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Abstract 

Background:  Pubertal growth patterns correlate with future health outcomes. How‑
ever, the genetic mechanisms mediating growth trajectories remain largely unknown. 
Here, we modeled longitudinal height growth with Super-Imposition by Transla‑
tion And Rotation (SITAR) growth curve analysis on ~ 56,000 trans-ancestry samples 
with repeated height measurements from age 5 years to adulthood. We performed 
genetic analysis on six phenotypes representing the magnitude, timing, and intensity 
of the pubertal growth spurt. To investigate the lifelong impact of genetic variants 
associated with pubertal growth trajectories, we performed genetic correlation analy‑
ses and phenome-wide association studies in the Penn Medicine BioBank and the UK 
Biobank.

Results:  Large-scale growth modeling enables an unprecedented view of adoles‑
cent growth across contemporary and 20th-century pediatric cohorts. We identify 
26 genome-wide significant loci and leverage trans-ancestry data to perform fine-
mapping. Our data reveals genetic relationships between pediatric height growth 
and health across the life course, with different growth trajectories correlated with dif‑
ferent outcomes. For instance, a faster tempo of pubertal growth correlates with higher 
bone mineral density, HOMA-IR, fasting insulin, type 2 diabetes, and lung cancer, 
whereas being taller at early puberty, taller across puberty, and having quicker pubertal 
growth were associated with higher risk for atrial fibrillation.

Conclusion:  We report novel genetic associations with the tempo of pubertal growth 
and find that genetic determinants of growth are correlated with reproductive, glyce‑
mic, respiratory, and cardiac traits in adulthood. These results aid in identifying specific 
growth trajectories impacting lifelong health and show that there may not be a single 
“optimal” pubertal growth pattern.

Introduction
A distinct feature of human growth is the pubertal growth spurt, characterized by accel-
erated height growth. The characteristics of the growth spurt can differ substantially even 
among healthy children [1]. The timing of the onset of the pubertal growth spurt, the total 
amount of growth, and the duration of growth vary and are influenced by both genetic and 
environmental factors [2]. For instance, twin studies place the heritability of height growth 
during adolescence at about 75% [2, 3]. Furthermore, the secular trend of advancing puber-
tal timing (i.e., pubertal onset beginning at a younger age) in girls over the twentieth century 
has also been observed in boys by measuring peak height growth velocity (PHV) [3], the 
amount of height gained during the most rapid phase of height growth during puberty.

The timing and duration of the pubertal growth spurt affect the attainment of an indi-
vidual’s final height, which is associated with, and a causal factor for, many adult health 
outcomes [4]. Thus, it is important to establish whether specific growth trajectory fea-
tures impact these health risks. Indeed, epidemiological or observational studies have 
shown evidence that growth patterns during childhood are associated with health out-
comes later in life, including adverse cardiovascular health [5], cancer [6, 7], bone out-
comes such as lower bone mineral density in later life—a risk factor for osteoporosis [8, 
9], type 2 diabetes [10–12], and respiratory health [13].

As noted above, variation in pubertal growth is highly heritable [2], but the specific 
genetic factors underlying pubertal growth trajectories remain largely unknown. In our 
previous study, we identified 10 genome-wide significant loci [14] using relatively simple 
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phenotypes targeting the take-off phase of the growth spurt (the age in mid-childhood 
when growth velocity begins rising after falling since infancy), the total amount of 
pubertal growth, and the amount of late pubertal growth, which roughly marks the tim-
ing of PHV. The identified genetic signals influencing pubertal growth were also associ-
ated with pubertal timing, adiposity, and height growth potential. Half of the signals (5 
out of 10) impacted height growth evenly across childhood and pubertal growth, while 
the other half were pubertal growth-specific, supporting the idea that some genetic fac-
tors contribute only during the growth spurt [2, 15–17]. We have also shown previously 
that independent signals (rs7759938 and rs314277) at one genetic locus (near LIN28B) 
can influence either postnatal growth from birth until adulthood or specifically pubertal 
growth [18], with the pubertal growth signal also being the strongest pubertal timing 
association in GWAS of age at menarche [19]. These signals have distinct associations 
with adult adiposity-related traits, with the puberty-associated signal also associated 
with adult height but not adiposity, whereas a second adult height-increasing signal also 
associated with increased weight and hip circumference [20].

