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Abstract
Federated learning (FL) is an evolving machine learning technique that allows collaborative model
training without sharing the original data among participants. In real-world scenarios, data
residing at multiple clients are often heterogeneous in terms of different resolutions,
magnifications, scanners, or imaging protocols, and thus challenging for global FL model
convergence in collaborative training. Most of the existing FL methods consider data heterogeneity
within one domain by assuming same data variation in each client site. In this paper, we consider
data heterogeneity in FL with different domains of heterogeneous data by raising the problems of
domain-shift, class-imbalance, and missing data. We propose a method, multi-domain FL as a
solution to heterogeneous training data from multiple domains by training robust vision
transformer model. We use two loss functions, one for correctly predicting class labels and other
for encouraging similarity and dissimilarity over latent features, to optimize the global FL
model. We perform various experiments using different convolution-based networks and
non-convolutional Transformer architectures on multi-domain datasets. We evaluate the proposed
approach on benchmark datasets and compare with the existing FL methods. Our results show the
superiority of the proposed approach which performs better in term of robust FL global model
than the exiting methods.

1. Introduction

Federated learning (FL) is a distributed and collaborative machine learning technique in which multiple
clients train a global model while keeping the data at local locations [1]. In centralized training, a model is
trained and updated on a cumulative train and test data at a single location (i.e. either client or server).
However, in FL, the training dataset is decentralized and located on multiple participating clients where each
client only shares its model parameters (i.e. gradients) with the central server rather than sharing the original
raw data for training. Moreover, each client trains its local model using its local training data for a given
number of local communication rounds, and sends model gradients to the server during the global
communication round. After the server update, the revised global model is disseminated to all participants
for the subsequent global communication round, and this process iterates for a given number of global
rounds. In the recent past, FL was considered as a privacy-preserving machine learning approach to train a
global model without sharing clients’ private data with the server [1]. However, many recent studies have
introduced the vulnerabilities known as gradient leakage in FL, caused by the adversarial networks [2, 3]. To
address the problem of gradient leakage, different methods such as gradient clipping [4], representation
learning [3] and gradient-free optimization [2] have been introduced in the literature. Thus, FL with
additional security layers, has evolved by enabling decentralized training of multiple participants without
sharing of confidential data. This characteristic of FL makes it useful and beneficial in different areas such as
communication networks [5], health care [6–10], organizations [11, 12], and smart cities [13] where privacy
and confidentiality of sensitive data are crucial for the data owners. Although, FL provides rich opportunities
in many fields, there are many research challenges in the implementation of FL for real-world problems.
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Figure 1.Multi-domain DIGITS data with imbalance label distribution. Each domain has image data with different color and
resolution. Each dataset is split and distributed to clients using Dir(α) distribution to make non-IID data. Thus, a model is
trained on the data from multiple domain with domain-shift and imbalance label distribution to produce a global model (i.e.
equation (2)).

One of the most common problem in FL is the data heterogeneity or different data distribution among
multiple domains. Moreover, imbalanced class problem or label distribution in multi-domain environment
is common for the real-world data in which non-uniform labels are distributed across the classes in a dataset.
In real-world data, some classes contain only a few samples, but many others have a large number of samples
of such classes [14–16]. Many methods have been proposed to solve the problem of non-uniform label
distribution in collaborative training [15–20]. However, most of the existing methods face challenges of
non-independent and identical data distribution (non-IID), causing uncertainty in fast and complete model
convergence [21–23]. Such existing methods have achieved good results by solving the problem of data
heterogeneity in FL, but most of the methods focus on single domain scenario in which data splits across
participants are taken from the same domain for all participating clients. These existing methods train a
model on imbalanced data from different splits of the same domain, and try to generalize on a balanced test
dataset.

Instead of focusing on the improvement of FL optimization as most of the existing methods [24, 25], our
work is based on multi-domain data heterogeneity i.e. class-imbalance and domain-shift in the scenario of
collaborative training with different participants from different domains. In the proposed multi-domain FL
(MDFL) scenario, we use data from different domains each having the same general categories (i.e. class
labels) but different distributions and underlying patterns. Thus, severe domain-shifts and diverse
distributions are major challenges for the convergence of global model in FL. As shown in figure 1, the key
challenges in MDFL are as follows:

• Domain-shift due to data heterogeneity within and across the domains. Data from different domains have
different variations such as color variation and image resolution.

• Different distribution of labels (i.e. class-imbalance) within and across the domains. Class-imbalance
becomes more challenging for local training of a participant and eventually global model, when dataset
of a single domain is split into multiple clients.

