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Abstract

Approximate Bayesian Computation (ABC) is a widely applicable and popular approach to

estimating unknown parameters of mechanistic models. As ABC analyses are computation-

ally expensive, parallelization on high-performance infrastructure is often necessary. How-

ever, the existing parallelization strategies leave computing resources unused at times and

thus do not optimally leverage them yet. We present look-ahead scheduling, a wall-time

minimizing parallelization strategy for ABC Sequential Monte Carlo algorithms, which avoids

idle times of computing units by preemptive sampling of subsequent generations. This

allows to utilize all available resources. The strategy can be integrated with e.g. adaptive dis-

tance function and summary statistic selection schemes, which is essential in practice. Our

key contribution is the theoretical assessment of the strategy of preemptive sampling and

the proof of unbiasedness. Complementary, we provide an implementation and evaluate the

strategy on different problems and numbers of parallel cores, showing speed-ups of typically

10-20% and up to 50% compared to the best established approach, with some variability.

Thus, the proposed strategy allows to improve the cost and run-time efficiency of ABC meth-

ods on high-performance infrastructure.

Introduction

Mechanistic models are important tools in systems biology and many other research fields to

describe and understand mechanisms underlying systemic behavior [1, 2]. Usually, such mod-

els have unknown parameters that need to be estimated by comparing model outputs to

observed data [3]. For complex stochastic models, in particular multi-scale models used to

describe the complex dynamics of multi-cellular systems, evaluating the likelihood of data

given parameters however becomes quickly computationally infeasible [4, 5]. For this reason,

simulation-based methods that circumvent likelihood evaluation have been developed, such as
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approximate Bayesian computation (ABC), popular for its simplicity and wide applicability [6,

7].

ABC generates samples from an approximation to the true Bayesian posterior distribution.

While asymptotically exact, a known disadvantage of ABC is its computational complexity.

The reason for this is that it requires often simulations of hundred thousands to millions of

artificial datasets. Therefore, methods to efficiently explore the search space have been devel-

oped [8]. In particular, ABC is frequently combined with a Sequential Monte Carlo scheme

(ABC-SMC), which over several generations successively refines the posterior approximation

via importance sampling while maintaining high acceptance rates [9, 10]. Furthermore, in

ABC-SMC the sampling for each generation can be parallelized, enabling the use of high-per-

formance computing (HPC) infrastructure. This has in recent years enabled tackling increas-

ingly complex problems via ABC [11–14].

It would be desirable if available computational resources were perfectly exploited at all

times, to minimize both the wall-time until results become available to the researcher, and

the cost associated with allocated resources. However, the problem is that established paralle-

lization strategies to distribute ABC-SMC work over a set of workers leave resources idle at

times and thus fall short of this aim. The parallelization strategy used in most established

HPC-ready ABC implementations is static scheduling (STAT), which defines exactly as many

parallel tasks as accepted particles are required [15, 16]. While it minimizes the active com-

pute time and consumed energy, typically a substantial amount of workers become idle

towards the end of each generation. Dynamic scheduling (DYN) mitigates this problem and

reduces the overall wall-time by continuing sampling on all workers until sufficiently many

particles have been accepted [17]. It was shown to reduce the wall-time substantially. How-

ever, also in this strategy at the end of each generation workers become idle, waiting until all

simulations have finished.

A natural strategy to circumvent idle time is to start already sampling the next generation,

given partial information about the current generation. Yet, it is not obvious how particles

need to be accepted or weighted, and whether this would indeed improve efficiency. In this

manuscript, we describe an ABC-SMC parallelization strategy for multi-core and distributed

systems, called look-ahead scheduling (LA) which avoids idle time. We show that by appropri-

ate sample reweighting we obtain an unbiased Monte Carlo sample. We provide an HPC-

ready implementation and test the method on various problems. Moreover, we show that the

strategy can be integrated with adaptive algorithms for e.g. summary statistics, distance func-

tions, or acceptance thresholds.

