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Abstract 
Background.  Surgical resection is the standard of care for patients with large or symptomatic brain metastases 
(BMs). Despite improved local control after adjuvant stereotactic radiotherapy, the risk of local failure (LF) persists. 
Therefore, we aimed to develop and externally validate a pre-therapeutic radiomics-based prediction tool to iden-
tify patients at high LF risk.
Methods.  Data were collected from A Multicenter Analysis of Stereotactic Radiotherapy to the Resection Cavity of 
BMs (AURORA) retrospective study (training cohort: 253 patients from 2 centers; external test cohort: 99 patients 
from 5 centers). Radiomic features were extracted from the contrast-enhancing BM (T1-CE MRI sequence) and the 
surrounding edema (T2-FLAIR sequence). Different combinations of radiomic and clinical features were compared. 
The final models were trained on the entire training cohort with the best parameter set previously determined by 
internal 5-fold cross-validation and tested on the external test set.
Results.  The best performance in the external test was achieved by an elastic net regression model trained with 
a combination of radiomic and clinical features with a concordance index (CI) of 0.77, outperforming any clinical 
model (best CI: 0.70). The model effectively stratified patients by LF risk in a Kaplan–Meier analysis (P < .001) and 
demonstrated an incremental net clinical benefit. At 24 months, we found LF in 9% and 74% of the low and high-
risk groups, respectively.
Conclusions.  A combination of clinical and radiomic features predicted freedom from LF better than any clinical 
feature set alone. Patients at high risk for LF may benefit from stricter follow-up routines or intensified therapy.

Key Points

• Radiomics can predict the freedom from local failure in brain metastasis patients.

• Clinical and MRI-based radiomic features combined performed better than either alone.

• The proposed model significantly stratifies patients according to their risk.

Radiomics-based prediction of local control in patients 
with brain metastases following postoperative 
stereotactic radiotherapy  
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Brain metastases (BMs) are the most common malignant 
brain tumors, outnumbering primary brain tumors such 
as gliomas by a significant margin.1 Recent guidelines rec-
ommend surgery as the treatment of choice for patients 
with symptomatic or large BMs.2 To improve local control, 
stereotactic radiotherapy (SRT) should be applied to the re-
section cavity in patients with 1 to 2 resected BMs.2 This 
way, local control rates of 70% to 90% can be achieved at 
12 months.3

Recent publications have demonstrated the power of 
automated segmentation of BMs and their surrounding 
edema.4–6 This may not only streamline the time- 
consuming task of manual BM delineation but can also 
simplify other additional evaluations: Radiomics allows 
the extraction of large amounts of quantitative imaging 
features from a previously delineated image.7 This enables 
experts to analyze additional information not visible to the 
human eye and to create predictive mathematical models.8

These radiomics-driven models can be used for a 
multitude of purposes, including tumor characteriza-
tion, treatment response prediction, and prognostic risk 
assessment.9–13

Some radiomic features are sensitive to acquisition 
modes and reconstruction parameters.14 In addition, MRI 
intensities are not standardized and depend on the man-
ufacturer and model of the devices.15 Moreover, patients 
and treatment characteristics may differ between medical 
institutions. Therefore, multicenter training and testing are 
needed to develop and validate generalizable models.

Determining an individual patient’s risk of local recur-
rence can benefit patients by tailoring follow-up treatment 
and care. For example, patients at high risk of local failure 
(LF) may benefit from SRT dose escalation, systemic 
therapy agents with penetration of the blood-brain barrier, 
and more frequent follow-up imaging after SRT to detect a 
potential failure early.

Prior studies have demonstrated the broad potential of 
radiomics in predicting LF as a binary variable in patients 
receiving stereotactic radiotherapy without surgery in 
monocentric studies without external validation.16–18

The aim of this project was to develop a pre-therapeutic 
radiomics-based machine learning model to predict 
freedom from LF (FFLF) after surgical resection and SRT of 
BMs. All models were validated in an external multicenter 
international test cohort. The ability to stratify patients 

into specific risk groups and their net clinical benefit were 
assessed.

Materials and Methods

AURORA Study

The CLEAR checklist was used for this study and can be 
found in the supplemental material.19 MR imaging and 
clinical data were collected as part of the “A Multicenter 
Analysis of Stereotactic Radiotherapy to the Resection 
Cavity of BMs” (AURORA) retrospective trial. The trial 
was supported by the Radiosurgery and Stereotactic 
Radiotherapy Working Group of the German Society for 
Radiation Oncology (DEGRO). The inclusion criteria were: 
Known primary tumor with resected BM and SRT with a 
radiation dose of > 5 Gray (Gy) per fraction. Exclusion cri-
teria were: Interval between surgery and radiation therapy 
(RT) > 100 days, premature discontinuation of RT, and any 
previous cranial RT.