To better capture the dynamic nature of the pubertal growth spurt, we expanded our 
previous work by utilizing longitudinal modeling of repeated height measurements 
across childhood and adolescence. Additionally, in contrast to our previous work, where 
we only included participants of European ancestry, we now include subjects from 
diverse ancestral backgrounds. Next, we uncovered genetic variants associated with lon-
gitudinal height growth and assessed the genetic associations between pubertal growth 
trajectories and later-life health traits.

Results
Modeled peak height velocity and age at peak height velocity across cohorts

We performed Super-Imposition by Translation And Rotation (SITAR) growth curve 
analysis [21] in up to 56,659 samples (53.3% female; 41,468 European, 7852 African 
American, 2714 Asian, 2387 Native American, and 2238 Hispanic; Additional file  1: 
Table S1), including height measurements between age 5 and 20 years. SITAR estimates 
three random effects comparing each individual’s growth curve to the population mean, 
as well as predicted age at peak height velocity (APHV) and peak height velocity (PHV) 
for each overall population. Note that PHV in SITAR is the instantaneous peak velocity, 
which is greater than the peak annual velocity. We performed SITAR modeling sepa-
rately in females and males separately in each contributing cohort. Overall, APHV across 
cohorts was consistent with the average ages reported previously (11.5 years in girls and 
13.5 years in boys [22]), and non-European cohorts had earlier APHV than Europeans. 
There was a significant linear relationship between APHV (in years) and PHV (in cm/
year) largely explained by sex (sex-adjusted P = 1.2 × 10−15; Fig. 1).

Genome‑wide association

We performed a series of genome-wide association study (GWAS) analyses on six phe-
notypes: three simple height or height difference phenotypes, as previously assessed 
[14], and the three SITAR fixed effects (Fig.  2): (I) the take-off phase of the puber-
tal growth spurt (height at age 10 in girls and 12 in boys); (II) total pubertal growth, 
between ages 8 and adult (> 19 years); and (III) late pubertal growth, between ages 14 
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and adult (> 19 years). Additionally, we included three phenotypes derived from SITAR 
longitudinal modeling: (IV) a-size; (V) b-timing; and (VI) c-intensity. We ran ancestry-
specific meta-analyses in the European, African American, Asian, and Native American/
Hispanic ancestry groups, as well as a trans-ancestry meta-analysis followed by cred-
ible set analysis (Table 1, Additional file 1: Table S2). Twin studies suggest that height 
growth is most heritable during adolescence (up to 0.83 in boys and 0.76 in girls) [2, 
23]; using Linkage Disequilibrium Score Regression (LDSC) [24], we calculated the SNP-
heritability (h2SNP) of the six phenotypes and found five to have a genetic component: 
10F/12  M = 0.32 (SE = 0.02); 8–adult = 0.22 (0.03); 14–adult = 0.21 (0.04); a-size = 0.15 
(0.02); c-intensity = 0.13 (0.02); Additional file 1: Table S3).

Twenty-six loci achieved genome-wide significance (P < 5 × 10−8) in the trans-ances-
tral meta-analysis (Table 1). Four loci were significant for both height at 10F/12 M and 
a-size, and we noted that the LIN28B locus was associated with height difference age 
14–adult, b-timing, and c-intensity. We then performed credible set analyses, and for 
10 signals we reduced the 95% credible set to fewer than 10 SNPs (Additional file  1: 
Table S2). For three loci, the credible set was distilled down to a single SNP. Three exam-
ple regional plots are shown in Additional file 2: Fig. S1.

