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Abstract

Following the rapid, but independent, diffusion of x-ray spectral and phase-contrast systems, this
work demonstrates the first combination of spectral and phase-contrast computed tomography (CT)
obtained by using the edge-illumination technique and a CdTe small-pixel (62 pim) spectral detector.
A theoretical model is introduced, starting from a standard attenuation-based spectral decomposition
and leading to spectral phase-contrast material decomposition. Each step of the model is followed by
quantification of accuracy and sensitivity on experimental data of a test phantom containing different
solutions with known concentrations. An example of a micro CT application (20 ;zm voxel size) on an
iodine-perfused ex vivo murine model is reported. The work demonstrates that spectral-phase
contrast combines the advantages of spectral imaging, i.e. high-Z material discrimination capability,
and phase-contrast imaging, i.e. soft tissue sensitivity, yielding simultaneously mass density maps of
water, calcium, and iodine with an accuracy of 1.1%, 3.5%, and 1.9% (root mean square errors),
respectively. Results also show a 9-fold increase in the signal-to-noise ratio of the water channel when
compared to standard spectral decomposition. The application to the murine model revealed the
potential of the technique in the simultaneous 3D visualization of soft tissue, bone, and vasculature.
While being implemented by using a broad spectrum (pink beam) at a synchrotron radiation facility
(Elettra, Trieste, Italy), the proposed experimental setup can be readily translated to compact
laboratory systems including conventional x-ray tubes.

1. Introduction

The field of x-ray imaging is evolving due to the diffusion of spectral and phase-contrast techniques. In the
context of clinical applications, the recent advent of computed tomography (CT) scanners equipped with
photon-counting detectors has paved the way for detector-based spectral imaging (Willemink et al 2018).
Compared to the previous generation of dual-energy scanners based on dual-source, voltage switching, or dual-
layer sensors, new systems implementing photon-counting detectors with multiple energy thresholds bring
significant hardware simplification and increased flexibility (Hsieh et al 2020). Additionally, photon counters
have been shown to decrease image noise at low fluxes, owing to electronic noise rejection, and to improve image
contrast, due to the absence of spectral weighting (Flohr et al 2020). At the same time, the availability of small-
pixel (<100 pm) photon-counting devices is impacting micro-CT (1CT) systems dedicated to pre-clinical or
non-clinical studies, enabling material discrimination in 3D at the micrometer scale by using polychromatic
x-ray sources (Badea et al 2019, Brun et al 2020, Paakkari et al 2021). Spectral CT uses energy-binned images of

© 2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd


https://doi.org/10.1088/1361-6560/ad3328
https://orcid.org/0000-0002-4009-8191
https://orcid.org/0000-0002-4009-8191
https://orcid.org/0000-0003-0155-5326
https://orcid.org/0000-0003-0155-5326
https://orcid.org/0000-0002-7810-2301
https://orcid.org/0000-0002-7810-2301
https://orcid.org/0000-0002-7150-2951
https://orcid.org/0000-0002-7150-2951
mailto:luca.brombal@ts.infn.it
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ad3328&domain=pdf&date_stamp=2024-04-03
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ad3328&domain=pdf&date_stamp=2024-04-03
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0

10P Publishing

Phys. Med. Biol. 69 (2024) 075027 LBrombal et al

the sample to produce material-specific 3D maps of a given quantity, typically the mass density (p) (Roessl and
Proksa 2007). More in detail, the different energy dependence of the attenuation coefficient of elements with
different atomic numbers (Z) is used to discriminate among materials, in a process known as spectral or material
decomposition (Alvarez and Macovski 1976). On the other hand, since spectral CT is based on x-ray attenuation,
it suffers from the low contrast produced by weakly absorbing materials, therefore hampering the possibility of
discriminating and quantifying low-Z biological tissues. To overcome this limitation, high-Z contrast agents are
often used to target specific anatomical or functional structures of interest. Specifically, the sharp increase in
attenuation seen in correspondence with the contrast agent’s K-edge can be exploited to yield optimal material
decomposition results, thus isolating the target organ (contrast image) from the remaining anatomical
background (non-contrast image) (Faby et al 2015).

In parallel to—but independently from—the diffusion of spectral CT, x-ray phase-contrast imaging (XPCI)
is becoming widely available not only at synchrotron radiation facilities (Bravin et al 2012), but also with
compact systems based on conventional x-ray sources (Endrizzi 2018, Quenot et al 2022). The clinical potential
of XPCI has been recently demonstrated for a number of different techniques. Promising results have been
obtained for instance in the field of chest and breast imaging by using Talbot-Lau grating interferometry (GI)
(Frank et al 2022, Rawlik et al 2023), in the field of intraoperative tomography by using edge illumination (EI)
(Havariyoun et al 2019), and in the field of breast CT by using the propagation-based imaging method (Gureyev
etal2019, Longo et al 2019). An even larger number of studies based on XPCI techniques has been published in
the context of pre-clinical or non-clinical research, among which it is worth mentioning recent applications in
the fields of virtual histology (Massimi et al 2021, Polikarpov et al 2023) and safety inspection (Partridge et al
2022). Owing to the 3-order of magnitude difference between the unit decrement of the real part (6) and the
imaginary part ((3) of the complex refractive index (n), XPCI delivers higher visibility on low-Z materials, such as
soft tissues, with respect to attenuation or spectral imaging. Many XPCI techniques allow the extraction of both
attenuation and phase-shift maps. Since phase-shift and attenuation signals have different dependencies on the
physical properties of the sample (p and Z), the attenuation/phase duality can be used for material
decomposition (Braig et al 2018, Buchanan et al 2022). On the other hand, at the energy resolution typically
available in spectral imaging systems (>1 keV), the phase signal does not feature K-edge discontinuities hence
being comparatively less effective when contrast media are used.

In this context, it is clear that the combination of spectral and phase-contrast techniques would bring both
high visibility of low-Z biological tissues and effective separation of high-Z materials (contrast media). So far,
due to the limited availability of phase-contrast systems equipped with spectral detectors, only a relatively small
number of spectral phase contrast studies have been reported in the literature (Mechlem et al 2019, Schaff et al
2020, Astolfo et al 2023, Brombal et al 2023a). The most illustrative example is arguably the one provided by Ji
etal (2020) where a GI system is coupled with a 100 pim pixel size photon-counting detector. In their paper, the
authors introduce a theoretical model of spectral phase contrast and demonstrate it on a test object and a simple
phantom.

