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Abstract 

Background The rhizosheath, a cohesive soil layer firmly adhering to plant roots, plays a vital role in facilitating water 
and mineral uptake. In pearl millet, rhizosheath formation is genetically controlled and influenced by root exudates. 
Here, we investigated the impact of root exudates on the microbiota composition, interactions, and assembly pro‑
cesses, and rhizosheath structure in pearl millet using four distinct lines with contrasting soil aggregation abilities.

Results Utilizing 16S rRNA gene and ITS metabarcoding for microbiota profiling, coupled with FTICR‑MS meta‑
bonomic analysis of metabolite composition in distinct plant compartments and root exudates, we revealed sub‑
stantial disparities in microbial diversity and interaction networks. The ß‑NTI analysis highlighted bacterial rhizosphere 
turnover driven primarily by deterministic processes, showcasing prevalent homogeneous selection in root tissue (RT) 
and root‑adhering soil (RAS). Conversely, fungal communities were more influenced by stochastic processes. In bulk 
soil assembly, a combination of deterministic and stochastic mechanisms shapes composition, with deterministic 
factors exerting a more pronounced role. Metabolic profiles across shoots, RT, and RAS in different pearl millet lines 
mirrored their soil aggregation levels, emphasizing the impact of inherent plant traits on microbiota composition 
and unique metabolic profiles in RT and exudates. Notably, exclusive presence of antimicrobial compounds, includ‑
ing DIMBOA and H‑DIMBOA, emerged in root exudates and RT of low aggregation lines.

Conclusions This research underscores the pivotal influence of root exudates in shaping the root‑associated micro‑
biota composition across pearl millet lines, entwined with their soil aggregation capacities. These findings underscore 
the interconnectedness of root exudates and microbiota, which jointly shape rhizosheath structure, deepening 
insights into soil–plant‑microbe interactions and ecological processes shaping rhizosphere microbial communities. 
Deciphering plant–microbe interactions and their contribution to soil aggregation and microbiota dynamics holds 
promise for the advancement of sustainable agricultural strategies.
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Introduction
The pressing challenges of rapid population growth 
and escalating food demands have driven the need for 
increased agricultural production [1]. However, these 
efforts are significantly complicated by the complex 
issues brought on by climate change, including drought, 
soil degradation, salinity, and pollution. To address 
these multifaceted challenges effectively, it is essen-
tial to identify specific root traits that enhance resource 
acquisition by plants. Enhanced root systems are instru-
mental in enabling crops to optimize the utilization of 
soil resources, offering a pathway to increased produc-
tivity and favorable environmental outcomes. Therefore, 
the recognition and understanding of these particular 
root traits that facilitate efficient soil resource capture is 
of utmost importance [2]. Furthermore, within this con-
text, the rhizosheath, the soil layer tightly adhering to the 
roots, assumes a critical role in assisting plants in their 
resilience against drought conditions, particularly when 
the soil experiences moderate dryness [3]. For instance, 
features such as root branching, the formation of root 
hairs, and partnerships with arbuscular mycorrhizal 
fungi have all been connected to some degree with the 
establishment of a rhizosheath [3, 4]. Furthermore, the 
composition of root exudates and the exopolysaccharides 
released by microorganisms associated with the roots 
exert a significant influence on the stability of the soil 
aggregates surrounding the root system, as well as on the 
plant’s water and nutrient uptake [5].

Pearl millet (Pennisetum glaucum) is grown in regions 
with limited agronomic potentials, characterized by 
low rainfall (100–500  nm) and soils poor in organic 
carbon, where other crops tend to fail. However, the 
genetic potential of pearl millet, which can be utilized 
to enhance its tolerance to abiotic stresses such as water 
stress and improve yield, has yet to be fully exploited [6]. 
Encouraging prospects exist for leveraging the available 
sequenced genome [7] and the identification of yield-
associated quantitative trait loci (QTLs) [8, 9] offering 
promising avenues for further improvement [10]. Pearl 
millet, despite its immense potential for climate change 
adaptation in African and Indian agriculture, is often 
considered an orphan crop with a smaller scientific 
community compared to other cereals [11–14]. How-
ever, deeper insights into soil–plant-microbiota interac-
tions in the root environment can unlock new avenues 
for sustainable improvement of pearl millet production 
[15, 16]. The formation of the rhizosheath in pearl millet 
is genetically controlled and primarily regulated by root 
exudates [17, 18].

The objective of this study was to establish correlations 
between the diversity of root-associated microbiota in 
pearl millet lines, their soil aggregation capacities, and 

the composition of root exudates under in  situ condi-
tions. To achieve this, we employed metabarcoding and 
metabonomics approaches to identify the microbial 
diversity on the roots and in the rhizosphere, as well as 
the nature of root exudates, in four inbred lines of pearl 
millet grown in natural soil.

This study builds upon previous advancements in pearl 
millet genomics and presents a valuable opportunity for 
further improvement and innovation in crop breeding 
programs.

Results
Diversity of the pearl millet root‑associated microbiota
The composition of active bacteria and fungi of the 
root tissues (RT) and root-adhering soil (RAS) frac-
tions of 4 pearl millet  (PM) lines contrasting for their 
ability to aggregate the root-adhering soil (rhizosheath) 
were examined at phylum level (Fig. S1A–B). Accord-
ing to the ranking of the four PM lines based on the 
RAS/RT mass ratio, the four PM lines were classified 
as, low-aggregation lines (LAL-L220 and LAL-L3, RAS/
RT = 7.8 and 12.9  g/g, respectively) and high-aggrega-
tion lines (HAL-L253 and HAL-L132, 23.6 and 24.8 g/g, 
respectively) [17]. We observed a significant difference 
in both bacterial and fungal community composition 
between different PM lines across compartments (bulk 
soil (BS), RAS, RT) (PERMANOVA, F-value 5.1548,R2 
0.69614; p-value < 0.05 and F-value 3.8382; R2 0.63044; 
p-value < 0.05, respectively). Non-metric multidimen-
sional scaling (NMDS) plots illustrate these divergences 
between compartments (NMDS stress = 0.11205 and 
NMDS stress = 0.14441, respectively). Specifically, RAS 
samples exhibited distinct microbial communities com-
pared to RT samples and the BS, for both bacteria and 
fungi (Fig.  1A and B). The major change in bacterial 
community composition was detected between bulk soil 
(BS) and RAS, which was contributed by Actinobacteria 
(average 43 vs 14%), Proteobacteria (average 24 vs 54%), 
Chloroflexi (average 19 vs 5%), Acidobacteria (average 
5 vs 12%), and Firmicutes (average 2 vs 8%). At phylum 
level of taxonomic resolution, there was no significant 
difference in the bacterial composition of RAS fraction 
between the four PM lines. In contrast, bacterial commu-
nity in the RT was different between PM lines (Fig. S1A). 
The LAL-L220 and LAL-L3 were enriched in Bacteroi-
detes (10–13%) compared to HAL-L253 and HAL-L132 
(2.5–5%) (Fig. S1A).