• Minority and missing classes within and across the domains. Thus, some of the participants have minority
and missing classes in their local training data.
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Transformer models [26, 27] have been used to solve the problem of data heterogeneity in classification
tasks [28–31] by demonstrating the resilience against heterogeneous data [32, 33]. The robustness exhibited
by Transformers makes them well-suited for self-supervised learning [34, 35], especially for data
heterogeneity based on domain and distribution shifts in training data. Thus, in our method, we exploit
Transformer architectures for the training on heterogeneous data with domain-shifts and diverse
distributions across multiple participating domains in FL. Existing studies [32, 36] have indicated the
superior performance of Transformer models in comparison to commonly used ResNet [37] and other
convolution-based networks [38, 39]. The reason for the success lies in the Transformer architecture
comprising attention heads that help contextual awareness in image interpretation [36]. As the attention
mechanism helps to capture contextual dependencies more effectively, we posit that this property contributes
to superior performance in heterogeneous FL. The convergence of Transformers is fast and their global
model is suitable for most devices. We compare our results with the existing FL methods, and conclude that
vision transformers (ViTs) perform better without additional hyperparameters and training. Therefore, they
are appropriate for the future research in FL problems.

Moreover, to minimize the inconsistency of domain-shift and diversity in multi-domain data
distribution, we use two loss functions to optimize and improve the performance of global model. During
training, one loss is computed on the latent feature vectors and the other one is calculated by class-logits of
the model to optimize the global model in MDFL. We evaluate and compare our model with the existing
methods using non-IID and heterogeneous data splits with domain-shift from multiple source domains.
Experimental results suggest that performance of the proposed method is better compared to the similar
existing methods.

Our main contributions are as follows:

(i) We formulate the problem of data heterogeneity based on class-imbalance and domain-shift within and
across the domains in FL.

(ii) We propose a method MDFL, by training robust Transformer model to improve the performance of
global model trained on heterogeneous data with diverse distribution, class-imbalance and
domain-shift from multiple domains in FL.

(iii) We use two loss functions; a loss LC calculated by the closs-logits of the model to correctly predict the
class labels, as given in equation (7), and a loss LB computed on the latent feature vectors to align the
classes across domains, as given in equation (8), to optimize and improve the global model trained on
diverse data splits from multiple domains.

(iv) We evaluate our method on benchmark datasets by training our model on multi-domain data with
diverse distribution and domain-shift in MDFL. Experimental results indicate the better performance
of the proposed method.

2. Related work

2.1. Class-imbalance and label distribution
Much research has been done on the class-imbalance problem [15–20, 40], and different solutions have been
proposed to solve this problem including under-sampling and over-sampling [41, 42], reconciliation of loss
function [15, 17, 43, 44], and learning paradigms such as self-supervised learning [16, 45], transfer
learning [18], ensemble learning [46, 47], metalearning [48], and metric learning [49]. All these methods
have been used in the scenario of a single domain and use the data splits for all participants from the same
domain, while we extend the data heterogeneity problem to multi-domain and imbalance classes in FL
environment.

2.2. Multi-domain learning
In multi-domain learning, a model must be adaptive and robust to data from multiple domains containing
different label distributions [50] which is similar to transfer learning [51]. The objective of domain
adaptation is to learn a model for a single target domain [28, 51], while multi-domain learning is focused on
the average performance of all source domains and their distributions [52]. The existing methods are based
on a single-domain data [50, 53], which exploit domain-invariant features [52, 54–56] and multi-task
learning [57]. We are focused on the class-imbalance within and across domains in FL environment. Our
problem is similar to domain generalization, in which a model is trained on multiple domains and
generalized for an unseen domain [58]. Most existing methods are based on data augmentation [59, 60],
domain-invariant features [54, 55, 61], meta-learning [62, 63], and casual relationships [64, 65]. These
methods are based on a single domain and have not explored the class-imbalance problem within and across
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domains in the scenario of domain-shift, especially in FL environment. In this paper, we investigate the effect
of data heterogeneity and class-imbalance in MDFL environment.

2.3. FL
FL provides distributed and collaborative training on private data from multiple sources [1]. There are two
main categories of effective distributed training [66] that have been evolved: (1) serial FL methods allow
training of multiple clients in a cyclic and serial manner such as split training [67] and cyclic weight transfer
(CWT) [7], whereas (2) in parallel FL methods, training of each participant is parallel, such as FedAvg [1].
FL presents the challenge of domain-shift and class-imbalance across participants in FL training. Such data
heterogeneity in FL causes non-guranteed model convergence and forgetting problem for cyclic FL
methods [7, 68, 69], and divergence in model weights for parallel FL methods [22, 70–72].

