 1.85, p1−sided = .035, d = 0.26, N slow>fast = 29/50; replication: MS

= 74.9% ± 0.9, MF = 74.2% ± 0.8, t(137) = 0.958, p1−sided = .170, d = 0.08, N slow>fast = 65/138;

Fig 3E). The same picture emerged when modelling participant left/right choices in a logistic

mixed effects model, with the condition, value difference and the condition×value difference

interaction as predictors. We found that the true difference in value between the shown stimuli

had a greater influence on choice in slow than in fast blocks in experiment 2, but not in the

other two samples (preregistered supplementary test 3, condition×value difference: experi-

ment 1: β = −0.015, 95% CI = [-0.138 to 0.108], X2(2) = 0.06, p> .05; experiment 2: β = 0.125,

95% CI = [0.038 to 0.212], X2(2) = 7.93, p = .010; replication: β = 0.094, 95% CI = [-0.020 to

0.208], X2(1) = 2.58, p = .216). A meta-analysis did not show a consistent effect of feature slow-

ness on accuracy in the test phase (Hedge’s g = 0.080, 95% CI = [-0.100; 0.259], Z = 0.87, p =

.386, Fig 3F, see also Fig A in S1 Materials, heterogeneity: τ2 = 0, I2 = 0.0% 95% CI = [0.0%;

89.6%], Q = 0.56, p = .754). Hence, participants were not better able to infer and generalise the

feature values in the test phase when the relevant feature had changed slowly during the
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learning phase. In sum, we confirm the main analyses 1 and 2 and supplementary analysis 1

from our preregistration, but do not find evidence for main analysis 3 and supplementary

analysis 2 and 3.

Control analyses. One possible concern regarding the interpretation of these effects is

that the auto-correlation of reward outcomes could facilitate learning for slow but not for fast

blocks. Our results speak against this interpretation. First, we tested a control model that

ignored the stimulus features and simply learned a value estimate from successive reward out-

comes (henceforth: Bandit Model). This model performed badly on the task and could not pre-

dict participant choices well (see model results below and Methods), suggesting that auto-

correlation alone could not explain the differences in performance between slow and fast

blocks. Second, we tested a control model that used a win-stay-lose-shift strategy (henceforth:

WSLS Model) [49, 50]. This strategy can be helpful in slow blocks, where consecutive trials are

likely to require the same choice, but not in fast blocks, where the correct choice is likely to

change often. Indeed, this model performed well in slow blocks and badly in fast blocks (see

Fig D in S1 Materials), but could not explain participant choices well (see model results below,

and Methods).

Computational models

To examine which mechanisms might underlie the difference in learning between the condi-

tions, we fitted four reinforcement learning (RL) models to participant choices during the

learning phase in experiment 2 and the replication study. Based on our behavioural findings

above, all considered models sought to (a) reflect participants’ learning from outcomes, (b)

account for learning about which stimulus feature is relevant and which is not, (c) incorporate

generalisation between stimuli of similar appearance, and (d) reflect participant’s tendency to

explore by accepting many stimuli when uncertainty is high. Our major aim was to test

whether the learning process differed depending on whether participants learned about slow

or fast-changing features, i.e. in slow vs fast blocks. To this end, we formulated a set of four

models that embodied alternative hypotheses about how feature speed could affect learning, as

described below (see Fig 4).

All models used linear function approximation and a Kalman filter to account for partici-

pants’ generalisation and exploration behaviour, respectively (see Fig 4 and Methods). Briefly,

each stimulus was converted into a 30-dimensional feature vector xt that indicated which col-

our and shape stimulus on trial t had (one entry for each of the 15 possible shapes and 15 col-

ours). To reflect feature similarity across the circular stimulus space, a von-Mises distribution

was centered around the true stimulus features, such that activation of node i was determined

by its distance from the node assigned to the true feature t:

xt;i ¼
ecosðdt;iÞk

P360

i¼1
ecosðdt;iÞk

ð1Þ

where dt,i is the distance between node i and t in radians and κ determines the width (a.k.a.

concentration) of the von-Mises distribution. We then modelled the expected value Vt of a

stimulus as the inner product of the feature vector xt and the weight vector wt:

Vt ¼ xT
t wt ð2Þ

and updated wt after each accept choice to reflect the outcome Rt of trial t with a learning rate
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α, as follows:

wtþ1 ¼ wt þ at xt ðRt � VtÞ ð3Þ

To account for exploration behaviour, we modelled participants’ uncertainty, Ut, about the

value of a stimulus on trial t using a Kalman Filter. Akin to an upper confidence bound mecha-

nism [51], the uncertainty was added to stimulus value in model choices, serving as an explora-

tion bonus (see Methods for details):

Va;t ¼ Vt þ cUt ð4Þ

where c mediates how strongly the exploration bonus is weighted at choice. The uncertainty Ut

also determined the learning rate on the current trial, αt. As the environment was stationary

the uncertainty and learning rate reduced across trials. Finally, the model’s choice was guided

by the probability of the value of accepting, Va,t, being larger than a normal random variable

Fig 4. Schematic of the RL models. From left to right: A stimulus is converted to a feature vector, which is a distribution across

neighbouring feature values. The feature vector is combined with the weight vector, which stores the value estimates. The resulting value

for the stimulus is compared against the reward outcome. This reward prediction error is used to update the weight vector on each trial

(shown as rows in the figure). By the end of the block (bottom row), the model learns a mapping between the relevant feature (in this case

shape) and reward. The right column shows how the learning rates map onto the stimulus features. Learning models: one learning rate

model (1LR), separate learning rates per slow/fast feature (2LRf), separate learning rates per slow/fast condition (2LRc) and the four

learning rates model (4LR).

https://doi.org/10.1371/journal.pcbi.1012568.g004
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centred on 50 (the value of rejecting), with standard deviation σ:

pðacceptÞ ¼ P½X � Va;t�

X � Nð50;s2Þ
ð5Þ

While all of the four models reported here used the above-described mechanisms, they dif-

fered in whether they could adapt their learning rates to the slowness of the features, the rele-

vance of the features to predict reward, or both (see Fig 4 right column). A baseline model

used the same learning rate α for all conditions and features (one learning rate model, short

1LR). Hence, this model was indifferent to slowness and could not account for a difference in

performance between the slow and fast blocks. A second model used separate learning rates

for the slow vs. fast-changing feature (αS/αF), irrespective of whether the feature was relevant

in a given block (feature learning rates model, 2LRf). This model could account for the differ-

ence in performance between slow and fast blocks, but since it disregarded the relevance of the

features for predicting reward it is an unlikely candidate to explain participant behaviour a pri-
ori. In a third model (condition learning rates model, 2LRc), separate learning rates were used

depending on whether the relevant feature was changing slowly (αS) or quickly (αF), but used

the same learning rate for both features within the same block, regardless of their relevance.