In terms of the fungal communities, Ascomycota was 
the dominant phylum (81%), followed by Mucoromy-
cota (13%), unassigned fungi (3%), Basidiomycota (2.8%), 
and Glomeromycota (0.75%) (Fig. S1B). The difference 
between RAS and RT was the enrichment of Mucoromy-
cota in RAS (up to 38%) and Glomeromycota in RT (up 
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to 4%). Inside the RT, a higher percentage of Basidiomy-
cota (21%) was observed in HAL-L253 and Glomeromy-
cota (4%) in HAL-L132, compared to the other PM lines 
(Fig. S1B). In alignment with the bacterial communities, 
fungal communities were different between PM lines 
only on the RT (Fig. S1B).

To identify differentially abundant taxa as biomark-
ers, we applied the linear discriminant analysis effect 
size (LEfSe) using the Kruskal–Wallis test (p < 0.05) with 
LDA score > 2.0. Notably, the RT of LAL-L220 and LAL-
L3 lines showed specific colonization by certain Bac-
teroidetes species, while HAL lines exhibited specific 
colonization by species of Chloroflexi, Paenibacillus, 
and Actinobacteria. Additionally, the RAS of HAL lines 
exhibited several species belonging to Verrucomicrobia 
(Fig. 1C). In terms of the RT fungal community, of HAL 
lines displayed a distinct colonization pattern charac-
terized by the presence of Basidiomycota species (Can-
tharellales). In contrast, the RT of LAL lines exhibited a 
unique colonization pattern with species from Mortiel-
lomycota, including the genus Mortiella, and Mucuro-
mycota, such as the genus Rhizopus. In the context of 
the RAS fungal community, both HAL and LAL lines 

displayed specific colonization patterns, each associated 
with a different genus of Ascomycota (Fig.  1D). These 
significant findings underscore the correlation between 
the composition of the rhizosphere microbial community 
and the soil’s aggregation capacity.

In terms of alpha-diversity, all compartments of PM 
lines (RAS and RT) exhibited a similar bacterial taxo-
nomic richness compared to bulk soil (BS) across both 
methods (observed and Chao1, Fig. S2A–B) except for 
LAL-L220 in RT which showed a significantly higher 
level (p < 0.05). A similar trend was observed in the bacte-
rial evenness between PM lines and BS but here in RAS 
the HAL-L253 showed a significantly (p < 0.05) reduced 
distribution calculated by both indices (Shannon and 
Simpson) and LAL-L220 in the Simpson index with 
respect to BS (Fig. S2C–D) evenness; PM lines of both 
compartments had similar levels to that of BS except for 
lines L220, L3, and L132 on RT which showed higher 
ones (Fig. S2G–H). Furthermore, we employed the Wil-
coxon rank-sum test to construct rarefaction curves for 
the purpose of comparing bacterial and fungal diversity 
metrics within various compartments of each PM line. 
Both bacterial and fungal rarefaction curves displayed 

Fig. 1 Microbial community beta‑diversity and differential taxonomic biomarkers in pearl millet rhizosphere and bulk soil (BS). NMDS plots 
illustrating the beta‑diversity of (A) bacterial communities, and (B) fungal communities, in the different compartments (root tissues (RT) and 
root‑adhering soil (RAS)) in the four‑pearl millet “PM” lines (L220, L3, L253, and L132) along with bulk soil “BS.” The dots correspond to individual 
samples, where red dots indicate BS samples, green dots represent RAS samples, and blue dots represent root samples. PERMANOVA 
with a p‑value < 0.001. C Bar chart depicting the results of LEfSe analysis conducted on the roots and RAS bacterial communities, and D of fungal 
communities, of low‑aggregation line (LAL, including L220, L3) and high‑aggregation line (HAL, including L253, and L132) pearl millet. The chart 
displays log‑transformed LDA scores of bacterial taxa identified by LEfSe analysis, with a threshold of 2.0 for the log‑transformed LDA score
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a clear plateau, signifying that the number of sequences 
analyzed was adequate to encompass the majority of 
OTUs in our study (Fig. SEIJ). There were no significant 
differences detected in bacterial alpha-diversity indices 
(richness and evenness) among the PM lines within com-
partments (Fig. S2A–D). In contrast, the fungal diversity 
in the RT compartment exhibited much higher evenness 
compared to BS and RAS, except for line HAL-L253 (Fig. 
S2E–H). This observation is corroborated by the data 
presented in the rarefaction curves (Fig. S2E, J).

Microbial network analysis
Microbiome changes were assessed through network 
analysis of each pearl millet (PM) line, utilizing 7000 to 
10,000 edges (Fig.  2A). Microbial network analysis has 
been conducted using integrated data from both bacte-
ria and fungi, and, to ensure accuracy, the abundances of 
RT and RAS compartments were merged from multiple 

data points, minimizing false positive and negative con-
nections. The network structures were characterized by 
key indices including density, transitivity, diameter, aver-
age path length, number of modules, and edges (Table 
S1). Comparing these indices, the networks of LAL-L220 
and LAL-L3 exhibited striking similarity, with < 2% vari-
ation observed across three out of the four indices. In 
contrast, the network of HAL-L253 differed significantly 
from the other PM lines, displaying the smallest network 
size, number of modules, mean connectivity, and average 
clustering, along with the highest average geodesic and 
modularity (Table S1).

The bacterial nodes within the networks of the 
four  pearl millet (PM) lines were predominantly associ-
ated with Actinobacteria and Alphaproteobacteria (Fig. 
S3A), while the fungal nodes were primarily linked to 
Sordariomycetes and Dothideomycetes (Fig. S3B), with 
considerable overlap across the lines. However, the hubs, 

Fig. 2 Microbial interaction network and assembly processes in pearl millet microbiome. A Co‑occurrence network analysis illustrating 
the correlation of operational taxonomic units (OTUs) abundance within the bacterial and fungal communities in the roots (RT) and root‑adhering 
soil (RAS) of four pearl millet PM lines (A, L220; B, L3, C, L253; D, L132). Each dot in the network represents a node, corresponding to a distinct 
OTU representing a microbial population. Strong Pearson correlations, filtered at a 0.05 p‑value threshold, are represented by connections (green 
lines indicate a positive correlation while red lines indicate a negative correlation) between nodes. Nodes are color‑coded and shaped according 
to their major taxonomic classes. The size of each node reflects its significance, determined by the number of connections (degree), betweenness, 
and closeness within the network. B Topological roles of classified nodes, revealing potential keystone species within the correlation network. 
C–D Assessment of relative contributions of deterministic (ßNTI ≥ 2) and stochastic (ßNTI ≤ 2) processes on the bacterial and fungal assembly 
across the soil–plant root continuum of the four PM lines, employing a null model. Horizontal lines indicate upper and lower significance 
thresholds at βNTI < 2 and > 2. D The relative importance of 5 ecological processes for bacterial and fungal communities assembly respectively, 
along the BS, RAS, and RT of each PM line: heterogeneous selection (ßNTI <  − 2), homogeneous selection (ßNTI > 2), dispersal limitation (|βNTI|< 2 
and  RCBray > heterogeneous selection (ßNTI <  − 2), homogeneous selection (ßNTI > 2), dispersal limitation (|βNTI|< 2 and  RCBray > 0.95), homogenizing 
dispersal (|βNTI|< 2 and  RCBray <  − 0.95), and undominated (|βNTI|< 2 and |RCBray|< 0.95)