FedAvg algorithm [1] has been widely used in different variations such as FedAVGM [73] to use the
server momentum to mitigate the problem of class-imbalance and distribution-shift for each client. It has
been used with some optimization methods, such as matching feature layers [74, 75], collaborative
replay [76], model distillation [77], and unsupervised contrastive learning [72] to address the problem of
heterogeneity in data. It has also been implemented as FedAvg-Share [72] by sharing small chunks of data
among participating users with an additional proximal term (FedProx) to the local objective, which reduces
the potential weight divergence [22].

At the same time, several methods have been presented to solve the problem of catastrophic forgetting in
cyclic FL methods. Such methods restrict the weight updates that are required and important for historical
tasks, known as elastic weight consolidation [78]. These methods implement cyclic weighted objectives to
reduce loss due to the skewness of the label distribution [28], and deep generative replay to mimic data from
historical tasks or the client [76, 79]. However, most existing methods focus on optimization techniques
without inspecting the model architecture for domain and distribution shift of data, to increase the
robustness and performance of the model. In our work, the experimental results are consistent with the
hypothesis that an architectural change in the model makes a huge difference and should be explored for
optimization methods, which is the main focus of our work.

2.4. Transformers
The Transformer architecture firstly proposed by [26], has been implemented in sequence-to-sequence
machine translation, and then in self-supervised natural language processing tasks [34]. Transformers have
been widely used in image and video tasks in recent years. For example, self-attention has been applied to the
local neighborhoods of the image in [80]. Similarly, global self-attention has been applied to full-size images
using ViT [81] for the ImageNet classification task, and state-of-the-art performance is achieved. Therefore,
Transformers have shown a prominent performance increase compared to classical vision networks such as
CNN [37, 82]), language models (i.e. LSTMs [83]), and are attracted to understanding the causes of their
effectiveness. Many existing methods have proven the effectiveness and robustness of ViTs to severe
domain-shifts, perturbations, and occlusions [5, 32]. Furthermore, recent methods have demonstrated the
effectiveness and suitability of Transformers for multi-modal and heterogeneous data [33, 35, 84]. Inspired
by the above studies, our hypothesis is that ViTs will perform better by adapting the domain-shift,
class-imbalance, and overall heterogeneity of the data in FL. We conducted a considerable number of
experiments and gave a detailed empirical analysis to validate the hypothesis.

3. Methodology

In this section, we formulate the problem of data diversity in MDFL using transferability, and demonstrate
our approach to minimize the heterogeneity effect of multi-domain data. Moreover, we demonstrate our
proposed approach using end-to-end model training with Transformer architectures and proposed losses in
MDFL environment.

3.1. Transferability
To explain the problem of multi-domain data heterogeneity, we visualize the data distribution of different
domains with respect to their variations across the domains. In a classification task, a domain space
D= 1,2,3, . . .,D, each domain having a label space C= 1,2,3, . . .,C can be represented as a training set
T= {(di,xi, ci)}Ni=1, where xi ∈ R is input, ci ∈ C denotes the class label, and di ∈ D represents a domain in
the dataset. To represent the variation between domains and classes, we denote domain samples d and class
samples c as domain-class pairs (d, c) as part of the training data, represented as Td,c ⊆ T. When we have
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Figure 2. Transferability graph plotted on the basis of similarity between domain-class pairs of PACS dataset. X-axis and Y-axis
are two dimensions of inter-domain distance (similarity). Moreover, gap between similar classes represents the Euclidean distance
and the size of the circle represents the number of samples of that class.

Figure 3. Categories of Federated Learning (FL) representing clients training on heterogeneous data. In Cyclic FL method (right),
an individual local model is trained in a cyclic way, while in the parallel FL method (left), all local models are averaged, and
aggregated parameters are broadcasted to all the clients for another training round until a given limit is reached.

domain-class pairs, our objective is to compute the transferability between two domain-class pairs, which is
the average distance between their individual feature representations. Transferability characterizes and
measures the closeness of domain-class pairs in the feature space. Thus, in a feature space, the transferability
of a domain-class pair is the transformation from the original domain-class pair (d, c) to the transformed
domain-class pair (d ′, c ′), which is represented as follows.

Trf{(d, c) ,(d ′, c ′)} ≈ [Ed (z,µd ′,c ′)] , (1)

where Ed is the Euclidean distance measured by first-order statistics µ (i.e. mean) from representation space
z= g(x,θ), and g : X→ Zmaps input x ∈ R to representation space z ∈ R.

