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Abstract Metabolic dysfunction–associated steatotic
liver disease has emerged as a leading global cause of
chronic liver disease. Our recent translational in-
vestigations have shown that the STE20-type kinases
comprising the GCKIII subfamily—MST3, STK25, and
MST4—associate with hepatic lipid droplets and
regulate ectopic fat storage in the liver; however, the
mode of action of these proteins remains to be
resolved. By comparing different combinations of the
silencing of MST3, STK25, and/or MST4 in immortal-
ized human hepatocytes, we found that their single
knockdown results in a similar reduction in hepato-
cellular lipid content and metabolic stress, without any
additive or synergistic effects observed when all three
kinases are simultaneously depleted. A genome-wide
yeast two-hybrid screen of the human hepatocyte li-
brary identified several interaction partners contrib-
uting to the GCKIII-mediated regulation of liver lipid
homeostasis, that is, PDCD10 that protects MST3,
STK25, and MST4 from degradation, MAP4K4 that
regulates their activity via phosphorylation, and
HSD17B11 that controls their action via a conforma-
tional change. Finally, using in vitro kinase assays on
microfluidic microarrays, we pinpointed various
downstream targets that are phosphorylated by the
GCKIII kinases, with known functions in lipogenesis,
lipolysis, and lipid secretion, as well as glucose uptake,
glycolysis, hexosamine synthesis, and ubiquitination.
Together, this study demonstrates that the members of
the GCKIII kinase subfamily regulate hepatocyte lipid
metabolism via common pathways. The results shed
new light on the role of MST3, STK25, and MST4, as
well as their interactions with PDCD10, MAP4K4, and
HSD17B11, in the control of liver lipid homeostasis and
metabolic dysfunction–associated steatotic liver dis-
ease susceptibility.
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Metabolic dysfunction–associated steatotic liver dis-
ease (MASLD; previously referred to as nonalcoholic
fatty liver disease) is defined by lipid accumulation in
>5% of hepatocytes and is currently estimated to affect
about 30% of the global population (1, 2). Although
often clinically silent, MASLD can progress to meta-
bolic dysfunction–associated steatohepatitis [MASH;
formerly known as nonalcoholic steatohepatitis], which
in addition to hepatic steatosis is characterized by liver
inflammation and cell damage, with different degrees
of fibrosis (3, 4). MASLD contributes to the
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pathogenesis of type 2 diabetes mellitus and cardio-
vascular disease (5). Patients with MASH also have an
increased risk of developing hepatocellular carcinoma
(HCC), which is the third major cause of cancer death
and, in the Western world, the malignancy with the
steepest increase in both incidence and mortality (6, 7).
Importantly, to date, only resmetirom, a liver-targeted
thyroid hormone receptor (THR)-beta selective
agonist, has been approved by the FDA for the treat-
ment of MASH; however, it is effective only in 30% of
patients at 1-year follow-up, and no long-term data are
yet available (8).

Ectopic deposition of fat within hepatocellular lipid
droplets is considered a primary event in the initiation
of MASLD, which triggers the activation of oxidative
and endoplasmic reticulum (ER) stress, provoking local
inflammation, fibrinogenesis, and apoptosis, which ul-
timately drive the disease progression to MASH (9–11).
Liver lipid droplets participate in various cellular
functions, such as lipid partitioning, cell signaling,
protein quality control and storage, and interactions
with other subcellular organelles (12). These outcomes
are regulated by the composition of proteins that coat
the surface of lipid droplets, which are altered in
response to steatosis-inducing diets (13). Interestingly,
the best-characterized genetic risk factors controlling
the susceptibility to MASLD—PNPLA3, HSD17B13,
PLIN2 (also known as ADPR and adipophilin), and
MBOAT7—encode proteins anchored to the hepatocel-
lular lipid droplets (9, 12). Of note, liver-specific oligo-
nucleotide-based therapies targeting PNPLA3 and
HSD17B13 are currently being evaluated in clinical tri-
als for the management of MASH (14).

Our recent translational studies have revealed that
the STE20-type kinases comprising the GCKIII sub-
family—MST3 (also known as STK24), STK25 (also
known as YSK1 and SOK1), and MST4 (also known as
STK26 and MASK)—associate with hepatocellular lipid
droplets and regulate liver fat homeostasis and MASLD
development (15). We reported a significant positive
correlation between MST3, STK25, and MST4 expression
in human liver biopsies and all three individual lesions
of the MASLD activity score (MAS; i.e., histological
scores of hepatic steatosis, lobular inflammation, and
ballooning degeneration) (16–19). We also showed that
the silencing or overexpression of the GCKIII kinases
in human hepatocytes markedly reduces or aggravates,
respectively, intracellular lipid accumulation and
oxidative/ER stress (16–20). Moreover, Stk25 knockout
mice and mice treated with Stk25- or Mst3-targeting
antisense oligonucleotides are protected against the
deleterious effects of MASH-inducing diet, with livers
displaying lowered steatosis, inflammatory infiltration,
fibrosis, and cellular damage highlighted by ballooning
and apoptosis (18, 21–24).

Although these previous observations provide
several lines of experimental support for a key role of
MST3, STK25, and MST4 in the regulation of the
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hepatocellular lipotoxic milieu and MASLD suscepti-
bility, their specific molecular mode of action,
including binding partners, upstream elements, and
downstream targets, remains elusive. This study aims to
identify the signaling pathways through which the
GCKIII kinases control ectopic lipid storage within
human hepatocytes, potentially paving the way for
innovative MASLD prevention and treatment
strategies.
MATERIALS AND METHODS

Cell culture and transfection assays
Immortalized human hepatocytes [IHHs; a kind gift from

B. Staels, the Pasteur Institute of Lille, University of Lille Nord
de France, Lille, France; (25)] and LX-2 cells (human stellate
cells; Millipore, Burlington, MA) were maintained as previ-
ously described (26, 27). THP-1 cells (human monocytic cells;
American Type Culture Collection, Manassas, VA) were
cultured as earlier reported (28) and differentiated into
macrophages by the treatment with 100 nmol/l phorbol 12-
myristate 13-acetate (Sigma-Aldrich, St. Louis, MO) for 48 h.
The MycoAlert Mycoplasma Detection Kit (Lonza, Basel,
Switzerland) was used to show that cells were free of myco-
plasma contamination.

