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A B S T R A C T

Background and objective: Heart failure (HF) is a multi-faceted and life-threatening syndrome that affects more than 64.3 million people worldwide. Current gold-

standard screening technique, echocardiography, neglects cardiovascular information regulated by the circadian rhythm and does not incorporate knowledge from 
patient profiles. In this study, we propose a novel multi-parameter approach to assess heart failure using heart rate variability (HRV) and patient clinical information.

Methods: In this approach, features from 24-hour HRV and clinical information were combined as a single polar image and fed to a 2D deep learning model to infer 
the HF condition. The edges of the polar image correspond to the timely variation of different features, each of which carries information on the function of the 
heart, and internal illustrates color-coded patient clinical information.

Results: Under a leave-one-subject-out cross-validation scheme and using 7,575 polar images from a multi-center cohort (American and Greek) of 303 coronary artery 
disease patients (median age: 58 years [50–65], median body mass index (BMI): 27.28 kg/m2 [24.91–29.41]), the model yielded mean values for the area under the 
receiver operating characteristics curve (AUC), sensitivity, specificity, normalized Matthews correlation coefficient (NMCC), and accuracy of 0.883, 90.68%, 95.19%, 
0.93, and 92.62%, respectively. Moreover, interpretation of the model showed proper attention to key hourly intervals and clinical information for each HF stage.

Conclusions: The proposed approach could be a powerful early HF screening tool and a supplemental circadian enhancement to echocardiography which sets the 
basis for next-generation personalized healthcare.
1. Introduction

Heart failure (HF) is a chronic pathological state that prevents the 
heart from pumping regularly to meet the body’s need for oxygenated 
blood [1]. It is mostly caused by the presence of coronary artery disease 
(CAD), which is characterized by an accumulation of plagues in the ar-

teries feeding the heart, leading them to become narrow or blocked 
[2]. Globally, 64.3 million people are living with HF with an estimated 
7.2 million deaths every year [3,4]. HF patients suffer from a signifi-

cant deterioration in the systolic function that is evaluated based on the 

* Corresponding author at: Healthcare Engineering Innovation Center (HEIC), Department of Biomedical Engineering and Biotechnology, Khalifa University, Abu 
Dhabi, United Arab Emirates.

left ventricular ejection fraction (LVEF), which is the amount of blood 
pumped at each contraction of the left ventricle [5]. HF stages based 
on LVEF are variable and even though several guidelines have set cer-

tain thresholds to classify them, i.e., European Society of Cardiology 
(ESC) [6], there are still no strict rules to decide due to the etiology 
of HF, treatment procedures, and overall clinical presentation of pa-

tients [7].

The most preferred tool for screening LVEF-based HF is echocardio-

graphy [8]. Although reliable, it requires expensive equipment, which 
decreases its availability in public healthcare sectors, especially in less 
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Fig. 1. Overview of the study including the generation of the filled-in heart rate variability (HRV) polar image. a, The approach starts by taking raw 24-hour 
electrocardiography (ECG) signal using a Holter device from a heart failure (HF) patient (showing only a 5-second segment as an example). The approach proceeds 
by extracting the corresponding HRV data and representing them in the form of extracted features on an hourly basis (showing the average normal-to-normal 
(AVNN) feature in (3). b, The second step is to depict these per-hour feature values on a polar map plot and then transform it into a two-dimensional (2D) binary 
image. The algorithm transforms the plot from polar coordinates to pixels to create (1) edges, (2) a filled image, and (3) a scaled region relative to the original 
plot dimensions. c, The last step is to fill in patient profile information within the generated 2D binary image of the HRV feature. The algorithm uses pre-defined 
color coding rules for the 13 patient information (arranged from 1 to 13, see Fig. 2c). The final filled-in HRV polar image is used as an input to the deep learning 
framework for the prediction of HF.
developed countries. In addition, it cannot provide cardiovascular in-

formation regulated by the circadian rhythm, as it is usually done for 
a short period [9], or account for any personalized information from 
the patient’s profile. Developing other, more holistic indicators is thus 
an essential clinical aim. One such option is electrocardiography (ECG) 
and its corresponding heart rate variability (HRV) that is usually associ-

ated with the endocrine, autonomic nervous system (ANS), and intrinsic 
modulation of the cardiac electrophysiological rhythm [10]. Due to the 
presence of CAD in HF patients, the autonomic regulatory balance gets 
interrupted, and such behavior has been usually observed in literature 
through HRV analysis [11,12]. However, a deep understanding of the 
relationship between HRV and HF is still not well defined. In addition, 
the conventional diagnostic procedures of HF are highly dependent on 
medical experts, which poses difficulties, especially in the presence of 
big patient data in the form of images, signals, or clinical profiles.

The use of deep learning may be a promising approach to resolving 
the heavy dependency on medical expertise. Recent advances in deep 
learning have facilitated the growth of computerized algorithms in di-

agnosing HF. There have been many efforts to develop trained deep 
learning tools for detecting HF in ECG signals [13–15]. The use of ECG 
signals may be highly affected by the quality of the recordings, and 
training models on long ECG signals may require high computational 
demands. Others have tried simplifying ECG signals into corresponding 
2

short-term HRV data, a short sequence of consecutive R-peaks distances 
[16–18]. Although short-term HRV is less complex, it does not include 
additional knowledge about cardiac variations throughout the circadian 
rhythm of the heart. Several works have also reported the use of deep 
learning in HF diagnostics using patient profiles [19–21]. However, 
much demographic and clinical patient information could be highly 
overlapped among HF stages, especially when a narrower threshold is 
used to determine each stage.

We propose a novel approach that simplifies long-term 24-hour HRV 
data (in the form of extracted features) and combines it with patient 
profile information in a single two-dimensional (2D) image (Fig. 1). 
The generated image is a polar image of the patient’s HRV data with 
edges corresponding to per-hour feature variations and the interior of 
filled-in color-coded demographic and clinical information. This novel 
multi-parameter polar image presents, in a holistic way, an overview 24 
hours of the patient’s cardiovascular status, considering personalized in-

formation from his/her clinical profile as well [22]. These polar images 
are inputted to a deep learning model to infer for the HF stage, i.e., 
preserved LVEF, mid-range LVEF, and reduced LVEF. We validated the 
reliability of the model on predicting HF stages and discovering circa-

dian/medical characteristics of patients at each stage using 7,575 polar 
images from a cohort of 303 coronary artery disease patients, achieving 

mean accuracy greater than 92%.
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Table 1

Demographic and clinical information of patients included in this study (American and Greek cohorts).