Transferability can be visualized as a graph in a 2D Cartesian space by taking the average of
Trf{(d, c),(d ′, c ′)} as a similarity measure. As a representative case, we plot the transferability graph for
PACS [85] data. For each domain-class pair (i.e. (d, c)), the mean µd,c is estimated from the learned
representations and the distance matrix is calculated for the transferability graph as shown in figure 2, where
each color represents domain samples with the circle size as the number of samples in that domain.
Moreover, the distance among similar classes indicates the Euclidean distance between them. Our objective is
to minimize the distance between domain-class pairs in all domains of a dataset.

3.2. MDFL
As shown in figure 3, there are two main categories of FL based on the gradient merging mechanism for all
participating models. (1) CWT in which an individual local model is trained to become an ultimate global
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model in a serial and a cyclic way for every round of communication. Subsequently, the global model is
transferred to the next client for the same process [7]. In this way, each client participates in the training for a
given number of local epochs. This process continues until the global model converges and reaches a specific
number of given rounds for communication cycles. (2) Federated Averaging (FedAvg) in which a local model
is trained on local data of a participating client performing a stochastic gradient descent. Afterwards, all local
models are averaged, and these averaged parameters are broadcasted to every participant. The process is
repeated until the global model converges for the given number of rounds [1]. In our experiments, we apply
the most common parallel FL method, FedAvg [1] as used by most existing methods [11, 86, 87]. The overall
objective of FL is to minimize the loss to achieve the best global model as given below.

min
θ∈Rd

{
g(θ,S) =

N∑
i=1

bi
N
gi (θ, si)

}
, (2)

where bi represents the batch size for the participant i ∈ N having model parameters θ, and si ∈ S is the local
data of a participant.

Furthermore, we employ both convolution-based networks and non-convolutional Transformer
architectures for training and evaluating the model across multi-domain data. We implement a variety of
commonly used convolution-based classification models, including our custom model (referred to as
CustomNet), LeNet-1 [39], CNN-2 [38], ResNet18 [37], and EfficientNet [88]. These models incorporate
convolution and pooling operations within their architectures. CustomNet is similar to CNN-2 [38] model,
except that it contains an additional maxpool layer before each activation layer in the architecture. We also
use an adaptive-average pooling layer in each convolution-based network to handle the variation in image
size from different domains. We exploit ViTs as non-convolutional models, specifically ViT (T) and ViT (S),
in our implementation for a fair comparison. In contrast to traditional convolutional models, these
architectures do not utilize convolutional layers in their designs.

Transformers use patches of the image known as tokens to learn the features. The robustness of their
architecture is due to self-attention, which aggregates the image information. Their non-convolutional
architecture is based on layers, which investigate the average distance among learned weights. The attention
distance and its variability from higher to lower layers is compared, which is almost uniform throughout the
network going deeper. This ability of Transformers is significant for contextual relationship to interpret an
image which is different from convolution-based architectures. If a domain i contains data samples si, then a
domain-adaptive Transformer attention Att with Qi, Ki, and Vi can be represented as follows.

Att(Qi,Ki,Vi) = softmax

(
QiKT

i√
dk

)
Vi, (3)

where dk represents dimensionality of the key vectors.
For multi-domain data, aggregated attention is formulated as:

Aagg =
N∑

i=1

γi ·Att(Qi,Ki,Vi ) , (4)

where γi is weight of a domain i, and
∑N

i=1 = 1.
Moreover, for a domain i, if the input data xi is transformed to embedding Ei = Emb(xi ), and loss Li for

that domain is Li = (Ei,θi ), then the loss function LC (i.e. cross-entropy loss) for MDFL can be
mathematically represented as follows.

LC =
N∑

i=1

βi · Li (Ei,θi ) , (5)

where hyperparameter β controls the domain importance, Ei is embedding, and θi are model parameters for
a domain i. The loss LC is minimized to optimize and generalize the model trained on multi-domain data
with heterogeneous domain and label distribution.

3.3. Training loss
For the training of a global model, we use two loss functions to formulate an overall loss to minimize for the
optimization, as given below.

L= LC +λLB, (6)
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Figure 4. Overall setup of the proposed approach. A local model of each client is trained on multi-domain data with imbalance
label distribution and domain-shift. A loss LB is optimized on the latent feature vectors and LC is optimized using class logits of
the network.

where λ is a hyperparameter representing trade-off between two losses. LC denotes the standard
cross-entropy loss computed on the final output layer (i.e. class logits) and can be defined as follows.