For RNA interference, cells were transfected with human
MST3, STK25,MST4, PDCD10,MAP4K4, GOLGA2, BAZ2A, and/or
HSD17B11 siRNA (Thermo Fisher Scientific, Waltham, MA),
or scrambled siRNA (Sigma-Aldrich), using Lipofectamine
RNAiMax (Thermo Fisher Scientific). Notably, we observed
significant interexperimental heterogeneity in knockdown
efficiency (∼60–90% silencing of the individual GCKIII ki-
nases across all experiments performed in IHHs; ∼60–80% in
THP-1 cells, and ∼50–80% in LX-2 cells). For overexpression,
cells were transfected with human MST3, MST4, PDCD10,
GOLGA2, BAZ2A, HSD17B11 (all MYC-tagged), and/or STK25
(FLAG-tagged) expression plasmids, or corresponding empty
control plasmids (GeneCopoeia, Nivelles, Belgium), using
Lipofectamine 2000 (Thermo Fisher Scientific). The culture
medium was replaced by fresh medium supplemented with
50 μmol/l oleic acid and 400 μmol/l palmitic acid (Sigma-
Aldrich) 24 h after transfections for a subsequent 48 h incu-
bation. To assess cell viability, the CellTiter-Blue Cell Viability
Assay (Promega, Stockholm, Sweden) was used according to
the manufacturer’s instructions.

Assessment of lipid metabolism and oxidative/ER
stress

Cells were stained with Bodipy 493/503 (Invitrogen, Carls-
bad, CA) or Oil Red O (ORO; Sigma-Aldrich) to examine
neutral lipid content, or dihydroethidium (DHE; Life Tech-
nologies, Grand Island, NY) for detection of superoxide
radicals. To quantify ORO, 100% isopropanol was added to the
cells, and the extracted dye was monitored spectrophoto-
metrically at 500 nm. In parallel, cells were processed for
immunofluorescence with anti-4-hydroxynonenal (4-HNE) or
anti-8-oxoguanine (8-oxoG) antibodies to measure oxidative
stress, or anti-C/EBP-homologous protein (CHOP) or anti-
KDEL antibodies to investigate ER stress (see supplemental
Table S1 for antibody information). Images were acquired
using a Zeiss Axio Observer or LSM 700 microscope with the
ZEN Blue software (Zeiss, Oberkochen, Germany). The



labeled area was quantified in six randomly selected micro-
scopic fields (×20) per well of the cell culture chamber using
the ImageJ software (1.47v; National Institutes of Health,
Bethesda, MD).

For analysis of fatty acid partitioning, cells were incubated
in low glucose (5.5 mmol/l) Dulbecco's Modified Eagle Me-
dium containing 1 mmol/l carnitine, 2% BSA, 0.5 mmol/l
oleate, and 0.5 μCi/ml [1-14C]-oleate for 4 h. Cells were sub-
jected to Folch extraction (29) and the [1-14C]-oleate incorpo-
ration into complex lipids was determined by resuspending
the extracted lipids in chloroform/methanol (2:1), followed by
the separation of lipids using thin-layer chromatography on
silica gel plates. Radiolabeled triacylglycerol (TAG) was then
detected by iodine vapor and quantified by a scintillation
counter. TAGs secreted to the medium were examined after
Folch extraction as described above. Fatty acid oxidation was
assessed by adding an equal volume of 1 mol/l perchloric acid
to the culture medium and measuring the liberated [1-14C]-
CO2 trapped in an Eppendorf tube containing 1 mol/l sodium
hydroxide.

The TAG content was measured in cell lysates using the
Triglyceride Colorimetric Assay Kit (Cayman Chemical, Ann
Arbor, MI) according to the manufacturer’s instructions. In
addition, individual TAG and ceramide species were evalu-
ated by lipidomics. In brief, lipids were extracted from cells
using the BUME method (30); TAGs were analyzed using
direct infusion on a QTRAP 5500 mass spectrometer (Sciex,
Concord, Canada) equipped with a robotic nanoflow ion
source (TriVersa NanoMate; Advion BioSciences, Ithaca, NJ)
and ceramides were measured using ultrahighperformance
LC-MS.

To measure retinol dehydrogenase activity, cells were
incubated with 5 μmol/l all-trans-retinol (Thermo Fisher Sci-
entific) for 8 h and harvested in PBS. Cells were then sub-
jected to two freeze-thaw cycles and retinoic acid
concentration was analyzed in cell lysate using the Human
Retinoic Acid ELISA Kit (Cusabio, Houston, TX) according to
the manufacturer’s instructions.
Yeast two-hybrid analysis
Yeast two-hybrid (Y2H) screening was performed by

Hybrigenics Services, S.A.S., Evry, France (http://www.
hybrigenics-services.com). The coding sequences for Homo sa-
piens MST3 (NM_003576.5; amino acid positions 2 to 443) and
MST4 (NM_016542.4; amino acid positions 2 to 416) were
PCR-amplified and cloned into a pB27 plasmid as a C-termi-
nal fusion to the LexA DNA-binding domain. The constructs
were first checked by sequencing and then used as bait to
screen a random-primed primary human hepatocytes cDNA
library, which was constructed into a pP6 plasmid. The pB27
and pP6 plasmids derive from the original pBTM116 (31) and
pGASGH (32) plasmids, respectively. The Y2H screen for
STK25 has been previously described (26).

In total, 35.6 million clones (3-fold the complexity of the
library) and 84.6 million clones (7-fold the complexity of the
library) were screened for the LexA-MST3 and LexA-MST4
bait constructs, respectively, using a mating approach with
YHGX13 (Y187 ade2-101::loxP-kanMX-loxP, matα) and
L40ΔGal4 (mata) yeast strains as earlier reported (33). Using a
medium lacking tryptophan, leucine, and histidine, 35
His+ colonies were selected for both constructs. The prey
fragments of the positive clones were amplified by PCR and
sequenced at their 5′ and 3′ junctions. The resulting sequences
were used to identify the corresponding interacting proteins
in the GenBank database (NCBI) using a fully automated
Sh
procedure (34, 35). A confidence score (PBS, for predicted
biological score) was attributed to each interaction as previ-
ously described (34). In brief, the PBS relies on two different
levels of analysis. First, a local score accounts for the redun-
dancy and independency of prey fragments, along with the
distribution of reading frames and stop codons in over-
lapping fragments. Second, a global score considers the in-
teractions found in all the screens conducted at Hybrigenics
using the same library, representing the probability of an
interaction being nonspecific. For practical use, the scores
were divided into four categories, from A (highest confi-
dence) to D (lowest confidence). A fifth and sixth category (E
and F) specifically flags interactions involving highly con-
nected prey domains previously found several times in
screens performed on libraries derived from the same or-
ganism (E) and domains that have been confirmed as false
positives of the technique (F). Finally, N/A refers to the in-
teractions where the conventional PBS is not applicable as the
local score cannot be set due to the structural features of the
fragment. The PBS has been shown to positively correlate
with the biological significance of the interactions (35, 36).
However, even interactions with moderate confidence scores
can be physiologically significant (37, 38).
Analysis of liver biopsies from human participants
The HSD17B11 mRNA expression was measured in liver