Page 5 of 17Alahmad et al. Microbiome            (2024) 12:1  

representing highly connected nodes, exhibited line-spe-
cific patterns within each compartment (Fig. 2B, S3C–D). 
The changing behavior of these hubs, as indicated by the 
number of positively and negatively shifting links, is visu-
alized in a bar graph (Fig. S3E). Remarkably, the majority 
of nodes in all PM lines were peripheral or ultra-periph-
eral (specialists) based on their connectivity between and 
within modules in their network (Pi and Zi respectively, 
see material and method) (95.6% L220, 93.5% L3, 97.2% 
L253, and 95.2% L132) (Table S2). This implies that only 
a small portion of nodes function as connectors (general-
ists), with percentages ranging from 2.8 (HAL-L253) to 
6.5% (LAL-L3) (Fig. 2B and Table S2).

Microbial assembly processes
Ecological processes are fundamental in shaping micro-
bial communities. The beta-nearest taxon index (ß-NTI) 
is a valuable tool for understanding the interplay 
between deterministic processes (e.g., environmental 
filtering, niche differentiation) and stochastic processes 
(e.g., dispersal limitation, ecological drift) in commu-
nity turnover. Values of β-NTI greater than + 2 or less 
than − 2 indicate that community turnover is primarily 
driven by deterministic processes. On the other hand, 
β-NTI values between -2 and +2 are indicative of sto-
chastic processes. By employing this approach, we were 
able to distinguish between the relative contributions of 
deterministic and stochastic processes in shaping micro-
bial community dynamics. Indeed, an intriguing pattern 
emerges within the bacterial community in the RT and 
RAS compartments of the four PM lines, where ß-NTI 
values span a range from − 5 to − 15. This diversity 
implies a significant role of deterministic processes in 
shaping the assembly of bacterial communities (Fig. 2C). 
However, it is worth noting that bacterial taxa in the 
L3 RT exhibited a tendency toward stochastic assem-
bly processes. In the bulk soil, there was also a subtle 
inclination toward a stochastic assembly process. The 
heightened involvement of homogeneous selection was 
evident in the assembly of bacterial communities within 
the RAS and RT compartments of each PM line. Con-
versely, the BS showed a more pronounced contribution 
of dispersal limitation, with the RT of L3, L220, and L253 
demonstrating a milder impact of this factor (Fig.  2E). 
On the other hand, the fungal community exhibits a dis-
tinct trend for stochastic assembly processes, specifically 
dispersal limitation (Fig.  2D; F). Additionally, undomi-
nated processes played a significant role, except for the 
RT of L253 (Fig. 2F). Heterogeneous and homogeneous 
selection played variable roles, except in the case of the 
RAS and RT of L3 (Fig. 2F). These findings enhance our 
understanding of the factors driving microbial com-
munity dynamics in the rhizosphere and highlight the 

importance of deterministic processes in shaping plant-
bacteria interactions.

Metabonomics
To explore the relationship between soil aggregation 
capacity and metabolic profiles, we conducted in  situ 
metabonomics analysis using FTICR-MS on 64 samples 
from different pearl millet (PM) lines. The analysis gen-
erated a data matrix comprising several thousand mass 
peaks, with approximately half assigned to molecules 
containing CHO-, CHNO-, or CHOS-elements within 
a molecular weight range of 137 to 701. Assignment 
criteria established by previous studies were employed 
[19–21], resulting in the assignment of 4217 molecular 
compositions. These compositions were visualized in van 
Krevelen plots and mass-edited H/C ratios (Fig. S4A–B), 
enabling their classification (Fig. S4C). CHO composi-
tions accounted for 48% of the detected molecular com-
positions, with CHNO representing 47% and CHOS only 
5% (Fig. S4A–B). Shoots exhibited a higher abundance of 
CHNO compositions, while the BS, RAS, and RT were 
enriched in CHO compositions and CHOS molecules, 
particularly in the RT (inserts in Fig. S4B).

We observed a slightly lower number of assigned for-
mulae (1851) in the root-adhering soil (RAS) compared 
to the bulk soil (BS) control (1875 molecules) (Fig. S4A–
B). This finding is consistent with studies conducted 
on Arabidopsis thaliana [22], and suggests that the 
microbial rhizosphere effect, influenced by root exuda-
tion, leads to a reduction in biochemical diversity in the 
rhizosphere [23–26]. The compounds detected in the 
BS and RAS compartments mainly comprised low-mass 
(150–400  m/z) CHO- and CHNO-molecules, identified 
as carbohydrates, aliphatics, and amino acids (Fig. S4B–
C) [26]. In contrast, the compounds detected in the root 
tissues (RT) exhibited a lower number but a higher mass 
range (up to 700 m/z ratio) compared to the RAS and BS, 
with an increase in the CHOS molecular composition 
observed in the phenolic and carboxyl-rich aliphatic mol-
ecule (CRAM) zones, along with an increase in aliphat-
ics (Fig. S4A–C). The shoot compartment of the PM lines 
showed the highest number of assigned molecules (2450) 
(Fig. S5B), which aligns with findings from studies on 
other plants such as rice and banana [27, 28]. Shoot sam-
ples exhibited a higher abundance of compounds in the 
aliphatic zone, particularly glycosylated carbohydrate-
like and amino acids/peptide-like compounds, as well as 
highly unsaturated and condensed compounds associ-
ated with carboxyl-rich aliphatic molecules (CRAM) and 
phenolic classes (Fig. S4A–C).

In mass-edited H/C ratio plots, variations were 
observed in molecular compositions relatively with 
hydrogen-deficient covering the chemical space 
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0.5 ≤ H/C ≤ 1.0 and molecular masses 150 ≤ m/z ≤ 500 
(Fig. S4B). In this region, modest changes (in %) in 
assigned chemical compositions between RAS (26%) and 
BS (29%) were noticed, while approximatively 17% and 
20% were observed for shoots and roots, respectively. 
Overall, the variances of chemical fingerprints detected 
in shoots, roots, RAS, and BS demonstrated the specific-
ity of each compartment. These differences in molecular 
composition between above- and below-ground plant 
parts can be attributed to factors such as biomass distri-
bution, compartment-specific functions, cellular struc-
tures, and the production, translocation, and storage of 
primary and secondary metabolites [29–31].