Methods

ABC

We consider a mechanistic model described via a generative process of simulating data y �
pðyjyÞ 2 Rny for parameters y 2 Rny . Given observed data yobs, in Bayesian inference the likeli-

hood π(yobs|θ) is combined with prior information π(θ) to the posterior distribution π(θ|yobs)

/ π(yobs|θ) � π(θ). We assume that evaluating the likelihood is computationally infeasible, but

that it is possible to simulate data y* π(y|θ) from the model. Then, classical ABC consists in

the 3 steps of first sampling parameters θ* π(θ), second simulating data y* π(y|θ), and third

accepting θ if d(y, yobs)�ε, for a distance metric d : Rny � Rny ! R�0 and acceptance thresh-

old ε> 0. This is repeated until sufficiently many particles, say N, are accepted. The population
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of accepted particles constitutes a sample from an approximation of the posterior distribution,

pABC;εðyjyobsÞ /
Z

I½dðy; yobsÞ � ε�pðyjyÞdy � pðyÞ: ð1Þ

Under mild assumptions, πABC,ε(θ|yobs) converges to the actual posterior π(θ|yobs) as ε! 0

[18, 19]. Commonly, ABC operates not directly on the measured data, but summary statistics

thereof, capturing relevant information in a low-dimensional representation [20]. Here, for

notational simplicity we assume that y already incorporates summary statistics, if applicable.

ABC-SMC

The vanilla ABC formulation exhibits a trade-off between the reduction of the approximation

error induced by ε, and high acceptance rates. Thus, ABC is frequently combined with a

Sequential Monte Carlo scheme (ABC-SMC) [21, 22]. In ABC-SMC, a series of particle popu-

lations Pt ¼ fðy
i
t;w

i
tÞgi�N is generated, constituting samples of successively better approxima-

tions pABC;εt
ðyjyobsÞ of the posterior, for generations t = 1, . . ., nt, with acceptance thresholds εt

> εt+1. In the first generation (t = 1), particles are sampled directly from the prior, g1(θ) = π(θ).

In later generations (t> 1), particles are sampled from proposal distributions gt(θ)� π(θ)

based on the last generation’s accepted weighted population Pt−1, e.g. via a kernel density esti-

mate. The importance weights wi
t are the Radon-Nikodym derivatives wt(θ) = π(θ)/gt(θ). This

is precisely such that the weighted parameters are samples from the distribution

Z

wtðyÞI½dðy; yobsÞ � εt�pðyjyÞdy � gtðyÞ ¼
Z

I½dðy; yobsÞ � εt�pðyjyÞdy � pðyÞ; ð2Þ

i.e. the target distribution (1) for ε = εt.
Common proposal distributions first select an accepted parameter from the last generation

and then perturb it, in which case gt takes the form gtðyÞ ¼
PN

i¼1
wi
t� 1
Kðyjyit� 1

Þ=
PN

i¼1
wi
t� 1

,

with e.g. Kðyjyit� 1
Þ ¼ N ðyjyit� 1

;St� 1Þ a normal distribution with mean y
i
t� 1

and covariance

matrix St−1. The performance of ABC-SMC algorithms relies heavily on the quality of the pro-

posal distribution, on its ability to efficiently explore the parameter space. Methods that adapt

to the problem structure, e.g. basing St−1 on the previous generation’s weighted sample covari-

ance matrix and potentially localizing around θi, have shown superior performance [23–25].

The output of ABC-SMC is a population of weighted parameters

Pnt ¼ fðy
i
nt
;wi

nt
Þgi�N � pABC;εnt

ðyjyobsÞ:

For a statistic f : Rny ! R, the expected value under the posterior is then approximated via

the self-normalized importance estimator

EpABC;εnt
ðyjyobsÞ
½ f � � f̂ ¼

XN

i¼1

Wi
nt
f ðyintÞ;

which is asymptotically unbiased. Here,Wi
t :¼ wi

t=
PN

j¼1
wj
t are self-normalized weights. This

is necessary because the weights wt(θ) = π(θ)/gt(θ) are not normalized in the joint sample space