In this work, the first integration of spectral phase contrast in a tomographic El setup is demonstrated. The
system includes a small-pixel (62 um) spectral detector and the technique is applied to a test phantom and an
ex vivo murine model perfused post-morterm with an iodine-based contrast agent. High-resolution images are
obtained (down to 20 pm voxel size) and quantification of soft tissue (water), bone (calcium), and contrast
medium (iodine) is simultaneously performed. A step-by-step theoretical model is introduced transitioning
from standard spectral material decomposition to attenuation phase-contrast duality and, finally, to spectral
phase contrast. Each theoretical step is followed by imaging results where the accuracy and sensitivity of the
decomposition are quantitatively compared. The acquisitions are performed at the Elettra Synchrotron facility
(Trieste, Italy) by employing a filtered polychromatic beam (pink beam). As will become clear in the following,
this application can be readily translated into laboratory systems based on conventional x-ray tubes.

2. Materials and methods

2.1. Spectral, attenuation/phase, and spectral/phase decomposition algorithms
To describe both spectral and phase-contrast effects, it is convenient to use an x-ray/matter interaction model
where the sample is defined by the three-dimensional distribution of its complex refractive index
n=1— 6+ if. Here, the complex term 3 = hc/(47E) - 11, where his Plank’s constant, ¢ is the speed of light, and
Eisthe x-ray energy, is proportional to the absorption coefficient y, (Als-Nielsen and McMorrow 2011). The
decrement from unity of the real part § is proportional to the phase shift.

The physical information contained in conventional CT is the attenuation coefficient which, in the
diagnostic radiology energy range (10-150 keV), can be written as:
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H(E, Z) = plfpe(E; Z) + fi (E, Z) + fes(B)] ()

where fpi(E, 2), f(E, Z) are the energy and atomic number dependent cross sections (per unit of mass)
accounting for the photo-electric absorption, i.e. i, = p(fpr + fx), far from and across K-edge absorption
energies, respectively; fcs(E) is the energy-dependent, but atomic number independent, Compton scattering
cross section calculated according to the Klein-Nishina theory (Evans 1955, Sukovle and Clinthorne 1999,
Schlomka et al 2008). By probing attenuation at different energies, material discrimination is allowed owing to
the material-specific energy dependence of the cross sections. The previous equation explicitly contains the
proportionality to the mass density (p) as cross sections are typically tabulated per unit of mass.

On the other hand, the phase term of the refractive index, which is measured in XPCI CT, has simpler energy
and material dependencies:

Z nNah*c® | nNyh*c?
A 2mE? " 4xE?

§(E) = p @
where 1, is the classical electron radius, N is the Avogadro number, and A is the mass number (Als-Nielsen and
McMorrow 2011). Under the approximation Z/A ~ 1/2, which holds true for most of the biological tissues, § is
proportional to the mass density and independent of the material atomic number. Interestingly, the latter feature
implies that at a fixed energy 6 is proportional to the Compton scattering cross-section fcs.

The quantification of specific materials in an x-ray dataset is performed through material decomposition
algorithms, where two or more linearly independent input images are written as a linear combination of basis
material output images. The linear combination coefficients are related to some physical property of the basis
material and they are usually computed through matrix inversion. Specifically, in CT, the material
decomposition problem can be formulated to yield 3D maps of the mass density. The following sections describe
three material decomposition algorithms representing three different x-ray imaging approaches relying on (i) a
standard spectral setup based on an energy-resolving detector, (ii) a standard phase-contrast system without
spectral information, and (iii) a spectral phase-contrast setup including an energy-resolving detector. All
algorithms are based on matrix inversion but vary in terms of their input data. Standard spectral material
decomposition takes as input two attenuation channels at different energies. Attenuation/phase decomposition
is based on a single attenuation channel (non-spectral) and a phase channel. Finally, spectral/phase
decomposition is based on two spectral attenuation channels and one phase channel.

2.1.1. Spectral material decomposition
When dealing with attenuation-based spectral decomposition, each attenuation image is written as a linear
combination of mass attenuation coefficients of given basis materials (i.e. the decomposition materials):

p=y pi(ﬁ) ©)
i Pl

where the weights correspond to the mass density, the index 7 runs over the number of chosen basis materials,
and the equivalence has to be intended on a voxel-by-voxel basis. In the previous equation, the dependence on E
has been dropped since, as it will be clear in the following section, 11/ p values are typically given as mean values
integrated over the energy spectrum.

Considering the case of a spectral imaging system producing attenuation images over two energy bins, which
is the most common scenario when using small-pixel chromatic detectors or dual-energy systems, equation (3)
can be extended to a system of linear equations

L

GRS
g l(z)f Bl

the superscripts L and H refer to the low and high energy bins, respectively, while the subscripts 1 and 2 indicate
two decomposition materials. At this point, material-decomposed density maps p; , can be generated by
inverting the linear system, i.e. inverting the decomposition matrix. Unless other assumptions are made, as in
the case of mass fraction decomposition (Liu et al 2009), the availability of 2 energy bins limits the decomposition
to 2 materials.

It should also be mentioned that, while this formalism can be in principle applied to any pair of
decomposition materials, the presence of image noise requires two basis materials with rather different energy
dependencies (i.e. appreciably different atomic numbers) to avoid major noise amplification in the matrix
inversion (Di Trapani et al 2022). For this reason, spectral decomposition is particularly suited to quantify and
separate, for instance, high-Z contrast media from the soft tissue background. In this specific case, the optimal
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choice is to maximize the difference in the energy dependence of decomposition materials by selecting the
energy bins above and below the K-edge energy of the contrast medium.

2.1.2. Attenuation/phase material decomposition

Most XPCI CT techniques give as output both attenuation and phase maps. To apply the same formalism used
for the spectral case and take into account equation (2), the phase image is written as a linear combination of §
per unit of mass of a given set of materials, where the weights are given by their mass densities:

i=50(2) ®
i P i

It is worth noting that the linear combination coefficients (p;) in the previous equation are the same as in
equation (3). Equation (5) is formally equivalent to the attenuation-based case, hence making the entire
decomposition problem equivalent to the one of the previous section:

A |G CL
e (z)JM

Here, instead of low-energy and high-energy attenuation bins, single energy bin attenuation and phase images
are used as input, while tabulated mass attenuation and phase coefficients are used in the decomposition matrix.
Differently from the spectral case, the attenuation/phase decomposition allows for the choice of basis materials
with rather similar attenuation properties. In fact, while the phase channel depends only on the mass density (see
equation (2)), attenuation is in general strongly dependent on Z, making the two decomposition bases
independent, as required in the matrix inversion process. For this reason, many examples exist in literature
where attenuation/phase decomposition has been used to separate and quantify e.g., plastic materials, soft
tissues, and bones (Braig et al 2018, Navarrete-Ledn et al 2023). Conversely, attenuation/phase does not provide
specific advantages in distinguishing and quantifying K-edge contrast elements as input images are integrated
over the whole energy spectrum.