Principal component analysis (PCA) revealed distinct 
differences between compartments of the pearl millet 
(PM) lines, as supported by the separation along the first 
two principal components PC1 (33%) and PC2 (15%). 
Specifically, shoots exhibited clear separation from other 
compartments in PC1, while RT and soil samples were 

distinct in PC2 (Fig. S4D). Additionally, PM lines with 
different soil aggregation capacities displayed distinct 
metabolomic profiles. The bulk soil (BS) compartment 
and shoots showed the highest diversity in compound 
composition, followed by the root-adhering soil (RAS), 
while RT exhibited the lowest diversity (Fig. 3A and B). 
Hierarchical clustering analysis based on significant fea-
tures highlighted differences among the four PM lines 
(Fig.  3C). BS and RAS fractions exhibited similar total 
numbers of compounds (373 and 352, respectively) and 
composition (CHO > CHNO), while RT (248) displayed 
a balanced CHO/CHNO composition. Shoots displayed 
the highest number of assigned features (745), predomi-
nantly consisting of CHNO molecules (CHNO > CHO) 
(Fig.  3C). PCA analysis of the root exudate-containing 
fraction (RAS) demonstrated distinct clustering of PM 
lines along PC1 (20%) and PC2 (17%) (Fig. 3D). Specifi-
cally, in the root-adhering soil (RAS) compartment, the 
HAL lines (L132 and L253) exhibited the highest number 

Fig. 3 Comprehensive molecular composition analysis in pearl millet (PM) lines: unraveling variations across compartments. A Bar graph showing 
the distribution of CHO, CHNO, and CHOS compounds in the shoot, root, and root‑adhering soil “RAS” compartments of the four PM lines (L220, 
L3, L253, and L132), as well as in the bulk soil “BS.” B H/C versus O/C van Krevelen diagrams depicting the distribution of all detected compounds 
from negative electrospray FTICR‑MS analysis. The color codes represent different molecular compositions (blue CHO, orange CHNO, green 
CHOS), and the size of the bubbles indicates the signal intensity. The insert in the van Krevelen diagram highlights the classes of compounds. C 
Clustering heat map of the top 1000 significant compounds based on Pearson distance between spectra of the sixty‑four samples (p‑value ≤ 0.05). 
Each sample from each PM line in each compartment and the BS is indicated by a specific color in the margins. D PCA 2D scores plots illustrating 
the distribution of assigned compounds in different compartments of each PM line. Each sample is represented by a dot, and the color of the dots 
corresponds to a specific PM line. The 95% confidence region is displayed
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of assigned carbohydrate (CHO) compounds compared 
to LAL lines (L3 and L220) (Fig.  3A). This indicates an 
increased presence of metabolites originating from root 
exudation and the RAS-associated microbiota, poten-
tially contributing to enhanced soil aggregation in these 
HAL lines. Notably, there was a distinct differentiation 
between the two HAL lines, with HAL-L132 displaying 
a higher abundance of aliphatic CHO compounds com-
pared to HAL-L253 (Fig.  3D). Previous studies on root 
exudation mechanisms have emphasized the inter- and 
intra-specific variability in root exudate composition as 
shown in Helianthus and Quercus ilex [32, 33].

In the RT compartment, the two HAL lines (L132 and 
L253) exhibited a distinct clustering pattern, appear-
ing distant from LAL-L220 and LAL-L3 (Fig. 3D). Simi-
larly, this trend was observed in the shoot compartment, 
where the two HAL lines clustered even further away 
from LAL-L3 compared to LAL-L220 (Fig.  3D). Root 
exudation mechanisms often involve a coupling of pas-
sive and active processes [24, 31, 34, 35].

The relationship between root exudate composition 
and soil aggregation in the rhizosphere was further sup-
ported by statistical analysis (PCA), which revealed 
clustering of samples and compartments of the four PM 
lines based on their aggregation capacity (Fig. 3D). Addi-
tionally, a heat map analysis of the 1000 most significant 
compounds (using Pearson distance), based on similar-
ity values, demonstrated a clear correlation between the 
spectra of the 64 samples and the soil aggregation ratios 
of the PM lines in each compartment, particularly in the 
root and shoot compartments (Fig. 3C).

Molecular specificities in PM lines
The BS compartment has the greatest number of unique 
low-mass CHNO- and CHO- molecules (200–500  m/z) 
compared to the RAS of the PM lines (Fig. S5C, Fig. 
S5ARAS-BRAS). These compounds correspond to the 
composition of low-mass range molecules found in the 
Bambey arenosol, which is characterized by low organic 
matter content (0.4% wt). To identify common root exu-
dates and metabolites associated with microbial activities 
in the rhizosphere of each PM line, the composition of BS 
was subtracted from that of RAS. A total of 99 molecules 
ranging from 199 to 495 m/z mainly composed of carbo-
hydrate/carbohydrate conjugates, amino acids/peptides 
and analogues, hydroxycinnamic acids and derivatives, 
fatty acids and conjugates, and fatty acid esters as well 
were found in all PM lines but absent in the BS.

Among a list of 37 molecules specific to HAL-L132 
(Table S3), several were of interest, including coniferyl 
alcohol, known as a nod gene inducer in Bradyrhizo-
bium japonicum [36], rhodojaponin, described as an 
insecticide produced by Rhododendron molle [37], 

hydroxyoxytetracycline, an antibiotic analog [38], ceru-
lenin, an antifungal antibiotic isolated from Cephalo-
sporium caerulens [39], and two homoserine lactones 
(N-(3-oxododecanoyl) homoserine lactone and N-(3-hy-
droxy-heptanoyl)-homoserine lactone), known to be 
involved in bacterial quorum-sensing [40].

Fewer specific molecules were identified in the other 
three PM lines: 10 for HAL-L253, 6 for LAL-L3, and 12 
for LAL-L220. LAL-L220 harbored sieboldin, a dihydro-
chalcone compound typically found in Malus species 
[41], as well as lucidone A, a plant diterpene secondary 
metabolite. Fungal compounds predominantly produced 
by Aspergillus were retrieved from the RAS of the HAL 
line. Specifically, shoyuflavone A and a dihydropyranone 
called aspyrone were identified in the RAS of L253. Addi-
tionally, the RAS of L132 contained a sesquiterpenoid 
compound called asperugin and a carbonyl compound 
known as phomaligin. Notably, the RAS compartment of 
LAL-L3 and LAL-L220 contained two benzoxazinoids, 
DIMBOA-Glc (LAL-L3) and HDMBOA (LAL-L220) 
which have been found in maize [42] and more widely 
in Poaceae [43], knowing that pearl millet belongs to 
Poaceae.

Correlation between metabarcoding and metabonomics 
datasets
Co-inertia analysis of active microbial OTU abundance 
and the metabolite concentration covered in the RT and 
RAS compartments of each PM line revealed a correla-
tion and covariation between these two datasets, influ-
enced by the aggregation capacity (Fig. 4). The first two 
components explained approximately 40% of the total 
variance. In the RT compartment, components 1 and 2 
accounted for 25.7% and 16.7% of the variance, while in 
the RAS compartment, they accounted for 20.4% and 
19.8% of the variance. Notably, there was a clear separa-
tion between the HAL lines and the other two lines (IAL 
and LAL), which exhibited closer proximity to each other 
in the RT compartment than in the RAS (Fig. 4A–C). Co-
inertia analysis was employed to evaluate the correlation 
between two matrices: one representing the abundance 
of OTUs, and the other depicting metabolite concentra-
tions for each line. The resulting correlation coefficients 
(RV) were 0.672 and 0.635 for RT and RAS, respectively, 
both with a p-value of < 0.05, as determined through a 
Monte Carlo test involving 999 permutations. The visual 
representation in Fig. 4B and D vividly demonstrates that 
both OTUs and metabolites were co-positioned within 
the same spatial context as the PM line. This close spatial 
alignment emphasizes the strong connections between 
specific OTUs and metabolites within each line, implying 
a profound interrelationship between them.
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Discussion
Analysis of the alpha-diversity of the active microbiota 
revealed contrasting trends in bacterial and fungal com-
munities between the RT and BS compartments, consist-
ent with previous studies on plant diversity effects on soil 
microbiota [44–46].