Six patients received a dose of 3 Gy per fraction as a 
minor deviation in the test set. Synchronous non-resected 
BMs had to be treated simultaneously with SRT. Ethical ap-
proval was obtained at each institution (main approval at 
the Technical University of Munich: 119/19 S-SR).

The patients were regularly checked for a LF in intervals 
of 3 months after finishing RT. LF was determined by in-
dividual radiologic review by board-certified radiologists 
in the specific centers or by histologic results after recur-
rence surgery. FFLF was calculated as the time difference 
between the end of SRT and LF. If no LF occurred, pa-
tients were right-censored after the last available imaging 
 follow-up. The date of the diagnosis in the MRI was used as 
time point for LF.

Dataset

In total, we collected data from 474 patients from 7 cen-
ters. A minimum sample size for the test set was calcu-
lated at 55 patients based on a previously published area 
under the curve for LF prediction of 0.79 as reported in in 
a monocentric study and a skewed event rate of 15%.16 We 
decided to increase the test set by combining all smaller 

Importance of the Study

Local failure after treatment of brain metastases has a 
severe impact on patients, often resulting in additional 
therapy and loss of quality of life. This multicenter study 
investigated the possibility of predicting local failure of 
brain metastases after surgical resection and stereo-
tactic radiotherapy using radiomic features extracted 
from the contrast-enhancing metastases and the sur-
rounding FLAIR-hyperintense edema.

By interpreting this as a survival task rather than a 
classification task, we were able to predict the freedom 

from failure probability at different time points and ap-
propriately account for the censoring present in clinical 
time-to-event data.

We found that synergistically combining clinical and 
imaging data performed better than either alone in the 
multicenter external test cohort, highlighting the po-
tential of multimodal data analysis in this challenging 
task. Our results could improve the management of pa-
tients with brain metastases by tailoring follow-up and 
therapy to their individual risk of local failure.
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centers to achieve a higher heterogeneity. This data set has 
already been used in other studies for automatic BM seg-
mentation.4,5 We collected 4 preoperative diagnostic im-
aging sequences of each patient: A T1-weighted sequence 
with and without contrast enhancement (T1-CE and T1), a 
T2-weighted sequence (T2) as well as a T2 fluid-attenuated 
inversion recovery sequence (T2-FLAIR). Except for T1-CE, 
a missing sequence was allowed. For radiomic analysis 
only T1-CE and T2-FLAIR were used. 

The required data were available for 352 patients. 
A flowchart of the eligibility criteria is provided in 
Supplementary Figure 1. We split the patients into a 
training cohort with 253 patients from 2 centers and an 
external, multicenter, international test cohort with 99 pa-
tients from 5 centers.

Five and twenty-nine patients were treated with stere-
otactic radiosurgery (SRS) in the training and test cohort 
with a median dose of 20 and 16 Gy, respectively. The re-
maining 248 and 70 patients, respectively, were treated 
with fractionated SRT with a median of 7 fractions at 5 
Gy per fraction in the training cohort and 6 fractions at 5 
Gy per fraction in the test cohort. A summary of all pre-
scribed combinations of doses and fractions is given in 
Supplementary Table 1.

To make SRS and fractionated SRT comparable, we cal-
culated the equivalent dose in 2 Gy fractions (EQD2) using 
an alpha/beta ratio of 10.

Preprocessing

The DICOM (Digital Imaging and Communications in 
Medicine file format) images were converted to NIfTI 
(Neuroimaging Informatics Technology Initiative file 
format) using dcm2niix.20 The MRI sequences were then 
further preprocessed using the BraTS-Toolkit.21 First, the 
sequences were co-registered using niftyreg22 and these 
were then transformed into the T1-CE space. A brain mask 
was created using HD-BET23 and applied to all sequences 
to extract only the brain without the surrounding skull. 
The skull-stripped sequences were transformed into 
the BraTS space using the SRI-24 atlas24 and resampled 
using cubic b-spline. Overall, the preprocessing provided 
co-registered, skull-stripped sequences in a 1-millimeter 
isotropic resolution in BraTS space.

The missing sequences were then synthesized using 
a generative adversarial network (GAN). The GAN takes 
the 3 available sequences as input and generates the 
matching missing fourth sequence. We used a GAN which 
was originally developed for missing sequences in glioma 
imaging,25 but has been proven to work for metastasis 
imaging.4,5

Segmentation

All contrast-enhancing metastases and their surrounding 
edema were individually segmented using the open-source 
software 3D-Slicer (version 4.13.0, stable release, https://
www.slicer.org/)26 by a medical doctoral student (JAB) 
after undergoing extensive training by a board-certified ra-
diation oncologist (JCP; 7 years of experience). To ensure 

accuracy, all segmentations for the test cohort were re-
viewed and manually adjusted by JCP.