We subsequently extracted all associations with other traits from previously published 
GWAS for these loci using PhenoScanner [25] (Additional file 1: Tables S4 and S5). All 
but three signals ((1) nearest to ZNF365, (2) nearest to the gene for hemoglobin beta, 
HBB, and (3) nearest to LINC00520) were genome-wide significantly associated with 
adult height, and all but four signals (the three above as well as at LIN28B) were associ-
ated with the UK Biobank phenotype “comparative height at age 10.” We then clustered 

Fig. 1  Mean peak height velocity (cm/year) vs. mean age at peak height velocity (years) for cohorts of diverse 
ancestral backgrounds. Yellow and purple lines represent a linear model fit to APHV ~ PHV × sex. The shaded 
bars represent the standard deviation of the linear regression. The samples included 19 cohorts of European 
ancestry, 3 African American cohorts, 2 East Asian cohorts, and 5 American Native or Hispanic cohorts
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Fig. 2  Six phenotypes assessed by GWAS. The top panel shows a typical growth curve for boys (blue) and 
girls (red), with age (years) on the x-axis and height gain (cm/year) on the y-axis. First, we included three 
simple height or height-difference phenotypes as previously assessed [14]: (I) The take-off phase of the 
pubertal growth spurt (height at age 10 in girls and 12 in boys); (II) total pubertal growth, between ages 
8 and adult; and (III) late pubertal growth, between ages 14 and adult. Additionally, we included three 
phenotypes derived from SITAR longitudinal modeling: (IV) a-size; (V) b-timing; and (VI) c-intensity. The black 
line represents the mean population growth curve for a cohort (by sex). Each individual gets a random effect 
for the three parameters; for example, if a subject is taller than their peers (upper red line), they get a positive 
value for a-size, while a shorter individual (lower line in panel IV) gets a negative value. A subject who enters 
their growth spurt earlier than the mean (left line in panel V) gets a negative value for b-timing, while a 
subject growing later (right line in panel V) gets a positive value. Finally, a subject who grows faster than the 
population mean (steeper line in panel VI) receives a positive value for c-intensity, while a subject growing 
slower (shallower line in panel VI) gets a negative value for c-intensity
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the genome-wide significant loci based on their associations with the three SITAR 
parameters (Additional file 2: Fig. S2A) and found that most loci behaved similarly, again 
with the exception of the LIN28B and HBB loci. We observed that the LIN28B signal 
was associated with the timing and velocity of the pubertal growth spurt, as well as late 
pubertal growth, with a resulting impact on adult stature, but there was no effect on 
growth prior to puberty [14, 18].

The other outlying locus, near HBB, was associated with delayed b-timing (rs16911905, 
PTrans-Ancestry = 1.32 × 10−9), but there was no evidence for association with child-
hood or adult stature based on previously published GWAS efforts. Investigating fur-
ther, we found that the only cohort showing association was in the Children’s Hospital 
of Philadelphia African American cohort. The strongest association was at rs334 (beta 
(SE) = 0.342 (0.03), P = 5.80 × 10−27) (Additional file 2: Fig. S2B). rs334 is associated with 
sickle cell anemia, and children with sickle cell anemia have decreased pubertal growth 
velocity [26]. rs334 is only common in African populations, in which sickle cell anemia is 
most prevalent, so it did not pass quality control for the trans-ancestral analysis. When 
we conditioned for sickle cell anemia in the Children’s Hospital of Philadelphia African 
American cohort, we found that the signal was almost completely ablated (P = 0.03) 
(Additional file 2: Fig. S2C). Thus, this analysis likely picked up an association driven by 
children with sickle cell anemia in this cohort, who display reduced pubertal growth.

Prioritized genes

Most GWAS signals are intergenic. Thus, we combined several approaches to identify 
the most likely effector gene for each locus. We looked for skeletal and body size aber-
rations in human Mendelian disease using OMIM and in mice knockout experiments 
(JAX, IMPC) and annotated the genes at each locus with Gene Ontology biological 
process terms. Altogether, we identified likely causal genes at 23 loci (Additional file 1: 
Table S6). These include several genes that result in severe ossification and/or skeletal 
abnormalities when dysregulated in mice, such as PRKG2, ARID5B, SOCS2, SMAD3, 
PKD1, and GDF5; of these, rare mutations in PRKG2  [27, 28], SMAD3  [29–31], and 
GDF5 [32–34] are also associated with rare Mendelian disorders in humans with skel-
etal phenotypes. GO-term-based pathway analysis revealed a significant enrichment of 
height at 10F/12  M with “regulation of chondrocyte differentiation” (Bonferroni-cor-
rected P = 0.006).