Using the Bray–Curtis taxonomic dissimilarity index, 
we showed a clear separation between samples from BS, 
RAS, and RT compartments, in both bacterial and fun-
gal communities, as reported in other plant studies [47]. 
Notably, PM line samples showed clustering and differ-
entiation based on their aggregation capacity, particu-
larly in the RT compartment, with distinct separation of 

HAL lines from LAL lines (Fig. 1A). The rhizosphere of 
HAL PM lines exhibited specific enrichment of Verru-
comicrobia OTUs, suggesting their potential contribu-
tion to soil aggregation through increased root exudate 
availability [3].

The ß-NTI values elucidate that the assembly process 
of bacteria in the RT and RAS compartments of the four 
PM lines was markedly influenced by deterministic pro-
cesses, predominantly characterized by a prevalence of 
homogeneous selection. This phenomenon, potentially 
driven by the presence of plant  root exudates, under-
scores the pivotal role of these compounds in shaping 
bacterial community dynamics (Fig.  2C). An interesting 

Fig. 4 Deciphering microbiota‑metabolite interactions in pearl millet “PM” lines: a co‑inertia analysis (CIA) approach. CIA revealing the relationship 
between microbiota and metabolites in pearl millet “PM” lines. A and C 3D plots depicting the CIA of metabarcoding (represented by circular 
markers) and metabonomics (represented by square markers) data sets in the root and RAS compartments of the four PM lines (L200 in green, 
L3 in orange, L253 in purple, and L132 in blue). The lines connect the position of samples in the metabarcoding dataset with the corresponding 
position in the metabonomics dataset. B and D 3D plots illustrating the CIA of microbial OTUs (represented by purple markers) and the detected 
metabolites in the root and RAS compartments. The molecular formula of the metabolites is indicated by color‑coding (CHO in red, CHNO in blue, 
and CHOS in green). CIA analysis, performed using R software
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parallel can be drawn from the research by Fan et  al., 
revealing that the significance of deterministic pro-
cesses in shaping diazotrophic communities diminishes 
as one moves away from wheat roots [48]. In a con-
trasting manner, the assembly of the fungal community 
within the pearl millet rhizosphere is primarily governed 
by stochastic processes (Fig.  2D). This outcome harmo-
nizes with recent findings concerning the rhizosphere of 
Typha orientalist [49], as well as earlier studies [50, 51]. 
Depleted soils may promote the selection of microorgan-
isms endowed with beneficial traits in relatively consist-
ent environmental conditions, thereby diminishing the 
role of environmental filtering. This observation is con-
sistent with a prior study [52, 53], which underscored the 
heightened significance of stochastic processes in shap-
ing microbial community assembly during prolonged 
warming in a tall-grass prairie ecosystem, contrasting 
with deterministic processes [52]. Importantly, within 
unsaturated arenosol, fungi in such habitats may con-
front limited dispersal capacities, potentially leading to 
an increased degree of dispersal limitation.

The analysis of co-occurrence networks provides valu-
able insights into ecosystem functioning, plant nutrition, 
and resilience to biotic and abiotic stresses [54–56]. Our 
study revealed relatively minor differences in the organi-
zation and complexity of microbial networks among 
PM lines, suggesting that interactions are highly intri-
cate in the rhizosphere (combined data from RT and 
RAS) of each line. The majority of specific connector 
hubs in each PM line network exhibited a combination 
of generalist and specialist characteristics, highlighting 
the role of the host plant in shaping the structure and 
function of its microbial community through root exu-
dation [57, 58] (Fig.  2B). For instance, the  Mesorhizo-
bium genus(bac_283), known for EPS production [59], 
functioned as a generalist in the HAL network (Fig. S3 
and 2B), potentially providing benefits to the plant, but 
shifted to a specialist role with different ecological impli-
cations in the LAL network (Fig. 2B).

Interactions among different species shape the assem-
bly and functions of microbial communities, with 
potential beneficial, neutral, or detrimental effects on 
community members.

Metabonomic profiles of PM line compartments
The influence of plant compartments on the microbiome, 
driven by their distinct physical and chemical properties, 
has been well documented [60, 61]. Previous studies have 
primarily focused on hydroponic or sterile plant systems, 
analyzing specific compounds related to root exudation, 
soil aggregation, and associated metabolites [62–66]. 
While these approaches successfully quantified spe-
cific chemicals of interest (e.g., phenolics, antioxidants) 

influencing plant growth and health [28, 67–69], they 
often overlooked the complexity of plant–microbe inter-
actions and the biochemical diversity present in real-life 
conditions, where chemical compounds segregate among 
different plant parts [70].

In our study, we established an in  situ system using 
native soil and employed a sensitive and untargeted 
analytical approach (FT-ICR-MS) to profile the diverse 
metabolites present in the various compartments of 
four PM lines with contrasting soil aggregation capaci-
ties. This allowed us to capture both root exudates and 
microbial metabolites activated by root exudation in the 
RAS compartment, as well as differentiate them from 
soil organic matter-related metabolites observed in the 
BS compartment. By considering the intricate interplay 
between plants and microbes under natural conditions, 
our approach provides a comprehensive understanding 
of the metabolic profiles associated with different plant 
compartments and their implications for plant–microbe 
interactions.

The RAS compartment of LAL-L3 and LAL-L220 con-
tained two benzoxazinoids, DIMBOA-Glc (LAL-L3) 
and HDMBOA (LAL-L220). These secondary metabo-
lites are known to trigger rhizosphere colonization by 
the plant-growth promoting bacterium Pseudomonas 
putida [71] and inhibit host recognition and virulence 
of the phytopathogen Agrobacterium tumefaciens [72]. 
More recently, using a metabonomic approach of root 
exudation in a non-sterile soil, it was shown that large 
amount of benzoxazinoids (including DIMBOA) and 
flavonoids were detected in the maize rhizosphere [73], 
and that benzoxazinoids (especially MBOA) shaped the 
bacterial and fungal diversity in the maize rhizosphere 
[74]. DIMBOA has also been shown to have multiple 
effects on rhizosphere microbiota, especially Proteo-
bacteria and Chloroflexi, such as plant-soil feedback, 
metabolic regulation, and gatekeeper effects that will all 
lead to a change in the microbial community structure 
and functions [75, 76], and more recently, Wang et  al. 
[77] showed that the exudations of GABA and DIMBOA 
are involved in shaping the rhizosphere and endosphere 
microbiomes. The absence of DIMBOA-Glc or HDM-
BOA-Glc in the RAS compartment of HAL lines may 
suggest that these molecules could negatively control the 
activity of soil-structuring bacteria in the rhizosphere of 
LAL lines (L3 and L220).