Variables Total patients 
(n = 303)

p-value 
(datasets)

HF stages p-value 
(stages)HFpEF 

(n = 129)

p-value 
(datasets)

HFmEF 
(n = 92)

p-value 
(datasets)

HFrEF 
(n = 82)

p-value 
(datasets)

LVEF, % 55 (46.5-63) <0.001 63 (60-70) <0.001 52.5 (50-55) <0.001 45 (40-47) 0.099 <0.001

Cardiovascular risk factors

Age, yrs 58 (50-65) 0.929 57 (38-64.5) 0.300 58.5 (52-68) 0.277 60.5 (50-66) 0.282 0.110

Male 258 (85.15) 0.566 108 (83.72) 0.189 76 (82.61) 1.000 74 (90.24) 1.000 0.237

BMI, kg/m2 27.28 
(24.91-29.41)

<0.001 27.12 
(24.39-28.95)

0.121 27.22 
(25.35-29.92)

0.045 27.68 
(25.31-29.74)

0.197 0.133

Smoker 203 (67.00) 0.146 87 (67.44) 0.328 62 (67.39) 0.225 54 (65.85) 0.010 0.757

Diabetic 43 (14.19) 0.002 10 (7.75) 0.083 13 (14.13) 0.785 20 (24.39) 0.009 <0.001

Hypertensive 154 (50.83) 0.885 64 (49.61) 0.001 46 (50.00) 1.000 44 (53.66) 0.070 0.587

Cardiovascular history

AP 186 (61.39) <0.001 89 (68.99) <0.001 46 (50.00) <0.001 51 (62.20) 0.292 0.189

VT 21 (6.93) 0.408 8 (6.20) 0.162 2 (2.17) 0.160 11 (13.42) 0.744 0.088

Prior MI 223 (73.60) <0.001 77 (59.69) <0.001 76 (82.61) <0.001 70 (85.37) 0.023 <0.001

Cardiovascular medication

Beta-blockers 245 (80.86) 0.005 101 (78.30) 0.162 77 (83.70) 0.002 67 (81.71) 0.201 0.478

ACE-inhibitors 113 (37.29) <0.001 47 (36.43) <0.001 33 (35.87) 0.002 33 (40.24) 0.037 0.611

Anti-arrhythmics 12 (3.96) 0.083 3 (2.33) 0.173 4 (4.35) 0.044 5 (6.10) 0.044 0.166

diuretics 114 (37.62) <0.001 24 (18.61) <0.001 51 (55.44) <0.001 39 (47.56) <0.001 <0.001

All values are represented as median (inter-quartile range) or n (%). Bold p-values show statistically significant differences (p < 0.050) amongst the 
three stages using the linear regression fitting testing. HFpEF = Heart failure with preserved ejection fraction; HFmEF = Heart failure with mid-range 
ejection fraction; HFrEF = Heart failure with reduced ejection fraction; LVEF = Left ventricular ejection fraction; BMI = Body mass index; AP = 
Angina pectoris; VT = Ventricular tachycardia; MI = Myocardial infarction; ACE = Angiotensin-converting enzyme.
2. Methods

2.1. Study design and dataset

In this multivariable discovery and modelling study, we trained and 
tested a deep learning model for the prediction of HF stages from mul-

tiple clinical data sources, i.e., ECG, HRV, and patient medical records, 
which were obtained from 303 coronary artery disease (CAD) patients 
suffering from HF (Table 1). These patients were classified, based on 
their corresponding LVEF levels, as HF with preserved LVEF (HFpEF, 
LVEF > 55%), HF with mid-range LVEF (HFmEF, 55% ≥ LVEF ≥ 50%), 
and HF with reduced LVEF (HFrEF, LVEF < 50%) with a narrower range 
than regular guidelines for the HFmEF stage, following the recommen-

dations of the American Society of Echocardiography and the European 
Association of Cardiovascular Imaging (ASE/EACVI) [23–25]. Thus, the 
dataset consisted of 129 patients in the HFpEF stage, 92 in HFmEF, and 
82 in HFrEF. In addition, the dataset used in this study consisted of two 
patient cohorts; one from an American database and the other from a 
Greek database.

The American patient cohort was obtained from the archives of 
the Intercity Digital Electrocardiography Alliance (IDEAL) study of the 
University of Rochester Medical Center Telemetric and Holter ECG 
Warehouse (THEW) [26,27]. The enrolment protocol was conducted 
following the Declaration of Helsinki and in accordance to Title 45, 
U.S. Code of Federal Regulations, Part 46, protection of human sub-

jects (revised: November 13, 2001 – Effective: December 13, 2001). 
The study was further approved by the research subject review board at 
the University of Rochester and all enrolled subjects provided a signed 
consent before participating in the study. Only subjects with evidence 
of previous myocardial infarction, exercise-induced ischemia, and sta-

ble phase of ischemic heart disease at least two months after their last 
event were allowed to enrol. In addition, the eligibility criteria included 
not being diagnosed with a congenital HF and being under a stable sinus 
rhythm. On the other hand, the exclusion criteria included having di-

lated cardiomyopathy with a left ventricular diameter (LVD) > 60 mm 
and LVEF < 40%), coronary artery bypass grafting (CABG) surgery, non-
3

sinus rhythm, and any cerebral, severe hepatic, or malignancy diseases. 
From the IDEAL study, a total of 199 patients were obtained and divided 
into 106 HFpEF, 46 HFmEF, and 47 HFrEF (Supplementary Material).

On the other hand, the Greek patient cohort was obtained from the 
PRESERVE EF study [28]. Patients were enrolled in seven actively par-

ticipating cardiology departments in Greece. The ethics committee at 
each department approved the protocol in the study endorsed by the 
Hellenic Society of Cardiology, Greece [29]. All patients provided con-

sent before participating in the study at each cardiology department. 
To be eligible for enrollment in the study, patients should have a post-

angiographically proven myocardial infarction (at least 40 days after 
the event or 90 days after any CABG surgeries). In addition, they must 
be revascularized, or if not revascularized, they should be without ev-

idence of any active ischemia (within 6 months). All patients should 
be under optimal and tolerate medical therapy. The exclusion crite-

ria included having a secondary prevention indication for implantable 
cardioverter defibrillator (ICD) implantation, permanent pacemaker, 
persistent, long-standing persistent, and permanent atrial fibrillation, 
and any neurological symptoms of syncope or pre-syncope (within 6 
months). In addition, patients with systemic illnesses, such as liver fail-

ure, renal diseases, rheumatic diseases, thyroid dysfunction, and can-

cer, were excluded. From the PRESERVE EF study, 104 patients were 
obtained and divided as 23 HFpEF, 46 HFmEF, and 35 HFrEF (Supple-

mentary Material).