Genetic relationship between pubertal growth and anthropometric traits

Next, we explored the genetic correlation between pubertal growth traits and anthro-
pometric and health-related outcomes in the European ancestry-specific results. The 
relationship between pubertal timing (e.g., its onset) and intensity (e.g., the speed of 
progression through puberty) remains controversial, with studies reporting discrepant 
findings [3, 4]; here, we found a negative genetic correlation between the SITAR-derived 
b-timing and c-intensity parameters (rg =  − 0.12; Additional file 1: Table S7; Additional 
file 2: Fig. S3), as well as a highly significant negative genetic correlation between c-inten-
sity and age at menarche (rg =  − 0.52, P = 6.72 × 10−23), indicating that genetic determi-
nants of later pubertal onset also favor a slower tempo of growth.
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We then investigated anthropometric traits across the life course. In particular, the 
relationship between pubertal growth and BMI has been unclear. Here, c-intensity 
was not genetically correlated with childhood obesity or adult BMI (Fig. 3A), whereas 
taller height at 10/12 years was genetically correlated with higher childhood and adult 
BMI. Furthermore, more growth 8-to-adult and 14-to-adult were negatively genetically 
correlated with childhood and adult BMI. C-intensity was, however, positively geneti-
cally correlated with adult waist circumference, meaning that faster pubertal growth 
tempo correlated with larger adult waist circumference, as did taller a-size and height at 
10F/12 M.

We observed a strong positive genetic correlation between c-intensity and adult height 
(rg = 0.54, P = 1.12 × 10−23), as well as between the other pubertal growth parameters 
and height across the life course (Fig. 3B) [23, 35]. Additionally, while b-timing would be 
expected to be correlated with the timing of puberty (not assessed here due to low her-
itability), we found that taller height at 10F/12 M, and higher c-intensity of the growth 
spurt, were genetically correlated with earlier age at menarche. Meanwhile, later age 
at menarche was genetically correlated with more growth from 8–adult and 14–adult, 
which is expected since adolescents who develop later have a longer period of growth.

Relationship between the genetics of pubertal growth and later‑life health outcomes

Variation in growth during puberty is known to be associated with later-life health 
outcomes [5, 6, 8–13]. Here, analysis of both the genome-wide significant signals and 
genome-wide genetic correlations pointed towards pleiotropy between pubertal growth 
and health outcomes. With LDSC, which compares genome-wide association data 
across the genome between pairs of traits, we observed genetic correlations with bone 
mineral density, cardiovascular traits such as atrial fibrillation and coronary artery dis-
ease, glycemic traits, lung function and lung cancer, neurological, psychiatric, and intel-
ligence traits, and overall well-being (Fig. 4).

With evidence of a genetic relationship between pubertal growth and later health out-
comes, we next generated polygenic risk scores (PRS) from sets of genetic variants (see 
the “Methods” section, Additional file 1: Table S8) and performed phenome-wide asso-
ciation (PheWAS) scans on individual-level data in the Penn Medicine Biobank (PMBB) 

Fig. 3  Genetic correlation (rg) between pubertal growth and anthropometric traits. A Correlation with 
adiposity traits. B Correlation with body size traits. 10F/12 M, height at age 10 years in girls and age 12 years 
in boys; 14–adult, height difference between age 14 years and adult; 8–adult, height difference between age 
8 years and adult; a-size, SITAR-derived height across the growth trajectory; c-intensity, SITAR-derived tempo 
of the pubertal growth spurt
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and the UK Biobank. In the PMBB, no phenotypes passed Bonferroni multiple test-
ing correction. However, 140 traits showed a nominal association (P < 0.05, Additional 
file 1: Table S9). We performed validation analyses in the UK Biobank, selecting 37 traits 
that demonstrated either significant LDSC-based genetic correlations or nominally sig-
nificant associations in the PMBB. Although the proportions of phenotypic variance 
explained by the PRS were small, three phenotypes remained significantly associated 
with one or more PRS after multiple test correction in the UK Biobank: atrial fibrillation, 
type 2 diabetes, and adult BMI (Table 2, Additional file 1: Table S10). Notably, additional 
cardiac traits were nominally associated with the PRS.