Co‑inertia analysis of RT and RAS omics datasets
Co-inertia analysis of the microbial populations and the 
specific metabolic compound datasets from the RT and 
RAS compartments revealed a correlation between the 
microbial populations and specific metabolic compounds 
in the PM lines, as depicted in the 3D plots (Fig. 4). The 
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separation of the correlated omics data sets of each PM 
line and their alignment with the soil aggregation ratios 
further supported the link between plant-microbiota 
interactions and soil aggregation. Similar approaches 
combining metabonomics and metagenomics have been 
employed in various plant species, including A. thaliana 
[65, 74], Avena barbata [78], British bluebells [79], rice 
[80], tomato [66], potato [81], and poplar [82] highlight-
ing the role of root exudation in shaping the root/rhizo-
sphere-associated microbiota and their collective impact 
on soil aggregation. All of these studies mentioned above, 
as well as many others, have evidenced the effect of the 
plant through root exudation on the root/rhizosphere-
associated microbiota and their combined role in soil 
aggregation [5, 83–89], which is under complex genetic 
control in pearl millet [18]. In the future, these omics 
approaches will continue to evolve and improve, particu-
larly in terms of statistical and bioinformatics analysis 
[90–92], and combined with more complementary omics 
tools such as metaproteogenomics, metatranscriptom-
ics and metaproteomics to strengthen the analysis of the 
plant-soil-microbiota continuum and shed light on this 
black box [82, 93–96]. This integration of diverse omics 
data will provide a more comprehensive understanding of 
the plant-soil-microbiota continuum, helping to unravel 
the complexities of this intricate relationship.

An interplay of root features, encompassing factors 
such as root structure, development of root hairs, root 
architecture, root-associated microbiota, and partner-
ships with arbuscular mycorrhizal fungi, along with the 
secretion of root substances like exudates and mucilage, 
influences how soil adheres to and forms aggregates 
around the roots. The root exudate composition plays 
a crucial role in shaping the assembly and interaction 
networks of the rhizosphere microbiota, thereby influ-
encing the structuring of the soil surrounding the roots 
(Fig.  5). A significant portion, up to 20%, of the photo-
synthetates produced by the plant is allocated as root 
exudates to recruit the rhizosphere microbiota. Some 
microorganisms transform these exudates into exopoly-
saccharides (EPS), which contribute to soil particle aggre-
gation by increasing soil adherence to the roots. This 
process improves water and mineral availability for the 
plant and enhances carbon storage in the soil as the fresh 
carbon is not completely mineralized [3, 5]. Interestingly, 
the presence of DIMBOA and H-DIMBOA, known for 
their antimicrobial activity, is exclusively detected in the 
rhizosphere of PM lines with lower aggregation capac-
ity. We hypothesize that these compounds may inhibit 
EPS synthesis by bacteria or selectively suppress certain 
EPS-producing bacterial populations. Further investiga-
tions are warranted to elucidate the mechanisms under-
lying the interplay between root exudate composition, 

EPS synthesis, and microbial communities, shedding 
light on their combined influence on soil aggregation and 
carbon sequestration in soils (Fig.  5). It is important to 
acknowledge that various other factors, including root 
architecture, root hairs, mucilage, priming-effect, and 
mycorrhizal fungi, are recognized as influencing rhizos-
heath formation.

Conclusions
In summary, our investigation delved into the intricate 
relationship between root exudates, microbial commu-
nities, and soil aggregation in pearl millet (PM) lines. 
Analysis of alpha-diversity revealed contrasting trends 
in bacterial and fungal communities between root 
and bulk soil compartments, consistent with previous 
research on plant diversity effects on soil microbiota. 
Distinct assembly mechanisms governed the bacterial 
and fungal communities. Bacterial populations were 
chiefly shaped by deterministic processes, whereas the 
dynamics of fungal communities were primarily influ-
enced by stochastic processes. The co-occurrence net-
work analysis highlighted the role of root exudation 
in shaping the structure and function of the micro-
bial community in the rhizosphere. Our in situ untar-
geted metabonomic approach provided comprehensive 
insights into the metabolic profiles associated with 
different plant compartments and their implications 
for plant–microbiota interactions. The correlation 
between microbial populations and specific metabolic 
compounds further emphasized the significance of 
root exudate composition in influencing soil aggrega-
tion. Overall, this study highlights the critical role of 
root exudates in modulating the assembly and function 
of rhizosphere microbiota, ultimately influencing soil 
aggregation and plant–microbiota interactions. Fur-
ther research is needed to elucidate the mechanisms 
underlying these complex interactions to promote 
sustainable agriculture and effective strategies for soil 
carbon sequestration.

Materials and methods
Pearl millet line selection
Four pearl millet (Pennisetum glaucum (L.) R.Br.) (PM) 
inbred lines used in this study were selected based on 
their contrasted rhizosphere aggregation capacity as pre-
viously described [17]. Briefly, a screening experiment 
was performed on 181 PM lines by assessing their rhizos-
phere aggregation capacity, using the ratio of root-adher-
ing soil (RAS) mass to root tissue (RT) mass (RAS/RT) 
to estimate rhizosheath [97]. PM lines L220, L3, L253, 
and L132 that differ in their RAS/RT ratio were chosen to 
study their metabonomics and its interaction with the RT 
and RAS-associated microbiota.
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Soil system description
The in  situ soil-based system was set up in the Insti-
tut Sénégalais des Recherche Agricoles (ISRA) Bel Air 
campus in Dakar (Senegal), using native soil sampled 
in the Centre National de Recherche Agronomique 
(Bambey, Senegal). The soil was an arenosol (FAO 
classification) [97], which was sieved at 4  mm and 
homogenized before being distributed in 52 bottom-
less “WM” angular shaped pots that prevented root 
spiraling. The pots were divided into two sets of 28 
pots (6 replicates for each of the 4 PM inbred lines and 
4 as a control or bulk soil “BS”). Each pot contained 
1.5  kg of soil. Watering was applied 3 times per week 
using 30 ml water for each pot for 28 days of growth. 
Then, the plants were carefully pulled out of the soil 
and fixed by their crown level on an electric agitator 
(Ingenieurbüro CAT M. Zipperer Shaker S 50 GmbH) 

and shaken at maximum speed for 1 min to detach the 
non-adhering soil. The roots were twice washed with 
10  ml sterile distilled water to separate the RT from 
their RAS. For metabonomic analyses, four replicates 
of shoots, RT, RAS, and bulk soil (BS) were freeze-
dried then processed by taking 50  mg of freeze-dried 
matter (fdm) from shoots, 10  mg fdm from RT, and 
500 mg fdm from RAS. Prior to analysis, freeze-dried 
samples comprising 0.05 g of shoots, 0.01 g of RT, and 
0.5  g of RAS were extracted using Precellys homog-
enizer (Bertin Technologies) with 1  ml of methanol 
(LC–MS grade, Fluka-Analytical,Sigma-Aldrich, St. 
Louis, USA) and deionized water (1:1 [vol/vol]) for 
10 min. The samples were then centrifuged (25,000 g, 
10 min, at room temperature) and the supernatant was 
collected and diluted in methanol (1:3 [vol/vol]). Anal-
yses were performed at the Helmholtz- Munich, using 