Finally, the fourth model had four separate learning rates for the slow and fast-changing fea-

tures, when they were relevant and irrelevant (4LR model, learning rates αS,R, αF,R vs αS,I, αF,I,

respectively). This model could accommodate both differences in learning due to the slowness

of the features and the reward structure of the task, for which reason we expected this model to

predict participant choices best. The core aspect of these models is that they can assign differ-

ent learning rates to the slow and the fast features or blocks a priori. Should the learning rate

for the slow feature or condition be higher, this would lead to faster learning when the slow

feature is relevant, and slower learning when the fast feature is relevant, effectively implement-

ing our hypothesis.

We also considered models where the exploration parameter (c) or the decision noise (σ2)

could differ between conditions, however these models gave a worse account of participant

behaviour (for details see Methods and Fig D in S1 Materials)

All models can learn the task. To ensure that all models represent useful accounts of

behaviour, we first fitted model parameters to maximise reward obtained by the model. This

showed that given optimal parameters all learning models achieved a near-ceiling cumulative

reward gain of around 600 coins per block, significantly above the cumulative reward expected

by chance (all p< .001, theoretical maximum of clairvoyant agent: ca. 735 coins). In contrast,

above mentioned Random Choice, Random Key, Bandit, and WSLS control models, were all

significantly worse at the task (all p< .001, Fig 5A). In the test phase, the differences were even

starker—only the learning models learned a mapping of stimulus features to reward, so only

these models could generalise to unseen feature values (Fig 5B). Hence all learning models

were capable of performing our task.

We next evaluated which models could in principle reproduce the above-reported condi-

tion difference by simulating the models with a higher learning rate for the slow compared to

the fast feature (0.6 vs 0.3, respectively; for the 1LR model, we used α = 0.3). As expected, all

models with 2 or 4 learning rates (2LRf, 2LRc and 4LR) could, given appropriate parameters,

account for a difference between the slow and fast conditions (Fig 5C), while the 1LR model

could not reproduce this effect.

Learning is affected by slowness. Having established that all models in principle repre-

sent plausible accounts of behaviour, we next asked which model fits participant choices best,

using maximum likelihood fitting and compared models using protected exceedance
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probabilities. Protected exceedance probabilities were calculated with the bmsR package in R

[53], with model evidence approximated with AICc weights, relative to the 1LR model [54],

for details see Methods. We first examine the model results in experiment 2 and in a following

section validate our findings in the replication experiment. We did not fit the models to the

data from experiment 1, as its shorter learning blocks provided less trials for model fitting and

it less reliably picked up on the effect of slowness on participant learning. Following maximum

Fig 5. Models including slowness effect explain participant behaviour best. A: All learning models can learn the task. Mean reward in

the learning phase for the models using reward-maximising parameters. Learning models: one learning rate model (1LR), separate

learning rates per feature (2LRf), separate learning rates per condition (2LRc) and the four learning rates model (4LR). Control models:

win-stay-lose-shift (WSLS), learning model ignoring features (Bandit), random responding with a bias for accept choices (Rd. Choice) or

response key (Rd. Key). B: Mean accuracy in the test phase for the models using optimal parameters. C: Mean reward for slow and fast

blocks in the learning phase for the models simulated using hand-picked learning rates, α/αF = 0.3 αS = 0.6. For the 4LR model both

relevant learning rates, αS,R, αF,R, were increased by 0.1. D: Proportion correct choices across trials in the learning phase. E: Proportion of

accept choices across trials in the learning phase. F: Proportion of accept choices depending on the true stimulus reward, for the first and

last 15 trials of the learning phase. D-F: Using best fit model parameters. Curves were averaged across 3 adjacent values. Learning models

are shown in coloured lines and participants in black. G: Protected exceedance probabilities (bars) and estimated frequencies (diamonds)

of the models. H: Simplex of AICc weights (larger values indicate better fit), calculated considering only the three best-fitting models: 4LR,

2LRc and 1LR. Each point is one participant, coloured by their best fit model. Plot produced with [52].

https://doi.org/10.1371/journal.pcbi.1012568.g005
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likelihood fitting, we first simulated the models with the best-fit parameters (see Table 1). This

showed that all models were able to qualitatively match participant learning curves, increasing

from 50% to just under 80% correct choices across the 60 trials in a learning block (Fig 5D, see

Fig B in S1 Materials for individual participant fits). Models also captured the decrease in

accept choices from around 85% to approximately 63% by the end of learning (Fig 5E), as well

as the increase in sensitivity to expected reward in the learning phase (Fig 5F).

Notably, in experiment 2, comparing protected exceedance probabilities [55] and corrected

AIC (AICc) scores [56] indicated that the model with four different learning rates (4LR

model) fitted behaviour best (XP = .898, AICc = 468.8, see Fig 5G), followed by the model with

separate learning rates per condition (2LRc model, XP = .101, AICc = 470.0) and the 1LR and

2LRf models (1LR: XP = .001, AICc = 472.7; 2LRf: XP < .001, AICc = 471.7). The 4LR model

was estimated as the most frequent model out of those tested (42%), followed by the 2LRc

model (28%, Fig 5G). Together these two models best explained the behaviour of most partici-

pants (N = 34/50), however some participants were best fit by the 1LR model (N = 8/50, esti-

mated frequency 14%).

To ask how clear the evidence in favor of the winning model was within each participant,

we inspected the distribution of AICc weights for the three best-performing models on a sim-

plex (4LR, 2LRc and 1LR, Fig 5H). The AICc distribution indicated that participants best fit by

the 4LR model were unambiguously best fit by this model, i.e., participants best fit by this

model had relatively low weights for the other models. A similar picture emerged for the 2LRc

model. In the case of the one learning rate model (1LR) the difference in fit between the best

and alternative models was less pronounced. We fit additional models which allowed parame-

ters other than the learning rate to vary by condition, however these provided a worse account

of participant behaviour and are not included in the analyses above (see Fig D in S1 Materials).

In sum, the evidence that the best-performing models, 4LR and 2LRc, adapted their learn-

ing rates to the feature speed suggests that participants’ learning was affected by feature

slowness.