2.2. Patient profiles and statistical analysis

Patient profiles were obtained from two different patient cohorts. 
Therefore, some information found in one patient cohort was missing 
in the other. To address this, we have created a set of common demo-

graphic and clinical information between the two datasets and used it 
for further analysis (Table 1). A total of 13 patient information items 
were shared between the two cohorts that were grouped as cardio-

vascular risk factors: age (years), gender (male/female), BMI (kg/m2), 
smoking (yes/no), diabetes (yes/no), and hypertension (yes/no), car-

diovascular history: angina pectoris, ventricular tachycardia, and prior 
myocardial infarction, and cardiovascular medication: beta-blockers, 

ACE-inhibitors, antiarrhythmics, and diuretics. The additional infor-
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Fig. 2. Methodology followed to combine the heart rate variability (HRV) feature image with patient information to generate a color-coded image. a,

Generating circular rings of different diameters (maximum: 2) and converting them to binarized images to be able to color coding each with clinical information 
of patients. b, The complete process of filling in the per-hour (pie-shaped segment) in the 24-hour polar image with clinical information. The featured image is 
multiplied by the pie-shaped circular rings after size adjustments to form the final image. c, Color-coding rules used to fill the final image in the order suggested by 
cardiologists.
mation for each patient cohort dataset is provided in Supplementary 
Material.

We performed a Student’s t-test based on linear regression fitting 
[30] to analyze the significance of patient information in discriminat-

ing between the three LVEF-based HF stages. We also checked this 
significance between the two patient cohorts for the common informa-

tion only. A significant difference was obtained whenever the 𝑝-value 
reached less than 0.05.

2.3. Color-coded patient information

To convert patient information into more visual-friendly images, we 
have applied color coding rules for each demographic and clinical in-

formation (Fig. 2). All information was normalized according to these 
rules, in a way that forms unique color codes for each variable. For age 
(in years), we divided the value by 100 to get a value between 0 and 
1. If the patient’s age was more than 100, we set it to 1. Accordingly, 
the color images for age can be described as blue < 35, purple 35-65, 
orange 65-100, and white > 100. For sex, we fixed male patients to 
0.3 (blue) and female patients to 0.6 (pink) to be easily discriminated 
against through visual inspection. For BMI (in kg/m2), we normalized 
all values using a regular sigmoid function with the mean (27.28) and 
standard deviation (3.45) of the current dataset. Thus, BMI was repre-

sented in colors as blue < 25, purple 25-30, orange 30-35, and white 
> 35. For categorical variables (yes/no answers), including smoking, 
diabetes, hypertension, angina pectoris, ventricular tachycardia, prior 
myocardial infarction, beta-blockers, ACE-inhibitors, antiarrhythmics, 
and diuretics, a value of 0.2 was given to the no answer (blue) and a 
value of 1 was given to the yes answer (white).

We compensate for color-blind people using suitable palettes with 
their vision, including protanopia, deuteranopia, and tritanopia (Sup-

plementary Material); the color codes for every patient information are 
provided in the figure alongside the original color palette.

2.4. HRV data and features extraction

All patients in this study performed 24-hour Holter ECG record-

ings (Fig. 1a) using a three pseudo-orthogonal lead configuration. The 
corresponding HRV data (distance between R-peaks) for each patien-

t’s recordings were obtained through expert annotations or the Pan-
4

Tompkins algorithm applied to the third ECG lead due to having a high 
amplitude with clear ECG waveform. We ensured that all recordings 
are fixed to start by hour 01:00 either through a pre-determined start-

ing hour in the annotation file or through the Cosinor analysis fitting 
algorithm [31].

We extracted HRV features on hourly basis from time-domain [32]: 
average normal-to-normal (NN) interval (AVNN, ms), standard devia-

tion of the NN intervals (SDNN, ms), square root of the mean of the 
sum of squares of differences between adjacent NN intervals (RMSSD, 
ms), percentage of NN intervals more than 50 ms (pNN50, %), and stan-

dard error of the average NN interval (SEM, ms), frequency-domain 
[32]: slope of the linear interpolation of the spectrum for frequen-

cies less than the very-low frequency (VLF) band upper bound (BETA), 
high frequency normalized power (HFNorm, %), peak frequency of the 
high frequency band (HFPeak, Hz), power in the high frequency band 
(HFPower, ms2), low frequency normalized power (LFNorm, %), peak 
frequency of the low frequency band (LFPeak, Hz), power in the low 
frequency band (LFPower, ms2), ratio between the LFPower and the 
HFPower (LF/HF), total power in both frequency bands (Total Power, 
ms2), VLF normalized power (VLFNorm, %), and power in the VLF band 
(VLFPower, ms2), non-linear metrics [33,34]: standard deviation of the 
NN intervals along the perpendicular to the line-of-identity (SD1, ms), 
standard deviation of the NN intervals along the line-of-identity (SD2, 
ms), de-trended fluctuations analysis for the low-scale slope (alpha1), 
de-trended fluctuations analysis for the high-scale slope (alpha2), and 
complexity of physiological time-series signals (Sample Entropy), and 
fragmentation metrics [35]: percentage of inflection points in the NN in-

tervals (PIP, %), acceleration and deceleration segments inverse average 
length (IALS), percentage of short segments (PSS, %), and percentage of 
alternation segments (PAS, %).

2.5. Filled-in HRV feature image generation

The generation of the HRV feature image consists of two compo-

nents: the transformation of HRV features values to a 2D polar image 
and the filling-in with color coded patient information (Fig. 1b-c, Fig. 2

and Algorithm 1). Initially, each HRV feature value was normalized and 
drawn as a polar map representing a 24-hour clock. Each per-hour fea-

ture value was converted from polar to Cartesian (x, y) coordinates. 
Then, the Cartesian points were mapped to a 2D space with dimensions 
of 512x512 and connected to form the outline of the feature image. Af-
ter filling the outline with a binary value of 1 (background with 0), 
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Fig. 3. Deep learning training mechanism and model’s architecture. a, The training included a total of 303 patients and followed a leave-one-subject-out (LOSO) 
cross-validation scheme. Out of the overall 7575 HRV feature images, the training ensures a maximized performance through a step-wise feature selection approach.

b, The architecture of the model was designed to allow it to learn from HRV features altogether as well as individually. The multi-channel two-dimensional (2D) 
input layer passes the best-selected images first to a cross-channel convolutional layer and then to a channel-wise convolutional layer. To reduce complexity, the 
network uses a max-pooling layer followed by a drop-out layer (20% probability) to prevent over-fitting. The last layer in the network (fully connected) includes a 
weight-modified layer with initial weights that were calculated empirically to handle the slight imbalance in the dataset.
Algorithm 1 The complete procedure used to generate color-coded 
HRV feature images.