To test the feasibility of a fully automated workflow, 
segmentations generated by aneural network previously 
trained on this cohort4,5 were used as alternative segmen-
tations and compared to the manual segmentations.

As around 25% of patients had multiple BMs, but usu-
ally only the largest is resected,27 we also determined the 
largest metastasis with a connected component analysis28 
in all patients with multiple BMs and used only that metas-
tasis and its surrounding edema as segmentations for an 
additional analysis.

Radiomic Feature Extraction

Radiomic features were extracted with pyradiomics (ver-
sion 3.0.1, https://github.com/AIM-Harvard/pyradiomics)29 
from the 3D MRI sequences using the Python implementa-
tion. The metastasis segmentation was used to extract the 
T1-CE features, while the edema segmentation was used 
for the T2-FLAIR features. In total, we extracted 104 original 
features per segmentation (see Supplementary Table 2 and 
the attached parameter file for a list of features and extrac-
tion parameters).

Further analysis and modeling were performed in the 
programming language R 4.2.3.30 To adhere to the Image 
Biomarker Standardization Initiative standard,31 the kur-
tosis was adjusted by −3. We created 9 feature sets in total. 
Three of these included only radiomic features. The T1-CE 
and FLAIR feature sets were created by extracting the fea-
tures from the T1-CE sequence and T2-FLAIR sequence, re-
spectively. Both feature sets were merged into a combined 
feature set. We also created 3 clinical feature sets with the 
following clinical features:

• pre-OP feature set: patient age at RT start, Karnofsky per-
formance status, histology of the primary tumor, loca-
tion of BM.

• post-OP feature set: pre-OP + resection status.
• RT feature set: post-OP + concurrent chemotherapy, con-

current immunotherapy, and equivalent dose in 2 Gy 
fractions (EQD2).

As a seventh feature set, we combined all radiomic 
features (combined) with the pre-OP feature set to 
comb + pre-OP.

Multiple publications suggest the predictive value of 
the brain metastasis volume (BMV) for predicting LF.32–34 
Therefore, we created 2 additional feature sets by adding 
the cumulative BMV of each patient as an additional feature 
to the pre-OP set (pre-OP + BMV) and the comb + pre-OP 
set (comb + pre-OP + BMV).

Intraclass Correlation

To identify radiomic features that were susceptible to small 
changes in segmentation, we generated additional seg-
mentations of all patients in the training cohort using the 
previously mentioned neural network.4 Intraclass correla-
tion (ICC (3,1)) was calculated using the R package “irr.”35 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noae098#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noae098#supplementary-data
https://www.slicer.org/
https://www.slicer.org/
https://github.com/AIM-Harvard/pyradiomics
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noae098#supplementary-data


1641Buchner et al.: Radiomics-based prediction of local control in patients with BMs
N

eu
ro-

O
n

colog
y

According to Koo et al., an ICC above 0.75 is considered 
“good.”36 Consequently, this value was employed as a 
cutoff threshold. Of the 208 features, 173 (83%) had an ICC 
of > 0.75 and were selected for all further steps. Of the 35 
excluded features, the majority (27) were extracted from 
the edema mask, while only 8 excluded features were ex-
tracted from the metastasis mask.

All selected radiomic features in the training and test set 
were independently normalized by z-score standardization 
and by applying the Yeo-Johnson transformation37 to trans-
form the distribution of a variable into a Gaussian distribution.

Feature Reduction

We applied a minimum redundancy—maximum rele-
vance (MRMR) ensemble feature selection framework 
implemented in R38 initially proposed by Ding et al.39 as 
an efficient method for the selection of relevant and non-
redundant features.

We created multiple smaller feature sets of the T1-CE, 
FLAIR, and combined feature sets with 3, 5, 7, 9, 11, 13, and 
15 features each.

We used bootstrapping40 to obtain more reliable re-
sults: Feature reduction was repeatedly applied to 1000 
bootstrap samples for each set and each number of fea-
tures. For our final set of features, we ranked the features 
based on the number of times they were selected. The best 
number of features was later determined by nested cross-
validation in the training set.

Batch Harmonization

To account for differences created by 29 different MRI 
scanners in our multicenter dataset, we used batch har-
monization implemented by neuroCombat.41 In total, 10 
batches were created according to the MRI model names 
by combining related models. According to Leithner et 
al.,42 ComBat harmonization without Empirical Bayes es-
timation provided slightly higher performance in similar 
machine learning tasks. Therefore, Empirical Bayes was de-
activated. Besides the non-harmonized dataset, we created 
2 harmonized datasets: one by only adjusting the means 
and the other by adjusting means and variances.