biopsies from 62 Caucasian individuals (men, n = 35; women,
n = 27), who were recruited from subjects undergoing lapa-
roscopic abdominal surgery for Roux-en-Y bypass (n = 12),
elective cholecystectomy (n = 41), or sleeve gastrectomy (n = 9).
Total body fat was analyzed by dual X-ray absorptiometry, and
liver fat content was assessed by single-proton magnetic reso-
nance spectroscopy as earlier reported (39). Liver biopsies were
collected during the surgery (between 08:00 and 10:00 am) after
an overnight fast, instantly snap-frozen in liquid nitrogen, and
stored at −80◦C for further preparation. In liver biopsies, his-
tological features were blindly evaluated by two specialized
hepatopathologists in H&E- and ORO-stained sections using
the well-validated MAS (i.e., histological scores of liver steatosis,
inflammation, and ballooning) and liver fibrosis score, as rec-
ommended by the MASH Clinical Research Network classifi-
cation system (40). Quantitative real-time PCR analysis on liver
biopsies was performed as described below using the probes
forHSD17B11 (Hs00212226_m1) and 18S rRNA (Hs99999901_s1;
Thermo Fisher Scientific), which span exon-exon boundaries
to improve the specificity. For participant characteristics and
details on inclusion/exclusion criteria, see supplemental
Table S2 and Cansby et al. (16).

All investigations were approved by the Ethics Committee
of the University of Leipzig, Germany (approval numbers
363-10-13122010 and 159-12-21052012) and conducted in
accordance with the Declaration of Helsinki and Istanbul.
Before taking part in this study, all patients gave written
informed consent to use their data in anonymized form for
research purposes.

Phosphopeptide analysis and integration with
human-genome-scale metabolic model

Custom peptide sequences were synthesized in situ on a
μParaflo microfluidic microarray which consists of 3,968 3D
chambers, where >400 protein kinase assays were carried out
in triplicate (https://lcsciences.com/; LC Sciences, Houston,
TX). Net phosphorylation signal for each potential substrate
was determined by subtracting the signal for the negative
ared role of GCKIII kinases in liver lipid homeostasis 3
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control (i.e., serine or threonine substituted with alanine) from
that for the corresponding kinase substrate sequence. Only
sequences exhibiting a signal-to-noise ratio >3 and a coeffi-
cient of variation <0.5 were classified as detectable. A signal
intensity of 300 was used to filter initial data, followed by the
application of a false discovery rate (FDR) correction to ac-
count for multiple comparisons. Adjusted P values were
calculated using the Benjamini-Hochberg method, with an
FDR threshold of 0.01 applied to identify statistically signifi-
cant phosphorylation events. The substrate data was then in-
tegrated with human-genome-scale metabolic model v1.10.0
using the GSAM package (41).

Quantitative real-time PCR, immunoprecipitation,
and Western blot

The RNeasy Lipid Tissue Mini Kit (Qiagen, Hilden, Ger-
many) and the EZNA Total RNA Kit (Omega Bio-Tek, Nor-
cross, GA) were used to isolate RNA from human liver
biopsies and cultured human hepatocytes, respectively. The
following cDNA synthesis was performed using the High-
Capacity cDNA Reverse Transcription Kit (Thermo Fisher
Scientific). Relative quantification was conducted using the
QuantStudio 6 Flex Real-Time PCR System (Thermo Fisher
Scientific) or the CFX Connect Real-Time System (Bio-Rad,
Hercules, CA). Relative quantities of target transcripts were
calculated from duplicate samples after normalization of the
data to the endogenous control, 18S rRNA (Thermo Fisher
Scientific). Immunoprecipitation was carried out with Dyna-
beads Protein G magnetic beads (Thermo Fisher Scientific)
according to the manufacturer’s instructions. Western blot
analysis was performed as previously reported (42) using
4–12% tris-glycine and 4–12% bis-tris gels (Thermo Fisher
Scientific) for native and sodium dodecyl sulfate gel electro-
phoresis, respectively (see supplemental Table S1 for antibody
information).

Statistical analysis
One-way ANOVA with a two-sample Student’s t test for

post hoc analysis was used to evaluate statistical significance
between the groups. Differences were considered statistically
significant at P < 0.05. Correlation between HSD17B11
expression in human liver biopsies and hepatic lipid content
as well as MAS and fibrosis score was examined by Spear-
man’s rank correlation analysis. All statistical analyses were
performed using SPSS statistics (27v; IBM Corporation,
Armonk, NY).

RESULTS

MST3, STK25, and MST4 play overlapping but
nonredundant roles in the control of hepatocellular
lipotoxicity

We set out to determine whether there was a possible
additive or synergistic impact of the combinatorial
silencing of all three GCKIII kinases in regulating he-
patocellular lipotoxicity by comparing single versus
triple siRNA knockdown of MST3, STK25, and/or
MST4 in IHHs. In all experiments, transfected cells
were treated with a mixture of oleic and palmitic acid,
which efficiently induces steatosis in vitro and repli-
cates the metabolic milieu in high-risk individuals
(Fig. 1A for the schematic illustration of the study
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design). All three siRNAs effectively reduced the target
gene expression when used separately or in combina-
tion (supplemental Fig. S1). Notably, the silencing of
each kinase had no impact on the protein abundance of
the other two kinases (supplemental Fig. S1).

In line with our previous investigations (16, 17, 19), we
observed that hepatocytes transfected with MST3,
STK25, or MST4 siRNA displayed significantly
decreased intracellular fat storage assessed by staining
with the lipophilic dyes Bodipy 493/503 and ORO as
well as colorimetric analysis of TAG content, and
reduced oxidative and ER stress quantified by immu-
nostaining for 4-hydroxynonenal (measures lipid per-
oxidation), 8-oxoguanine (detects oxidative DNA
damage), C/EBP-homologous protein (a marker for ER
stress–induced cell death), and KDEL (a signal motif for
ER retrieval), compared to cells transfected with non-
targeting control (NTC) siRNA (Fig. 1B, C and
supplemental Fig. S2A, B). We also found that the
depletion of all three kinases was more effective in
preventing ectopic fat accumulation and oxidative/ER
stress compared with hepatocytes treated with single
siRNA (Fig. 1B, C and supplemental Fig. S2A, B).
Mechanistically, both the single and triple silencing of
MST3, STK25, and/or MST4 inhibited TAG synthesis
and augmented the rates of mitochondrial β-oxidation
and VLDL-TAG secretion (Fig. 1D–G). Consistent with
the impact on fat storage and metabolic stress, these
alterations in lipid partitioning were most pronounced
in triple-deficient hepatocytes; however, the differ-
ences compared with the single knockdown were rela-
tively minor (Fig. 1D–G). Notably, the silencing of
MST3, STK25, and/or MST4 had no effect on the
viability of IHHs (supplemental Fig. S3A).

Recent evidence shows that, similar to hepatocytes,
liver nonparenchymal cells are susceptible to lipotoxic
damage and causally contribute to MASH initiation and
progression by stimulating inflammation and fibro-
genesis (43, 44). Interestingly, MST3, STK25, and/or
MST4 depletion did not alter fatty acid–induced lipid
deposition or oxidative stress in THP-1–derived human
macrophages or LX-2 human hepatic stellate cells
(supplemental Figs. S3B, C and S4).