LC (y,y
′) =−1

b

N∑
n=1

yn logy
′
n +(1− yn) log(1− y ′n) , (7)

where y ′n is the predicted output for input image n and b is the batch size. In (6), LB is used to represent the
balanced domain-class distribution alignment (BoDA) loss as proposed in [89]. LB is a special loss
introduced to reduce the heterogeneity effect in a dataset. Here, we use LB to align the classes across
domains, and to minimize the negative impact on FL training produced by data diversity from multiple
domains. It can be mathematically formulated as follows.

LB (z,µ) =
∑
zi∈Z

−1
|D|− 1

∑
d∈D\{di}

log
exp

(
−pd,cidi,ci

Ed (zi,µd,ci)
)

∑
(d ′,c ′)∈M\{(di,ci)} exp

(
−pd

′,c ′

di,ci
Ed (zi,µd ′,c ′)

) (8)

where numerator represents the positive distance (i.e. Ed) of domain-class pairs (d, c) which has to be
minimized to attract the same classes in the training, while the denominator is a negative distance of
domain-class pairs that should be maximized to isolate different classes during training. Therefore, this loss
function aims to minimize the distance between domain-class pairs that are similar, while increasing the
separation between pairs that are dissimilar. Here, µ is the first-order statistics estimated from feature

representations of domain-class pairs, and the calibration parameter pd
′,c ′

di,ci
is used to control the

transferability from (d, c) to (d ′, c ′) depending on their sample size. Moreover, Euclidean distance
Ed(z,µ) =

√
(z−µd,c)(z−µd,c)T takes over the first-order statistics (i.e. mean). The overall training setup of

the proposed approach is shown in figure 4, where multi-domain data are distributed to clients (i.e. C1 to
C12), and a local model generates feature map which is transformed to feature vectors through global
average pooling. The loss LB is calculated by the feature vectors, and the loss LC is measured by the class
logits which is the final output after multi layer perceptron classifier.

4. Experimental results

In our approach, we train the Transformer models and support our hypothesis that they produce a superior
global FL model compared to traditional convolution-based architectures. Employing Transformer models
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enhances the optimization process of the FL model. Moreover, these models are robust for heterogeneous
data within and across domains (i.e. domain-shift), and must be adaptive for new and unseen-domain data.

We use two loss functions to optimize and further improve the performance of the model. Additional loss
to model optimization is useful for data heterogeneity, especially domain-shift which is reduced as a measure
of transferability. The performance of the FL model, which incorporates transformers and uses two loss
functions (i.e. LC and LB), is assessed and contrasted with the performance of the same model only using LC.

4.1. Datasets
In the experiments, DIGITS [54, 90–92] data and PACS [85] data are used by different split-categories. In the
DIGITS dataset, domains are divided into multiple subdomains (i.e. clients) using Dirichlet Distribution (i.e.
Dir(α)). As used in [87, 93], dataset is split using smaller value of α (i.e. α= 0.5) to distribute data as
non-IID data among participants. However, PACS dataset is used as multidomain dataset with one domain
as a single client without further split distribution. Additional information regarding both datasets is
provided below.

4.1.1. DIGITS dataset
We evaluate the proposed method for the digit classification task. In the experiments, we use: (1)
MNIST [90] handwritten digits having 32× 32 grayscale images with 60000 samples as train set and 10000
as test set, (2) MNIST-M dataset [54] having 28× 28 color images with about 59000 training examples and
9000 testing examples, (3) the street view house numbers (SVHN) [91] dataset with 32× 32 color images
having 73257 train samples and 26032 test samples, and (4) US Postal Service (USPS) dataset [92] having
16× 16 grayscale images with 7291 training instances and 2007 testing samples. DIGITS dataset is visualized
and described in appendix A.1.

We split each domain data into three clients using Dir(α= 0.5) to make non-IID as used by other existing
methods such as [87, 93]. We use the minimum value of α (i.e. 0.5) to make the data more heterogeneous
with imbalanced label distribution across the clients as higher the value of α leads to higher homogeneous
data distribution and vice versa. Moreover, we use 3 different domains for training out of 4 domains, each
having above mentioned datasets. We distribute the data across clients with different label distribution
within and across the domains. We use test set of each domain for its local model evaluation. We perform
training to evaluate the model by leave-one-domain-out cross-validation on an unseen-domain data. Thus,
for each domain, there are 3 clients and a total of 9 clients for 3 different domains which participate to
produce a global model that is evaluated on the 4th unseen domain. We use the test set of 4th domain as a
global test set to evaluate the global model. For the implementation of Transformers, we transform the
training and testing data to a larger size of 224× 224. In each experiment, a local model is optimized using
loss from (6). Moreover, 5 local epochs and 100 communication rounds are used for each data split scenario.