Model Creation, Testing, and Patient 
Stratification

For model creation and evaluation, the R package MLR343 
was used as a basis. Our prediction target was right-
censored time-to-event data, where we used LF as the 
event and the FFLF or time-to-last imaging follow-up as the 
time variable for patients with or without events, respec-
tively. We compared 3 different learners: Random forest 
(RF), extreme gradient boosting (xgboost), and generalized 
linear models with elastic net regularization learner (ENR).

We implemented nested cross-validation to select the 
best mode of batch harmonization and the best number of 
features: For batch harmonization selection, all 3 datasets 
were compared while always using the combined fea-
ture set with 9 features. Five iterations of 5-fold nested 

cross-validation for dataset selection showed no signif-
icant difference between the sets with and without batch 
harmonization (P = .3, Kruskal–Wallis rank sum test). 
Therefore, all further analyses were performed on the base 
dataset without batch harmonization to avoid unnecessary 
and potentially distorting preprocessing steps. To select 
the ideal number of features in each feature set, a second 
nested cross-validation was conducted. The best average 
performance was achieved with 7, 3, and 7 features in 
the T1-CE, FLAIR, and combined sets, respectively. The 
comb + pre-OP set, which included the 7 combined and 4 
pre-OP features, therefore, had 11 features. The features 
are listed in Supplementary Table 3.

The parameter tuning was performed using a random 
search during repeated cross-validation. All tuning and 
selection steps were performed on the training set. To ac-
count for the class imbalance (around 1:5 event:no-event), 
synthetic minority over-sampling was implemented 
using SMOTE.44 We used an implementation in R which 
is capable of handling numeric and categorical data. The 
number of samples in the minority class was increased 
by creating synthetic samples to reach a ratio of 1:2. We 
only used SMOTE on the training folds in each step of our 
(nested) cross-validation. This way we ensured that our 
models were only validated on real patients.

The final models were trained with the best parameters 
determined by the cross-validation on the whole training 
set while also using SMOTE to balance the classes. The 
models were then tested on our multicentric external test 
cohort.

The 33rd and 66th percentiles of the continuous risk 
ranks in the training cohort were used as cutoffs for patient 
stratification. These cutoffs were used to divide the test co-
hort into 3 groups according to their predicted continuous 
risk rank and compare their survival with Kaplan–Meier 
analysis.

Metrics

To account for both timing and outcome, the learners’ per-
formance was quantified using the concordance index 
(CI).45 The 95% confidence intervals are based on 10 000 
bootstrap samples. A decision curve analysis was per-
formed to consider clinical consequences with a time 
endpoint of 24 months.46 The threshold range was chosen 
as suggested by Vickers et al.47 based on these consider-
ations: Since LF is a severe event and its detection is crit-
ical, a lower threshold of 5% seems appropriate. Especially 
in elderly and multimorbid patients, where additional im-
aging may be burdensome, an upper threshold of 30% is 
reasonable.

The Dice similarity coefficient (DSC) was used to compare 
the overlap between manual and automatic segmentations.

Results

An overview of patient characteristics of both patient co-
horts is shown in Table 1. In addition to postoperative RT, 
18 and 23 patients were treated with concurrent chemo-
therapy and immunotherapy, respectively. The agents 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noae098#supplementary-data
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used are listed in Supplementary Tables 7 and 8. A total of 
147 patients had missing sequences, the majority of which 
were missing T2 and T1 sequences (82% and 10%, respec-
tively), which were not relevant for our further analyses. 
The general workflow, with example images of a test co-
hort patient, is shown in Figure 1.

Baseline Clinical Models

To create a baseline for comparison with our radiomic 
models, we first tested the predictive value of 2 estab-
lished clinical indices with univariate Cox analysis: The re-
cursive partitioning analysis48 and the Graded Prognostic 
Assessment (GPA)49 index. They reached a CI of 0.47 and 
0.52 in the internal validation, respectively. In external 
testing, recursive partitioning analysis again performed 
worse with a CI of 0.39 compared to GPA with a CI of 
0.44. We also tested the most recent disease-specific GPA 
(dsGPA)50 available at the time of data collection. Due to 
missing information or histologies not covered by this ver-
sion of the dsGPA, we had a reduced training and test co-
hort of 200 and 71 patients, respectively. Univariate Cox 
analysis yielded a CI of 0.44 and 0.46 for internal validation 
and external testing, respectively.