(θ, y), therefore effectively another Monte Carlo estimator is employed for the normalization

constant (for details see the Section 1.1 in S1 File).
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In importance sampling, samples are assigned different weights, such that some impact esti-

mates more than others. This can be quantified e.g. via the effective sample size (ESS) [8, 26]:

ESSðfwigi�NÞ ¼
ð
P

i�NwiÞ
2

P
i�Nw2

i

ð3Þ

Established parallelization strategies

In ABC, often hundred thousands to millions of model simulations need to be performed,

which is typically the computationally critical part. To speed up inference, parallelization strat-

egies have been developed that exploit the independence of the N particles constituting the t-th

population. Suppose we have W parallel workers, each worker being a computational proces-

sor unit e.g. in an HPC environment. There are two established techniques to parallelize execu-

tion over the workers:

In static scheduling (STAT), given a population size N, N tasks are defined and distributed

over the workers. Each task consists in sampling until one particle gets accepted (Fig 1A). The

tasks are queued ifN>W. STAT minimizes the active computation time and number of simu-

lations and is easy to implement, only requiring basic pooling routines available in most dis-

tributed computation frameworks. However, even forW> N only N workers are employed,

although the number of required simulations is usually substantially larger than N. In addition,

at the end of every generation the number of active workers decreases successively, most work-

ers idly waiting for a few to finish their tasks. STAT is available in most established ABC-SMC

implementations [15, 16].

In dynamic scheduling (DYN), sampling is performed continuously on all available workers

until N particles have been accepted (Fig 1B). However, simply taking those first N particles as

the final population would bias the population towards parameters causing short-running sim-

ulations. Therefore, DYN waits for all workers to finish, and out of then ~N � N accepted parti-

cles, only the N that started earliest are finally accepted, not the ones that finished earliest. This

has the effect that simulation time plays no longer a role in the acceptance decision [17]. This

ensures that the acceptance probability of a particle is in accordance with the target distribu-

tion, independent of later events and thus its run-time.

Parallelization using look-ahead dynamic scheduling

DYN allows to exploit the available parallel infrastructure to a higher degree than STAT and

therefore already substantially decreases the wall-time (by a factor of between 1.4 and 5.3 in

test scenarios, see [17]). Nonetheless, some workers remain idle at the end of each generation

while waiting for others to complete. This fraction of idle workers increases as the number of

workers increases relatively to the population size. Additionally, the idle time increases if simu-

lation times are heterogeneous, which is often the case, e.g. with estimated reaction rates deter-

mining the number of simulated events (Section 3.4.1 in S1 File). In case of fast model

simulations, also the time between generations, e.g. to post-process and store results, may be

relatively long.

Proposed algorithm. We propose to extend dynamic scheduling by using the free work-

ers at the end of each generation to proactively sample for the next generation (Fig 2): As soon

as N acceptances have been reached in generation t − 1 and workers thus start to get idle, we

construct a preliminary proposal ~g t, based on which particles for generation t are generated to

start simulations on the free workers. ~g t can be based on a preliminary population of accepted
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particles P̂t� 1 ¼ fðŷ
i
t� 1
; ŵi

t� 1
Þgi�N relying on these first N acceptances. However, P̂t� 1 may

introduce a practical bias (in a finite sample sense) towards particles with faster simulations

times. This can in particular occur when computation time is highly parameter-dependent.

Say, for example, that parameters from multiple regions in parameter space can explain the

data similarly well, but that one region leads to substantially higher simulation times. Then, a

sampling routine that does not wait for all started simulations to finish may under-represent

or even miss out on regions in parameter space with high simulation times. The ABC-SMC

routine may consequently have a low probability of generating importance samples from that

region in subsequent generations, leading to a biased final posterior sample. To address this

issue, the preliminary proposal can alternatively be based on Pt−2 (such that ~g t ¼ gt� 1), giving