Next, we studied the impact of varying the total
GCKIII protein dosage on hepatocellular lipotoxicity
by overexpressing and/or silencing MST3, STK25,
and/or MST4 in different combinations in oleate- and
palmitate-treated IHHs. In line with our previous re-
sults (Fig. 1B, C and supplemental Fig. S2) (16, 17, 19), we
observed increased or decreased hepatocellular fat
storage when individual kinases were overexpressed or
knocked down, respectively, compared to the corre-
sponding controls (Fig. 2 and supplemental Fig. S5).
The lipid content–lowering effect of the double
silencing of MST3, STK25, and/or MST4 was slightly
augmented compared with the single knockdown of
each kinase and was similar to that observed in triple-
deficient hepatocytes (Fig. 2 and supplemental
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Fig. S5). Importantly, when the transfection with the
MST3, STK25, or MST4 expression plasmid, which
enhanced target protein abundance about 3- to 4-fold,
was combined with the single silencing of any of the
other two kinases (e.g., knockdown of MST3, over-
expression of MST4), the intracellular fat levels were
elevated to the quantities detected in the control cells
(Fig. 2 and supplemental Fig. S5). However, over-
expressing the third kinase in hepatocytes with the
combined silencing of the two other kinases (e.g.,
knockdown of MST3 and STK25, overexpression of
MST4) was insufficient to restore the lipid content to
normal levels (Fig. 2 and supplemental Fig. S5).

Together, the lack of additive or synergistic effects of
the combined depletion of the three GCKIII kinases,
compared with individual protein knockdown, suggests
that MST3, STK25, and MST4 operate in the same
signaling pathway and/or share mechanism(s) of action
in regulating lipid storage in hepatocytes. Furthermore,
our results reveal that hepatocellular fat content cor-
relates with total GCKIII protein abundance, thereby
implying that the GCKIII kinases, to some extent, can
functionally compensate for the lack of each other.

PDCD10 controls hepatocellular lipid accumulation
by protecting the GCKIII kinases from degradation

We next sought to identify the interaction partners
of MST3, STK25, and MST4 by using a genome-wide
Y2H screen of the human hepatocyte library. Based
on the evidence of their shared mode of action, we
primarily focused on analysis of proteins that were
found to bind to more than one GCKIII kinase (Fig. 3A
and supplemental Tables S3–S5). Notably, we did not
detect any direct interaction between MST3, STK25,
and MST4 by Y2H screens.

Somewhat surprisingly, we discovered that only
PDCD10 [also known as CCM3; a scaffold protein
known to tether different targets to the multisubunit
signaling complex STRIPAK (45)], bound to all three
GCKIII kinases (Fig. 3A). To evaluate the impact of the
interaction with PDCD10 on the lipotoxic effect of
MST3, STK25, and MST4, we silenced PDCD10 in
oleate- and palmitate-treated IHHs by siRNA approach.
We found that the protein levels of MST3, STK25, and
MST4 were markedly reduced upon PDCD10 knock-
down (Fig. 3B), which aligns with previous observations
in extrahepatic tissues (46–50). Conversely, there was a
striking decrease in PDCD10 protein amount in
processed for immunofluorescence with anti-4-HNE (green), anti-8
nuclei stained with DAPI (blue). Quantification of the staining. Sca
versus triple knockdown of the GCKIII kinases on hepatocellular
Oxidation of [14C]-labeled oleic acid. F: Secretion of [14C]-labeled TA
the results shown in (D–F). Data are mean ± SEM from 8 cell culture
to 3 independent experiments are shown.aP < 0.05 versus contro
oxoguanine; CHOP, C/EBP-homologous protein; Ctrl, control; KD
targeting control; IHH, immortalized human hepatocyte; sKD, single
yeast two-hybrid.
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hepatocytes deficient in all three GCKIII kinases, while
the stability of PDCD10 was not affected in cells where
only one kinase was depleted (Fig. 3B).

Next, we assessed the effect of altered PDCD10
expression on hepatocellular lipid content. In hepato-
cytes transfected with PDCD10 siRNA, lipid storage was
diminished to the levels seen in cells with the combined
knockdown of MST3, STK25, and MST4 (Fig. 3D, E).
This was expected due to the lower stability of the
GCKIII kinases in PDCD10-deficient cells (Fig. 3B) and
lower lipid levels in cells where the GCKIII kinases
were silenced (Fig. 2B). Importantly, rescuing MST3,
STK25, and MST4 protein levels in PDCD10-depleted
hepatocytes via overexpression restored intracellular
lipid content to that observed in the control cells
(Fig. 3D, E). In contrast, restoring PDCD10 protein levels
in hepatocytes depleted of all three GCKIII kinases
failed to impact on lipid storage (Fig. 3F, G).

Together, these results indicate that the stability of
the GCKIII kinases and PDCD10 is mutually dependent
and that PDCD10 controls hepatocellular lipid accu-
mulation solely by protecting MST3, STK25, and MST4
proteins from degradation (Fig. 3C, H).

MAP4K4 regulates hepatocellular lipotoxicity via
phosphorylation of the GCKIII kinases

In addition to PDCD10, several other proteins were
observed to interact with multiple GCKIII kinases.
These included MAP4K4 (also known as HGK and
NIK) which is an STE20-type kinase that controls a wide
range of cellular functions, such as migration, prolif-
eration, and stress responses (51), the Golgi matrix
protein GOLGA2 (also known as GM130 and Golgin
A2) which facilitates vesicle fusion (52), BAZ2A which is
involved in transcriptional regulation through recruit-
ment of histone-modifying enzymes and DNA meth-
yltransferases (53), and HSD17B11 (also known as 17-
beta-HSDXI, RETSDR2, and PAN1B) which is a
hydroxysteroid dehydrogenase regulating steroid hor-
mone metabolism (54) (Fig. 3A). Next, we examined the
effect of loss or gain of function of these interaction
partners on the GCKIII kinase protein abundance and
lipid homeostasis in human hepatocytes.