Discussion
In this study, we assessed children and adolescents of multiple ancestries with repeated 
height measurements and genetic data to gain a better understanding of how pubertal 
height growth relates to health across the life course. First, we performed longitudinal 
modeling by sex and ancestry with SITAR, a validated method for producing more pre-
cise and less biased estimates of APHV and PHV [36, 37]. Previously, SITAR has been 
used to estimate these parameters in individual cohorts [38, 39]. Here, we compared 
these estimates across cohort studies of different ancestral backgrounds collected over a 
range of years, from the 1930s to the present day. Studies of growth in healthy children 

Fig. 4  Genetic correlation (rg) of pubertal growth with adult health outcomes. A Bone and glycemic 
outcomes, including femoral neck and lumbar spine bone mineral density and three glycemic traits. B Lung 
cancer and lung function outcomes. C Cardiac and lipid outcomes. D Neuropsychiatric outcomes and overall 
wellbeing (parents’ age at death). LDL, low-density lipoprotein; HDL, high-density lipoprotein; HOMA-IR, 
homeostatic model assessment for insulin resistance; PEF, peak expiratory flow; FVC, forced vital capacity; 
FEV1, forced exhalation volume in 1 s; ALS, Amyotrophic lateral sclerosis. 10F/12 M, height at age 10 years 
in girls and age 12 years in boys; 14–adult, height difference between age 14 years and adult; 8–adult, 
height difference between age 8 years and adult; a-size, SITAR-derived height across the growth trajectory; 
c-intensity, SITAR-derived tempo of the pubertal growth spurt
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have reported a mean APHV at around 11.5 years in girls and 13.5 years in boys [22]. 
Overall, the SITAR-modeled APHV values are consistent, with variation in mean age by 
ancestral background (non-European earlier than European), sex (females earlier than 
males), and the era of cohort collection (contemporary cohorts earlier than those col-
lected decades ago).

The relationship between pubertal timing and intensity is controversial, with stud-
ies reaching various conclusions. For example, Marceau et  al. [40] found a relation-
ship between timing and intensity for boys, but not girls, whereas German et  al. [41] 
observed a negative correlation between pubertal onset and progression in girls. Our 
genetic correlation results support the latter, with a strong negative correlation between 
age at menarche and c-intensity. However, in Fig. 1, we see a weaker positive correlation 
between APHV and PHV. Additionally, higher childhood BMI is an established risk fac-
tor for earlier pubertal onset [42], but its relationship with the intensity of puberty is less 
clear than with pubertal timing. German et al. found that higher childhood BMI did not 
correlate with intensity, but instead with earlier pubertal timing. Our results corroborate 
these findings.

For final adult height, our findings diverge from previous studies that have found that 
the timing or intensity of pubertal development is unrelated to final stature [43, 44]. 
These previous findings could be due to small sample sizes. Here, with longitudinal data 
on > 50,000 adolescents, we show that genetic determinants of pubertal growth not only 
impact final stature, but measures of body size from birth to adulthood.

Utilizing genetic data, we performed multi-ancestry GWAS of pubertal growth. While 
the loci we identified are mostly known height loci, we report an association with the 
tempo (c-intensity) of pubertal growth at LIN28B, adding to its known associations with 
pubertal timing and childhood growth trajectories [14, 18].