Fig 1. Illustration of core usage over run-time for static (STA), dynamic (DYN) and look-ahead (LA) scheduling

for a population size N = 5 on W = 8 workers, over 3 generations (colors). The shading associated with each color

indicates whether a sample satisfies the acceptance criterion and is included in the final population (dark shading),

satisfies the acceptance criterion but is discarded because enough earlier-started accepted samples exist (intermediate

shading, for DYN+LA), or does not satisfy the acceptance criterion and is rejected (light shading). Solid lines indicate

the end of a generation, dashed lines indicate the (preliminary) beginning of a generation (different from solid lines

only for LA). Delimiting white spaces between boxes indicate negligible post-processing times between simulations.

https://doi.org/10.1371/journal.pone.0294015.g001

Fig 2. Concept visualization of look-ahead scheduling (LA). As soon as no more simulations are required for

generation t − 1 (green), a preliminary simulation task for generation t is formulated either based on population Pt−2

(grey, LA Past) or the preliminary population Pt−1 (purple, LA Prel). Resulting simulations are considered when

evaluating the next generation, and suitable weight normalization is applied to all samples (top right). Over time, the

number of workers dedicated to generation t − 1 decreases, while that for generation t increases (bottom).

https://doi.org/10.1371/journal.pone.0294015.g002
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inductively practically unbiased proposals. If a particle ~yt � ~g t gets accepted according to the

acceptance criteria of generation t, its non-normalized weight is calculated as ~wtð
~ytÞ ¼

pð~y tÞ

~g tð~ytÞ
.

As soon as all simulations for generation t − 1 have finished and thus the actual Pt−1 is avail-

able, all workers are updated to continue working with the actual sampling task based on pro-

posal gt. As the time-critical part of typical ABC applications is the model simulation, the cost

of generating the preliminary sampling task is usually negligible.

The assessment of acceptance of preliminary samples depends on whether everything is

pre-defined: If the acceptance components, including distance function d and acceptance

threshold εt for generation t are defined a-priori, then acceptance can be checked directly on

the workers without knowledge of the complete previous population Pt−1. If however any com-

ponent of the algorithm is adaptive and hence based on Pt−1 (e.g. the acceptance threshold is

commonly chosen as a quantile of fdðyit� 1
; yobsÞgi�N), the acceptance check must be delayed

until the actual Pt−1 is available. This allows to use one common acceptance criterion across all

particles within a generation, so that all particles target the same distribution.

The population of generation t is then, corrected for run-time bias as in DYN by only con-

sidering the N accepted particles that were started first, given as

Pt ¼ ffð~y it; ~wi
tÞgi� ~N ; fðy

i
t;w

i
tÞg ~N<i�Ng; ð4Þ

with 0 � ~N � N particles based on the preliminary proposal ~g t , and N � ~N on the final gt.
The weights need to be normalized appropriately, as explained in the following section. We

call this parallelization strategy, which during generation t − 1 already looks ahead to genera-

tion t, Look-ahead (dynamic) scheduling (LA).
Weights and unbiasedness. A key property of ABC methods is that they provide an

asymptotically unbiased Monte Carlo sample from pABC;εnt
ðyjyobsÞ, with pABC;εnt

ðyjyobsÞ !
pðyjyobsÞ for ε! 0. The sample (4) obtained via LA conserves this property: The point is that

each subpopulation on its own gives an asymptotically unbiased estimator, since the weights

~wtð
~yÞ ¼ pð~yÞ=~g tð~yÞ, wt(θ) = π(θ)/gt(θ) are exactly the Radon-Nikodym derivatives w.r.t. the

respective proposal distributions. Note that this theoretical unbiasedness holds regardless of

whether ~g t is based on P̂t� 1 or Pt−2, as long as ~g tðyÞ � pðyÞ As noted in the previous section,

however a practical bias may occur due to finite sample size.