The 4LR model captures participant behaviour. Given that the 4LR model emerged as

the winning model, we asked how this model related to the behavioural differences between

slow and fast blocks in experiment 2. We compared 4LR model fits to the 1LR model to exam-

ine the improvement in fit conferred by the adaptation of learning rates to feature speed, while

accounting for the remaining learning mechanisms and ability to solve the task, which were

the same across all models (see Fig 5A). Simulating 4LR model choices using the best-fit

parameters showed a qualitatively similar condition difference in accumulated reward as seen

in participants, however this was not significant (MS = 319.33 ± 33.7, MF = 292.51 ± 31.6, t(49)

= 1.114, p1−sided = .135, d = 0.16, Fig 6A). We found that larger differences in participants’

cumulative reward in slow compared to fast blocks in the learning phase were related to a

Table 1. Best fit parameter estimates for experiment 2.

c σ κ α/αS/αS,R αF/αF,R αS,I αF,I

1LR 6.08 (2.84) 41.96 (20.37) 6.70 (8.29) .59 (.33)

2LRf 6.57 (3.08) 44.52 (7.43) 5.88 (7.43) .69 (.34) .55 (.34)

2LRc 6.19 (2.65) 43.71 (8.76) 6.82 (8.76) .61 (.33) .57 (.32)

4LR 6.33 (2.96) 47.48 (8.01) 6.80 (8.01) .78 (.33) .70 (.37) .39 (.36) .40 (.32)

Mean and standard deviation of the best estimates in experiment 2 for the exploration parameter (c), decision noise (σ), von Mises concentration (κ), and learning rates

on the first trial (α) for the slow (S) or fast (F), and relevant (R) or irrelevant (I) feature, obtained through maximum likelihood fitting.

https://doi.org/10.1371/journal.pcbi.1012568.t001
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better fit of the 4LR relative to the 1LR model (r = .28, p = .045, Fig 6B top). Stronger beha-

vioural effects in the test phase were also related to a better relative fit of the 4LR model (r =

.30, p = .032, Fig 6B bottom). No such relationships were found for the 2LRc model (p> .05,

all p values uncorrected).

Further, the fitted learning rates related to participant behaviour. Note that due to the Kal-

man filter aspect of our model, the learning rates decreased across trials (see Fig D in S1 Mate-

rials). Therefore, we examined the mean learning rate across all trials in a block, instead of

using the fit value, which was the learning rate on the first trial. When it was relevant, the slow

feature benefited from higher mean learning rates than the fast feature (MS = .68 ± .36, MF =

.57 ± .37, t(49) = 2.09, p = .042, d = 0.30). For the irrelevant learning rates, we found no such

difference (MS = .28 ± .29, MF = .27 ± .23, t(49) = 0.16, p = .875, d = 0.02, Fig 6C, all p values

uncorrected). Larger mean learning rates for the relevant slow feature were correlated with

more reward being accrued on slow than on fast blocks in the learning phase (r = .41, p = .012

Fig 6D top). No other learning rate showed a significant relationship to the behavioural effect

(all p> .05). These results indicate that the effect of feature speed on learning was mainly mod-

ulated by improved learning from the slow feature. Hence, individual differences in model

parameters and fit captured differences in how strongly the slowness prior influenced partici-

pants’ choices.

The replication confirms 4LR as best model. To validate our modelling results, we ran

the same model fitting procedure and analysis on the learning phase choices of the participants

in the replication sample. For best fit parameter estimates see Table 2. The models matched

participant behaviour well (see Fig 7A–7C and Fig C in S1 Materials). The results confirmed

our previous findings, with an even clearer advantage for the 4LR model relative to the 2LRc,

2LRf and 1LR models, as indicated by the exceedance probabilities and AICc scores (4LR:

XP = 1, AICc = 474.6, N best fit = 67/138, 2LRc: XP < .001, AICc = 477.6, N = 21/138, 2LRf:

XP< .001, AICc = 477.6, N = 23/138, 1LR: XP < .001, AICc = 478.8, N = 25/138, Fig 7D).

Here, too, the distribution of AICc weights within each participant indicated that most partici-

pants best fit by the 4LR model had relatively low weights for the next best models (Fig 7E).

Fig 6. The four learning rates model captures participant behaviour. A: Simulating the 4LR model with the best-fit learning rates leads to

higher collected reward in slow compared to fast blocks. B: A better fit of the 4LR model (x) is related to greater collected reward in slow

than in fast blocks in the learning phase (top) and (bottom) greater accuracy in slow than in fast blocks in the test phase (bottom). C:

Distribution of learning rates for the 4LR model, obtained from maximum likelihood fitting. Mean across all trials in a block. D: Higher

mean learning rates for the relevant slow feature (top) are correlated with greater collected reward in slow than in fast blocks in the learning

phase (y). Relevant mean learning rates for the fast feature are not correlated with the slowness effect (bottom). Points are individual

participants. Line plots are a linear regression line fitted to the data using the least squares method and grey ribbons show the 95%

confidence interval.

https://doi.org/10.1371/journal.pcbi.1012568.g006
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Simulating 4LR model choices using the best fit parameters showed that the model accumu-

lated higher reward in slow than in fast blocks, however this difference was not significant (MS

= 352.54 ± 15.90, MF = 331.85 ± 17.93, t(137) = 1.525, p1−sided = .065, d = 0.13, Fig 7F). We

found that participants better fit by the 4LR model relative to the 1LR model, accumulated

more reward in the slow than the fast blocks of the learning phase (r = .206, p = .015, Fig 7G

top). Unlike in experiment 2, this relationship also held for the 2LRc and 2LRf models (2LRc: r
= .206, p = .015, 2LRf: r = .262, p = .002, all p values uncorrected). Similarly, we found that a

better fit of the 4LR model relative to the 1LR model was related to better performance in the

slow blocks of the test phase (r = .291, p = .001, Fig 7G bottom). The same relationship was

observed for the 2LRc 2LRf models (2LRc: r = .200, p = .019, 2LRf: r = .267, p = .002, all p values

uncorrected).

Again, the slow feature benefited from higher mean learning rates than the fast feature

when it was relevant (MS = .760 ± .024, MF = .678 ± .028, t(137) = 2.13, p = .035, d = 0.18, Fig

7H). There was no significant difference in the irrelevant mean learning rates (MS = .337 ±
.026, MF = .293 ± .020, t(137) = 1.487, p = .139, d = 0.127, all p values uncorrected). Addition-

ally, we found that both relevant learning rates were associated with the behavioural effect.

More accumulated reward on slow than on fast blocks in the learning phase was linked to

larger mean learning rates for the relevant slow feature (r = .500, p< .001 Fig 7I top) and

smaller mean learning rates for the relevant fast feature (r = −.615, p< .001 Fig 7I bottom).

Unlike in experiment 2, this indicates that the effect of slowness on learning was modulated

not only by increased learning from the slow feature, but also by decreased learning from the

fast feature.

Discussion

Causal processes tend to evolve on a slower timescale than noise [31]. To investigate whether

humans employ a slowness prior to identify potentially relevant features during reinforcement

learning, we tested participants in a decision-making task with stimuli composed of one

reward-predictive and one reward-irrelevant feature. Participants learned the value of stimuli

faster when the reward-predictive feature changed slowly and the irrelevant feature changed

quickly, compared to when the opposite was the case. After learning, participants could gener-

alise the learned values to new stimuli equally well in both conditions. By comparing models

with different structures for the learning rates, we showed that participants adjusted their

learning to the speed of the features. Specifically the learning rates for the relevant features

mediated the behavioural effect, suggesting that the observed behavioural differences between

conditions were being driven by increased learning from the slow feature and decreased learn-

ing from the fast feature. Our study extends research on the slowness prior to humans and sug-

gests that it aids learning task states, in a reinforcement learning domain.