2.1.3. Spectral/phase material decomposition

Having introduced spectral and attenuation/phase decompositions individually, the extension to the case where
both are combined is straightforward. Specifically, the attenuation/phase system in equation (6) can be modified
by replacing the single-attenuation channel with the low and high-energy attenuation bins. Hence, the spectral-
phase decomposition system becomes:

L L L

Pl \PJy \PJs
17 H H HI|| 1

| = (g) (ﬁ (ﬁ) s @
5 ) \r), \r) ||rs

() GG

In this case, the availability of three input images allows for the introduction of a third decomposition material.
Itis worth noting that the energy dependence of 6 is the same for all materials, as shown in equation (2), hence
the addition of phase energy bins is equivalent to adding linearly dependent rows in the decomposition matrix.

The linear system in equation (7) combines the advantages of spectral and phase-contrast imaging for the
task of material decomposition. Specifically, considering the example of a biological sample perfused post-
morterm with a high-Z contrast medium, spectral information would mainly contribute to the quantification of a
high-Z contrast medium, whereas the attenuation/phase duality would allow the separation of biological tissue
components. Figure 1(a) shows the mass attenuation and phase coefficients as a function of energy for the basis
materials used in this work, namely water, calcium, and iodine.

2.2. Edge illumination

In this paper, phase-contrast imaging is performed by using the EI technique (Olivo and Speller 2007). This
method requires the introduction of two absorbing masks, placed upstream (sample mask) and downstream
(detector mask) of the sample, respectively (figure 2(a)). The sample mask shapes the beam into an array of non-
interfering beamlets which reach the detector after traversing the sample. Here, insensitive regions between
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Figure 1. (a) Mass attenuation (blue) and phase (orange) coefficients as a function of energy of water, calcium, and iodine. (b) X-ray
spectrum used for acquisition (dotted line) and energy spectral response of the system (area-filled curves).
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Figure 2. Sketch of an edge illumination setup without (a) and with (b) the sample. In (c), the illumination curves obtained without
(blue line) and with (orange line) sample are shown. In the experiment, the curve was sampled the four points shown in the plots.

adjacent pixels are created by the detector mask. The two masks are geometrically equivalent, only scaled by a
magnification factor. The displacement of the sample mask by a specific number of steps with respect to the
detector mask, which is kept fixed, creates the illumination curve (figure 2(c)). The illumination curve is typically
modeled as a Gaussian function, whose parameters are estimated from a fit performed on a minimum of three
sample points (Endrizzi et al 2014). A reference illumination curve is obtained, for each pixel, with no sample
(figure 2(a) and blue curve in (c)). When the sample is introduced, the illumination curve is dampened
(attenuation) and displaced laterally (refraction) (figure 2(b) and orange curve in (c)). The measurement of these
two contributions allows for the retrieval of independent attenuation and differential phase images. The latter is
subsequently integrated and gives access to the sample-induced phase shift, i.e. the projection of 6 along the
sample’s thickness.

2.3. Spectral characterization of the system
The determination of the coefficients of the basis materials in the decomposition matrices requires a thorough
spectral characterization of the imaging system, both in terms of detector energy response and input x-ray
spectrum. Specifically, the spectral response of the CdTe chromatic detector used in this work (Pixirad-PixiellI),
has been obtained via threshold scans with monochromatic radiation in the range 2650 keV (Di Trapani et al
2020). The results of the characterization have been subsequently used to tune a dedicated Geant4 simulation
(Brombal et al 2022), which also included CdTe fluorescence effects and a realistic charge-sharing compensation
mechanism. The output of the simulation allows to extrapolate the spectral response of the detector for any
energy threshold and x-ray spectrum. The spectrum of the synchrotron beam was estimated by using the
dedicated software Spectra (Tanaka 2021), while the effect of beam filtration was computed by using attenuation
coefficients available in the XrayDB database (Elam et al 2002).

From the estimated x-ray spectrum and detector response, the energy response of the system was calculated
for the threshold values, 26 and 33 keV, used in the acquisitions, as shown in figure 1(b). The low threshold
(26 keV) was chosen to exclude the cadmium fluorescence, while the high threshold (33 keV) was set to
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spectral
detector

Figure 3. A photograph of the experimental setup (a) where the main components are outlined. In (b) and (c) the calibrated-cuvette
sample and the mouse sample are sketched, respectively.

maximize the iodine’s K-edge contrast (Di Trapani et al 2023). Additionally, the x-ray spectrum was shaped to be
symmetric and centered on the second threshold, thus ensuring nearly equal statistics in the two energy bins.

The elements of the decomposition matrix were determined as the average of the tabulated mass attenuation
and phase coefficients weighted over the spectrum and the spectral response of the detector:

(E)L,H_ [ S(E)RL’H(E)(%)i(E)dE' ( 5) ) [ S(E)(RL(E)+RH(E))(%)i(E)dE

LH = I I (8)
), [SE)RLH(E)dE p). [S(E)RL(E) + RH(E))dE

where S is the polychromatic x-ray spectrum, R are the detector energy response for the low and high energy
bins, respectively, and R* 4+ R*is the spectral response when only a single energy bin is used (non-spectral

imaging).

2.4. Experimental setup and samples

The images were acquired at the SYRMEP beamline (Tromba et al 2010) of the Elettra Synchrotron facility
(Trieste, Italy). The storage ring electron energy was 2.0 GeV and the current was 300 mA. X-ray radiation is
produced through a bending magnet, generating a laminar beam with 7 mrad and 0.2 mrad of horizontal and
vertical divergence, respectively. The beam dimension was defined with two pairs of motorized tungsten slits,
resultingin a 3.8 mm high and 35 mm wide beam at the sample position. The desired polychromatic (pink)
spectrum was obtained by filtering the white beam with 5 mm of aluminum and 120 mm of water, (see

figure 1(b)). As aresult, the flux at the detector when the two masks are aligned (i.e. top of the illumination curve)
is in the order of 10* photons/pixel/s, one order of magnitude lower than Pixirad’s linearity limit (Delogu et al
2016).