The subpopulation estimates are then combined, which decreases the Monte Carlo error

due to the larger sample size. Instead of simply tossing all samples together, it is preferable to

first normalize the weights relative to their subpopulation, ~Wi
t :¼ ~wi

t=
P ~N

i¼1
~wj
t,Wi

t :¼

wi
t=
PN

i¼ ~Nþ1
wi
t (Section 1.3 in S1 File). This is because both weight functions are non-normal-

ized, with generally different normalization constants, which renders them not directly com-

parable. A joint estimate based on the full population can then be given as

EpABC;εt ðyjyobsÞ
½ f � � b

X~N

i¼1

~Wi
t f ð~y

i
tÞ þ ð1 � bÞ

XN

i¼ ~Nþ1

Wi
t f ðy

i
tÞ ð5Þ

with β 2 [0, 1] a free parameter. A straightforward choice is b ¼ ~N=N, rendering the contribu-

tion of each subpopulation proportional to the respective number of samples. Instead, we pro-

pose to choose β to maximize the overall effective sample size (3), rendering the Monte Carlo

estimate more robust. This is a simple constrained optimization problem with solution

b ¼
ESSðf ~Wi

tgi� ~N Þ

ESSðf ~Wi
tgi� ~N Þ þ ESSðfWi

tg ~N<i�NÞ
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i.e. the contribution of each subpopulation is proportional to its effective sample size (Section

1.4 S1 File). Supposing that for N!1, ~N=N ! a 2 ½0; 1�, (5) converges to the left-hand side,

as required. A more detailed derivation and extension to more than two proposal distributions

is given in the Section 1 in S1 File.

Implementation and availability

We implemented LA in the open-source Python tool pyABC [27], which already provided

STAT and DYN. We employ a Redis low-latency server to handle the task distribution. If all

components are pre-defined, we perform evaluation of the “look-ahead” samples ð~y; ~yÞ
directly on the workers. If there are adaptive components, the delayed evaluation is performed

on the main process. To avoid generating unnecessarily many preliminary samples in the pres-

ence of some very long-running simulations, we limited the number of preliminary samples to

a default value of 10 times the number of samples in the current iteration. To not start prelimi-

nary sampling unnecessarily, we employed schemes predicting whether any termination crite-

rion will be hit after the current generation. The code underlying this study can be found at

https://github.com/EmadAlamoudi/Lookahead_study. A snapshot of code and data can be

found at https://doi.org/10.5281/zenodo.7875905.

Results

Wall-time superiority of DYN over STAT has already been established in prior work [17]. To

study the performance of LA and compare it to DYN, we applied both to several parameter

estimation problems and in various scenarios of population size N and workers W. We distin-

guish between “LA Prel” using the preliminary P̂t� 1 to generate ~g t, and “LA Past” using Pt−2

instead.

Test problems

We considered four problems (Table 1): Problems T1-T2 are simple test problems, while

M1-M2 are realistic application examples.

Problem T1 is a bimodal model y� θ2, in which simulations from one mode have an artifi-

cially longer run-time. Specifically, if θ> 0, a log-normally distributed simulation time of t �

logN ð1; 2; 4Þ seconds was simulated. The goal of setting an artificially longer run-time was to

specifically test the preliminary bias caused by only accepting simulations from one mode

when constructing the preliminary proposal.

Problem T2 is an ordinary differential equation (ODE) model with 2 parameters describing

a conversion reaction x1$ x2, with observables obscured by random multiplicative noise. To

analyze sampler behavior under simulation run-time heterogeneity, we added random log-

normally distributed delay times tsleep of various variances on top of the ODE simulations. For

this model, run-times are fast, permitting repeated analyses to check correctness of the

method, quantify stochastic effects and assess average behavior.

Table 1. Overview of application examples.

ID Description Implementation nθ
T1 Bimodal run-time-skewed model Python 1

T2 Conversion reaction ODE model Python 2

M1 Tumor spheroid growth [11] C++ 7

M2 Liver tissue regeneration [28] Morpheus 14

https://doi.org/10.1371/journal.pone.0294015.t001
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Problem M1 describes the growth of a tumor spheroid using a hybrid discrete-continuous

approach, modeling single cells as stochastically interacting agents and extracellular substances

[11]. The model combines a system of PDEs to describe the extracellular matrix, with a cellular

Potts model (CPM) to describe cell configurations and mechanisms like cell division and cell

death. The model has seven estimated parameters and outputs three observables, the growth

curve, extra-cellular matrix and proliferation profiles.