Table 2. Best fit parameter estimates for the replication.

c σ κ α/αS/αS,R αF/αF,R αS,I αF,I

1LR 6.99 (4.23) 41.04 (17.24) 4.30 (5.02) .67 (.25)

2LRf 7.15 (4.18) 42.56 (17.23) 4.38 (5.28) .74 (.27) .64 (.30)

2LRc 7.03 (4.08) 42.24 (17.25) 4.73 (5.99) .69 (.23) .65 (.28)

4LR 6.97 (3.81) 45.00 (17.49) 5.33 (6.86) .88 (.20) .80 (.27) .46 (.34) .43 (.30)

Mean and standard deviation of the best estimates in the replication for the exploration parameter (c), decision noise (σ), von Mises concentration (κ), and learning

rates on the first trial (α) for the slow (S) or fast (F), and relevant (R) or irrelevant (I) feature, obtained through maximum likelihood fitting.

https://doi.org/10.1371/journal.pcbi.1012568.t002
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Our work relates to a broader discussion of how the human brain solves representation

learning problems [27, 30]. Previous work has shown how representation learning can be

implemented in parallel to reinforcement learning by using feedback signals to guide selective

attention [57, 58], or through replay mechanisms during offline periods [59, 60]. Although

these approaches represent flexible mechanisms that allow on-the-fly adaptation to the current

environment, it is unlikely to be feasible in environments with hundreds of possible signals to

Fig 7. The replication confirms the four learning rates model captures participant behaviour best. A-C: Participant behaviour (black)

and learning model predictions using best fit parameters showing the proportion of A: correct choices and B: accept choices across trials

in the learning phase and C: accept choices depending on the true stimulus reward, for the first and last 15 trials of the learning phase.

Lines smoothed across 3 adjacent values. Learning models: one learning rate model (1LR), separate learning rates per feature (2LRf),

separate learning rates per condition (2LRc) and the four learning rates model (4LR). D: Protected exceedance probabilities (bars) and

estimated frequencies (diamonds) of the models. E: Simplex of AICc weights (larger values indicate better fit), calculated considering only

the three best-fitting models: 4LR, 2LRc and 1LR. Each point is one participant, coloured by their best fit model. F: Simulating the 4LR

model with the best-fit learning rates leads to higher collected reward in slow compared to fast blocks. G: A better fit of the 4LR model (x)

is related to greater collected reward in slow than in fast blocks in the learning phase (top) and greater accuracy in slow than in fast blocks

in the test phase (bottom). H: Distribution of learning rates for the 4LR model, obtained from maximum likelihood fitting. Mean across all

trials. I: Higher mean learning rates for the slow feature (top) and lower mean learning rates for the fast feature (bottom) are correlated

with greater collected reward in slow than in fast blocks in the learning phase (y). Points are individual participants. Line plots are a linear

regression line fitted to the data using the least squares method and grey ribbons show the 95% confidence interval.

https://doi.org/10.1371/journal.pcbi.1012568.g007
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attend to [3, 6, 29]. Our results suggest that for this reason representation learning mechanisms

during RL are supplemented with inductive biases. Inductive biases may act by biasing beliefs

about which features are relevant, thereby reducing the reliance on online computation. This

narrowing down of options could be implemented as selective attention, which recruits fron-

tal, parietal and visual cortical areas [61]. One possibility is that inductive biases modulate

activity in these areas to accelerate representation learning. Our findings are in line with previ-

ous research showing that priors have a pervasive influence on behaviour, shaping perception

[15, 37], remaining stable in the face of exposure to contradictory training [62], and hindering

learning of structures which do not align with them [63, 64]. More indirectly, our work raises

the question about the origins of such priors, and whether they are learned themselves. One

possibility in this regard is that meta-learning, or learning to learn, is the core mechanism that

humans use in order to extract regularities of their environment and develop priors that aid

perception and learning [65].

While our results align with several theoretical studies on the slowness prior [34, 39, 43], it

is important to consider other ways in which slowness can benefit learning. By their nature,

slow features are more predictable [35, 36]. This raises the question of whether the learning

improvement for slow features is due to them being easier to learn from, rather than being

selectively attended to. For instance, the temporal auto-correlation of features and rewards

inherent to a slowly changing environment could enable the use of heuristic strategies, such as

a win-stay-lose-shift rule [49, 50]. We addressed this concern through model comparison and

found that these strategies were unable to explain the behaviour of participants. Another possi-

bility is that presenting stimuli in an ordered fashion yields benefits, as suggested in function

learning studies [66]. In our task, slow blocks were more likely to be ordered than fast blocks,

but due to the periodic nature of our feature-reward mapping, ordering might not be immedi-

ately apparent in either condition. Still, future research should aim to disentangle the effects of

ordering and slowness on learning. Importantly, assuming relevant processes change slowly

only is a useful assumption given the physical laws that govern our world, i.e., Newton’s first

law of motion, inertia [39]. Under these conditions, slow acceleration and changes in accelera-

tion are likely to also provide useful priors, as has been shown in motion perception studies in

humans [38]. Human learning likely incorporates a host of priors, reflecting other properties

determined by our (intuitive) physical understanding of the world [16].

Our findings also relate to previous work on curriculum learning, which has shown that

humans benefit from blocked, rather than interleaved, training on a context-dependent cate-

gorisation task [67]. In the blocked curriculum the relevant features for categorisation were

the same across trials, whereas in the interleaved curriculum the relevant features could switch

from trial to trial, even though the stimuli characteristics changed in both curricula. This raises

the possibility that slowness, not only in feature dynamics but also in task rules, may aid learn-

ing. However, it is worth noting that interleaved training might promote the formation of

more generaliseable representations [68], suggesting that the optimal learning curriculum may

differ depending on the task at hand. In sum, multiple lines of research point toward a benefi-

cial effect of slowness on learning. Here, we propose that part of this effect is due to the exis-

tence of a slowness prior.