A photograph of the experimental setup showing the relevant instrumentation is shown in figure 3(a). The
absorption masks featured a gold thickness of 250 pim. The periods and apertures for the sample and detector
masks were 116 pm (period), 19 pm (aperture) and 61 pm (period), 10 pm (aperture), respectively. The
combination of masks’ periods and apertures corresponds to the so-called ‘skipped’ geometry, where every
other detector pixel column is illuminated. This choice was made, among available options, to cope with the
slight beam divergence and geometry of the SYRMEP beamline. The masks were mounted onto multi-axis
positioning stages for alignment and stepping procedures. During the acquisition, 4 points on the illumination
curve were acquired, corresponding to the left far slope (15%), both left and right half slopes (50%), and the top
(100%). To ensure a complete sampling of the imaged object, 6 lateral displacements of the sample (i.e. dithering
steps) were performed. The distances from the bending magnet source were 21.34 m for the sample mask,
21.84 m for the sample, 22.43 m for the detector mask, and 22.80 m for the detector.
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Two samples were scanned. The first sample was made of 5 plastic cuvettes filled with solutions of known
concentration. A sketch of the sample is shown in figure 3(b). Two cuvettes (number 1 and 2) were filled with
CaCl, solutions with densities of 370 mg ml ™' and 180 mg ml ', two (number 3 and 4) were filled with iodine
solutions with densities of 50 mg ml~' and 10 mg ml ™', and the last one (number 5) contained pure distilled
water. The concentrations of iodine were chosen to be similar to those commonly encountered in imaging
applications making use of iodine-based contrast media. The second sample was an ex vivo 7 week old female
athymic nude mouse (Charles River Laboratories, Wilmington, MA, USA), that received post-mortem p
Angioﬁl® (Fumedica AG, Muri, Switzerland), a polymerizing iodine-based vascular contrast agent. The mouse
was euthanized and afterward perfused with warm dPBS and contrast agent through the descending aorta. The
euthanasia of the animal was performed according to the Helmholtz Zentrum Munich Animal Care and Use
Committee guidelines. All relevant ethics and protocols for the study were in accordance with regulations of the
government of Upper Bavaria. After euthanasia the ;zAngiofil” was left to polymerize for 1 h at room
temperature. The sample was then shortly rinsed with dPBS, fixed in 4% paraformaldehyde, and stored at 4°C
until ex vivo uCT scanning for which it was inserted in a standard 50 ml Falcon tube. A sketch of a transversal
slice of the mouse sample is shown in figure 3(c).

Tomographic images of the sample containing the calibrated cuvettes were acquired at an angular step of
0.5° over 180°. For the animal sample, which was larger than the detector field-of-view (FOV), the scan was
carried out over 360° to perform the extended-FOV CT reconstruction (Wang 2002).

Spectral projection images were acquired with a chromatic photon-counting detector (Pixirad1-Pixielll). The
detector features a 650 pum thick CdTe sensor, a 62 pum pixel size, and a sensitive area of 512 x 402 pixels,
corresponding to 31.7 x 24.9 mm? (Bellazzini et al 2015). The detector was operated in the two-color mode, through
which incoming photons are recorded in low and high-energy bins. To ensure the best spectral performance and a
small cross-talk between adjacent illuminated pixels, the charge-sharing compensation mode (NPISUM) was enabled
during acquisition (Di Trapani et al 2020). The exposure time per each step of the acquisition was set to 1.2 s.
Considering the number of dithering steps (6), illumination curve points (4), and projections (360 for the 180° scan
and 720 for the 360° scan), the total exposure time was 2.9 h for the cuvette sample and 5.8 h for the mouse sample.
From the number of detected photons, the total fluence on the mouse sample was estimated to be in the order of
3 x 10" photons cm ™ > corresponding to an entrance air kerma in the order of 2 Gy.

2.5.Image reconstruction and analysis

Raw projection images acquired at different positions of the illumination curve were processed via GPU-based
Gaussian fitting to retrieve attenuation and differential phase signals (Przybylski et al 2017, Brombal et al 2023a).
Integral phase projections were obtained from the differential phase via a Wiener-filter regularized phase-
integration algorithm (Massimi et al 2020). The parallel beam filtered back projection was then used to
reconstruct 3D tomographic volumes from both the attenuation and integrated-phase projections. The cuvette
sample is reconstructed with a 59 x 59 x 59 um’ voxel (equal to the effective pixel size), as it does not contain
high-resolution features. Conversely, the mouse sample was reconstructed with a 20 x 20 x 20 um’ voxel size
(equal to the dithering step), to preserve high-resolution details. After reconstruction, material decomposition is
applied following all three different algorithms outlined in section 2.1.

The standard spectral material decomposition in equation (4) uses low-energy and high-energy bin
attenuation reconstructions as input. The attenuation/phase decomposition, described in equation (6), is
applied on phase and attenuation reconstructions obtained by summing the raw data of low-energy and high-
energy bins (i.e. considering the whole energy spectrum). The spectral /phase decomposition in equation (7)
uses low-energy, high-energy and phase reconstructions.

Following material decomposition, the cuvette sample images were used to estimate the accuracy and
sensitivity of each algorithm. Signal (i.e. density), noise, and signal-to-noise ratio (SNR) were measured for each
cuvette within circular regions of interest, while uncertainties were computed by taking the standard deviation
of the measured quantity across five consecutive slices. It is worth mentioning that, owing to the accurate
spectral characterization, no calibration was needed, and the output images were directly produced in a mg/ml
density scale.

The full spectral and material-decomposed datasets of both samples are publicly available at (Brombal 2023b)

3. Results

3.1. Test object

Figure 4 shows the attenuation and phase CT reconstructions of the calibrated cuvette-sample, and their
respective material decompositions obtained with spectral, attenuation/phase, and spectral /phase matrices as
described in the previous section.
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Figure 4. Input tomographic reconstructions and material decomposition outputs of the cuvette sample for each tested algorithm,
namely spectral, attenuation/phase and spectral /phase.

The first two rows show the conventional spectral imaging case. By comparing the two energy bins in the first
row, it can be seen that the attenuation of the iodine-containing cuvettes (3 and 4) increases in the high energy
bin due to the iodine K-edge, while attenuation reduces in calcium chloride and water-containing cuvettes (1, 2,
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Table 1. Quantitative results obtained from the images displayed in figure 4, comparing the three algorithms, namely spectral,
attenuation/phase, and spectral/phase decompositions. The results are reported in terms of measured signal, noise, SNR, and