Problem M2 describes the metabolic status of mechano-sensing during liver generation,

describing the reaction network dynamics by a set of ODEs [28]. This model has 14 parameters

and two observables, the nuclear YAP and total YAP intensities. These observables were quan-

tified from image tiles covering an entire liver lobule with portal and central veins.

Further details about the test problems can be found in the Section 3 in S1 File.

Biased proposal can induce practical bias in accepted population

The analysis of test model T1 revealed that for small population sizes N relative to the number

of workers W, in combination with high acceptance rates, LA Prel can indeed lead to a bias

towards short-running simulations (Fig 3 right). This can happen when P̂t� 1 is only based on

short-running simulations, and solely proposes particles from that regime, enough of which

are then accepted to form Pt. For larger N relative toW, this effect occurred less, likely because

given large population sizes, sampling from other modes with associated high importance

weights eventually happened.

Sampling from unbiased proposal solves bias

When replacing LA Prel by LA Past, i.e. sampling from Pt−2 instead of P̂t� 1, the bias no longer

occurred (Fig 3 right). This is expected, because ~g t� 2 has no run-time bias. In practice, we did

not encounter any problems of practical bias on the considered application examples, where

results from DYN, LA Prel and LA Past were highly consistent. Yet, LA Prel may fail in some

situations, which also demonstrates that ABC-SMC algorithms are sensitive to potential bias

in the proposal distribution. Thus, in the following, we focus on the stable LA Past algorithm,

showing pendants for LA Prel in the S1 File.

Look-ahead sampling gives accurate results

We used problem T2 to analyze different scenarios, with population sizes N from 20 to 1280

particles, worker numbers W from 32 to 256, and log-normally distributed simulation times of

variances σ2 from 1.0 to 4.0. We ran each scenario 13 times to obtain stable average statistics.

We considered means and standard deviations as point and uncertainty measures.

Point estimates for DYN and LA converged to the same values across population sizes (Fig

4A and 4B). The proportion of accepted LA samples in the final population originating from

the preliminary distribution ranged from nearly 100% to 50% (LA Prel) and 20% (LA Past), as

expected decreasing for larger population sizes (Fig 4E and 4F). The more pronounced

decrease for LA Past than LA Prel is reasonable because void of bias, P̂t� 1 provides a better

sampling distribution than Pt−2. Effective sample sizes were stable across DYN and LA (Fig

4D). A higher run-time variance lead to an increase in accepted samples originating from the

preliminary proposal distribution (S1 Fig in S1 File). This is expected, because greater hetero-

geneity in run-times increases the chance of encountering exceptionally long-running simula-

tions, which DYN has to wait for, while LA already proceeds.
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Considerable speed-up towards high worker numbers

To analyze the effect of scheduling strategy on the overall wall-time, we ran model T2 system-

atically for different population sizes and numbers of workers. We considered population sizes

32� N� 1280 and numbers of parallel workers 32�W� 256, which covers typical ranges

used in practice. Each scenario was repeated between 13 times to assess average behavior, here

we report mean values.

As a general tendency, the wall-time speed-up of LA over DYN became larger with increas-

ing ratio of the number of workers by the population size. For a model sleep time variance of

σ2 = 1 (Fig 5), e.g. for N = 20 andW = 256, the average wall-time got reduced by a factor of

almost 1.8. In most scenarios, a wall-time reduction by a factor of between 1.11 and 1.8 was

observed. Only when the population size was large compared to the number of workers, the

speed-up was comparably small. Generally, the increase in speed-up with increasing ratioW/

N is as expected, as for largeW the idle time between generations occurring for DYN and LA

constitutes a more pronounced factor in the overall run-time.