4.1.2. PACS dataset
In the experiments, PACS [85] dataset is used to evaluate the robustness of the proposed method. PACS
dataset contains the images of natural photos, art paintings, cartoons, and sketches. In each experiment, a
domain is assigned to a participant without further split into subdomains and clients. Thus, 4 domains (i.e. 4
clients) participate in the scenario of PACS dataset. Other hyperparameter settings are same as used by the
DIGITS dataset. For further visualization and description of PACS data, please see appendix A.2.

4.2. Technical details
We implement the proposed method with PyTorch configured on the Linux Operating System (i.e. Ubuntu
22.04 LTS) with the installation of NVIDIA GPU (GeForce RTX 3090) having a memory of 24 GB. Moreover,
a CPU (i7-8700) with a memory of 50 GB has been used in the experiments. We follow [66] for the
hyperparameter settings used in our experiments as summarized in table 1.

4.3. Evaluationmetric
We use a common evaluation metric accuracy in our experiments because of the balanced evaluation data as
used in other similar methods [22, 78, 95]. We compare the proposed method based on accuracy with other
existing methods.

4.4. Comparison with existing methods
We measure the test accuracy of each model trained as Leave-One-Domain-Out validation on heterogeneous
data splits from three different domains of DIGITS dataset. The global model is evaluated on global test set
obtained from 4th domain other than included domains in training (i.e. leave-one-domain-out). Test
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Table 1. Hyperparameter settings and values used in the experiments.

Hyperparameter Value (s)

N (domains) 3 & 9
bi (batch-size) 64
λ 1
α 0.5
local epoch 5
global epoch 100
Optimizer Adam [94]
Initial learning rate 0.001

Figure 5. Average test accuracy of each deep network using FedAvg as aggregation method, for a given global test set. (a) Accuracy
of each network evaluated on MNIST global test data. (b) Test accuracy of each network model for the MNIST-M global test set.
(c) Accuracy of every convolution-based network evaluated on SVHN global test data. (d) Test accuracy of each model evaluated
USPS test data.

accuracy of all convolution-based networks against communication rounds is shown in figure 5. It is
observed that in some cases, models are converged, but pretrained ResNet18 and Efficient(B5) are not
converged and adaptive when evaluated on USPS test data. Moreover, CNN-2 and LeNet-1 do not perform
well in case of SVHN data.

We also measure the test accuracy of each model evaluated on global test data from each individual
domain and compare with existing methods as shown in table 2. It is clear from table 2 that the performance
of the convolutional models is comparatively lower, while non-convolution-based ViTs performs better
which are more robust against domain-shift and imbalanced distribution in the scenario of heterogeneous
data from multiple domains. Moreover, it is also noteworthy that ViT(S) performs better as compared to
ViT(T). The performance variance observed between ViT(T) and ViT(S) could stem from their distinct
tokenization strategies, with ViT(T) employing token mixing tokenization and ViT(S) utilizing spatial
tokenization. Moreover, the effectiveness of tokenization strategies also depends on the dataset
characterization such as ViT(T) performs better in case of complex spatial relationship that cannot be
adequately captured by non-overlapping patches, while ViT(S) performs better if the dataset is comprised of
spatially correlated features because it preservers spatial information by dividing the image into
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Table 2. Average accuracy with non-homogeneous data (α= 0.5) and unseen domain. All results are reported according to
leave-one-domain-out settings. These results are also a comparison of the proposed method and other recent FL methods based on the
accuracy measured on homogeneous data from multiple domains. The bold text shows the improved performance of the proposed
method using transformer models.

Model MNIST MNIST-M SVHN USPS Average (%)

CustomNet 95.04 59.29 45.49 63.33 65.79
LeNet-1 77.14 45.76 13.69 43.00 59.90
CNN-2 84.18 50.11 22.61 66.67 55.89
ResNet18 (pretrained) 52.20 28.30 28.93 22.09 32.88
EfficientNet(B5) 53.88 31.73 73.05 15.68 43.58
R50-FedAVG [78] 70.52 75.66 73.58 75.12 73.72
FedProx [22] 81.85 77.45 74.22 69.28 75.70
FedAVG-Share [95] 84.25 79.88 75.96 78.43 79.63
ViT(T) 98.71 84.69 83.58 77.08 86.01
ViT(S) 98.89 88.98 88.15 81.56 89.40

Table 3. Individual and average test accuracy of each domain from PACS dataset including Art painting, cartoons, natural photos, and
sketch images.