Fig. 5 The ecological significance of root exudates: impact on rhizosphere microbiota and soil carbon dynamics root exudates play a critical role 
in shaping the assembly and interaction networks of the rhizosphere microbiota, which in turn influence the structure of the soil surrounding 
the roots. When certain microorganisms selected by the plant transform these exudates into exopolysaccharides (EPS), which act as cementing 
agents, enhancing soil adherence to the roots. Consequently, this process facilitates improved water and mineral supply to the plant and fosters 
carbon sequestration within the soil. DIMBOA and H‑DIMBOA are exclusively present in the rhizosphere of LAL
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a Fourier-Transform Ion Cyclotron Resonance Mass-
Spectrophotometry Spectrometry (FT-ICR-MS).

For metabarcoding analyses, three replicates of RT, 
RAS, and BS were transferred to a sterile 15-ml tube con-
taining 8 ml LifeGuard Soil Preservation solution (QIA-
GEN), then stored at − 80 °C until RNA extraction.

FT‑ICR‑MS analyses
Ultrahigh-resolution mass spectra were acquired using 
FTICR-MS (solariX, Bruker Daltonics GmbH, Bremen, 
Germany) equipped with a 12-Tesla superconducting 
magnet (Magnex Scientific Inc., Yarnton, UK) and an 
APOLO II ESI source (Bruker Daltonics GmbH, Bremen, 
Germany) operating in negative ionization mode. Sam-
ples were introduced into the microelectrospray source 
at a flow rate of 120 μl   h−1. Blanks (methanol) were run 
after every 8 samples to control cross-contamination and 
carry-over, and no interference during injections was 
observed. Spectra were acquired with a time domain of 
4  MW over a mass range m/z of 92.1 to 1400, and 400 
scans were accumulated per sample. Spectra were inter-
nally calibrated using the appropriate reference mass list, 
allowing mass accuracies of 0.1 ppm. Elemental composi-
tions were assigned by a software tool written in-house 
[98]. Here, the assignments were generated based on the 
exact mass differences and the assigned molecular for-
mulas were based on a restricted list of selected small 
molecular units with defined mass differences [98]. The 
compositional network enabled assignment of elemen-
tal formulas out of mass spectra and allowed alignments 
according to compositional relationships. The final ele-
mental formulas were generated with a network tolerance 
of 0.2 ppm. The final elemental formulas were generated 
with a network tolerance of 0.2  ppm and classified into 
groups containing carbon, hydrogen, and oxygen atoms 
depending on the presence or absence of nitrogen and/or 
sulfur (molecular compositions CHO, CHNO, or CHOS), 
to reconstruct the group-selective mass spectra.

RNA extraction and metabarcoding
Total RNA was extracted from 0.4 g of RT, and 2 g of RAS 
or BS using the RNeasy® PowerSoil® Total RNA Kit, Qia-
gen. DNA digestion was performed using the TURBO 
DNA-free™ Kit (Invitrogen) followed by RNA purifica-
tion using the RNeasy® Mini Kit (Qiagen). cDNA was 
synthesized using the Transcriptor First Strand cDNA 
synthesis Ki, V.6 (Roche), and was used for PCR targeting 
bacteria and fungi, using the following primers: 515F-Y 
and 806RB for 16S rRNA gene, and fITS7 and ITS4, 
respectively. The primers were designed to contain over-
hang sequences compatible with Illumina Nextera XT 
index. The purified amplicons were sequenced by Biofidal 

Laboratory (Lyon, France) using the MiSeq, Illumina 
platform.

Process of microbial community assembly
To explore the structure of bacterial community assem-
bly processes by deterministic or stochastic processes, 
the β-nearest taxon index (βNTI; [99] was calculated 
using the R package “picante” (version 1.8.2). The β-NTI 
value, calculated using null-model expectations with con-
sideration for phylogenetic distance, provides insight into 
the turnover of microbial communities. A null distribu-
tion of Beta Mean Nearest Taxon Distance (βMNTD) is 
performed by randomizing OTUs across the phylogeny 
and recalculating βMNTD 999 times [99]. βNTI quanti-
fies the number of standard deviations that the observed 
βMNTD is from the mean of the null distribution. In our 
analysis, we quantified unweighted β-NTI values, with-
out accounting for taxa relative abundances.

Bioinformatics and statistics
The sequence data of 16S rRNA gene and ITS amplicons 
were analyzed using QIIME2 (qiime2:2019.10.0) [100]. 
The sequences were demultiplexed, denoised, and chi-
meras were removed using DADA2 [101]. The sequences 
were then aligned using MAFFT [102] and used to con-
struct a phylogeny using FastTree [103]. Taxonomy was 
assigned using a naïve Bayes classifier trained on the 
GreenGenes 16S rRNA gene database (version 13_8) 
and the Unite ITS database (version 7). A total of 8213 
features of 16S rRNA gene were generated from 212,986 
reads from 28 samples (and with C1 sample filtered, the 
numbers were 7945,205,924 and 27 respectively). A total 
of 1412 features of ITS were generated from 780,825 
reads from 28 samples (and with C1 sample filtered the 
numbers were 1355,735,565 and 27 respectively).

After generating the OTUs/sample abundance matrix, 
metadata file, and phylogenetic tree from Qiime 2 pipe-
line, they were uploaded to the MicrobiomeAnalyst 
server [104, 105]. Next, a data integrity check was per-
formed using the “SanityCheckData” function, where 
OTUs with identical values (i.e., zero) in all samples and 
OTUs that appear in a single sample were excluded. Data 
filtering was then applied using the “ApplyAbundance-
Filter” function based on the mean abundance value and 
the “ApplyVarianceFilter” function based on the standard 
deviation [106]. Data normalization was applied using 
the “PerformNormalization” function and data rarefied 
to the minimum library size [107]. We calculated alpha-
diversity by taxonomic richness (observed OTUs) and 
the Chao1 index at a p-value less than 0.05. The Shannon 
and Simpson indices were used for estimation of even-
ness between samples at a p-value < 0.001. All diversity 
indices were compared among compartment lines using 
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the t-test/ANOVA statistical method. For beta-diversity, 
a Bray–Curtis dissimilarity was used to measure the dis-
tance between each pair of samples. This explicit com-
parison of microbial communities (pairwise) based on 
their composition was tested using permutational multi-
variate analysis of variance (PERMANOVA,999 permu-
tations) and plotted by the nonmetric multi-dimensional 
scaling (NMDS).