1: for 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = 1, 2, … , 25 do

2: Calculate the angle (theta) for 24 points of 24 hours

3: Define R as the 24 hourly values of the feature

4: Convert polar dimensions (theta, R) to Cartesian coordinates (x, y)

5: Calculate scaling factor as a mean division of x and y between the feature 
and a full circle

6: Use Cartesian coordinates to create a binary edge image filled at each 
(x, y) point pairs

7: Fill the space inside the edges to create the feature image (1’s and 0’s)

8: Rescale the image based on the calculated scaling value of step 5
9: Generate per-hour pie-shaped binarized segments using steps from 2 to 

8 with R as the maximum value of the circle, i.e., 1
10: Generate 13 binarized circular rings each multiplied by one of the color-

coded clinical information

11: Multiply each pie-shaped segment by the full circular rings image

12: Multiply each pie-shaped segment by the generated feature image in 
step 8

13: Combine all resulting segments to form the color-coded feature image

14: end for

we re-scaled the generated image to its original dimensions relative to 
the polar map plot. The re-scaling factor (a value between 0 and 1) 
was calculated by measuring the difference between every point on the 
Cartesian coordinates and a circular base plot that represents the max-

imum possible value of every feature after normalization, i.e., 1 in a 
scale from 0 to 1.

To fill in color-coded patient information, we generated 13 circular 
rings (corresponding to 13 patient information items) that extend from 
5

the center to the edges of the image. Each circular ring was filled with 
a color-coded demographic or clinical variable in a pre-defined order 
(described in the next section). For each hourly pie-shaped segment, 
the binary HRV feature segment and the circular rings segment were 
extracted. To be able of masking the hourly circular rings segment on 
the binary HRV feature segment, we scaled them to make them the same 
size. Then, they were multiplied to form the corresponding mask. To 
generate the final filled-in HRV feature image, we combined all hourly 
scaled segments and smoothed their edges to form a unique connected 
shape without sharp edges.

We decided on the optimum order of patient information circular 
rings within the HRV feature image through a questionnaire spread 
among eight cardiologists at Greek and United Arab Emirates hospitals 
and medical centers. In the questionnaire, we requested each cardiol-

ogist to order each patient information category (cardiovascular risk 
factors, history, and medication) as center, middle, and edges. The cur-

rent order of categories (Fig. 1c and Fig. 2a, c) had a perfect Fleiss kappa 
[36] agreement of 0.88 (95% confidence interval: 0.84-0.91, 𝑝-value: <
0.001) among cardiologists.

2.6. Deep learning model training

We trained the deep learning convolutional neural network (CNN) 
model (Fig. 3a) using a leave-one-subject-out (LOSO) cross-validation 
scheme, where on each iteration, an 𝑖th subject was used for testing and 
the remaining 𝑛 − 1 subjects were used for training. The convolutional 
operation is defined as follows,

𝑙𝑗
𝑀∑

𝑗 𝑗

𝐶
𝑖
= ℎ(𝑏𝑗 +

𝑚=1
𝑤

𝑚
𝑥
𝑖+𝑚−1) (1)
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Table 2

Detailed description of the structure of the used convolutional neural network (CNN) in this study.

# Layers Kernel size Input dimension Output dimension Additional Notes

1 2D Input - 512x512x7 - Zero-center normalization

2 2D cross-channel 
convolution

[3, 3] 512x512x7 256x256x32 Stride: [2, 2], Padding: ‘same’

3 Batch normalization - 256x256x32 256x256x32 -

4 ReLU - 256x256x32 256x256x32 -

5 2D channel-wise 
convolution

[3, 3] 256x256x32 128x128x32 Stride: [2, 2], Padding: ‘same’

6 Batch normalization - 128x128x32 128x128x32 -

7 ReLU - 128x128x32 128x128x32 -

8 2D point-wise 
cross-channel 
convolution

[1, 1] 128x128x32 64x64x32 Stride: [2, 2], Padding: ‘same’

9 Batch normalization - 64x64x32 64x64x32 -

10 ReLU - 64x64x32 64x64x32 -

11 2D max-pool [2, 2] 64x64x32 32x32x32 Stride: [2, 2], Padding: ‘same’

12 Dropout - 32x32x32 32x32x32 Percentage: 20%

13 Fully-connected - 32x32x32 1x1x3 Weight-modification: initial 
weights calculated 
empirically

14 Soft-max - 1x1x3 1x1x3 Probabilities for the three 
heart failure stages
where 𝑥𝑖 =
[
𝑥1, 𝑥2, ..., 𝑥𝑛

]
is the input, 𝑛 is the total number of points, 

𝑙 is the layer index, ℎ is the activation function, 𝑏 is the bias of the 𝑗𝑡ℎ
feature map, 𝑀 is the kernel size, 𝑤𝑗

𝑚 is the weight of the 𝑗𝑡ℎ feature 
map and 𝑚𝑡ℎ filter index.

Instead of training the network on the whole 25 color-coded HRV 
features (7575 HRV images) all at once, features that were of high 
discrimination ability in exhibiting differences between the three LVEF-

based HF stages had to be determined. To achieve this, a step-wise 
feature selection approach was followed. In this approach, 25 iterations 
were used based on the total number of HRV features covered in the 
study. At the first iteration, each feature was used to train the model 
and output the corresponding classification accuracy. After picking the 
highest-performing feature, it was added to the best-features set that 
will be used in all the following iterations. On the second iteration, the 
process continues by adding HRV features one by one (step-by-step) to 
the best feature set and observing the classification performance accord-

ingly. This iterative process continued until all features were ranked 
based on their impact on the overall classification process. In the end, 
the iteration that gave the highest accuracy was selected, and all fea-

tures included in the best features set up to this iteration were selected 
as optimal features for the training and classification process.