relative error.
Material [density (mg/ml)] Signal (mg/ml) Noise (mg/ml) SNR A (%)
Spectral 1[50] 51.1 0.9 172 £ 1.1 2.97 £0.14 2.2
1[10] 10.6 £ 0.2 12.8 £0.8 0.83 +0.07 6.3
CaCl, [370] / / / /
CaCl, [185] / / / /
H,O [1000] 987 + 17 739 £+ 26 1.34 £ 0.04 —1.3
Attenuation/phase 1[50] / / / /
I[10] / / / /
CaCl, [370] 350 £ 10 65.5+24 5.35 £ 0.27 —5.4
CaCl, [185] 182 +4 59.8 + 1.7 3.05 + 0.08 —1.4
H,O[1000] 988 + 15 62.5 + 2.1 15.8 £ 0.7 —1.2
Spectral/phase I[50] 48.7 £ 0.7 12.6 £0.7 3.87 £0.18 —2.7
1[10] 10.0 £ 0.2 9.3+ 0.6 1.08 £ 0.08 0.1
CaCl, [370] 354 +9 115+ 4 3.08 £0.13 —4.4
CaCl, [185] 181 £ 2 107 £ 4 1.69 £ 0.06 —2.4
H,0[1000] 989 + 14 823 +£26 120 £ 0.5 —1.1

and 5). Focusing on the decomposition in the second row, the iodine signal is found, as expected, only within
cuvettes 3 and 4, and no contamination with water or calcium chloride is observed. On the other hand, the water
map image shows strong signal contamination from the calcium chloride cuvettes, driving the density towards
high values (~4 g 17! in cuvette number 1), and an underestimation of the water density (~0.4 g ™Y in the
highest-iodine concentration cuvette (number 3). Additionally, with respect to the input images, the output
water map features higher image noise, boosted by matrix inversion.

The two central rows display the attenuation/phase decomposition. Compared to the non-spectral
attenuation image (third row, first column), the phase image (third row, last column) shows a much smaller
signal variation across the different cuvettes. This reflects the physics underlying equation (2), which
demonstrates that the phase is solely dependent on the mass density. Given that the cuvette sample is composed
of water solutions, the mass density in this specific case has a relatively small variation. Focusing on the
decomposition maps (fourth row), it can be seen that calcium chloride is correctly quantified, yet a strongiodine
signal contamination is observed in cuvettes 3 and 4. With respect to the conventional spectral decomposition,
the water density image has a more uniform distribution except for the cuvette containing the highest
concentration of iodine (number 3), where water density is underestimated. Overall, the attenuation/phase
decomposition produces images with less noise with respect to the conventional spectral decomposition, mainly
due to the higher SNR ratio of the input images.

The final two rows show the results of the spectral /phase decomposition, where the spectral attenuation
input images are the same as those displayed in the first row, while the phase image is the same as reported in the
third row. Focusing on the decomposition images (sixth row), all materials are correctly identified and no
relevant signal contamination is observed. Additionally, owing to the low noise of the input phase channel,
spectral/phase decomposition images show a significantly reduced level of noise compared to conventional
spectral decomposition.

Table 1 summarizes the quantitative results obtained from the images displayed in figure 4. The measured
mass densities in each cuvette for each algorithm, as well as their nominal values, are reported. It can be observed
that, when present in the decomposition, the density of all materials is correctly reconstructed within three
standard deviations. At the same time, the spectral /phase contrast decomposition is, on average, the closest to
the nominal density: root mean square errors (rmse) computed from the last column of table 1 are of 1.1%,
1.9%, and 3.5% for water, iodine, and calcium chloride solutions, respectively. In the case of spectral
decomposition rmse is of 1.3% for water and 4.8% for iodine, while in the attenuation/phase decomposition
rmse is of 1.2% for water and 3.9% for calcium chloride.

Itis important to note that images of calcium chloride could have been obtained from the spectral algorithm,
and images of iodine could have been obtained from the attenuation/phase algorithm, by swapping the used
basis materials. However, this would have resulted in the loss of quantitative information about the material that
was not included in the decomposition, in a similar way to that reported in table 1. Only the spectral /phase
contrast decomposition allows for the simultaneous quantification of all the 3 material densities.
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Figure 5. Input tomographic reconstructions and material decomposition output of the post-mortem jiAngiofil”-perfused mouse
sample using spectral/phase algorithm. In the third row, the zoomed-in details of the iodine and calcium maps.

Examining SNR values, spectral /phase decomposition shows an improvement by a factor of 9 in the water
image, and by a factor of 1.3 in iodine images compared to standard spectral decomposition. Conversely,
compared to the attenuation/phase algorithm, spectral /phase decomposition shows alower SNR,
corresponding to a ~25% decrease in the water image and a ~45% reduction in the calcium chloride image. This
can be readily explained by considering two factors: the different noise content of the input images and the
different number of output decomposition materials between the two algorithms. These aspects will be further
discussed in the following section.

3.2. Murine model
Figure 5 shows the reconstruction images of the post-mortem pAngiofil -perfused mouse sample. By focusing on
the spectral attenuation images in the first row, 11~ and 1, it is only possible to discern the signal of bones and
iodine-perfused vasculature, while no soft tissue can be identified. On the contrary, in the phase input
reconstruction, soft tissue structures such as the cutaneous and subcutaneous layers and internal organs are
visible, despite the sample being soaked in formalin and immersed in a formalin background. The spectral/
phase contrast decomposition into water (soft tissues), iodine (vasculature), and calcium (bone tissue) is shown
in the second row of images. From calcium and iodine images, bone tissue and vasculature are clearly
distinguishable, and no contamination signal is observed. The soft tissue and formalin background signals
exclusively appear in the water channel, where a residual signal in correspondence to bones and blood vessels is
expected as they are not composed of pure calcium and iodine, respectively. The zoomed-in details of the iodine
and calcium maps in the third row highlight the capability of the system to capture small blood vessels (<50 pim)
as well as the fine trabecular structure of the bone.

A 3D rendering of the murine sample reconstruction after spectral phase contrast material decomposition is
shown in figure 6. The water channel, displayed with the blue palette, is cut along axial and longitudinal planes to
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Figure 6. 3D rendering of the 1 Angiofil*-perfused mouse sample using the three decomposition channels, namely water (soft tissues,
blue), iodine (vasculature, red), and calcium (bones, white).

reveal the calcium (white palette) and iodine (red palette) channels. The rendering further demonstrates the
simultaneous visualization soft tissues, bones, and vasculature.

4, Discussion and conclusions

The direct comparison of the three decomposition algorithms (figure 4) allows us to understand how the choice
of different input images affects the output density maps. When aiming at contrast agent quantification, spectral
attenuation information (1%, 1) is the most appropriate, as the contrast medium K-edge jump is specific to the
attenuation coefficient. For this reason, when phase-channel information is added to the spectral attenuation
channels, the SNR increase of the iodine map is modest with respect to the conventional spectral case (30%).

On the other hand, the differentiation of biological tissues (i.e. no K-edge materials) greatly benefits from the
addition of the phase () to the total attenuation (1" ) channel. This is due to two main reasons. Firstly,  maps
have, especially for soft tissues, a generally higher SNR with respect to attenuation maps. A higher SNR input in
the material decomposition algorithm results in higher SNR output images. Secondly, the presence in the
decomposition matrix of terms with intrinsically different physical meanings guarantees linear independence
across matrix rows, hence limiting the noise amplification due to matrix inversion (Di Trapani et al 2022).