Model Performance

The performances in the internal validation, as well as in 
the multicentric external test cohort, are shown in Table 2. 
To determine the best overall learner, we ranked the perfor-
mance across all feature sets and found that ENR ranked 
best, followed by RF and xgboost with mean ranks of 1.4, 
1.6, and 2.9, respectively. Therefore, all further experiments 
were conducted with ENR. For completeness, the results 
obtained by RF and xgboost are shown in Supplementary 
Tables 9 and 10. The highest mean CI across all 5 folds and 
10 iterations of the cross-validation was achieved with the 
comb + pre-OP feature set (CI = 0.67).

The comb + pre-OP feature set also led to the highest 
performance in the external test cohort and achieved a CI 
of 0.77. While the T1-CE feature set achieved a CI of 0.76, 
FLAIR was only able to reach 0.50. The 3 clinical feature sets 
performed slightly worse than our radiomic feature sets 
or the combined feature sets: The pre-OP, post-OP, and 
RT feature sets reached a CI of 0.64, 0.63, and 0.63 in the 
internal validation, respectively. In external testing, they 
achieved a CI of 0.70, 0.65, and 0.70, respectively. While 
adding the BMV to the pre-OP feature set did not change 
the predictive performance, adding it to comb + pre-OP led 
to worse results with a CI of 0.72.

VOI Definition: manual + automatic with previously
trained neural network

Nested Cross-validation

External testing + Patient stratification

Modeling + Training

Radiomic Features Extraction: 104 per label
Shape Histogram Texture

Feature Reduction

Parameter tuning: repeated five-fold cross validation

T1-CE FLAIR Test cohort: 99 patients from 5 centers
Best performing parameters from CV were tested

Batch harmonization: no improvement with batch
harmonization

Learners: Training Cohort:

Up to eight clinical features: Age, KPS,
Histology of Primary, BM Location, Resection
status, Concurrent CTX or ITX, EQD2

Selection of ideal number of features in each feature
set

random forest

ICC > 0.75 between both segmentations
1000 bootstrap samples of MRMR
Multiple feature sets with 3 to 15 features

253 patients from 2
centers

Batch harmonization

Synthetic minority
oversampling with
SMOTE

elastic net regression

extreme gradient
boosting regression

Figure 1. Summarized overview of our workflow. After manual and automatic definition of the volume of interest (VOI), we extracted 104 original 
features from each metastasis and edema segmentation. We reduced the number of features in each set with MRMR. Furthermore, we added up 
to 8 clinical features and combined all features into multiple different feature sets. The optimal number of features in each set was determined 
with a nested cross-validation. The optimal parameters for our selected learners were chosen based on a 5-fold cross-validation. The best 
parameters for each learner-feature-combination were tested in the external test cohort.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noae098#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noae098#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noae098#supplementary-data
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For reproducibility, we list the beta values used by 
our best model (comb + pre-OP ENR) in Supplementary 
Table 11. The corresponding calibration curve to this model 
is shown in Figure 3 (right panel). Furthermore, we calcu-
lated the time-dependent area under the receiver operating 
characteristic curve (AUC) by transforming the continuous 
risk rank to an event probability distribution. The proposed 
model reached a mean of 0.80. Supplementary Figure 2 
shows the plotted time-dependent AUC.

Patient Stratification

Using the cutoffs determined by the training cohort as de-
scribed above, our comb + pre-OP ENR model was able to 
significantly stratify the patients into 3 risk groups with a 
low, medium, and high risk of LF (P = .0001, Chi-squared 
Test). A Kaplan–Meier analysis with all 3 groups is shown 
in Supplementary Figure 3.

By combining the low- and medium-risk groups into one, 
we created dichotomous predictions. Kaplan–Meier anal-
ysis (Figure 2) illustrates the survival in each risk group. 
Decision curve analysis using these predictions showed a 
net benefit of our predictive model compared to treating all 
patients in the relevant threshold range (Figure 3).

The Relevance of Brain Metastasis Volume

The predictions of our comb + pre-OP ENR model did 
weakly correlate with the cumulative BMV or BMV of 
the largest BM (Spearman’s rank correlation: r = 0.246 
(P = .014) and 0.254 (P = .011), respectively).

While cumulative BMV alone was highly predictive in the 
test cohort, with a CI of 0.76 in a univariate Cox analysis, it 
only achieved a CI of 0.53 in internal validation. Using the 
BMV of only the largest BM increased the internal validation 
and external testing performance to 0.55 and 0.77, respec-
tively. There was no significant difference in the BMV between 
the training and test cohort (P = .64, Wilcoxon rank sum test).