The structure of the deep learning network (Fig. 3b and Table 2) was 
designed to start with a multi-channel 2D input layer that accepts a vari-

able number of color-coded HRV features. Each feature was assigned 
to a channel and a zero-center normalization was applied accordingly. 
Then, the network applied an initial cross-channel 2D convolutions with 
a kernel size of [3, 3], 32 filters, and stride of [2, 2] with padded output 
similar to the input. Another depth-wise convolution was applied to the 
outputs of the first convolution to ensure a channel-wise 2D feature ex-

traction mechanism. The layer had a single filter with a kernel size of [3, 
3] and stride of [2, 2]. The padding was similar to the previous convo-

lutional step. The depth-wise convolution proceeded with cross-channel 
2D point-wise convolution with a kernel of [1, 1], 32 filters, and a stride 
of [2, 2]. After applying convolutions, a max-pooling mechanism was 
applied to reduce the dimensionality and complexity in the network 
with a kernel size of [2, 2] and stride of [2, 2]. To prevent the network 
from over-fitting, a 20% drop-out layer was added. For classification, a 
fully-connected layer was used with soft-max and weight-modified lay-

ers that calculated class weights empirically. All parameters used in the 
design of the deep learning network were optimized based on the itera-
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tive hyperparameter optimization approach [37].
3. Results

3.1. Patients characteristics analysis

The demographic and clinical variables recorded for patients’ were 
categorized as cardiovascular risk factors, history, and medication. Most 
patients were males (85.15%) with a median age of 58. They had an in-

terquartile range for the body mass index (BMI) of 24.91-29.41 kg/m2, 
which shows a range for the overweight patient category. In addition, 
most of these patients had a history of angina pectoris (61.39%) and 
myocardial infractions (73.60%). A total of 245 patients were on beta-

blockers medication, which accounts for 80.86% of the whole patient 
population.

We have further assessed the ability to distinguish between patients 
across the three LVEF-based HF stages, as well as the two patient co-

horts (Table 1). A statistically significant difference was found among 
the three HF stages in diabetes status, having a prior myocardial infarc-

tion, and being on diuretics medication (p < 0.001). The same variables 
were found to be significantly different between the two patient co-

horts in addition to BMI, having an angina pectoris condition, and being 
on beta-blockers and ACE-inhibitor medications. Additional analysis on 
each patient cohort separately is provided in Supplementary Material. It 
is worth noting that much information about patients was not common 
between these two cohorts.

3.2. HF stages classification performance

A selection procedure of the best color-coded HRV features, based 
on the maximization of the deep learning model accuracy, resulted in 
seven color-coded HRV features (Fig. 4a), namely RMSSD and SEM from 
the time-domain, HFNorm, HFPower, and LFNorm from the frequency 
domain, SD1 from non-linear metrics, and IALS from fragmentation 
metrics. Breaking down the performance, the model resulted in average 
sensitivity, specificity, and accuracy of 90.68%, 95.19%, and 92.62%, re-

spectively, in predicting the three HF stages (Fig. 4b, c). In addition, 
the most precise predictions were achieved with the HFpEF stage with 
93.02% followed by HFmEF (90.22%) and HFrEF (86.59%), with an F1-

score of 91.95%, 88.3%, and 90.45% for HFpEF, HFmEF and HFrEF, 
respectively. In terms of the normalized Matthews correlation coeffi-

cient (NMCC), HFrEF had the highest percentage of 93.64%, followed 

by HFpEF and HFmEF with 92.94% and 91.54%, respectively.



Computer Methods and Programs in Biomedicine 248 (2024) 108107M. Alkhodari, A.H. Khandoker, H.F. Jelinek et al.

Fig. 4. Performance of the trained deep learning model with a leave-one-subject-out (LOSO) cross-validation. a, Accuracy variations using different combi-

nations of features based on the step-wise feature selection. Best-features sets (25 sets for 25 features) were determined by having the maximum achievable accuracy 
(red circle) when adding features step-by-step to the combination set (see Methods for definitions of features). b, The confusion matrix for the predictions of heart 
failure with preserved ejection fraction (HFpEF), failure with mid-range ejection fraction (HFmEF), and failure with reduced ejection fraction (HFrEF) following the 
LOSO cross-validation scheme. c, The performance metrics are calculated from the confusion matrix for the accuracy, sensitivity, specificity, precision, F1-score, 
and normalized Matthews correlation coefficient (NMCC). The analysis of the receiver operating characteristic (ROC) and precision-recall (PR) curves is provided in 
Fig. 5.
We further analyzed the performance of the model through the re-

ceiver operating characteristics (ROC) and precision-recall (PR) curves 
(Fig. 5a, b). The highest area under the ROC curve (AUROC) and the 
PR curve (AUPR) was achieved in predicting the HFpEF stage (AUROC: 
0.915, 95% Confidence Interval: 0.828-1.000). In predicting the HFmEF 
stage, the model achieved an AUROC of 0.886±0.081 and AUPR of 
0.730±0.055 (the lowest among the three HF stages). Lastly, the predic-

tions of the HFrEF yielded an overall AUROC of 0.850 (95% Confidence 
Interval (CI): 0.781-0.919) and AUPR of 0.778 (95% CI: 0.707-0.849). 
In all three HF stages, the sensitivity and precision values were sus-

tained high, exhibiting a drop only for specificity and recall threshold 
values > 0.90 (Fig. 5c).

3.3. Interpretable deep learning decisions

To be able to interpret the decisions made by the model, we ex-

tracted heatmaps from the last features layer (max-pooling) of the 
trained deep learning model (Fig. 6). These heatmaps are defined as 
an attention-based mechanism that mimics human perception, and are 
considered as selective attention for identifying regions with the highest 
impacts on the decisions [38]. Using the seven-feature images (Fig. 6a), 
the extracted heatmap is a color image ranging from blue to red, re-

ferring to the lowest and highest impacts, respectively (Fig. 6b). Af-

ter extracting a heatmap for every patient’s images, we generated a 
unique averaged heatmap per HF stage (Fig. 7). Through these unique 
heatmaps, we performed deeper analysis on the impact of each hourly 
segment, as well as each demographic and clinical information ring on 
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the predicted HF stage (Fig. 8).
Through visual inspection, the unique heatmaps showed that the 
predictions were mostly affected by the evening and early-morning time 
changes of the HRV features for HFpEF patients, late-night and after-

noon for HFmEF patients, and afternoon to evening for HFrEF patients 
(Fig. 8a). In addition, by transforming these heatmaps into line plots, 
we observed time regions of high importance (≥ 0.70) for each HF stage 
(Fig. 8b). For HFpEF, hours 01:00-02:00, 07:00-10:00, and 17:00-00:00 
were found highly important in deriving the model’s decisions, whereas 
for HFmEF, hours 02:00-07:00 and 11:00-15:00 had high importance 
values. For HFrEF, only a one-time region (15:00-19:00) was found to 
be of high importance in the predictions. We further transformed demo-

graphic and clinical information rings at these important time regions 
into line plots as shown in Fig. 8c. Age, sex, and BMI were found impor-

tant almost across all important hours for the predictions of the HFpEF 
stage. Moreover, smoking, diabetes, hypertension, and angina pectoris 
were important information only during evening hours (21:00-00:00). 
For HFrEF predictions, smoking, diabetes, and hypertension were the 
only important information for the trained model. The predictions for 
the HFmEF stage were highly impacted by smoking, diabetes, hyper-

tension, and angina pectoris during hours 02:00-07:00, whereas sex 
and BMI slightly affected the decisions during afternoon hours (13:00-

15:00).