We found that the knockdown of MAP4K4 signifi-
cantly reduced lipid content in IHHs treated with oleic
and palmitic acid and, reciprocally, MAP4K4 over-
expression rendered hepatocytes more susceptible to
fat deposition (Fig. 4A–D), which is in line with our
-oxoG (red), anti-CHOP (red), or anti-KDEL (green) antibodies;
le bar: 50 μm. C: Schematic illustration of the impact of single
lipotoxicity. D: TAG synthesis from [14C]-labeled oleic acid. E:
G into the medium. G: Relative fatty acid partitioning based on
wells per group. For (B and D–G), representative results from 2

l; eP < 0.05 versus tKD. 4-HNE, 4-hydroxynonenal; 8-oxoG, 8-
, knockdown; DAPI, 4',6-diamidino-2-phenylindole; NTC, non-
knockdown; TAG, triacylglycerol; tKD, triple knockdown; Y2H,



a

_

+

+

_

_

+

Triple KD

a

a
a

_

_

+

_
_

_ +
_

_

_
_

_

_
_

_
_+

_

Single OE

A

STK25

MST4

MST3

MYC-MST4

MYC-MST3

FLAG-STK25

GAPDH

MST3 KD

MST4 KD
MST4 OE

MST3 OE

STK25 OE
STK25 KD_

_

_
_

_
_

Ctrl Single OE + double KD

+

_

_

+

+

_ +_

_

+

+

_ +
_

+

_
_++

+ +

+

_

_

+

_
_

_

_

+

+

_
_ +

_

_

+

_
_

+
_

_

+

_

_

_

+

_
_+

_ +_

_
_+

_

Single OE + single KD

_

_

_

+

_
_ _

_

+

_

_
_

_

+

_
_

_
_

Single KD

+

_

_

+

_
_

_

+

_
_

_

+

_

+

+

_

_
_

Double KD

_

+

+

_

_

+

Triple KD

_

_

+

_
_

_ +
_

_

_
_

_

_
_

_
_+

_

Single OE

55 kDa

55 kDa

55 kDa

35 kDa

1.00±0.00

Total GCKIII
abundance

(Ctrl set to 1) 1.86±0.12 0.75±0.04 0.53±0.03 0.23±0.01 1.25±0.04 0.90±0.05

B
MST3 KD

MST4 KD
MST4 OE

MST3 OE

STK25 OE
STK25 KD

Bodipy

_

_

_

+

_
_ _

_

+

_

_
_

_

+

_
_

_
_ +

_

_

+

_
_

_

+

_
_

_

+

_

+

+

_

_
_

_

+

+

_

_

+_

_

_
_

_
_

Single KD Double KD Triple KDCtrl

MST3 KD

MST4 KD
MST4 OE

MST3 OE

STK25 OE
STK25 KD

Single OE + double KD

+

_

_

+

+

_ +
_

_

+

+

_ +
_

+

_
_+

_

_

+

_
_

_ +
_

_

_
_

_

_
_

_
_+

_

+

+ +

+

_

_

+

_
_

_

_

+

+

_
_ +

_

_

+

_
_

+
_

_

+

_

_

_

+

_
_+

_ +_

_
_+

_

Single OE + single KD

Single OE

Bodipy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

+ypido
B

(C
tr

ls
et

to
1)

MST3 KD

MST4 KD
MST4 OE

MST3 OE

STK25 OE
STK25 KD_

_

_
_

_
_

Ctrl

a
a

a

_

_

_

+

_
_ _

_

+

_

_
_

_

+

_
_

_
_

Single KD

a

+

_

_

+

_
_

_

+

_
_

_

+

_

+

+

_

_
_

Double KD Single OE + double KD

a

a a

+

_

_

+

+

_ +_

_

+

+

_ +
_

+

_
_++

+ +

+

_

_

+

_
_

_

_

+

+

_
_ +

_

_

+

_
_

+
_

_

+

_

_

_

+

_
_+

_ +_

_
_+

_

Single OE + single KD

0.34±0.011.00±0.00

Total lipid
levels

(Ctrl set to 1) 1.64±0.03 0.60±0.02 0.40±0.01 1.12±0.05 0.52±0.05

aa
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palmitic acid for 48 h posttransfection. A: Cell lysates were analyzed by Western blot using antibodies specific for MST3, STK25, or
MST4. Protein levels were quantified by densitometry; representative Western blots are shown with GAPDH used as a loading
control (quantifications are presented in supplemental Fig. S5). The average total GCKIII abundance for each set of the transfection
combination is demonstrated at the bottom. B: Representative images of cells stained with Bodipy (green); nuclei stained with DAPI
(blue). Quantification of the staining. The average lipid levels for each set of the transfection combination are demonstrated at the
bottom. Scale bar: 50 μm. Data are mean ± SEM from 3 (A) or 8 (B) cell culture wells per group. aP < 0.05 versus control. IHH,
immortalized human hepatocyte; Ctrl, control; KD, knockdown; OE, overexpression; NTC, nontargeting control; tKD, triple
knockdown; NTC, nontargeting control; DAPI, 4',6-diamidino-2-phenylindole.

Shared role of GCKIII kinases in liver lipid homeostasis 7



PDCD10
MST3

STK25
MST4

MST3
SSTand TK25

M
SST

and

0.0

0.5

1.0

1.5

2.0
0.0

1.0

2.0

3.0

0.0

0.5

1.0

1.5
0.0
0.5
1.0
1.5
2.0

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

2.0
0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5
0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5
Ctrl

PDCD10
KD

A C
PDCD10

MST3TTT33
STK25255225

MST4

MST3
STK25

MST4

MST3
SSTor K25

M
SST

or
PDCD10

B

PDCD10

STK25

MST4

MST3

25 kDa

55 kDa

55 kDa

55 kDa

35 kDaGAPDH

Ctrl
MST4

KD
STK25

KD
MST3

KD tKD
PDCD10

KD

ST
K

25
ab

un
da

nc
e

(C
tr

ls
et

to
 1

)

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

M
ST

3 
ab

un
da

nc
e

(C
tr

ls
et

to
 1

)

aa
a

aa
a

0.0
0.5
1.0
1.5
2.0

0.0
0.2
0.4
0.6
0.8
1.0
1.2

aa a

M
ST

4 
ab

un
da

nc
e

(C
tr

ls
et

to
 1

)

PD
C

D
10

ab
un

da
nc

e
(C

tr
ls

et
to

 1
)

a
a

tKDCtrl MST4 KDSTK25 KDMST3 KD PDCD10 KD

tKD
PDCD10
KD+tOE

D

GCKIII tKD + restored
PDCD10 abundance

PDCD10PD
MST3

STK25
MST4

Control

PDCD10PD
MST3

STK25
MST4

PDCD10 KD + restored
GCKIII abundance

PDCD10P
MST3

STK25
MST4 PDCD10

GCKIII tKD

PPPPPDDD
MST3

STK25
MST4

PDCD10 KD

PDCD10PD
MST3333

STK25

10

25255255
MST4

H

G
Ctrl

Bodipy

tKD tKD+PDCD10 OEPDCD10 OE

B
od

ip
y+

(C
tr

ls
et

to
1)

a a

MYC-PDCD10

Ctrl tKD

PDCD10

STK25

MST4

MST3

GAPDH

25 kDa

55 kDa

55 kDa

55 kDa

35 kDa

PDCD10
OE

tKD+
PDCD10 OE

ST
K

25
ab

un
da

nc
e

(C
tr

ls
et

to
 1

)