Stratifying our test set into small and large BMs by di-
viding the set at the median cumulative volume (12.6 
millimeter³) resulted in groups with 4 and 12 events, re-
spectively. Our best model scored a CI of 0.58 and 0.78 
in the respective groups. The model significantly risk-
stratified the patients in the large BMV group, but not in 
the small BMV group (corresponding Kaplan–Meier anal-
ysis are depicted in Supplementary Figures 4 and 5).

When repeating the feature reduction, parameter tuning, 
training, and testing with the radiomic features extracted 
only from the largest BM, the ENR learner was able to 
reach a CI of 0.75 (comb + pre-OP + BMV, Table 3). The pre-
viously best feature set (comb + pre-OP) only achieved a 
performance of 0.70. The selected radiomic features are 
listed in Supplementary Table 4.

End-to-End Model Using Neural Network-Based 
Automatic Segmentations

The neural network-based segmentations had a median 
DSC of 0.94 (IQR: 0.92–0.96) and 0.92 (0.87–0.95) in com-
parison to the manual segmentation for the metastasis 
and edema labels, respectively. The mean DSC was slightly 
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lower at 0.92 (95% confidence interval: 0.92–0.93) and 0.89 
(95% confidence interval: 0.88–0.90), respectively.

To test the predictive value of neural network-based 
segmentations and therefore test the feasibility of a fully 
automated workflow, we repeated all steps, starting with 
the feature reduction, followed by an additional parameter 
tuning and training run with radiomic features extracted 
from the automatic created segmentations. The selected 
features are listed in Supplementary Table 5. The results for 
our ENR learner are shown in Table 3. The best test results 

with this data were again obtained with the comb + pre-OP 
feature set (CI = 0.72). Overall, we observed an average de-
crease in performance by 0.08.

Impact of N4 Bias Field Correction

To test the possible influence of MR intensity 
inhomogeneities,51 we extracted the radiomic features 
again after applying N4 bias field correction.52 Repeating 

Threshold Probability
0%

0 % 25 % 50 %

Predicted risk

75 % 100 %

20% 40% 60%

0.00
0 %

25 %

50 %

E
st
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at

ed
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ct
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l r
is

k

75 %

100 %

0.05

Treat All

comb + pre-OP
pre-OP

Treat None
pre-OP
comb + pre-OP

0.10

N
et

 B
en

ef
it

0.15

0.20

Figure 3. Decision curve analysis (left) and calibration curve (right). Using the same groups as in Figure 2, we found a net benefit of our pre-
dictive model compared to treating all patients in the relevant threshold range from 5% to 30% through decision curve analysis (left). A decision 
model shows a clinical benefit if the respective curve shows larger net benefit values than reference strategies. The combination of radiomic fea-
tures derived from T1-CE, FLAIR, and pre-OP features (comb + pre-OP) resulted in a higher net benefit compared to using only the clinical pre-OP 
features and treating all patients or none. The calibration curve on the right was created by transforming the continuous risk rank predicted by 
the best comb + pre-OP ENR model (in orange) and by the clinical pre-OP ENR model (in blue) to event probabilities at 24 months. Although both 
models seem to overestimate the actual risk of our patients, the comb + pre-OP model predicted the risk closer to the actual risk.

0

0.00

0.25

0.50

F
F

LF

0.75

1.00

10 20 30 40

Time-to-event (months)

Numbers at risk

50 60 70

Risk group

Low-Risk

High-Risk

80

76 37 19 8 5 1 1 1 1
23

Low-Risk
High-Risk 9 2 1 0 0 0 0 0

Figure 2. Kaplan–Meier analysis. We created dichotomous predictions of the comb + pre-OP ENR model by using the 66th percentiles of the 
continuous risk ranks in the training cohort as cutoffs for patient stratification. There were 6 and 10 events in the low-risk group of 76 patients 
and the high-risk group of 23 patients, respectively. We found a significant difference in freedom from local failure (FFLF) between the predicted 
low- and high-risk groups (P < .001) in the multicenter external test cohort. After 24 months, we found a FFLF of 91% and 26% in the groups, 
respectively.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noae098#supplementary-data
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our workflow with these features resulted in minor 
changes. The selected features are listed in Supplementary 
Table 6. Comb + pre-OP + BMV performed best with these 
features, reaching a CI of 0.77. The previously best feature 
set (comb + pre-OP) performed slightly worse, reaching a 
CI of 0.76.

Predictive Performance of the Delivered Radiation 
Dose

Recent studies3 suggest that a higher delivered radiation 
dose may improve local control in BMs. Since dose in-
formation is completely independent of radiomic features, 
we wanted to test the prognostic value of radiation dose in 
the form of EQD2 alone and in combination with our com-
bined feature set with univariate Cox analysis and our es-
tablished pipeline, respectively. In univariate Cox analysis, 
EQD2 alone resulted in a CI of 0.54 and 0.60 in internal val-
idation and external testing. The combination of EQD2 and 
the combined feature set yielded a CI of 0.60 and 0.70 in in-
ternal validation and external testing with the ENR learner.