3.4. Additional experiments

Additional experimentational scenarios were followed to validate 
the modelling approach (Fig. 9). First, the performance was investigated 

when varying the order of clinical information groups when filling in-
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Fig. 5. Receiver operating characteristics (ROC) and precision-recall (PR) curves analysis. a, ROC curves and area under the ROC (AUROC) values for heart 
failure with preserved ejection fraction (HFpEF), heart failure with mid-range ejection fraction (HFmEF), and heart failure with reduced ejection fraction (HFrEF) 
stages. b, PR curves and area under PR (AUPR) values for each heart failure (HF) stage. The shaded area in a-b represents a 95% confidence interval. c, tabulated data 
extracted from the ROC and PR curves of each HF stage. The data shows sensitivity and precision variations according to different specificity and recall thresholds 
(from 0.70 to 0.95). It includes the values of AUROC and AUPR with a 95% confidence interval.
side the HRV feature images (Fig. 9a). The six scenarios for clinical 
information sets were as follows,

• Set 1: cardiovascular risk factors, cardiovascular history, cardiovas-

cular medication

• Set 2: cardiovascular risk factors, cardiovascular medication, car-

diovascular history

• Set 3: cardiovascular medication, cardiovascular risk factors, car-

diovascular history

• Set 4: cardiovascular medication, cardiovascular history, cardiovas-
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cular risk factors
• Set 5: cardiovascular history, cardiovascular medication, cardiovas-

cular risk factors

• Set 6: cardiovascular history, cardiovascular risk factors, cardiovas-

cular medication

The performance in general had minor differences compared with 
the performance using the order decided by clinicians, i.e., set 1. For 
the 5 additional sets with varying orders, the overall accuracies were 
90.51%, 88.42%, 86.90%, 89.33%, and 90.05%, respectively. The clos-

est accuracy, i.e., set 2, had the order of cardiovascular risk factors, 

medication, and history; which was close to the highest and chosen set. 
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Fig. 6. Example for the extraction of attention-based heatmaps from the last features layer of the trained network (max-pooling). a, Example of a patient’s 
set of HRV features images. The seven features shown are determined through the step-wise feature selection for a maximized performance. a, Stacking all seven 
features, inputting them to the trained deep learning model, and extracting the corresponding heatmap (attention map). c, Overlapping features images with the 
extracted heatmap to visualize the effect of different regions on the decision of the model.
The lowest accuracy levels were obtained when having cardiovascular 
medication information as the start of sets 3 and 4.

Moreover, we performed the modelling and cross-validation testing 
to evaluate the performance using binary HRV feature images with-

out the incorporation of clinical information (Fig. 9b). In other words, 
the best set of HRV features were used as input images without be-

ing color-coded, i.e., black and white images (1’s correspond to fea-

ture points); which was performed by excluding steps shown in Fig. 2. 
Without clinical information, the average accuracy was 80.67%; which 
shows a reduction in accuracy by nearly 10%; which suggest the im-

portance of clinical information when color-coded to the overall mod-

elling and discrimination between heart failure stages with narrower 
ranges.

Lastly, we evaluated the information gain before and after the trans-

formation of HRV features and clinical information into a 2D polar 
image using Shannon entropy analysis [39,40]. This allowed for un-

derstanding the impact of capturing multi-parametric data as a single 
source of information; a color-coded polar image. Here, the average en-

tropy of the best performing HRV features was nearly 3.35 across the 
three heart failure groups. In addition, the clinical information was as-

sessed similarly and had an average entropy of 3.97. On the other hand, 
the entropy dropped heavily when combining both as a single image to 
1.08. The drop in entropy suggests proper capturing of useful informa-

tion within both data sources. Moreover, it suggests less randomness 
in the polar image compared to 1D signal or feature inputs; which had 
eventually caused an increase in the overall performance of the model, 
inclusion of high information content within images, and better charac-

terization of multiparameter patient information.

4. Discussion

This study provides evidence that AI could facilitate cardiovascu-

lar disease diagnostics [41,42] by accurately assessing the HF stages in 
novel clinical multi-parameter polar images. Under a LOSO experiment, 
we validated our results across two different datasets of CAD patients, 
exhibiting high accuracy in the HF stage predictions. In addition, the in-

terpretation of deep learning decisions that the model provided enables 
crucial discoveries regarding the disease that may not be well-known 
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yet to clinicians, owing to its ability to analyze big data. Relative to 
recent studies in the field (Table 3), the proposed study had higher 
performance with a novel approach for the integration of multiple pa-

rameters, i.e., HRV and clinical information.

Our results have several implications. First, knowledge about the 
extent of HF is of significant importance in reducing morbidity and 
mortality rates among CAD patients, especially for the heterogeneous 
preserved and mid-range groups, where individualized treatment op-

tions are most important. Using an accurate, simple, and cost-effective 
technique for medical diagnosis and management is always the main 
target for medical practitioners as a first-stage screening tool before re-

questing additional tests that are more expensive and not universally 
available. Therefore, the proposed study could pave the way towards 
applying chronopharcology, by suggesting 24-hour ECG as a suitable as-

sistive tool for circadian and personalized medicine in HF treatment. In 
addition, it could be repeated for specific patients more often to monitor 
disease progression with or without treatment procedures as a supple-

mentary tool to echocardiography.

Second, the ability of the model to integrate multiple sources of med-

ical information (HRV and patient profiles) in a single 2D color polar 
image has a significant impact on reducing the stress applied on cardiol-

ogists diagnosing HF cases or other cardiac diseases. Moreover, it allows 
them to establish a connection between 24-hour HRV variations and 
demographic/clinical information for the patient undergoing diagnosis. 
The simplicity of the proposed approach could suggest color-coded HRV 
images as a new protocol in assessing cardiovascular diseases where a 
single image can carry multiple patient-specific characteristics. This can 
be considered crucial for providing timely diagnostic and treatment pro-

cedures, especially when there are big patient data that require prompt 
intervention.