Our task and models make some simplifying assumptions. In our task, participants need to

reduce a two-dimensional stimulus to a one-dimensional representation. Despite its simplicity,

the task itself posed a considerable challenge to participants, as indicated by their end-of-learn-

ing performance, which still left room for improvement. Consequently, the task contained the

necessary elements to test our hypothesis and provides a controlled test bed for looking at

dimensionality reduction. Our winning model, the four learning rate model, assigned learning

rates to the features based on their speed and relevance from the first learning trial of the

PLOS COMPUTATIONAL BIOLOGY An inductive bias for slowly changing features in human reinforcement learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012568 November 25, 2024 17 / 30

https://doi.org/10.1371/journal.pcbi.1012568


block. While it is reasonable to assume that participants in experiment 2 and the replication

knew the speed of the features based on the preceding observation phase, they could not yet

have known which feature was relevant. The models gradually learn the feature relevance

through the feature weights, but the structure of the learning rates anticipates the outcome of

this learning process. Nonetheless, the fact that a model with this assumption fits best and par-

ticipants’ accuracy increased within the first learning trials in a block, lead us to believe that

participants quickly developed a sense for the relevance of the features. We chose this approach

for its computational simplicity, but it remains a potential avenue for future research to set up

models which do not assign relevant and irrelevant learning rates a priori, but infer these

assignments through learning. It is for instance possible that the dynamics of learning rates are

influenced by a number of additional factors, such as volatility or the size of prediction errors

[69–71]. In addition, participants might learn a belief about which feature is relevant to deter-

mine learning rates [72].

Overall, the results of our experiments suggest that participants were able to learn the values

of stimuli better when the relevant feature changed slowly. By providing empirical evidence

for the role of a slowness prior in human learning and connecting to a large number of

machine learning findings [31, 39, 41], our study sheds light onto how humans might rapidly

learn representations in complex environments.

Methods

Ethics statement

All participants provided informed consent in written form and the study was approved by the

ethics committee of the Max Planck Institute for Human Development (approval number: N-

2020–08).

Participants

For all experiments participants were recruited through Prolific (www.prolific.co) and com-

pleted the experiment online (experiment 1: N = 50, female = 19, age = 18–38 years, M = 24.4

years, SD = 5.3 years, experiment 2: N = 50, female = 15, age: 18–39 years, M = 24.6 years,

SD = 5.4 years, replication: N = 195, female = 60, diverse = 2, age: 18–40 years, M = 28.2 years,

SD = 5.8 years). None reported being colour blind and none were currently receiving treat-

ment or taking medication for mental illness. Participants were compensated £3.75 (replica-

tion £5.00), plus a performance-dependent bonus of up to £1.50 (replication £2.50). To

determine the sample size for the replication study, we ran a power analysis based on the test

phase effect in experiment 2, as it was the test with the smallest effect size out of the three main

tests (MS = 76% ± 1.6, MF = 74% ± 1.5, t(49) = 1.85, p1−sided = .035, d = 0.26). To achieve ca.

95% power with a paired one-sided t-test, to detect an effect with Cohen’s d = 0.26, we aimed

for a sample size of 160 participants and collected 195 participants. We introduced a new per-

formance based exclusion criterion in the replication study, to exclude participants with ran-

dom end-of-learning performance. We defined end-of-learning performance for each

participant as the accuracy in the last 15 trials of the learning phase, averaged across all eight

task blocks (120 trials). If this mean accuracy was on or below the 97.5th percentile of a bino-

mial distribution over 120 draws with a probability of success of 1

2
(i.e. 71/120 successes or ca.

59.2% correct), the participant was excluded. After exclusions the effective sample size was 138

participants.
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Materials

Stimuli were coloured shapes, with shapes originating from the Validated Circular Shape

space [73] and colours defined as a slice in CIELAB colour space, with luminance 70, chroma

51 and origin [0, 0]. Shapes and colours were parameterized on a circular space, so each posi-

tion (0–359˚) corresponded to one colour or one shape (Fig 1A), and colour/shape similarity

varied continuously but had no hard boundaries. The feature spaces were perceptually uni-

form, so that the angular distance between feature values corresponded to the perceived differ-

ence between them. Small angular distances correspond to similar shapes (or colours),

whereas large angular distances correspond to distinct shapes (or colours).

In the learning phase of each block, a subset of 15 positions was shown, spaced uniformly

around the circle in steps of 24˚. Each block used a distinct set of positions, offset from the

positions used in other blocks in multiples of 3˚ and assigned to blocks in a random order. In

the test phase, stimuli were constructed from 15 feature positions offset by 12˚ from the posi-

tions used in the preceding learning phase. This offset ensured that shapes and colours seen at

test were maximally different from those seen during learning, providing a strong and semi-

independent test of participants’ knowledge about the feature-reward mapping.

The task was programmed as an online experiment using the jsPsych library version 6.1.0

[74]. The code for the task, including stimuli and instructions can be found on GitHub

(https://github.com/noahedrich/slow_prior/tree/main/task).

Design

Participants completed a task that required them to learn the rewards associated with a set of

visual stimuli characterized by two features (colour and shape) (Fig 1). Unbeknownst to partic-

ipants, stimulus rewards were related to only one of the two features in each block. We refer to

the feature that predicted reward as the relevant feature and the feature that did not predict

reward as the irrelevant feature (Fig 1B). For each block one position in the relevant feature

space was chosen as the maximum reward position. Maximum reward positions were at 10˚,

100˚, 190˚, or 280˚ in the feature space. Each of these reward positions was used once for col-

our-relevant and once for shape-relevant blocks, in random order. The closer the relevant

stimulus feature was to the maximum reward position, the higher the stimulus reward. The

stimulus reward was calculated as the absolute distance between the relevant feature position

and the maximum reward position, subtracted from the maximum possible distance of 180˚.

The resulting value was re-scaled from the angular distance range (0–180˚) to the reward

range (0–100 coins).

We manipulated feature speed, by controlling the trial-to-trial variability of the two fea-

tures. Within each block, one feature had low variability across trials (e.g. participants see rela-

tively similar shapes from trial to trial), while the other feature had high variability (e.g.

participants see relatively distinct colours from trial to trial). We refer to these as the slow and

fast feature, respectively (Fig 1A). The slow feature was sampled using a Gaussian random

walk centred on 0˚, with a standard deviation of 30˚. The fast feature was sampled randomly,

while preventing the smallest step-size (24˚) from occurring. Within each block, the 15 feature

positions (see Materials) repeated three times in experiment 1 and four times in the experi-

ment 2 and the replication, with each position being shown once before repeating. In this way,

we ensured comparable exposure to the slow and fast feature spaces, despite their differing

variability.

We counterbalanced the relevant feature dimension (shape relevant/colour irrelevant or

vice versa) and the feature speed (shape slow/colour fast or vice versa). Each combination of

relevant feature dimension and relevant feature speed was repeated twice, resulting in eight
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task blocks. In half of the eight task blocks, the slow feature was relevant (slow blocks), in the

other half the fast feature was relevant (fast blocks, Fig 1C). The block order was pseudo-ran-

domised, so that each combination was experienced once before repeating.

Procedure

Each task block consisted of three phases, observation, learning, and test (Fig 1D–1F).

The observation phase served to demonstrate the variability of the features to participants.