M
ST

3 
ab

un
da

nc
e

(C
tr

ls
et

to
 1

)
M

ST
4 

ab
un

da
nc

e
(C

tr
ls

et
to

 1
)

PD
C

D
10

ab
un

da
nc

e
(C

tr
ls

et
to

 1
)

aa

aa

aa

a

a

ST
K

25
ab

un
da

nc
e

(C
tr

ls
et

to
 1

)

M
ST

3 
ab

un
da

nc
e

(C
tr

ls
et

to
 1

)

F

Ctrl PDCD10 
OE

tKD tKD+
PDCD10 OE

Ctrl tKD+PDCD10 OEPDCD10 OEtKD

PDCD10

STK25

MST4

MST3

GAPDH

25 kDa

55 kDa

55 kDa

55 kDa

35 kDa

tKD PDCD10
KD+tOE

E
Ctrl

Bodipy

tKD PDCD10 KD+tOE
B

od
ip

y+
(C

tr
ls

et
to

1)

Ctrl PDCD10
KD

M
ST

4 
ab

un
da

nc
e

(C
tr

ls
et

to
 1

)

PD
C

D
10

ab
un

da
nc

e
(C

tr
ls

et
to

 1
)

PDCD10 KD

a a a
a

a a
aa

a

Ctrl PDCD10 KD+tOEPDCD10 KDtKD

a a

12

1440

STK25

MST4MST3

PDCD10

GOLGA2
MAP4K4

BAZ2A
HSD17B11

2 2
1

0

Number of unique
interaction partners

Fig. 3. MST3, STK25, and MST4 interact with PDCD10, which regulates the hepatocellular lipid storage by controlling the stability
of the GCKIII kinases. A: Venn diagram showing the number of shared and unique interaction partners of the GCKIII kinases
detected by ULTImate Y2H screen of a primary human hepatocyte cDNA library. For (B-H), IHHs were transfected with different
combinations of MST3, STK25, MST4, PDCD10 siRNA, and/or with MYC-MST3, FLAG-STK25, MYC-MST4, and MYC-PDCD10 expression
plasmids as indicated. Control cells were transfected with NTC siRNA and/or empty control plasmids. All cells were incubated with
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previous studies (55). We also showed that the combined
depletion or overexpression of MAP4K4 and the
GCKIII kinases resulted in a similar alteration of he-
patocellular lipid accumulation as compared with the
changed abundance of each of these proteins individ-
ually (Fig. 4A–D), indicating that MAP4K4, MST3,
STK25, and MST4 operate in the same signaling
pathway. Importantly, the effect of the MAP4K4
overexpression was blocked in hepatocytes where any
of the three GCKIII kinases were knocked down
(Fig. 4A, B). In addition, the amount of phospho-MST3
(Thr178), phospho-STK25 (Thr174), and phospho-MST4
(Thr178; active forms) was about 2-fold lower in
MAP4K4-deficient hepatocytes, with no differences in
the levels of the corresponding total proteins (Fig. 4E).
Together, these results suggest that MAP4K4 acts up-
stream of the GCKIII kinases, regulating their activity
via phosphorylation (Fig. 4F).

We observed no alterations in fatty acid–induced
lipid accumulation in IHHs when GOLGA2 or
BAZ2A were overexpressed or knocked down
(supplemental Figs. S6A, B and S7A, B). Furthermore,
fat storage was increased or decreased to a similar
extent by overexpressing or silencing of the GCKIII
kinases, respectively, in GOLGA2- or BAZ2A-deficient
hepatocytes compared with the corresponding control
cells (supplemental Figs. S6C–F, and S7C–F). Thus, we
found no evidence that the interaction with GOLGA2
or BAZ2A proteins is critical in the regulation of he-
patocellular lipotoxicity mediated by MST3, STK25,
and MST4.

Interaction with HSD17B11 is instrumental for
mediating the lipotoxicity-modifying function of
the GCKIII kinases

Next, we explored the potential role of the interac-
tion partner HSD17B11 in the GCKIII-induced lip-
otoxicity. We detected no significant differences in
lipid accumulation or superoxide radical (O•−) content
quantified by Bodipy 493/503 or DHE staining,
respectively, in oleate- and palmitate-treated IHHs
transfected with HSD17B11 siRNA versus NTC siRNA,
while the overexpression of HSD17B11 increased both
fat storage and oxidative stress (Fig. 5A, supplemental
Fig. S8A, and S9A). Remarkably, we found that the
impact of MST3, STK25, or MST4 silencing or over-
expression on hepatocellular lipid levels measured by
Bodipy 493/503 and oxidative damage assessed by DHE
was completely blocked in HSD17B11-deficient cells
(Fig. 5B, C, supplemental Figs. S8B, C, and S9B, C). Lip-
idomic analysis by ultrahigh performance LC-MS
and G) Representative images of cells stained with Bodipy (green);
Scale bar: 50 μm. (H) Schematic illustration of the impact of modify
accumulation. Data are mean ± SEM from 4 (B, D, and F) or 8–12
sentative results from 2 to 3 independent experiments are shown. aP
control; IHH, immortalized human hepatocyte; KD, knockdown;
knockdown; tOE, triple overexpression; Y2H, yeast two-hybrid.

Sh
further confirmed hindered reduction in TAGs,
which are the major constituents of the neutral core of
lipid droplets, in hepatocytes where the knockdown of
the GCKIII kinases was combined with the depletion of
HSD17B11 (Fig. 5D and supplemental Table S6). We also
observed a similar pattern for total ceramides, which
have been specifically implicated in the development
of MASLD (Fig. 5D and supplemental Table S6) (56). Of
note, the overexpression of HSD17B11 had no signifi-
cant influence on the lipid-lowering or lipid-elevating
effect seen in hepatocytes with deceased or enhanced
abundance of the individual GCKIII kinases, respec-
tively (supplemental Fig. S10).

We detected a significant positive correlation be-
tween HSD17B11 mRNA expression in human liver bi-
opsies and the hepatic fat content analyzed by magnetic
resonance spectroscopy as well as the severity of MASH
assessed by MAS (i.e., histological scores of liver stea-
tosis, inflammation, and ballooning) and hepatic
fibrosis stage as recommended by the MASH Clinical
Research Network (40) (supplemental Fig. S11 and,
supplemental Table S2).

Mechanistically, we found that the silencing of
HSD17B11 did not impact the stability or activity of the
GCKIII kinases, as evidenced by equal abundance of
total and phospho-MST3 (Thr178), phospho-STK25
(Thr174), and phospho-MST4 (Thr178; active forms) in
IHHs transfected with HSD17B11 siRNA versus NTC
siRNA (supplemental Figs. S8A and S12). Furthermore,
the confinement of MST3, STK25, and MST4 to the
surface of hepatocellular lipid droplets was unaffected
by HSD17B11 knockdown (Fig. 5E). Interestingly, native
gel electrophoresis showed an altered banding pattern
with higher apparent molecular weight forms of all
three GCKIII kinases in HSD17B11-deficient hepato-
cytes than the control cells, suggesting conformational
change and assembly of MST3, STK25, and MST4 into a
large complex or protein aggregates in the absence of
HSD17B11 (Fig. 5F). Of note, the silencing of MST3,
STK25, or MST4 had no effect on the enzymatic ac-
tivity of HSD17B11 measured by conversion of retinol to
retinoic acid (supplemental Fig. S13).