Third, analyzing the influence of HRV features in HF progression 
with deep learning allowed for a better understanding of the role of 
the autonomic nervous system. For example, the RMSSD feature was 
found highly important, as it reflects the modulation of the parasym-

pathetic activity. Its variations are usually linked to HF in addition to 
sympathetic upregulation, where lower RMSSD has been linked to an 
increase in all-cause mortality [43–45]. In addition, frequency-domain 
features in the low and high-frequency bands were more important 
than other features, as they reflect cardiac autonomic outflows that are 

mainly under the control of baroreflex activity [46]. It is worth not-
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Fig. 7. All heatmaps extracted from the network for every heart failure (HF) patient. a, Heart failure with preserved ejection fraction (HFpEF) patients’ images 
with the corresponding unique heatmap generated by averaging all images. b, Heart failure with mid-range ejection fraction (HFmEF). c, Heart failure with reduced 
ejection fraction (HFrEF).
ing that SD1 and IALS were found important as measures to reflect the 
parasympathetic modulation and R-peak sequence fragments, respec-

tively.

Fourth, our study transformed the conventional black-box deep 
learning train-predict mechanism into an easily interpretable and in-

terpretable approach. This could be a huge advance in HF discoveries, 
especially when differentiating between three stages concerning their 
LVEF ranges. The analysis of the 24-hour HRV was motivated by the 
knowledge that cardiac arrhythmias and heart attacks appear more of-

ten at certain times during the 24-hour time interval, but may be a 
function of HF progression. Inspection of HRV through deep learning 
attention-based heatmaps allowed for discovering useful information 
on the circadian changes in the cardiac rhythm and how this differed 
between HF stages. Our study indicated that time intervals in the early 
morning and late evening are important for characterizing HFpEF pa-

tients, which are well-known high-risk times for cardiac arrests [47]. 
Furthermore, hours in the late afternoon were found to be highly cor-

related with the HFrEF stage, which could be linked to the higher 
mortality rates often observed at this time interval [48]. The model 
has discovered that late-night to early-morning hours, as well as early-

afternoon hours, are the best times for HFmEF categorization, as can be 
seen from the corresponding heatmaps (Fig. 7). These HFmEF-related 
periods precede the significant hours found for both HFpEF and HFrEF, 
suggesting them as a unique focal point at which HF may (or may not) 
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progress further (or recover) [49].
Fifth, via the generated heatmaps analysis, the discovery of unique 
patterns relative to the demographic and clinical information embedded 
as part of the input images is feasible. In literature, previous studies 
have demonstrated that HFpEF patients tend to be way much older 
than patients with HFmEF or HFrEF [54], which has also been ob-

served in Fig. 7c with high importance across all significant hours. 
Of interest is the BMI that was important for HFpEF and to a lesser 
extent for HFmEF, which were previously shown to have a strong cor-

relation that results in developing further adverse cardiac events [55]. 
Moreover, the high importance of other comorbidities (diabetes and 
hypertension) was distributed across all evening hours for HFpEF and 
HFrEF and late-night hours for HFmEF. This could be correlated with 
the fact that all-cause mortality has been increasingly reported in di-

abetic HFrEF patients [56]. In addition, several studies have shown a 
strong association between hypertension and HF, especially for patients 
with preserved LVEF [57,58]. Concerning cardiovascular history, only 
angina pectoris was found important for the HFmEF patients’ group, 
which mainly shows that these patients had high activation of the my-

ocardial ischemia caused by the myocardial blood supply and oxygen 
demand imbalance [59,60]. It is worth noting that medication intake 
was not significant for the decisions of the model, despite the impor-

tance of antiarrhythmics and diuretics in characterizing HFpEF patients 
[54,61].

Moreover, when changing the order of clinical information and hav-
ing medication in the center of input images, the performance was 
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Fig. 8. Analysis of the attention-based unique heatmaps for the three heart failure (HF) stages. a, The unique heatmaps for heart failure with preserved 
ejection fraction (HFpEF), heart failure with mid-range ejection fraction (HFmEF), and heart failure with reduced ejection fraction (HFrEF) stages. Each image shows 
the 24-hour time regions plus the most important regions for the decisions of the stage (red cover). b, Time analysis of the heatmaps throughout the 24-hour cycle. 
Each hourly region was extracted from the pie-shaped hour segment shown in a. The blue envelope shows smoother variations in the heatmap across the hours. 
The red highlighted regions represent regions that were most important for the network decisions (≥ 0.70). c, Demographic and clinical information analysis after 
extracting them from the heatmaps using the ring-shaped segments shown in Fig. 1. The colors start with dark color at hour 01:00 and get brighter going up to hour 
00:00.
slightly decreased. This could be related with how the model extracts 
features from the images based on their importance. Accordingly, hav-

ing the center of the images with less effective variables in the dis-

crimination between heart failure stages leads to unoptimized learned 
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features. In addition, statistical analysis has revealed that no signifi-
cant differences were observed between the three heart failure stages 
in the selected cohort. This could be due to having similar percent-

ages in medication intake; excluding diuretics which was significantly 
lower in the HFpEF group only. Compared with well-known risk fac-
tors put in the center of images, which had the highest accuracy levels, 
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Fig. 9. Experimentational scenarios to validate the modelling approach. a,

Variation of the order of the clinical information groups (risk factors, history, 
and medication) in multiple sets. Each set had clinical information filled within 
the HRV feature images at a different order. b, Performance when excluding 
clinical information from the HRV feature images, i.e., using binary HRV feature 
images.

the model tends to extract better feature patterns that allow discrimi-

nating between the stages and thus, the more these important variables 
are towards the center, the higher the performance. This comes in line 
with the decisions made by clinicians on the optimal order of variables 
within images.

Sixth, in our study, a narrower range was adopted for the HFmEF 
stage, which differs from the current European gold-standard range [6]. 
The variable criteria for this stage come because the ranges are based 
on the etiology of HF. Thus, there are no strict rules on the decision for 
a fixed threshold due to the loose association between the treatment for 
this group and clinical presentation. In addition, in literature, 90% of 
the patients under the regular 41% to 49% LVEF threshold had either 
deteriorated or recovered from this range [7]. Our results show the po-

tential of distinguishing patients under the narrow HFmEF range, which 
always created confusion in the diagnosis [24].