The sensitivity to spectral and phase contrast is required to target a three-material decomposition image
accounting for both the biological tissues and the contrast agent. As demonstrated in this work, high
decomposition accuracy can be achieved on three materials relevant to biomedical CT imaging, namely water,
iodine, and calcium. Root mean square differences from nominal density values smaller than 2% for water and
iodine channels and smaller than 4% for the calcium channel (table 1) are found, while observing no
contamination across different channels. At the same time, spectral/phase decomposition allows a high SNRin
the soft tissue channels, as proven by the 9-fold increase in SNR on the water channel compared to the
conventional spectral algorithm. The slight decrease of SNR in water and calcium channels observed when
comparing spectral/phase and the attenuation/phase cases can be readily explained considering that, in the
former, attenuation images with alower SNR are given in input to the algorithm. Specifically, the two spectral
attenuation images (1", ;') used for the spectral /phase decomposition process exhibit a noise level that is 30%
higher compared to the attenuation input image (1. **) of the attenuation/phase algorithm. Additionally, the
request for three output images instead of two (as in the attenuation/phase case) causes a noise amplification in
the matrix inversion that is due to the intrinsic ill-conditioned nature of the spectral decomposition problem (Di
Trapani et al 2022), which relates noise to the number of outputs. In this context, the possibility of using the
energy-binned phase channels (6", §'*) combined with matrix inversion algorithms making use of data
redundancy in a four-input/three-output scheme will be investigated in further studies.

The application of spectral phase contrast to the naked mouse reveals the potential of the technique on a
biologically relevant sample (figure 5). The material decomposition process resulted in a clear separation of the
vasculature (iodine map) and of the bones (calcium map). In addition, owing to the contribution of the phase
channel, good visibility of the soft tissue formalin-fixed component has been retained (figure 6). It should be
remarked that the high radiation dose levels (~2 Gy) delivered during the scan are motivated by the fact that this
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is a proof-of-principle study, hence no dose reduction strategies have been implemented during the acquisition.
For in-vivo applications, radiation dose reduction to levels of hundreds of mGy, commonly encountered in pre-
clinical scanners (Boone et al 2004), can be achieved by optimizing the design of the masks, adopting more dose-
efficient acquisition schemes, such as cycloidal tomography (Hagen and Vittoria 2020), or by reducing image
noise through dedicated data-processing (Di Trapani et al 2022).

To the best of the authors’ knowledge, this is the first demonstration of a spectral phase-contrast CT on edge-
illumination data. Moreover, compared to the work of Ji et al (2020), who first introduced the framework of
spectral phase-contrast by making use of Talbot-Laue GI, this paper shows the first 3D result on an (ex vivo)
entire animal sample at a reconstruction voxel size 4-times smaller (20 ym versus ~80 pm). The presented
approach can in principle be further translated to any phase-contrast imaging technique, including those based
on wavefront marking, such as speckle imaging. At the same time, due to its achromaticity (Endrizzi et al 2014),
i.e. tolerance to broad polychromatic x-ray spectra as required by spectral applications, edge-illumination is
particularly suited for spectral phase-contrast imaging.

Although the present study makes use of synchrotron radiation, the translation of the setup and techniques
herein presented on a laboratory setup involving a tungsten anode x-ray tube and targeting different contrast
elements is straightforward provided that penumbra and related beam-hardening effects due to the beam
divergence are considered. Specifically, a spectrum similar to the one presented in this paper can be obtained by
operating an x-ray tube at a voltage of 50 kV by adding a filtration of 4 mm of aluminum.

Itis the authors’ belief that the parallel diffusion of spectral detectors and laboratory-compatible phase-
contrast techniques will inevitably lead to the integration of these two techniques in a range of applications. In
this context, theoretical and experimental studies, such as the one reported in the present paper, have a potential
impact on the design and operation of future scanners both in pre-clinical and clinical research.

Acknowledgments

This work acknowledges funds from the Italian National Institute for Nuclear Physics (INFN), National Scientific
Commission 5 for Technological and Inter-disciplinary Research (Grants 22260,/2020 and 18203/2016), and from
the European Union - Next Generation EU under the PRIN-PNRR Scheme (P2022X5ALY). Additional funding
was provided by the EPSRC, part of UKRI (Grant EP/T005408 /1), and by the Wellcome Trust (221367/Z/20/Z).
AO was supported by the Royal Academy of Engineering under their ‘Chairs in Emerging Technologies’ scheme
(CiET1819/2/78). The authors thank Diego Dreossi, Adriano Contillo, and Nicola Sodini (Elettra Sincrotrone
Trieste) for contributing to the setup preparation. The authors also thank Hannes Robielski for the excellent
technical support as well as Prof. Oliver Bruns and Tjadina Klein for the helpful discussion.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOLhttps://doi.org/
10.15161/oar.it/143377.

ORCIDiDs

Luca Brombal @ https:/orcid.org/0000-0002-4009-8191
Francesco Brun @ https://orcid.org/0000-0003-0155-5326
Marco Endrizzi ® https://orcid.org/0000-0002-7810-2301
Alessandro Olivo @ https:/orcid.org/0000-0002-7150-2951

References

Als-Nielsen J and McMorrow D 2011 Elements of Modern X-ray Physics (Wiley)

Alvarez R E and Macovski A 1976 Energy-selective reconstructions in x-ray computerised tomography Phys. Med. Biol. 21 733

Astolfo A, Haig I G, Bate D, Olivo A and Modregger P 2023 Increased material differentiation through multi-contrast x-ray imaging: a
preliminary evaluation of potential applications to the detection of threat materials Phys. Scr. 98 095501

Badea C T, Clark D P, Holbrook M, Srivastava M, Mowery Y and Ghaghada K 2019 Functional imaging of tumor vasculature using iodine
and gadolinium-based nanoparticle contrast agents: a comparison of spectral micro-CT using energy integrating and photon
counting detectors Phys. Med. Biol. 64 065007

Bellazzini R, Brez A, Spandre G, Minuti M, Pinchera M, Delogu P, De Ruvo P and Vincenzi A 2015 PIXIE III: a very large area photon-
counting CMOS pixel ASIC for sharp x-ray spectral imaging J. Instrum. 10 C01032

BooneJ M, Velazquez O and Cherry S R 2004 Small-animal x-ray dose from micro-CT Molecular Imaging 3 3