For a sleep time variance of σ2 = 2 (S2 Fig in S1 File), we observed similar behavior. There,

the acceleration was generally more pronounced with up to a factor of roughly 1.9 and many

Fig 3. Run-time and posterior approximation for 5 different runs of model T1 with STAT, DYN, LA Prel and LA

Past, with population size N = 100 on W = 144, 240, 432 workers (top to bottom).

https://doi.org/10.1371/journal.pone.0294015.g003
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Fig 4. Results for problem T2 for different population sizes N, worker numbers W, and sleep time variances σ2.

Unless otherwise specified, we usedN = 1280,W = 256, and a log-normally distributed sleep time tsleep of variance σ2 =

1. To increase comparability, the εt values over nt = 8 generations were pre-defined. (A) and (B): Mean and standard

deviation of the posterior approximation pABC;εnt
ðyjyobsÞ. Box-plot over 13 repetitions. (C): Posterior mean for different

sleep time variances, forW = 20. (D): Effective sample size across different sleep time variances, forN = 256 and

W = 20, in which case it is likely that several generations are sampled completely from the preliminary proposal. (E):

Fraction ~N=N of accepted samples in the final population t = nt that originate from the preliminary proposal ~g nt ðyÞ for

LA Prel and LA Past. (F): Exemplary visualization of 1d posterior approximation marginals for single runs.

https://doi.org/10.1371/journal.pone.0294015.g004

Fig 5. Speed-up (1 − {Wall- time LA}/{Wall- time DYN}) of LA Prel (left) and LA Past (right) over DYN for

various population sizes and numbers of workers, for a model sleep time variance of σ2 = 1.

https://doi.org/10.1371/journal.pone.0294015.g005
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factors in the range 1.2 to 1.9. This indicates that indeed the advantage of LA over DYN is

more pronounced in the presence of highly heterogeneous model simulation times.

Also on T1, the comparison of run-times (Fig 3 left) revealed a speed-up of LA over DYN.

Further, we could confirm on both T1 and T2 (Fig 3 and S3 Fig in S1 File) the substantial

speed-up DYN already provides over STAT, as reported in [17], on which we here improved

further.

Scales to realistic application problems

Given the high simulation cost of the application problems M1–2, we only performed selected

analyses to compare LA and DYN. A reliable comparison of run-times in real-life application

examples is challenging, because the total wall-time varies strongly due to stochastic effects,

and computations are too expensive to perform inference many times.

For the two models, the parameter estimates obtained using LA (both LA Per and LA Past)

and DYN are consistent, except for expectable stochastic effects (S4 and S5 and S9–S11 Figs in

S1 File). Together with the previous analyses, this indicates that for practical applications, the

multi-proposal approach of LA allows for stable and accurate inference, similar to the single

proposal used by DYN. In early generations, a considerable part of the accepted particles was

based on the preliminary proposal distribution (near 100%), which then decreased in later

generations (S6 and S12 Figs in S1 File). This is consistent with the decrease in acceptance rate

and thus the relative time during which the preliminary and not the final proposal distribution

is used.

For the tumor model M1, we used an adaptive quantile-based epsilon threshold schedule

[29], with DYN, LA Prel and LA Past, population sizes N 2 {250, 500, 1000}, and W 2 {128,

256} workers. For each considered configuration we performed 2 replicates (in total 8) to

assess average behavior. Reported run-times are until a common final threshold was hit by all

runs. The speed-up of LA over DYN varied depending on the ratio of population size and

number of workers, similar to what we observed for T1+2. For high ratios, LA was consistently

faster up to 35%. However, for low ratios, less improvement was observed. In some runs, LA

was slightly slower than DYN (Fig 6). Over the 8 runs, we observed a mean speed-up of 21%

(13%) and a median of 23% (16%) for LA Past (LA Prel). This indicates expected speed-ups of

13–23%. However, it should be remarked that large run-time differences and volatility could

be traced back to single generations taking vast amounts of time (S7 Fig in S1 File). These long

generations occurred in all scheduling variants and exist most likely because the epsilon for

that generation was chosen too optimistically, indicating a weakness of the used epsilon

scheme rather than the parallelization strategy.