Thirty individual stimuli were shown in rapid succession (500ms each) and without interven-

ing screens. The speed of the features in the observation phase matched that in the subsequent

learning phase. Both phases used the same set of 15 feature positions, however, sequences for

observation and learning were sampled independently and started at randomly selected posi-

tions in feature space. In the learning phase, participants played an accept-reject task and were

asked to maximise coins earned by collecting valuable gems. Each trial began with a gem (a

coloured shape) being displayed centrally on the screen. Using the ‘F’ or ‘J’ key, participants

could either accept the stimulus, and receive the reward associated with it (between 0 to 100

coins), or reject the stimulus and receive an average reward (50 coins). The reject/accept key

mapping was counterbalanced across trials. If participants failed to respond after four seconds

they received zero coins. Immediately after a key press, the number of coins earned was dis-

played on the screen for one second, followed by a blank screen for a variable inter-trial inter-

val (0.5 to 1.5s). A correct response was defined as accepting a stimulus with a value above 50

coins or rejecting a stimulus with a value below 50 coins.

Following the learning phase, participants completed a two alternative forced choice task to

test their understanding of the stimulus values. In this test phase, participants were presented

with pairs of stimuli and asked to choose the more valuable stimulus in the pair, based on the

preceding learning phase. On each trial, participants could choose the left or right stimulus

with the ‘F’ or ‘J’ keys, respectively, with no time limit. After their response a blank screen was

shown for a variable inter-trial interval (0.5 to 1.5s). There was no trial-wise feedback during

the test phase. A correct response was defined as choosing the stimulus with the higher value.

Here, feature speed was no longer manipulated. Instead, the difference in value between the

two stimuli in a pair was systematically varied. By controlling the relevant feature positions of

the two stimuli, it was possible to probe choices from easier comparisons, where stimuli had

more distinct values (the maximum included difference was 54 coins), to increasingly difficult

comparisons, where the values of the two stimuli were more similar(the minimum difference

was 13 coins in experiment 1 and 2 coins in experiment 2 and the replication). Overall block

accuracy (including both learning and test phase) was reported to participants at the end of the

block and used to determine the performance bonus.

We ran two versions of the experiment. In experiment 1 the observation phase of the experi-

ment was omitted. Nonetheless, the speed of the features was still manipulated during the

learning phase, so slowness information was available, but less evident and presented concur-

rently with the reward learning task. Experiment 2 included an observation phase prior to the

learning phase, as described above, which explicitly demonstrated the speed of the features

prior to learning their values. Additionally, there were differences in the length of each task. In

experiment 1 participants completed 45 learning trials and 15 test trials per block, while in

experiment 2 participants completed 30 observation trials, 60 learning trials, and 36 test trials

per block. In all other aspects, the experiments were identical. The third collected participant

sample was a direct replication of experiment 2, with no changes to the task.

Mixed effects models. We ran logistic mixed effect models in R (R version 4.3.1, RStudio

version 2023.09.1 + 494), using glmer from the lme4 package (version 1.1–32) [75–77]. To
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obtain parameter values we ran the Bound Optimisation by Quadratic Approximation

(BOBYQA) algorithm for 100.000 evaluations. We initially included all relevant fixed effects

and their interactions in the models and subsequently used the drop1 function in R to test

which terms contributed to the fit. We corrected all post hoc tests for multiple comparisons

using the Bonferroni-Holm method [78] considering the number of terms in the model

including the ‘condition’ variable. All terms that did not significantly improve the fit were

removed. We used a maximal random effects structure whenever possible [79]. That is, all var-

iables and interactions initially included as fixed effects were included in the random effects,

even if they were later dropped from the fixed effects. Random effects were only simplified if

the maximal structure led to fitting issues. All continuous predicting variables were scaled,

trial number was normalised to range between zero and one. Trials with no response were

excluded from all analyses.

To examine the effect of reward on choices in the learning phase we used a logistic mixed

effects model to predict choices based on condition (slow/fast), the stimulus reward on each

trial, trial number and all two-way interactions. The examined model was:

Ct ¼ b0 þ b1 Conditiont þ b2 Rt þ b3 t

þb4 Conditiont � Rt þ b5 Conditiont � t þ b6 Rt � t

þð1þ Conditiont þ Rt þ tjSubjectÞ

ð6Þ

where Ct is the participant choice on trial t (0 = reject, 1 = accept), and the predictors are the

Condition (slow/fast block), stimulus reward Rt, the trial number t.
To examine the effect of the relevant and irrelevant feature on choice we used a logistic

mixed effects model to predict choices based on the stimulus colour and shape positions on

each trial. As the features were angles in the shape and colour circles, each feature was included

as a cos() and sin() predictor in the model. This analysis was run separately for slow and

fast blocks.

Ct ¼ b0 þ b1 t þ b2 cosðyRÞ þ b3 sinðyRÞ þ b4 cosðyIÞ þ b5 sinðyIÞ

þb6 t � cosðyRÞ þ b7 t � sinðyRÞ þ b8 t � cosðyIÞ þ b9 t � sinðyIÞ

þð1jSubjectÞ

ð7Þ

where θR is the position of the relevant feature and θI is the position of the irrelevant feature.

For the replication study it was possible to fit the following more extensive random effects

structure:

ð1þ t þ cosðyRÞ þ sinðyRÞ þ cosðyIÞ þ sinðyIÞjSubjectÞ

To assess whether the irrelevant feature impacted choices, we compared the full model to

one without the cos() and sin() predictors for the irrelevant feature. Note that the prereg-

istration states that we do not run model comparison for this analysis. We do not exclude pre-

dictors based on model comparison, but we do use it to assess the contribution of predictors.

To examine the effect of reward on choices in the test phase we used a logistic mixed effects

model to predict choices based on the condition (slow/fast), difference in reward between the

stimuli on each trial, and their interaction:

Ct ¼ b0 þ b1Conditiont þ b2Rdiff ;t þ b2Conditiont � Rdiff;t þ ð1jSubjectÞ ð8Þ

where Rdiff,t is the difference in value between the left and right stimulus on trial t. For
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experiment 2 it was possible to fit the following random effects:

ð1þ ConditiontjSubjectÞ

For the replication it was possible to fit the full random effects:

ð1þ Conditiont þ Rdiff;t þ Conditiont � Rdiff ;tjSubjectÞ

Meta-analysis. To assess the joint evidence across experiments, we conducted a meta-

analysis using the meta package in R (version 7.0–0) [80], with all statistics calculated as in

RevMan 5 [81]. We assumed a fixed effect model and used Hedge’s g to assess the effect size.

Between-study heterogeneity was assessed using Cochran’s Q test.

Plotting. All figures were generated with the ggplot2 and ggtern packages in R [52,

82]. Colours for the models were sourced from viridis [83]. Post-processing was done in

Inkscape [84].