Braig E et al 2018 Direct quantitative material decomposition employing grating-based x-ray phase-contrast CT Sci. Rep. 8 16394

Bravin A, Coan P and Suortti P 2012 X-ray phase-contrast imaging: from pre-clinical applications towards clinics Phys. Med. Biol. 58 R11

12


https://doi.org/10.15161/oar.it/143377
https://doi.org/10.15161/oar.it/143377
https://orcid.org/0000-0002-4009-8191
https://orcid.org/0000-0002-4009-8191
https://orcid.org/0000-0002-4009-8191
https://orcid.org/0000-0002-4009-8191
https://orcid.org/0000-0003-0155-5326
https://orcid.org/0000-0003-0155-5326
https://orcid.org/0000-0003-0155-5326
https://orcid.org/0000-0003-0155-5326
https://orcid.org/0000-0002-7810-2301
https://orcid.org/0000-0002-7810-2301
https://orcid.org/0000-0002-7810-2301
https://orcid.org/0000-0002-7810-2301
https://orcid.org/0000-0002-7150-2951
https://orcid.org/0000-0002-7150-2951
https://orcid.org/0000-0002-7150-2951
https://orcid.org/0000-0002-7150-2951
https://doi.org/10.1088/1402-4896/ace939
https://doi.org/10.1088/1361-6560/ab03e2
https://doi.org/10.1088/1748-0221/10/01/C01032
https://doi.org/10.1162/15353500200404118

10P Publishing

Phys. Med. Biol. 69 (2024) 075027 LBrombal et al

Brombal L, Arfelli F, Menk R H, Rigon L and Brun F 2023a Pepi lab: a flexible compact multi-modal setup for x-ray phase-contrast and
spectral imaging Sci. Rep. 13 4206

Brombal L, Rigon L, Arfelli F, Menk R and Brun F 2022 A geant4 tool for edge-illumination x-ray phase-contrast imaging J. Instrum. 17
C01043

Brombal L et al 2023b Edge-illumination spectral phase-contrast tomography [Data set] INFN Open Access Repository

Brun F et al 2020 Single-shot k-edge subtraction x-ray discrete computed tomography with a polychromatic source and the pixie-iii detector
Phys. Med. Biol. 65055016

Buchanan I, Astolfo A, Endrizzi M, Bate D and Olivo A 2022 Reliable material characterization at low x-ray energy through the phase-
attenuation duality Appl. Phys. Lett. 120 12410212

Delogu P, Oliva P, Bellazzini R, Brez A, De Ruvo P, Minuti M, Pinchera M, Spandre G and Vincenzi A 2016 Characterization of pixirad-1
photon counting detector for x-ray imaging J. Instrum. 11 P01015

Di Trapani V, Bravin A, Brun F, Dreossi D, Longo R, Mittone A, Rigon L and Delogu P 2020 Characterization of the acquisition modes
implemented in pixirad-1/pixie-iii x-ray detector: effects of charge sharing correction on spectral resolution and image quality Nucl.
Instrum. Methods Phys. Res. A 955 163220

Di Trapani V, Brombal L and Brun F 2022 Multi-material spectral photon-counting micro-ct with minimum residual decomposition and
self-supervised deep denoising Opt. Express 30 429953011

Di Trapani V, Oliva P, Arfelli F, Brombal L, Menk R H and Delogu P 2023 Development and validation of a simulation tool for k-edge
subtraction imaging with polychromatic spectra and x-ray photon counting detectors Nucl. Instrum. Methods Phys. Res.A 1046 167675

Elam W, Ravel B and Sieber ] 2002 A new atomic database for x-ray spectroscopic calculations Radiat. Phys. Chem. 63 121-8

Endrizzi M 2018 X-ray phase-contrast imaging Nucl. Instrum. Methods Phys. Res.A 878 88—98

Endrizzi M, Diemoz P C, Millard T P, Louise Jones J, Speller R D, Robinson I K and Olivo A 2014 Hard x-ray dark-field imaging with
incoherent sample illumination Appl. Phys. Lett. 104024106

Evans RD 1955 The Atomic Nucleus vol 582 (McGraw-Hill)

Faby S, Kuchenbecker S, Sawall S, Simons D, Schlemmer H-P, Lell M and Kachelrieft M 2015 Performance of today’s dual energy CT and
future multi energy CT in virtual non-contrast imaging and in iodine quantification: a simulation study Med. Phys. 42 4349—-66

Flohr T, Petersilka M, Henning A, Ulzheimer S, Ferda ] and Schmidt B 2020 Photon-counting CT review Phys. Med. 79 12636

Frank M et al 2022 Dark-field chest x-ray imaging for the assessment of covid-19-pneumonia Commun. Med. 2 147

Gureyev T et al 2019 Propagation-based x-ray phase-contrast tomography of mastectomy samples using synchrotron radiation Med. Phys.
46 5478-87

Hagen CK, Vittoria F A,1Morgé O R, Endrizzi M and Olivo A 2020 Cycloidal computed tomography Phys. Rev. Appl. 14 014069

Havariyoun G et al 2019 A compact system for intraoperative specimen imaging based on edge illumination x-ray phase contrast Phys. Med.
Biol. 64235005

Hsieh S S, Leng S, Rajendran K, Tao S and McCollough C H 2020 Photon counting CT: clinical applications and future developments IEEE
Trans. Radiat. Plasma Med. Sci. 5 441-52

JiX, ZhangR, Li K and Chen G-H 2020 Dual energy differential phase contrast ct (de-dpc-ct) imaging IEEE Trans. Med. Imaging 39 327889

LiuX, YuL, Primak A N and McCollough C H 2009 Quantitative imaging of element composition and mass fraction using dual-energy CT:
three-material decomposition Med. Phys. 36 1602—9

Longo R etal 2019 Advancements towards the implementation of clinical phase-contrast breast computed tomography at elettra
J. Synchrotron Radiat. 26 134353

Massimi L, Buchanan I, Astolfo A, Endrizzi M and Olivo A 2020 Fast, non-iterative algorithm for quantitative integration of x-ray
differential phase-contrastimages Opt. Express 28 39677-87

Massimi L et al 2021 Volumetric high-resolution x-ray phase-contrast virtual histology of breast specimens with a compact laboratory
system IEEE Trans. Med. Imaging 41 1188-95

Mechlem K, Sellerer T, Viermetz M, Herzen ] and Pfeiffer F 2019 Spectral differential phase contrast x-ray radiography IEEE Trans. Med.
Imaging 39 578-87

Navarrete-Le6n C et al 2023 X-ray phase-contrast microtomography of soft tissues using a compact laboratory system with two-directional
sensitivity Optica 10 880—7