While epidemiological studies have observed relationships between puberty and adult 
health outcomes, our large sample size and genetic data allowed us to explore genetic 

Table 2  Polygenic risk score results in the UK Biobank

a Proportion of variance explained by the polygenic risk score (PRS)
b Proportion of variance explained by the full model including covariates (array, sex, age, PC1, PC2, PC3, PC4, PC5, PC6) 
and PRS

Phenotype PRS R2 a Full model R2 b PRS P Number 
SNPs in 
PRS

I (10F/12 M)
  Atrial fibrillation diagnosis 0.000215 0.030 3E − 25 4133

  BMI 8E − 05 0.017 3E − 10 4133

  Extreme BMI 2E − 05 0.003 0.0006 4133

  T2D all 2E − 05 0.032 0.001 4133

IV (a-size)
  Atrial fibrillation diagnosis 3E − 05 0.030 0.0003 383

V (b-timing)
  BMI 2E − 05 0.017 0.0005 350

VI (c-intensity)
  BMI 6E − 05 0.017 5E − 08 457

  Atrial fibrillation diagnosis 2E − 05 0.030 0.0006 457
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relationships using genetic correlation analyses and PRS in two large biobanks (PMBB 
and UKBiobank). Our results support genetic relationships between pubertal growth 
and a range of adult-health traits. For instance, previous studies have identified later 
puberty and slower growth velocity as risk factors for later-life decline in bone den-
sity [9] and increased fracture risk [8]. Here, we observed a similar genetic relationship 
between slower c-intensity of growth and lower adult bone mineral density. For glyce-
mic traits, previous studies showed that accelerated childhood growth associated with 
increased type 2 diabetes risk [10, 11], which corroborates with our observation of a 
positive correlation between c-intensity and type 2 diabetes.

The most consistent relationship was that of pubertal growth with cardiac traits. 
Shorter adult stature and less growth from age 7 to 13 years are risk factors for coro-
nary heart disease [45], and we observed a similar genetic correlation between dimin-
ished growth 8–adult and 14–adult and coronary heart disease. To the contrary, greater 
pubertal growth was positively correlated with atrial fibrillation, flutter, and dysrhyth-
mias. Both birthweight [46] and adult height [4] are known causal risk factors for atrial 
fibrillation, and several studies show relationships between increasing height and atrial 
fibrillation incidence [47–50]. These findings support the idea that body height has a 
lifelong impact on atrial fibrillation risk.

Our study does have some limitations. In our data, the b-timing parameter was 
not heritable, although the timing of puberty is well-established as a heritable trait; 
thus, we were unable to perform adult heath genetic correlation analyses with this 
trait. This could be due to our use of age rather than log(age) in the SITAR mod-
eling, but we do detect well-established loci associated with pubertal timing despite 
the low heritability; in the future, studies running SITAR modeling with log(age) may 
provide more accurate estimates for b-timing. Furthermore, we did not study gene 
by environment interactions, which could be important given that pubertal timing is 
strongly affected by environmental factors; this analysis was outside the scope of the 
current study Additionally, not all cohorts were able to collect height data annually or 
bi-annually; thus, estimation of APHV in these cohorts may not be as precise. How-
ever, annual height measurements have been shown to estimate APHV as accurately 
as more frequent measurements [51]. A fuller understanding of the complex rela-
tionship between the genetic variation that impacts pubertal timing and adult health 
outcomes would be achieved by adding other factors (e.g., cumulative estimates of 
environmental risk factor exposure) to statistical models, which could be pursued in 
future investigations. Finally, the sample sizes for some of the ancestry groups remain 
small. In the future, we hope additional non-European datasets with longitudinal 
height measurements will become available.

Conclusions
Here, we present the first trans-ancestry genetic study of childhood and adolescent 
growth. Large-scale growth modeling data allowed an unprecedented view of APV 
and PHV across contemporary and 20th-century pediatric cohorts. Our data sup-
ports genetic relationships between pediatric height growth and health across the life 
course, with different growth trajectories correlated with different outcomes. Being 
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taller at early puberty associated with less growth across puberty; conversely, meas-
ures of growth from birth until adulthood were genetically correlated. Meanwhile, 
being shorter at age 10/12 for girls/boys correlated with a slower intensity of pubertal 
growth and later age at menarche. In terms of adult health outcomes, a faster inten-
sity of pubertal growth correlated with higher BMD, HOMA-IR, fasting insulin, and 
T2D, and lung cancer, and being taller at early puberty and taller across puberty as 
well as having quicker pubertal growth tempo were associated with higher risk for 
atrial fibrillation. These results show that there may not be a single “optimal” pubertal 
growth pattern and highlight the importance of adolescent growth for later life health.