Computational models

To analyse trial-by-trial learning, we fit ten computational models to the choices of partici-

pants in the learning task. Four learning models embodied alternative hypotheses about how

the prior could affect learning and differed in their ability to adapt their learning rates to the

slowness of the features. The other six models, four of which are reported in the main text,

served as control models and tested for competing hypotheses or tested whether participants

engaged with the task. All model code is available on GitHub at https://github.com/

noahedrich/slow_prior/tree/main/code/models.

Learning models. The reinforcement learning (RL) models used the outcome of each trial

to update their estimate of the value of the features and predict the next choices of participants.

To account for the fact that continuous feature dimensions in the task allowed participants to

generalise their learning within each feature (i.e., learning about the value of red was also infor-

mative of the value of orange), stimuli were represented as a distribution in feature space,

instead of being represented as only their specific colour and shape angles (Fig 4). A stimulus

on trial t was represented as a feature vector xt. Note that, as each stimulus was made up of two

feature dimensions, it was represented by two feature vectors: one for the slow, xt,S, and one

for fast-changing feature, xt,F (corresponding to colour/shape as determined by the current

block condition). Therefore, the feature vector for a stimulus xi was the concatenation of the

slow and fast feature vectors: xt = [xt,S, xt,F]. The feature vectors for the slow and fast feature

angles of a stimulus were obtained from a von Mises like distribution, which approximates a

normal distribution in circular space, as follows:

xt;i ¼
ecosðdt;iÞk

P360

i¼1
ecosðdt;iÞk

ð9Þ

where:

dt;i ¼
yt � yi

360
2p ð10Þ

where xt,i is the ith entry of feature vector xt, and dt,i is the distance from the stimulus’ feature

angle on trial t to feature angle i. The parameter κ determines the concentration of the func-

tion. With large κ, the distribution becomes concentrated around the stimulus feature angle,

and less surrounding angles are included. With κ approaching 0, the distribution becomes
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uniform. Representing stimuli in this way allowed the model to learn about the value of unob-

served angles, based on perceptual similarity.

For each of the two feature dimensions, the models learned a feature weight vector, wt,S and

wt,F, which were concatenated in the weight vector wt = [wt,S, wt,F]. This vector corresponds to

the estimated value for each feature position on trial t. The expected value Vt of a stimulus on

trial t was calculated as the inner product of the feature vector xt with the weight vector wt:

Vt ¼ xT
t wt ð11Þ

This value estimate flowed into the prediction of the choice on the next trial and could

guide choices to maximise reward. However, before being fully guided by value estimates, it is

necessary to gather information and become certain that the estimates are meaningful (as par-

ticipants do, see Fig 2B). To mediate between the pressures of exploring and exploiting, we

supplemented the value estimate for each stimulus with an exploration bonus Ut, which

reflects how uncertain the model is in its value estimate. The value of accepting stimulus on

trial t, Va,t, was then calculated as follows:

Va;t ¼ Vt þ c � Ut ð12Þ

where c mediates how strongly the exploration bonus is weighted at choice.

Due to the continuous nature of the features and the flexible recombination of features

across stimuli, a simple count-based uncertainty estimate (as in the Upper Confidence Bound

method [51]) would be ineffective. Instead, specifying the models as Kalman Filters allowed us

to take a rigorous approach to estimating the uncertainty on each trial. In addition to tracking

a mean value, Kalman Filters keep an estimate of the variance around that mean, which

embodies the uncertainty inherent to the estimate. Similar to the feature and weight vectors,

the variance estimates were saved in a variance vector vt, which was a concatenation of slow

and fast variance vectors: vt = [vt,S, vt,F]. The exploration bonus was the inner product of the

feature vector with the variance vector:

Ut ¼ xT
t � vt ð13Þ

While the features shown on each trial changed, the mapping between the feature and the

reward was stationary within each block. Therefore, the uncertainty was highest at the begin-

ning of each block and steadily reduced with each observed outcome.

When predicting the next choice, the models compared the value of accepting Va,t with the

value of a rejecting, by testing for the probability of Va,t under a cumulative normal distribu-

tion centred on 50, with a standard deviation σ:

pðacceptÞ ¼ P½X � Va;t�

X � Nð50;s2Þ
ð14Þ

Here a smaller σ means a steeper increase in accept probability with increasing Va,t.

After an ‘accept’ choice the reward outcome Rt of the trial t is used to update the value and

uncertainty estimates. The reward prediction error is used to update weight vector with a

learning rate αt, as follows:

wtþ1 ¼ wt þ at xt ðRt � VtÞ ð15Þ

The variance vector is reduced by an amount proportional to the learning rate αt:

vtþ1 ¼ vt � at xt vt ð16Þ
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Finally, the Kalman Filters also update the learning rate on each trial, as with decreasing uncer-

tainty about the value estimates, smaller updates to the weight vector are needed.

atþ1 ¼
Ut

Ut þM ð17Þ

where M is the constant measurement noise.

All four learning models included the three free parameters, κ, c and σ, as specified in the

equations above, but they differed in their ability to adapt their learning rates to the slowness

of the features (Fig 4). A one learning rate (1LR) model used the same learning rate α regard-

less of feature speed and thus was indifferent to feature variability and could not account for a

difference in performance between the slow and fast blocks. A two learning rates model sensi-

tive to feature variability (2LRf) used different learning rates for the slow αS and fast αF chang-

ing feature across all blocks, irrespective of whether they were relevant or irrelevant. Another

two learning rates model, this one sensitive to block condition (2LRc), used different learning

rates, depending on whether the relevant feature was changing slowly αS or quickly αF (but

used the same learning rate for both features within the block). Finally, a four learning rates

(4LR) model had learning rates sensitive to both the feature variability and the block condition.

Meaning it had separate learning rates for the slow and fast-changing features when they were

relevant (αS,R, αF,R) and irrelevant (αS,I, αF,I).

In models with separate learning rates for the slow and fast feature (2LRf and 4LR), the

uncertainty Ut (Eq 13) and learning rates α (Eq 17) were calculated separately for the slow xt,S

and fast xt,F feature vector. Accordingly, the weight and variance vectors for the slow and fast

features were updated with their respective learning rates. To keep comparable magnitudes of

learning rates between models, in models with the same learning rate for both features in a

block (1LR and 2LRc), we calculated the uncertainty separately for the slow and fast feature

and used their mean to update the learning rate according to Eq 17.

Control models. We implemented a control model with the same Kalman Filter machin-

ery, which treated the task as a single, stationary bandit for which it estimated a mean and vari-

ance (Bandit model). By ignoring the stimulus features, this model could only learn from the

reward outcomes. This model was critical to rule out that learning might be easier on slow

blocks, simply due to the reward on the current trial being more predictive of the reward on

the next trial, irrespective of the variability of the features. Equations were similar to the mod-

els of interest, obviating the need for vectors. A single value V and uncertainty U estimate were

kept. These were combined as in Eq 12 to the value of accepting Va with the mediating param-

eter c. The same choice rule as in Eq 14 was used. The value and uncertainty estimates, and the

learning rate were updated according to:

Vtþ1 ¼ Vt þ at ðRt � ViÞ ð18Þ

Utþ1 ¼ Ut � at Ut ð19Þ

atþ1 ¼
Ut

Ut þM ð20Þ

where M is the constant measurement error.