Model Art painting Cartoon Photo Sketch Average (%)

ResNet18 94.01 96.03 98.02 96.60 96.16
EfficientNet(B5) 93.64 94.48 94.85 95.00 94.49
R50-FedAVG [78] 95.00 96.06 98.00 96.90 96.49
FedProx [22] 95.50 95.72 95.26 96.08 95.64
FedAVG-Share [95] 96.18 95.98 96.30 95.86 96.08
ViT(T) 97.58 97.89 98.16 97.56 97.78
ViT(S) 97.45 97.98 98.32 98.11 97.96

non-overlapping patches. However, for both DIGITS and PACS data, ViT(T) and ViT(S) perform better than
other convolution-based networks in all cases.

To evaluate the performance of the model for a different dataset, we also use PACS [85] dataset in the
experiments. In this dataset, each domain is assigned to a single participant and hence 4 participants perform
training on their individual domain data on the basis of Leave-One-Domain-Out settings. The experimental
results for the PACS dataset training with selected convolutional and non-convolutional models based on
previous results computed on DIGITS dataset, are given in table 3 in which accuracy of an individual domain
is measured, and average accuracy is also given in the last column. Table 3 also demonstrates the supremacy
of ViTs over other convolutional networks trained on the PACS dataset.

We further exploit additional loss functions given in (6) to optimize the model trained on heterogeneous
data of DIGITS from multiple domains. The model’s performance experiences a notable improvement when
incorporating these additional loss functions for both convolution-based networks and non-convolutional
Transformers, as illustrated in figure 6. This is because of the transferability and distance minimization
between domain-class pairs which eventually improves the overall performance of trained FL model.

Finally, we measure and compare the average accuracy of each method for both DIGITS and PACS
datasets. Accuracy of the global model with and without additional loss has been given in table 4 which
shows that ViTs are robust, when used in collaboration with additional loss functions, to heterogeneous data
with imbalanced label distribution and domain-shift. Moreover, additional loss increases the performance of
the learned model by decreasing the transferability and Euclidean distance between domain-class pairs of
multiple domains.

We compare the proposed method with existing FL methods such as ResNet50-FedAVG (i.e.
R50-FedAVG) [78], FedProx [22], and FedAVG-Share [95] as given in table 4. Most of the existing methods
use convolution-based networks, and the performance of these methods varies from domain to domain. The
comparative results clearly demonstrate that ViTs exhibit greater robustness when employed with FedAvg
aggregation and the inclusion of additional (i.e. BoDA) loss. They also demonstrate an ability to adapt
effectively to new and unseen domains. Moreover, ViTs perform better than existing methods [22, 78, 95] in
case of data heterogeneity and different distribution on the basis of domain-shift when data from multiple
domains are used for training. Thus, ViTs in addition to losses (equation (6)) perform better compared to
existing state-of-the-art methods, and are suitable for MDFL by solving the problem of data heterogeneity,
catastrophic forgetting, and domain-shift.
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Figure 6. Average test accuracy of each model to compare with ViTs using additional loss functions and FedAvg (i.e. aggregation)
for a given global test set from (a) MNIST (b) MNIST-M (c) SVHN, and (d) USPS.

Table 4. Overall average performance accuracy measured for different existing methods and the proposed method using both DIGITS
and PACS datasets. Average accuracy is measured for the model with and without addition loss, given in equation (8). Here,+
represents the results when LB is used for the model training on a given dataset.

Model DIGITS (%) DIGITS+LB (%) PACS (%) PACS+LB (%)

ResNet18 32.88 95.80 95.70 96.16
EfficientNet (B5) 43.58 96.10 93.74 94.49
R50-FedAVG [78] 73.72 96.04 94.97 96.49
FedProx [22] 75.70 95.96 95.07 95.64
FedAVG-Share [95] 79.63 96.75 94.84 96.08
ViT(T) 86.01 97.20 95.30 97.78
ViT(S) 89.40 97.63 96.50 97.96

4.5. Analysis
As given in section 2, most existing methods perform training on data splits from the same domain to
improve the optimization of FL methods. However, in real-word data, different domains possess a divergent
data distribution. For example, in our experiments, we use 4 different domains which contain different
datasets with variation in colors, image resolution, domain-shift, and heterogeneity in data based-on label
distribution. When training the FL model in a real-world scenario, a model should adapt the diversity across
domains. Thus, we use data splits from a single domain as well as multiple domains using the
leave-one-domain-out training method, so that the test domain does not overlap with the training data.
Furthermore, we evaluate the proposed model using unseen domain data that were not included in training
or validation of the model. Our results show the effectiveness of ViTs and the additional loss used in such
real-world scenarios. We solve the problem of data heterogeneity in the scenario of imbalanced class
distribution and domain-shift within and across domains.