Olivo A and Speller R 2007 A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources Appl. Phys. Lett. 91
074106

Paakkari P, Inkinen SI, Honkanen M K M, Prakash M, Shaikh R, Nieminen M T, Grinstaff M W, Mikeld ] T A, Toyrds ] and Honkanen J T']
2021 Quantitative dual contrast photon-counting computed tomography for assessment of articular cartilage health Sci. Rep. 11 5556

Partridge T, Astolfo A, Shankar S, Vittoria F, Endrizzi M, Arridge S, Riley-Smith T, Haig I, Bate D and Olivo A 2022 Enhanced detection of
threat materials by dark-field x-ray imaging combined with deep neural networks Nat. Commun. 13 4651

Polikarpov M et al 2023 Towards virtual histology with x-ray grating interferometry Sci. Rep. 13 9049

Przybylski A, Thiel B, Keller-Findeisen ], Stock B and Bates M 2017 Gpufit: an open-source toolkit for gpu-accelerated curve fitting Sci. Rep.
715722

Quenot L, Bohic S and Brun E 2022 X-ray phase contrast imaging from synchrotron to conventional sources: a review of the existing
techniques for biological applications Appl. Sci. 12 9539

Rawlik M et al 2023 Increased dose efficiency of breast CT with grating interferometry Optica 10 938—43

Roessl E and Proksa R 2007 K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors Phys. Med. Biol. 52
467915

SchaftF, Morgan K S, Pollock J A, Croton L C, Hooper S B and Kitchen M ] 2020 Material decomposition using spectral propagation-based
phase-contrast x-ray imaging IEEE Trans. Med. Imaging 39 3891-9

Schlomka J et al 2008 Experimental feasibility of multi-energy photon-counting k-edge imaging in pre-clinical computed tomography Phys.
Med. Biol. 53 403115

Sukovle P and Clinthorne N 1999 Basis material decomposition using triple-energy x-ray computed tomography, IMTC/99 Proc. of the 16th
IEEE Instrumentation and Measurement Technology Conf. (Cat. No. 9CH36309) vol 3 (IEEE) pp 1615-8

Tanaka T 2021 Major upgrade of the synchrotron radiation calculation code spectra J. Synchrotron Radiat. 28 126772

Tromba G et al 2010 The syrmep beamline of elettra: clinical mammography and bio-medical applications AIP Conf. Proc. vol 1266
(American Institute of Physics) pp 18-23

Wang G 2002 X-ray micro-CT with a displaced detector array Med. Phys. 29 16346

Willemink M J, Persson M, Pourmorteza A, Pelc N J and Fleischmann D 2018 Photon-counting CT: technical principles and clinical
prospects Radiology 289 293-312

13


https://doi.org/10.1088/1748-0221/17/01/C01043
https://doi.org/10.1088/1748-0221/17/01/C01043
https://doi.org/10.1088/1361-6560/ab7105
https://doi.org/10.1063/5.0085506
https://doi.org/10.1088/1748-0221/11/01/P01015
https://doi.org/10.1016/j.nima.2019.163220
https://doi.org/10.1364/OE.471439
https://doi.org/10.1364/OE.471439
https://doi.org/10.1364/OE.471439
https://doi.org/10.1016/j.nima.2022.167675
https://doi.org/10.1016/S0969-806X(01)00227-4
https://doi.org/10.1016/S0969-806X(01)00227-4
https://doi.org/10.1016/S0969-806X(01)00227-4
https://doi.org/10.1016/j.nima.2017.07.036
https://doi.org/10.1016/j.nima.2017.07.036
https://doi.org/10.1016/j.nima.2017.07.036
https://doi.org/10.1063/1.4861855
https://doi.org/10.1118/1.4922654
https://doi.org/10.1118/1.4922654
https://doi.org/10.1118/1.4922654
https://doi.org/10.1016/j.ejmp.2020.10.030
https://doi.org/10.1016/j.ejmp.2020.10.030
https://doi.org/10.1016/j.ejmp.2020.10.030
https://doi.org/10.1038/s43856-022-00215-3
https://doi.org/10.1002/mp.13842
https://doi.org/10.1002/mp.13842
https://doi.org/10.1002/mp.13842
https://doi.org/10.1088/1361-6560/ab4912
https://doi.org/10.1109/TMI.2020.2990347
https://doi.org/10.1109/TMI.2020.2990347
https://doi.org/10.1109/TMI.2020.2990347
https://doi.org/10.1118/1.3097632
https://doi.org/10.1118/1.3097632
https://doi.org/10.1118/1.3097632
https://doi.org/10.1107/S1600577519005502
https://doi.org/10.1107/S1600577519005502
https://doi.org/10.1107/S1600577519005502
https://doi.org/10.1364/OE.405755
https://doi.org/10.1364/OE.405755
https://doi.org/10.1364/OE.405755
https://doi.org/10.1364/OPTICA.487270
https://doi.org/10.1364/OPTICA.487270
https://doi.org/10.1364/OPTICA.487270
https://doi.org/10.1063/1.2772193
https://doi.org/10.1063/1.2772193
https://doi.org/10.1038/s41467-022-32402-0
https://doi.org/10.3390/app12199539
https://doi.org/10.1364/OPTICA.487795
https://doi.org/10.1364/OPTICA.487795
https://doi.org/10.1364/OPTICA.487795
https://doi.org/10.1088/0031-9155/52/15/020
https://doi.org/10.1088/0031-9155/52/15/020
https://doi.org/10.1109/TMI.2020.3006815
https://doi.org/10.1109/TMI.2020.3006815
https://doi.org/10.1109/TMI.2020.3006815
https://doi.org/10.1088/0031-9155/53/15/002
https://doi.org/10.1107/S1600577521004100
https://doi.org/10.1107/S1600577521004100
https://doi.org/10.1107/S1600577521004100
https://doi.org/10.1118/1.1489043
https://doi.org/10.1118/1.1489043
https://doi.org/10.1118/1.1489043
https://doi.org/10.1148/radiol.2018172656
https://doi.org/10.1148/radiol.2018172656
https://doi.org/10.1148/radiol.2018172656

	1. Introduction
	2. Materials and methods
	2.1. Spectral, attenuation/phase, and spectral/phase decomposition algorithms
	2.1.1. Spectral material decomposition
	2.1.2. Attenuation/phase material decomposition
	2.1.3. Spectral/phase material decomposition

	2.2. Edge illumination
	2.3. Spectral characterization of the system
	2.4. Experimental setup and samples
	2.5. Image reconstruction and analysis

	3. Results
	3.1. Test object
	3.2. Murine model

	4. Discussion and conclusions
	Acknowledgments
	Data availability statement
	References