Despite the presented study’s potential, some limitations could be 
considered. We classified HF patients with LVEF thresholds that differ 
12

from the current gold-standard guidelines. It will be interesting to ex-
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plore different LVEF-based HF ranges in future studies to explore the 
reliability of the developed approach under various scenarios. Also, 
while we have confirmed that the model successfully could separate 
the three HF stages, we did not investigate the ability of our model to 
be applied to a broader range of cardiovascular diseases. In addition, 
the model’s performance was validated in a sufficient number of partic-

ipants; nevertheless, future studies with extended populations should be 
employed to further confirm those results. Additionally, while we have 
tested the model across two institutions, further studies can expand the 
diversity of datasets and institutions with more data and less imbal-

ance between the classes. Moreover, the performance of the models, 
although accurate, it showed a slight decline in the PR curves. This tank-

ing phenomena was mostly due to having few true positives at higher 
thresholds despite having false positives, i.e., negative examples, that 
were incorrectly assigned with a very high probability of being pos-

itive. Therefore, more calibration for the models could suggest slight 
improvement in the performance. However, the trade-off between the 
performance and the overall training costs should be taken into con-

sideration. Finally, our empirical results highlight a strong connection 
between HF staging and circadian rhythm-based cardiovascular reg-

ulation, in compliance with past work on the topic; however, both, 
the etiology and phenotype of HF largely differ across CAD patients; 
hence, the inclusion of circadian rhythm effect and patient’s profile in 
the multi-parameter polar image assists the model to account for such 
difference in the HF staging. More studies, yet, are needed to better 
understand this relation, further exploring the role of personalization, 
both in the HF staging and initiation of personalized therapeutic op-

tions.

5. Conclusions

Overall, we have developed the approach based on echocardiogra-

phy-free clinical quantitative and qualitative features (HRV and patien-

t’s demographics and clinical profile) through novel multi-parameter 
polar images. The proposed model is the first step towards implement-

ing a simple, cost-effective, and frequent-use screening tool to evaluate 
the extent of HF based on LVEF levels. Polar map images of HRV 
features with filled-in patient information integrated within a deep 
learning-based trained model promise to enhance the diagnosis of HF at 
various degrees of LVEF, as they allow for an initial screening and eval-

uation of the circadian left ventricle function before echocardiography 
tests. Further research should evaluate the clinical cost-effectiveness of 
the model to provide, via polar plots - heat map images, a personalized

HF management over the 24 hours.
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Table 3

Summary of recent studies that utilized heart rate variability (HRV) and machine learning for heart failure assessment.

Study Year Dataset Type Technique Model Performance

Hussain et al. [50] 2020 PhysioNet databases 
(n = 98)

24-hour Holter HRV HRV features SVM

Decision trees

Accuracy: 90.50%
AUC: 0.90

Agliari et al. [51] 2020 Ascoli-Piceno hospital 
(n = 232)

24-hour Holter HRV HRV features Feed-forward ANN Accuracy: 85.00%

Alkhodari et al. [45] 2021 THEW database (n = 92) 24-hour Holter HRV HRV features SVR RMSE: 10.4

Accuracy: 89.60%
Alkhodari et al. [21] 2021 Multi-center cohorts 

THEW and PRESERVE-EF 
(n = 303)

Clinical information NA CNN

SVM

GLM

RMSE: 4.13

Accuracy: 90.10%

Aggarwal et al. [52] 2022 PhysioNet databases 
(n = 419)

24-hour Holter HRV HRV features SVM

Decision trees

Accuracy: 86.35%
AUC: 0.85

Tian et al. [53] 2022 Jinan 4th People’s hospital 
(n = 179)

24-hour Holter HRV HRV features XGBoost

Decision trees

Accuracy: 90.00%

This study 2024 Multi-center cohorts 
THEW and PRESERVE-EF 
(n = 303)

24-hour Holter HRV 
Clinical information

Multi-parameter 
HRV feature images

Deep CNN Accuracy: 92.62%
AUC: 0.883

HRV = Heart rate variability; SVM = Support vector machine; AUC = Area under the ROC curve; ANN = Artificial neural network; RMSE = Root 
mean square error; SVR = Support vector regression; GLM = Generalized linear model; CNN = Convolutional neural network.
Declaration of competing interest

The authors declare no competing interests about the content or 
interpretation of the data in the present study.

Data and code availability

The data used in this study can be obtained by directly contact-

ing the corresponding author or the owners of the datasets (Amer-

ican cohort: Dr. Jean-Philippe Couderc, Greek cohort: Dr. Stergios 
Soulaidopoulos). The datasets can not be shared publicly due to em-

bargo for disclosure by the owners.

All code requests can be made by contacting the corresponding 
author. Codes related to the generation of polar images and deep learn-

ing modelling/predictions are available partially with an example on 
a GitHub repository here: https://github .com /malkhodari /Alkhodari _
2023 _CMPB .git.

Acknowledgement

The authors would like to acknowledge Khwaja Y. Hasan, MBBS, 
from the Cardiology Department at Cleveland Clinic, Abu Dhabi, UAE, 
for his advice on diagnosing LVEF in heart failure patients. Funding 
for this study was provided by a grant (award number: 8474000132) 
from the Healthcare Engineering Innovation Center (HEIC) at Khalifa 
University, Abu Dhabi, UAE. The funders were not involved in any part 
of the study, including study design, data collection, data analysis, data 
interpretation, and report writing. All authors had final responsibility 
for the decision to submit for publication. The corresponding authors 
fully accessed data used in this study.

Appendix A. Supplementary material

Supplementary material related to this article can be found online 
at https://doi .org /10 .1016 /j .cmpb .2024 .108107.

References

[1] Véronique L. Roger, Epidemiology of heart failure, Circ. Res. 113 (2013) 646–659.

[2] Mihai Gheorghiade, George Sopko, Leonardo De Luca, Eric J. Velazquez, John D. 
Parker, Philip F. Binkley, Zygmunt Sadowski, Krzysztof S. Golba, David L. Prior, 
Jeanl L. Rouleau, et al., Navigating the crossroads of coronary artery disease and 
heart failure, Circulation 114 (2006) 1202–1213.

[3] Amy Groenewegen, Frans H. Rutten, Arend Mosterd, Arno W. Hoes, Epidemiology 
of heart failure, Eur. J. Heart Fail. 22 (2020) 1342–1356.

[4] Judith Mackay, George A. Mensah, Kurt Greenlund, The Atlas of Heart Disease and 
13

Stroke, World Health Organization, 2004.
[5] Jeptha P. Curtis, Seth I. Sokol, Yongfei Wang, Saif S. Rathore, Dennis T. Ko, Farid 
Jadbabaie, Edward L. Portnay, Stephen J. Marshalko, Martha J. Radford, Harlan M. 
Krumholz, The association of left ventricular ejection fraction, mortality, and cause 
of death in stable outpatients with heart failure, J. Am. Coll. Cardiol. 42 (2003) 
736–742.

[6] Theresa A. McDonagh, Marco Metra, Marianna Adamo, Roy S. Gardner, Andreas 
Baumbach, Michael Böhm, Haran Burri, Javed Butler, Jelena Čelutkienė, Ovidiu 
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