To evaluate the robustness of the proposed method, we have used two different data, DIGITS and PACS
data sets that contain multiple domains having different datasets. DIGITS dataset is subdivided into multiple
splits as non-IID for the participants, while the PACS dataset is distributed to participants as one domain
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allocation for one client. Moreover, DIGITS dataset contains digit images with different color, shape and
resolution. Likewise, PACS dataset is also heterogeneous on the basis of different label distribution and
features containing different images of natural photos, sketches, art paintings and cartoons. Thus, both
datasets represent the real-world scenario with multiple domains having heterogeneous data with
domain-shift and imbalanced label distribution.

To tackle with the data heterogeneity in MDFL, we have exploited ViTs that have been used as robust
classifiers in different fields. However, we implement ViTs to address the problem of data diversity due to
imbalanced label distribution and domain-shift when used in FL model training. Moreover, we incorporate a
generalization loss into our MDFL approach to mitigate the impact of heterogeneous distribution and
domain-shift in the training data. The experimental results clearly demonstrate that, within our MDFL
settings, ViTs outperform other convolution-based architectures when combined with the BoDA loss (i.e.
equation (8)).

5. Conclusion

We train the robust Transformer model for MDFL using data from multiple domains characterized by
imbalanced class distribution and domain-shift, to solve the problem of data diversity. Transformer
architectures are able to solve the problem of device forgetting and learn features efficiently compared to
convolution-based deep networks. However, ViTs typically have a large number of parameters, making
communication expensive, especially in FL where models are trained across multiple decentralized devices or
servers. Moreover, these models require substantial computational resources and significant memory
resources during training due to computational complexity and large number of parameters. As we are not
concerned with the computational resources in this work, we take advantage of their robustness in case of
training with heterogeneous data. We train the global FL model by optimizing two loss functions in latent
feature space and class logits of the model. We evaluated the proposed method and compared with the
existing methods based on accuracy of the global model. We achieve excellent results in term of accuracy
which show the supremacy of the proposed method. In addition to addressing optimization challenges, we
can address the prevalent issue of data leakage in FL by incorporating the proposed model with
state-of-the-art defense methods in the future.
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Appendix. Datasets detail

Here, details of both datasets (i.e. DIGITS and PACS) used in our experiments, are provided.

A.1. DIGITS dataset
DIGITS dataset is comprised of multiple domains including MNIST (i.e. grayscale handwritten digits),
MNIST-M (i.e. handwritten digits with color images), SVHN (i.e. colored images of house numbers), and
USPS (i.e. handwritten digits with grayscale images) datasets. Each domain has different image data with
different properties such as color, size, and resolution as shown in figure A1. To make the data non-IID,
Dir(α= 0.5) is used to split dataset into multiple clients. In our scenario, each domain is divided into 3
subdomains (i.e. clients).

A.2. PACS dataset
PACS [85] dataset contains 4 different domains with images of natural photos, art paintings, cartoons, and
sketch as shown in figure A2. The dataset contains images with different attributes (i.e. color, size, and
resolution) for each domain. PACS dataset has 4 domains with their individual heterogeneous data on the
basis of domain-shift and label distribution, where each domain is assigned to a participating client, so 4
participants train a global model using this dataset in FL environment. To illustrate the domain shift in PACS
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Figure A1. DIGITS dataset: Heterogeneous datasets from different domains with different colors, resolution, and data
distribution (i.e. domain shift).

Figure A2. Heterogeneous PACS data from different domains with different colors, size, and data distribution (i.e. domain-shift).

Figure A3. PACS dataset: Heterogeneous dataset containing different domains with different features, colors, and domain-shift.
The dataset contains painting, cartoons, natural photos, and sketch images. A global model is trained on this divergent data.

dataset, a diagram is presented in figure A3, and the class distribution is depicted in figure A4. While the
imbalanced class distribution may not be notably conspicuous, there is a substantial domain-shift in the
dataset, as visualized in figures A3 and A4, respectively.
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Figure A4. Representation of data heterogeneity in PACS dataset due to class imbalance in multi-domain federated learning. Each
domain represented by a different color has different number of samples for a class. Imbalanced class distribution is a challenge
for FL when some classes are minority classes that are possibly missing sometimes, especially when dividing data into training and
validation splits.
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