To account for a choice perseverance strategy, which could selectively benefit performance

in slow blocks where the correct choice on the previous trial was likely the same as the correct

choice on the current trial, we included a win-stay-lose-shift model (WSLS model). When the

choice on the previous trial was ‘accept’ and the received reward was equal to or above the
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default value of 50, this was counted as a win and the model was likely to choose ‘accept’ again.

In contrast, if the outcome of an ‘accept’ choice lay below 50, this was counted as a loss and the

model was likely to choose ‘reject’ on the next trial. In both cases the model could instead

make the less likely choice with probability �. As ‘reject’ choices always resulted in a reward of

exactly 50 no wins or losses as such were possible, so the model continued to make ‘reject’

choices and switched to ‘accept’ with probability �. The first choice was made randomly. The

WSLS model can be described as follows:

pðacceptÞ ¼
1 � �; if choicet� 1 ¼ accept and Rt� 1 � 50:

�; otherwise:

(

ð21Þ

In addition, we set up models which did not learn and responded randomly, with either a

bias to ‘accept’ or ‘reject’ (Random Choice model), with choices given by:

pðacceptÞ ¼ ba ð22Þ

or a bias for the left or right response key (Random Key model), with choices given by:

pðacceptÞ ¼
br; if right key is ‘accept’:

1 � br; otherwise:

(

ð23Þ

To test whether parameters other than the learning rate could explain differences in partici-

pant behaviour between the slow and fast blocks, we fit two additional learning models. The

first model allowed the the exploration parameter c, which mediates the extent to which uncer-

tainty increases the value of accepting (see Eq 12), to be different for slow and fast blocks

(1LRc). The second model allowed the decision noise parameter σ2 to vary by condition

(1LRs2 , see Eq 14). Otherwise, both were identical to the one learning rate model (1LR). The

results of these models are only included in the supplementary information in Fig D in S1

Materials.

Model fitting. Models were fit to each participant’s data in the training trials using the

nloptr package version 2.0.3 in R [85] by minimising the negative log likelihood with the

NLOPT_GN_DIRECT_L optimisation function run for 10.000 evaluations. We initialised the

learning models and the Bandit model, so that on the first trial of each block, the value estimate

of the stimulus Vt was 50 (the same as the value of rejecting), and the uncertainty bonus Ut was

5 for each feature. At the start of fitting, the measurement error M was adjusted so that the

learning rate αt on the first trial would be equal to the fit learning rate (Eqs 17 and 20).

We quantified the reliability of parameter estimates through parameter recovery for the

learning rates of the learning models (see Fig E in S1 Materials). The fitting procedure pro-

vided fair to excellent reliability, with a high correspondence between ground truth and recov-

ered learning rates.

Model comparison. We simulated model choices given the parameter values obtained

from maximum likelihood fitting and obtained the predicted likelihoods for participant

choices. These likelihoods were used to calculate the Akaike Information, corrected for small

samples [86]:

AICc ¼ 2k � 2LLþ
2kðkþ 1Þ

N � k � 1

Where k is the number of free parameters of the model, LL is the log likelihood of the data

given the model and fit parameters and N is the sample size (i.e. number of trials used to obtain

the LL).
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We then calculated AICc weights, which provide a measure of goodness of fit of a model

relative to a baseline model (for which we chose the 1LR model) [54], as follows:

AICc weight ¼
e� 1

2
DAICc

P
m2Me�

1
2
DAICcm

ð24Þ

where ΔAICc is the difference in AICc between the AICc of the model and the baseline model,

and M is the set of all models m. AICc weights are normalised to sum to one for each partici-

pant, with larger values indicating a better fit. Finally, we used AICc weights as an approxima-

tion of model evidence to calculate protected exceedance probabilities with the bmsR package

in R [53, 55].

We tested model identifiability through model recovery, using the same fitting and model

comparison procedure as for participants (see Fig E in S1 Materials). Model recovery proved

to be reliable, identifying the model that had generated the data correctly for most simulations.

The 1LRs2 model had poor recoverability. The 4LR model was sometimes misidentified as the

2LRc and to a lesser extent the 2LRf model, likely because when two of the four 4LR learning

rates are similar to each other, this model can be identical to the 2LR models.

Supporting information

S1 Materials. Supporting materials. Supplementary information file including additional

information on the preregistration, participant behaviour, mixed effect model results, model

fits and analyses of additional control models and parameter and model recovery. This file

includes Text A (Preregistration), Fig A (Participant learning curves and meta-analysis),

Tables A-N (Effect sizes and confidence intervals for the mixed effects models), Fig B (Individ-

ual participant and best fit model learning curves for experiment 2), Fig C (Individual partici-

pant and best fit model learning curves for the replication), Fig D (Model performance) and

Fig E (Parameter and model recovery). Figure legends see inside S1 Materials.

(PDF)
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the models and Anika Löwe and Georgy Antonov for their valuable feedback on the

manuscript.

Author Contributions

Conceptualization: Noa L. Hedrich, Eric Schulz, Sam Hall-McMaster, Nicolas W. Schuck.

Data curation: Noa L. Hedrich.

Formal analysis: Noa L. Hedrich, Sam Hall-McMaster, Nicolas W. Schuck.

Funding acquisition: Nicolas W. Schuck.

Investigation: Noa L. Hedrich.

Methodology: Noa L. Hedrich, Eric Schulz, Sam Hall-McMaster, Nicolas W. Schuck.

Project administration: Nicolas W. Schuck.

Resources: Nicolas W. Schuck.

Software: Noa L. Hedrich.

PLOS COMPUTATIONAL BIOLOGY An inductive bias for slowly changing features in human reinforcement learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012568 November 25, 2024 26 / 30

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012568.s001
https://doi.org/10.1371/journal.pcbi.1012568


Supervision: Eric Schulz, Sam Hall-McMaster, Nicolas W. Schuck.

Validation: Noa L. Hedrich, Nicolas W. Schuck.

Visualization: Noa L. Hedrich, Nicolas W. Schuck.

Writing – original draft: Noa L. Hedrich, Nicolas W. Schuck.

Writing – review & editing: Noa L. Hedrich, Eric Schulz, Sam Hall-McMaster, Nicolas W.

Schuck.

References
1. Schuck N, Gaschler R, Wenke D, Heinzle J, Frensch P, Haynes JD, et al. Medial Prefrontal Cortex Pre-

dicts Internally Driven Strategy Shifts. Neuron. 2015; 86(1):331–340. https://doi.org/10.1016/j.neuron.

2015.03.015 PMID: 25819613
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