Linear discriminant analysis (LDA) coupled with the 
LDA effect size (LEfSe) technique  was performed using 
LEfSe module for huttenhower lab galaxy [108]. The 
structure of abundance dataset was modified using R 
software to fit LEfSe module file format. The significance 
of Kruskal–Wallis and pairwise Wilcoxon tests were 
examined at the level of 0.05, and the threshold of LDA 
score was 2.

Microbial network analysis was performed by using 
the co-occurrence correlation of 16S rRNA gene and 
ITS abundance in RT and RAS for each PM line. Pear-
son correlation test was computed with R software to 
have the p-values and then corrected them by filter-
ing with a p-value of 0.05 as threshold [109] resulting 
in a minimal correlation coefficient of 0.8. The resulting 
network topology and structure were computed using 
igraph package [110] on R software and described by a 
set of indices [111]. Extraction of hubs for each network 
by calculating the number of degree and the betweenness 
was then performed. The analysis of microbial network 
was completed by studying the topological roles of the 
nodes (including hubs) in the four PM lines by calculat-
ing among and within-module connectivity parameters 
Pi and Zi, respectively [112]. These parameters were used 
to determine peripheral (Zi < 2.5 and Pi < 0.62) and ultra-
peripheral (Zi < 2.5 and Pi = 0) OTUs. Finally, in order to 
investigate the relation and interaction between metabar-
coding and metabonomics datasets, a co-inertia analysis 
was performed with each metabonomic sample associ-
ated with its metabarcoding sample. Co-inertia was cal-
culated with mcoin function from omicade4 package [90]. 
The correlation coefficients (RV) were derived from the 
mcoin function, and a Montecarlo test was performed by 
repeatedly resampling metabarcoding and metabolomic 
matrices 999 times, as per the methodology outlined by 
[113]. Individual and variable coordinates were extracted, 
and their barycenters were calculated for each PM line. 
All coordinates were displayed in interactive 3D plots 
using the plotly package.

For metabonomics data analysis, statistically significant 
differences between groups of samples were evaluated 
using univariate ANOVA analyses (p < 0.05, FDR-cor-
rected) to obtain significant m/z, performed in Metabo-
Analyst [114]. Prior to this, aligned data were submitted 
to MetaboAnalyst, and for principal component analysis, 

peak intensities were normalized to the total ion count 
and scaled to unit-variance [115].

All statistical analyses were performed using Microbi-
omeAnalyst (http:// www. micro biome analy st. ca), Meta-
boAnalyst 4.0 (http:// metab oanal yst. ca) and R v.3.6.2 
(http:// www.r- proje ct. org/).

Raw data about 16S rRNA gene and ITS metabarcod-
ing are stored in the FigShare platform (https:// figsh are. 
com/ accou nt/ items/ 23635 608/ edit), and Raw data about 
metabonomic analyses are also stored in the FigShare 
platform (https:// figsh are. com/s/ 4dbf0 ab5f7 c6b2c 9d41a).
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Additional file 1: Figure S1. Relative abundance of of OTUs of microbial 
communities (Phyla) in the different compartments (root and root adher‑
ing soil “RAS”) of the four pearl millet “PM” lines (L220, L3, L253, and L132) 
and bulk soil “BS”. A) Bar graph representing the relative abundance of 
bacterial community, B) Bar graph representing the relative abundance of 
fungal communities. Each color represents one of the major phyla. Each 
color refers to a condition (Compartment plus PM line). T‑test ANOVA 
with p‑value ≤ 0.05 for richness and < 0.001 for evenness. Figure S2. 
Alpha diversity of bacterial and fungal communities. A‑H) Box plots of the 
microbial alpha‑diversity in the different compartments (root and root 
adhering soil “RAS”) of the four‑pearl millet “PM” lines (L220, L3, L253, and 
L132) and bulk soil “BS”; I‑J) Rarefaction curves, Wilcoxon rank‑sum test 
was used to compare the alpha‑diversity index by using Shannon index to 
construct the rarefaction curves. Figure S3. Bacterial Network of the PM 
lines rhizosphere and roots microbiota. A) and B) Relative abundances of 
different bacterial and fungal  nodes and C) and D) Relative abundances 
of different bacterial and fungal hubs from both root and root adher‑
ing soil “RAS” compartments of pearl millet “PM” line networks (L220, L3, 
L253, and L132) and Venn diagrams indicating the number of nodes and 
hubs shared and not shared by the four PM lines in bacterial and fungal 
communities, respectively. E) Bar graphs representing the modifications of 
behavior of the microbial hubs in the four pearl millet “PM” lines (L220, L3, 
L253, and L132), the bacterial and fungal hubs shifting with the number of 
positive (green) and negative (red) links for each network of the PM lines. 
Figure S4. Representation of all molecular compositions of the assigned 
compounds as derived from negative electrospray FTICR‑MS analysis 
in the bulk soil “BS” and in the different compartments (shoot, root, and 
root adhering soil “RAS”) of the four contrasting pearl millet “PM” lines 
samples in the in situ system. A) H/C versus O/C van Krevelen diagrams 
showing the distribution of the assigned compounds in the different 
compartments of the four PM lines and the BS (the color codes are blue, 
CHO; orange, CHNO and green, CHOS molecular compositions; bubble 
size is proportional to signal intensity). B) the corresponding mass‑edited 
H/C ratios of the assigned compounds. Insert rings represent the relative 
propositions of the assigned CHO, CHOS, and CHNO molecular composi‑
tions including their computed numbers in each compartment and in 
BS.C) Van Krevelen diagram illustrating the classes of compounds. D) PCA 
2D scores plots of the assigned compounds in all the PM lines samples 
in the different compartments and BS. The dots represent the samples 
where each compartment is symbolized by a color (red, BS; black, RAS; 
grey, shoot and green, root) with the display of 95% confidence region 
for each. Figure S5. Representation of discriminate molecular composi‑
tions specific for bulk soil “BS” and for each of the pearl millet “PM” line 
(L220, L3, L253, and L132) when compared to rest of the lines in each 
compartment (shoot, root and root adhering soil “RAS”). A) H/C versus 
O/C van Krevelen diagrams showing the distribution of the mass peaks 
of the unique molecular compositions in each line in each compartment 
and in the BS (the color codes are blue, CHO; orange, CHNO and green, 
CHOS). B) the corresponding mass‑edited H/C ratios of the assigned 
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unique compounds. C) Line graph representing the number of unique 
compounds (count of compounds) of CHO, CHNO and CHOS in each PM 
line in each compartment and in the BS. Yellow and blue rings highlight 
the differentiation between mass ranges of unique compounds. 

Additional file 2: Table S1. Topological properties of major topological 
properties of the empirical phylogenetic Molecular Ecological Networks 
(pMENs) of microbial communities in the rhizosphere of the four pearl 
millet lines.

Additional file 3: Table S2. Table of microbial nodes distribution for 
each PM line (L220, L3, L253, and L132) showing the nodes numbers, 
proportions, and percentages over the zones (role) of the Within‑module 
connectivity (Zi) over Among‑module connectivity (Pi) score plot.

Additional file 4. Metabolites specific to L220 root exudates.
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