Together, our results indicate that HSD17B11 controls
the lipotoxicity-modifying activity of the GCKIII ki-
nases via a conformational change (Fig. 5G).

Substrate profiling of the GCKIII kinases reveals
targets linked to MASLD susceptibility

To characterize the phosphorylation targets of the
GCKIII proteins, we performed in vitro kinase assays
on μParaflo microfluidic microarrays with over 400
nuclei stained with DAPI (blue). Quantification of the staining.
ing PDCD10 and/or GCKIII abundance on hepatocellular lipid
(E and G) cell culture wells per group. For (B and D–G), repre-
< 0.05 versus control. DAPI, 4',6-diamidino-2-phenylindole; Ctrl,
OE, overexpression; NTC, nontargeting control; tKD, triple
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human peptides (Fig. 6A for the schematic illustration
of the study design). In total, between 128 and 179
distinct peptides were identified as substrates for each
kinase (signal intensity>300, FDR<0.01), corresponding
to 113 and 155 unique proteins, respectively, including
previously known targets (Fig. 6B–D) (57–62). Notably,
none of the proteins detected by the substrate profiling
were recognized as interaction partners of the GCKIII
kinases by Y2H screening, with the exception of
PDCD10 (phosphorylated by STK25 at Ser39 and Thr43

residues; Fig. 6C). This was not unexpected as most
phosphorylation events are intrinsically transient and,
thus, the two methods are considered to be comple-
mentary rather than interchangeable.

To understand the GCKIII-dependent regulation of
hepatocellular metabolism, we next integrated the re-
sults obtained from the substrate screen with the
genome-scale metabolic model Human1 (63), including
only proteins known to be expressed in the liver (65).
This analysis revealed 20 targets in total, which were
phosphorylated by one or several of the GCKIII ki-
nases, with described functions in lipogenesis, lipolysis,
and lipid secretion, as well as glucose uptake, glycolysis,
hexosamine synthesis, and ubiquitination (Fig. 6E and
supplemental Table S7). In this dataset, seven proteins
were identified as phosphorylation substrates for all
three GCKIII kinases, representing the candidates most
likely to constitute the common pathway of MST3,
STK25, and MST4 (Fig. 6F). Interestingly, all these
shared targets (ALOX5, GFPT1, MDM2, PRKD1,
PRKFB3, SLC2A2, and SLC9A1) have previously been
linked to the regulation of liver lipotoxicity and
MASLD susceptibility in human and/or mouse models
(supplemental Table S7) (66–72). The seven phospho-
sites have been annotated in PhosphoSitePlus (73);
however, the functional implication of these phos-
phorylation events has not been described. Alignment
of the phosphosites of the shared targets using the
WebLogo software (64) identified a strong preference
for serine as the phosphoacceptor residue with a high
variability in the amino acid sequences surrounding the
site of phosphorylation (Fig. 6G).

DISCUSSION

Ectopic lipid accumulation in liver is a hallmark
feature of MASLD and precursor for the progression
to MASH. Many proteins have been reported to be
involved in hepatic lipid homeostasis, yet the mecha-
nisms that underpin the development of steatosis
remain to be resolved. In this study, we explored the
antibodies (violet); merged image shows colocalization in white with
were analyzed by native gel electrophoresis followed by immunob
Schematic illustration of the role of HSD17B11 in GCKIII-mediated
group. For (A-B, and F), representative results from 2 independent
DAPI, 4',6-diamidino-2-phenylindole; IHH, Immortalized human
targeting control; tKD, triple knockdown; WB, Western blot.
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mode of action of the STE20 kinases comprising the
GCKIII subfamily—MST3, STK25, and MST4—in the
regulation of hepatocellular lipotoxicity. The impact of
single versus combined silencing of the GCKIII kinases
on lipid accumulation and oxidative/ER stress was
assessed in human hepatocytes, and their interaction
partners, upstream elements, and downstream targets
were characterized.

Our systematic examination of the GCKIII subfamily
revealed that the single knockdown of MST3, STK25, or
MST4 resulted in a comparable reduction in hepato-
cellular lipid content and metabolic stress, implying
overlapping but nonredundant roles for these kinases
in the control of lipotoxicity. Interestingly, we observed
no additive or synergistic effects when all three GCKIII
kinases were simultaneously silenced, indicating that
MST3, STK25, and MST4 likely operate in the same
signaling pathway and/or employ a shared mechanism
of action that is not substantially enhanced by com-
bined depletion. While the mammalian genome en-
codes three GCKIII kinases, which possess a highly
conserved catalytic domain [95% similarity in the amino
acid sequence among the human proteins; (15)], lower
organisms such as Caenorhabditis elegans have only one
homolog of MST3, STK25, and MST4 [GCK-1; (74)]. The
evolutionary expansion of a gene family typically re-
flects essential functional diversification required in
higher eukaryotes; however, the GCKIII kinases appear
to phenocopy the effect of each other on hepatocellu-
lar lipotoxicity. Of note, MST3, STK25, and MST4 are
ubiquitously expressed and implicated in a diverse
range of complex cellular processes including the
regulation of Golgi integrity, cytoskeletal organization,
polarity, proliferation, migration, and apoptosis across
various cell types such as HeLa (cervical cancer cells),
human embryonic kidney 239 (HEK293) cells, COS-7
(kidney fibroblasts), MCF-7 (mammary epithelium), tis-
sue macrophages, and neurons (15, 75, 76). Thus, it is
plausible that the role of MST3, STK25, and MST4 ki-
nases differs in extrahepatic tissues or in pathways that
we did not examine.