Discussion

In this work, we were able to develop radiomics-based ma-
chine learning models that were able to predict FFLF better 
than clinical features alone. Our best model was trained 
with a combination of radiomic and clinical features and 
achieved a CI of 0.77 in a multicenter external test cohort 
outperforming any clinical predictive model. Our final 
model’s predictions significantly stratified the test patients 
into 2 risk groups and achieved an incremental net clinical 
benefit.

When using automatically generated segmentations 
from a previously trained neural network, the models per-
formed slightly worse, with an average performance loss 
of 0.08. While the neural network-based segmentations 
were of good quality with a median DSC of 0.94 for the me-
tastasis label, the slightly lower mean DSC shows some 
outliers. This is also shown by the 5th and 10th percen-
tile of the metastasis label of 0.79 and 0.88. Removing the 
segmentations with a DSC lower than the 10th percentile 

in the respective sets (training set: DSC < 0.88, test set: 
DSC < 0.86) led to improved prediction results only worse 
by an average CI of 0.02 compared to the manual segmen-
tation. The comb + pre-OP ENR model was able to reach a 
respectable CI of 0.72 in external testing with the automat-
ically generated segmentations, which improved to 0.77 
after removing the outliers. This demonstrates that with 
sufficient segmentation quality, an end-to-end solution is 
possible without clinician intervention.

While the inclusion of the N4 bias field correction re-
sulted in different feature selections (Supplementary 
Table 6), it did not improve performance. Because it would 
add another step to our preprocessing pipeline, we de-
cided not to include the bias field correction. In this way, 
we can achieve a simpler applicability of our models.

The results in the external test cohort were, on average, 
better by a CI of 0.04. This may be explained by the larger 
amount of data available for training: The models tested on 
the external cohort were trained on all training data, while 
for internal validation, only 80% of the data was used for 
training, while testing was performed on the remaining 
20%.

Patients at high predicted risk for LF may benefit from 
risk-adapted therapy and follow-up. This may include 
dose escalation of SRT or the use of wider CTV margins, 
which have been shown to improve local control.53 In addi-
tion, therapy may be supplemented with systemic agents 
that cross the blood-brain barrier. Finally, more frequent 
 follow-up may help in the early detection of potential LF.

Several studies have approached predicting the LF of 
BMs. Most of them interpreted the prediction as a classifi-
cation task and therefore only predicted whether an event 
occurred at a predetermined time.16–18,54–63 In contrast, we 
approached the task as a survival task and therefore pre-
dicted a combination of event and time in terms of FFLF.

Another study predicting the event and time of LF by 
Huang et al.64 used Cox proportional hazards models and 
found that non-small cell lung cancer BMs with a higher 
zone percentage were more likely to respond favorably to 
Gamma Knife radiosurgery. In contrast to the treatment 
with surgery and adjuvant SRT in our study, the aforemen-
tioned studies focused on BMs treated with SRT, WBRT, 
and immune checkpoint inhibitors. Only one monocentric 
study with 67 patients by Mulford et al.57 investigated 
the prediction of local recurrence after surgical resection 

Table 3. Performance in the Test Set With Automated U-Net Segmentations and Segmentations of only the Largest Metastasis

Group Learner T1-CE FLAIR comb comb + pre-OP comb + pre-OP + BMV

Manual segmentation ENR 0.76
(0.63–0.84)

0.50
(NA–NA)

0.69
(0.55–0.80)

0.77
(0.61–0.87)

0.72
(0.57–0.82)

Largest BM ENR 0.72
(0.59–0.82)

0.50
(NA–NA)

0.63
(0.54–0.79)

0.70
(0.58–0.86)

0.75
(0.57–0.84)

U-net segmentation ENR 0.58
(0.41–0.75)

0.46
(0.31–0.64)

0.58
(0.41–0.75)

0.72
(0.55–0.83)

0.69
(0.53–0.80)

In addition to using our manual segmentations, we also trained and tested our proposed model on segmentations of only the largest BM and auto-
matically generated U-Net segmentations. Since the clinical feature sets are independent of the segmentation method, they were not added to this 
analysis. Compared to the manual segmentations, the results were, on average 0.08 and 0.03 points worse, respectively. The best performance is 
printed in bold.

 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noae098#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noae098#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noae098#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noae098#supplementary-data
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and adjuvant stereotactic radiosurgery, and found that 
radiomic features provided more robust predictive models 
of local control rates than clinical features (AUC = 0.73 vs. 
0.40). Unlike our study, they predicted LF as a binary clas-
sification task.