For the liver regeneration model M2, we performed similar analyses, with adaptive quan-

tile-based epsilon threshold schedules, population sizes N 2 {250, 500, 1000} and W 2 {128,

256} workers, with 2 replicates per configuration. Similar to model M1, we observed a faster

performance of up to 35%. However, with a smaller ratio between population size and the

number of workers, a slightly lower performance improvement was achieved (Fig 7). Similarly

to M1, the acceleration varied quite strongly. For LA Prel we observed a mean speed-up over

all 8 runs of 36% (median 31%) over DYN. However, for LA Past we observed contrarily a

mean slow-down of 39% (median 43%) over DYN. It is not clear what caused this stark differ-

ence, which is again subject to high fluctuations. Further tests would be needed to assess the

reasons for this specific model.
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Fig 6. Run-time and posterior distributions for 2 different runs of model M1 with population size 1000, 500, 250

on 128 and 256 workers.

https://doi.org/10.1371/journal.pone.0294015.g006

Fig 7. Run-time and posterior distribution for 2 different runs of model M2 with population size 1000, 500, 250

on 128 and 256 workers.

https://doi.org/10.1371/journal.pone.0294015.g007
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Discussion

Simulation-based ABC methods have made parameter inference increasingly accessible even

for complex stochastic models, which are however limited by computational costs. Here, we

presented “look-ahead” sampling, a parallelization strategy to minimize wall-time and improve

run-time efficiency by using all available high-performance computing resources at near-all

times. On various test and application examples, we verified the accuracy and robustness of

the novel approach in typical settings. Depending on model simulation run-time heterogene-

ity, and the relation of population size and the number of available cores, we observed a speed-

up of up to 45% compared to dynamical scheduling as the previously most efficient strategy.

Compared to widely used static scheduling, dynamic scheduling is already highly efficient,

with limited room for improvement. Nevertheless, using the here proposed look-ahead sam-

pling, on typical application examples, we observed a speed-up of often roughly 20–30%, how-

ever with some variability and sometimes efficiency on par with or even below dynamical

scheduling. Assessing these variations in efficiency in more detail on expensive application

examples would require further tests with considerable computational resources. Importantly,

our analysis also demonstrates how ABC-SMC is sensitive to the choice of proposal distribu-

tion. Finite samples can induce a practical bias, as we observed here for parameter-dependent

run-times of models—a problem that occurred in extreme cases but could only be solved by

using look-ahead sampling with the previous, and not the preliminary, proposal distribution.

Conceptually and aside implementation details, the presented strategy provides the mini-

mal wall-time among all parallelization strategies, as all cores are used at practically all times.

We observed that look-ahead sampling using preliminary results (LA Prel) provided a perfor-

mance speed-up over re-using the previous generation (LA Past), however at the cost of practi-

cal bias. Thus, LA Past constitutes the safe choice. Only if the possibility of critical parameter-

dependent simulation times can be excluded, would we presently recommend LA Prel.

Were it possible to construct an unbiased proposal using those preliminary results, e.g. via

reweighting or imbalance detection, we could thus increase the speed-up with robust perfor-

mance. Alternatively, LA Past and LA Prel could also be combined, e.g. switching to LA Prel

after a “burn-in”, when the probability of a bias toward short-running simulations is lessened.

When using delayed evaluation, it would be possible to parallelize the evaluation as well,

which we have not done here. If evaluation times are long relative to simulation times, e.g. if

(adaptive) summary statistics involve complex operations, this would be beneficial. In order to

reduce a potential bias in the preliminary proposal distribution towards fast-running simula-

tions, it may be beneficial to update it as soon as more particles finish. This would imply the

use of more than two importance distributions, the theory of which we have already provided

in the S1 File.

In conclusion, we showed how we can minimize wall-time and associated computing cost

of ABC samplers with substantial performance gains over established methods. Given that the

concept is generally applicable for sequential importance sampling methods, it is of potential

widespread use for different applications.
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