Methods
Contributing studies and phenotypes

Twenty-two cohorts contributed to this study (Additional file  1: Table  S1), some with 
more than one ancestral background. These included up to 41,468 samples of Euro-
pean ancestry (EUR) in 19 cohorts, 7852 African American samples (AFR) in 3 cohorts, 
2714 East Asian (EAS) in 2 cohorts, and 4625 American Native or Hispanic (AMR) in 5 
cohorts. In total, we included data from 26,478 boys and 30,181 girls aged 5–18 years. 
Height was measured using standard practices [6]. Details on the range, average, and 
median number of measurements per cohort is provided in Supplementary Table 1.

Each cohort individually modeled height growth using SITAR following a standard 
protocol.

For cohorts with sparse height measurements, modeling was performed together 
with the BMDCS or ALSPAC cohorts as a reference (see Additional file 1: Table S1). 
The SITAR random effects a-size, b-timing, and c-intensity were used as input pheno-
types for GWAS, in addition to three simple height or height difference phenotypes: 
standardized height at age 10 in girls or age 12 in boys, standardized height difference 
between age 8 and adult (> 19 years), and standardized height difference between age 
14 and adult (> 19 years) (these phenotypes are previously described [14]).

Genome‑wide association and meta‑analysis

Each cohort individually performed genotyping and GWAS. Genotyping was performed 
on Illumina or Affymetrix genotyping arrays with centrally recommended post-gen-
otyping quality control (QC). This included a sample call rate < 0.95, autosomal het-
erozygosity rate > 3 standard deviation from mean, SNP call rate < 0.98, mismatching 
reported and genotype-based sex, Hardy–Weinberg equilibrium (HWE) p < 1 × 10−6, 
and MAF < 0.01. We also excluded SNPs with high duplicate discordance rates and 
monomorphic SNPs. When possible, imputation was performed against the Haplotype 
Reference Consortium v.1.0 or 1.1 [52]; other population-specific panels were used for 
specific studies (SISU v2 for HBCS; Pima Indian-specific panel for the Southwest Ameri-
can Indians; 1000 Genomes for SCORM, NSHD, CLHNS). Following imputation, it was 
recommended to only remove monomorphic SNPs and to not filter on any other criteria 
as pre-meta-analysis QC would be performed centrally. Next, each cohort performed 
GWAS using cohort-specific covariates (Additional file  1: Table  S1). Post-imputation 
QC was then performed centrally for all studies and included filters for MAF < 0.05, 
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HWE, and imputation quality (excluding INFO < 0.4). EasyQC [53] was used to perform 
cohort-specific QC and meta-level QC. Ancestry-specific meta-analysis was then per-
formed with GWAMA using 2 rounds of genomic control to correct for population.

Trans‑ancestral meta‑analysis

Meta-Regression of Multi-Ethnic Genetic Association (MR-Mega) [54] was used to per-
form meta-analysis on all cohorts to account for differences in cohort ancestry. A female 
only, male only, and all sex combined meta-analysis was performed for each of the six 
phenotypes. Post meta-analysis SNPs were filtered out if they had MAF < 0.05 or were 
present in less than 50% of the cohorts. Manhattan plots and QQ plots are shown in 
Additional file 2: Fig. S4 and S5, respectively. Lambda values for each GWAS are given in 
Additional file 1: Table S11.

Credible set analysis

The script credible_set_analysis.py was used to calculate the 95% credible sets for every 
genome-wide significant locus. The sum of the posterior probabilities was calculated 
from a sorted list of the most significant Bayes’ factors until the cumulative sum was 
equal to or greater than 0.95. This set of SNPs was then considered the 95% credible set.