Another unique feature of our study is the multicenter 
external test cohort with patients treated at 5 different 
centers in multiple countries. In contrast to our study, the 
aforementioned studies all tested their models on an in-
ternal validation set and were therefore not tested on such 
a wide variety of scanners and imaging protocols as our 
models were.

Contrary to findings in previous studies,65 the cumulative 
BMV and the BMV of the largest BM were not predictive in 
the internal validation, where they only reached a CI of 0.53 
and 0.55, respectively. Since outcome and BMV appear to 
be independent in the training cohort, radiomic features 
representing BM size were not selected by our feature re-
duction algorithm. The only selected shape class feature in 
the best-performing feature set was metastasis flatness. 
Moreover, there was only a minor correlation (r = 0.25) be-
tween the predictions of the radiomic model and BMV. This 
shows that radiomics can predict LF based on features that 
do not directly represent BM size or volume.

Compared to approaches focusing on the use of neural 
networks, the use of classical machine learning has some 
advantages: Because only a small number of features 
are fed into the model, it becomes more comprehen-
sible. Since it is known how the radiomics features are 
computed, it is possible to infer the clinical correlates. As 
a test, we compared the 5 patients with the highest and 
lowest rank to find visual differences in imaging. The re-
sults alongside some example images are shown in 
Supplementary Figure 6. Neural networks, on the other 
hand, are more intransparent black boxes, and it is difficult 
to understand exactly which characteristics of the tumor 
are predictive. In addition, neural networks often require 
the use of a graphics processing unit to complete predic-
tions in a reasonable amount of time, while our models run 
on the central processing unit (CPU) and can, therefore, 
run on low-end hardware.

Nevertheless, this work has several limitations: Training 
the models with only a limited number of features ex-
tracted from the segmentations prevents them from taking 
other factors into account, such as the surrounding tissue. 
Furthermore, segmentations of consistent quality are nec-
essary for reliable results. In this study, all segmentations 
were created by the same person. To reduce the influence 
of the personal segmentation style, only features with a 
high correlation between manual and automatic segmen-
tations were used for further modeling. The sole use of au-
tomatically generated segmentations may help with this 
limitation.

In daily clinical practice, it is a difficult task to differen-
tiate LF from radiation necrosis or pseudoprogression.66 
Although board-certified radiologists made the diagnosis, 
some cases may have been misclassified, which is una-
voidable in such studies.

Around one-quarter of our patients had multiple BMs. By 
using the cumulative BMV as a feature, we not only took 
the volume of the resected BM into account but also the 
volume of all additional BMs. In our additional analysis, 

we used the largest metastasis as a surrogate for the re-
sected metastasis. The largest metastasis accounted for a 
median of 90% (IQR: 75%–98%) of the total tumor burden 
in patients with multiple metastases. Because the smaller 
metastases represented only a small proportion of the 
total tumor burden, we considered the largest metastasis 
as the resected metastasis with reasonable certainty. When 
using the radiomic features extracted from the largest me-
tastasis, the mean across all models decreased by 0.03 
compared to using the combined segmentation of all BMs. 
From this, we can conclude that segmenting all BMs did 
not harm the prediction of LF of the resected BM.

In addition, radiomic features were extracted from a total 
of 12 synthesized T2-FLAIR sequences (6 in the training 
cohort and 6 in the test cohort). Excluding these patients 
from the training and test sets resulted in a slight increase 
in performance. The largest increase in performance was 
found in the combined feature set (CI = 0.72 from 0.69). 
Furthermore, the T1-CE model showed the second-largest 
increase in performance, surpassing our previous best 
feature set (comb + pre-OP), which showed no change in 
performance. Since the new best model did not even in-
clude features extracted from the T2-FLAIR sequence, we 
can conclude that radiomic features extracted from the 
synthesized T2-FLAIR sequences did not noticeably affect 
the performance of our model and the increase in perfor-
mance may be attributed to the exclusion of difficult cases.

Despite these limitations, we were able to develop a 
model to predict FFLF of BMs after resection and adjuvant 
SRT. The model performed well in a multicenter external 
test cohort with a variety of MRI scanners and imaging 
and therapy protocols. This model may help to tailor treat-
ment to a patient’s individual risk of metastasis recur-
rence, thereby improving the overall management of BMs. 
We have published the model as an easy-to-use web app 
(https://radonc-ai.shinyapps.io/Radiomics_App/), where 
the user can either upload the required MRI sequences 
and segmentations or input previously extracted radiomic 
features.

Supplementary material

Supplementary material is available online at Neuro-
Oncology (https://academic.oup.com/neuro-oncology).
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