Functional annotation (FUMA, OpenTargets, Phenoscanner)

Trans-ancestry summary statistics were uploaded to Functional Mapping and Annota-
tion of Genome-Wide Association Studies (FUMA GWAS; https://​fuma.​ctglab.​nl/) to 
provide detailed annotation of the GWAS results [55]. PhenoScanner V2 (http://​www.​
pheno​scann​er.​medsc​hl.​cam.​ac.​uk/) was used to look up significant sentinel signals and 
their proxies (r2 = 0.8) to gather all statistically significant GWAS associations with 
other traits and diseases [25, 56]. OpenTargets (https://​www.​genet​ics.​opent​argets.​org/) 
was further used to gather functional information on sentinel SNPs and target genes. 
Additionally, functional information on potential effector genes was gathered from 
the Online Mendelian Inheritance in Man (OMIM) database (https://​www.​ncbi.​nlm.​
nih.​gov/​omim), the International Mouse Phenotyping Consortium (IMPC) database 
(https://​www.​mouse​pheno​type.​org/), and the Mouse Genome Informatics database 
(http://​www.​infor​matics.​jax.​org/).

Genetic correlations

LD Score Regression [24], either on http://​ldsc.​broad​insti​tute.​org/ or using python 
scripts downloaded from GitHub (https://​github.​com/​bulik/​ldsc), was used to perform 
genetic correlation analyses between the pubertal growth phenotypes (European meta-
analyses) and outcome traits.

PMBB PheWAS

The Penn Medicine BioBank (PMBB) recruits participants through the University of 
Pennsylvania Health system. At the time of medical appointment, participants give 
informed consent to access their electronic health records and donate a blood sample 
for DNA analysis. Genotyping, imputation, and phenotyping of this sample have been 

https://fuma.ctglab.nl/
http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
https://www.genetics.opentargets.org/
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described in detail previously [57]. For the analysis presented here, we used genotype 
and phenotype data for 10,182 European ancestry individuals.

As the primary phenotypes for polygenic risk scores are not readily available in the 
PMBB cohort due to it being an adult sample, we identified the best performing PRS in 
a leave-one-out analysis, and then used that PRS in PMBB. First, we repeated the meta-
analysis in European ancestry cohorts only, leaving out the CHOP Center for Applied 
Genomics (CAG) cohort. SNPs were then restricted to a common set present in all three 
datasets: the meta-analysis, CAG, and PMBB: 1 = 5,070,548, 2 = 5,065,379, 3 = 5,035,856, 
4 = 5,035,192, 5 = 5,034,759, 6 = 5,035,034. Multiple candidate polygenic risk scores at 
nine p-value thresholds (× 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3, 0.01, 0.05, 0.1, 0.5, 1) were 
calculated in European individuals from the CAG cohort using PRSice, with 2,500 ran-
domly selected European ancestry samples from CAG used to estimate LD (r2 > 0.1). 
Each candidate PRS for each phenotype was then tested against the corresponding 
phenotype in the CAG cohort in order to find the optimal p-value threshold. The SNPs 
included in the candidate PRS that produced the strongest association for each pheno-
type were then used to create the PRS in the PMBB cohort (Additional file 1: Table S8).

In the PMBB, PRS were created in 10,182 European ancestry individuals in PLINK 1.9 
using the SNPs from the best performing PRS in CAG, and the weights derived from 
the leave-one-out meta-analysis. PRS were standardized with mean = 0 and SD = 1. A 
PheWAS was performed using logistic regression models with the PRS as the independ-
ent variable, phecodes as the dependent variable, and age, sex, and the first 10 principal 
components (PCs) as covariates. Phecodes with > 100 cases were tested (N = 512).

UKBB PheWAS

We used the UK Biobank (UKBB) cohort with imputed genotype and electronic health 
record data to replicate nominally significant PMBB PheWAS findings and LDSC genetic 
correlations. Details on genotyping, imputation, and phenotyping in UKBB have been 
published elsewhere [58]. The best performing PRS—as described above in the CAG 
cohort—was constructed and simultaneously tested for their associations with 57 binary 
(N = 421,679) and 26 continuous phenotypes (Nmax = 486,248) using PRSice-2 [59]. Dis-
ease status was defined using ICD10 codes from hospital admission data released in 
March 2020 and only outcomes with > 100 cases were included. Binary phenotypes were 
tested in logistic regression while continuous phenotypes in linear regression models. 
Covariates included age, sex, genotyping array, and the first six genetic principal compo-
nents in all models.
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