Protein-protein interaction is a major mechanism
that regulates enzyme activity. By using a genome-wide
Y2H screen of the human hepatocyte library, we
identified the scaffold protein PDCD10 as an interac-
tion partner of all three GCKIII kinases. We also found
that in hepatocytes, the stability of the GCKIII kinases
and PDCD10 was interdependent, where the silencing
of PDCD10 significantly reduced the protein levels of
MST3, STK25, and MST4, while the combined deple-
tion of the GCKIII kinases, but not the knockdown of
nuclei stained with DAPI (blue). Scale bar: 10 μm. F: Cell lysates
lotting using antibodies specific for MST3, STK25, or MST4. G:
lipotoxicity. Data are mean ± SEM from 8 cell culture wells per
experiments are shown. aP < 0.05 versus control. Ctrl, control;
hepatocyte; KD, knockdown; OE, overexpression; NTC, non-
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each of them individually, lowered the abundance of
PDCD10. These results are consistent with earlier re-
ports showing that PDCD10 silencing destabilizes the
GCKIII kinases in SaOS2 cells (human osteoblasts)
leading to Golgi disassembly, HeLa cells attenuating
apoptosis, human umbilical vein endothelial cells
diminishing adhesion capacity, and PC-3 cells (human
prostate cancer cells) hindering proliferation (46–50).
To this end, here we demonstrated for the first time
that PDCD10 knockdown antagonized ectopic lipid
accumulation in human hepatocytes by decreasing the
protein amounts of the GCKIII kinases. Mechanisti-
cally, PDCD10 has been shown to block ubiquitination
and subsequent proteasome-dependent degradation of
MST3, STK25, and MST4 in SaOS2 and HeLa cells (46,
48); however, the pathways used by PDCD10 to control
the protein levels of these kinases in hepatocytes still
remain elusive. Interestingly, in addition to being
detected in Y2H screens as an interaction partner of the
GCKIII kinases, PDCD10 was also identified as the
phosphorylation target for STK25 by in vitro kinase
assays. The sites phosphorylated by STK25 (Ser39 and
Thr43) have been annotated in PhosphoSitePlus (73);
however, the functional significance of these modifi-
cations remains unknown and further studies are war-
ranted to investigate whether the phosphorylation of
PDCD10 protein is important for stabilizing PDCD10
itself and/or the GCKIII kinases.

MAP4K4, an STE20-type kinase belonging to the
GCKIV subfamily, also interacts with STK25 and MST4,
as determined by the Y2H screens. Our data demon-
strated that MAP4K4 facilitated hepatocellular lipid
accumulation by phosphorylating all three GCKIII ki-
nases. These results are aligned with our earlier study
showing that the silencing of MAP4K4, similar to the
knockdown of MST3, STK25, and/or MST4, protects
human hepatocytes against lipotoxic damage (55).
Furthermore, a higher protein abundance of MAP4K4
has been found in the livers of high-fat versus chow
diet–fed mice, which is paralleled by an increase in the
phosphorylation of MST3 and STK25 (Thr178 and
Thr174, respectively) (21, 55, 77). MAP4K4 has previously
been described as an upstream activator of the c-Jun N-
terminal kinase and extracellular signal–regulated ki-
nase cascade in some but not all cell types (78). Notably,
endogenous MAP4K4 protein colocalizes with mito-
chondria in human hepatocytes and mouse liver (55),
while the GCKIII kinases are confined to hepatocellular
lipid droplets (16, 17, 19, 79). Lipid droplets are known to
be tethered to mitochondria via integral membrane
and MST4 in the subset of significantly changed phosphoprotein
Consensus sequences of the subset of significantly changed phosp
man1 detected in the screens for all three kinases, using the Web
phosphorylation site is shown on the x-axis and the information con
are shown in green, neutral amino acids (Q and N) are shown in p
amino acids (D and E) are shown in red, and hydrophobic amino aci
FDR, false discovery rate; GU, glucose uptake; MASLD, metabolic dy
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protein complexes and fusion of the outer membrane
leaflets (80). It is therefore possible that MAP4K4 and
the GCKIII kinases interact at the mitochondria-lipid
droplet contact sites, and thereby mediate hepatocellu-
lar lipid homeostasis.

In addition to PDCD10 andMAP4K4,we also identified
HSD17B11 as an interaction partner of several GCKIII
kinases (i.e., MST3 and STK25) in the Y2H screens. We
found that the silencing of HSD17B11 per se had no
impact on lipid content in human hepatocytes. Remark-
ably, we discovered that the knockdown ofMST3, STK25,
or MST4 failed to reduce lipid accumulation in
HSD17B11-deficient hepatocytes, indicating that the
function of HSD17B11 is critical for the lipid-lowering
effect of GCKIII inhibition. HSD17B11 belongs to the
17β-hydroxysteroid dehydrogenase family consisting of
15 members involved in steroid biosynthesis as well as
lipid and retinol metabolism (54). HSD17B11 has been
shown to associate with lipid droplets in Huh7 and VA-13
(human hepatoma cells) as well as HeLa cells, and over-
expression of HSD17B11 increases the size of lipid drop-
lets in VA-13 and HeLa cells, possibly through reduced
adipose triglyceride lipase translocation to the lipid
droplets (81–83). Interestingly, the hepatocellular func-
tion of another member of the 17β-hydroxysteroid de-
hydrogenase family, HSD17B13, has recently been
thoroughly explored. HSD17B13 protein shares about
80% sequence similarity with HSD17B11 in the core cata-
lytic domain (84). HSD17B13 primarily localizes to hepatic
lipid droplets and genetic polymorphism in theHSD17B13
gene results in loss of enzymatic activity and is linked to
protection against MASH (85). However, the mechanisms
by which genetic variants in HSD17B13 mitigate MASH
development are unknown and available data are con-
flicting. Neither overexpression nor knockdown of
HSD17B13 in HepG2 (human hepatoma cells) was shown
to impact lipid storage (86). In mice, hepatic over-
expression of human HSD17B13 increases liver TAG and
cholesterol levels (87), while abrogation of the mouse
Hsd17b13 gene was reported to both promote hepatic
steatosis and inflammation (88) or to have limited effects
on MASH (89). Of note, three liver-specific oligonucleo-
tide-based therapies targeting HSD17B13 are currently
being evaluated in clinical trials for the management of
MASH (14). Although HSD17B13 was present in the pri-
mary human hepatocyte library used in the Y2H screens,
it was not detected to interact with any of the GCKIII
kinases. Together, this suggests that HSD17B13 regulates
hepatocyte lipid metabolism via actions that do not
involve the GCKIII kinases, whereas HSD17B11 is
s integrated with genome-scale metabolic model Human1. G:
hoproteins integrated with genome-scale metabolic model Hu-
Logo application (64). The residue position in relation to the
tent is shown on the y-axis. Polar amino acids (G, S, T, Y, and C)
urple, basic amino acids (K, R, and H) are shown in blue, acidic
ds (A, V, L, I, P, W, F, and M) are shown in black. aa, amino acids;
sfunction–associated steatotic liver disease; Ubiq., ubiquitination.



required for the GCKIII kinases to control lipid
homeostasis.

There are some limitations associated with this study.
Primarily, all experiments exploring the interplay be-
tween MST3, STK25, and MST4 were conducted using
immortalized human cell lines, which may not fully
mimic in vivo conditions. Consequently, additional
research using mouse models, but also primary human
cells, is essential to gain further insights into the shared
mode of action of the GCKIII kinases. Moreover, in this
investigation, we limited the evaluation of the lipotoxic
effect of MST3, STK25, and MST4 to hepatocytes, mac-
rophages, and hepatic stellate cells. However, given the
complexity ofMASLDpathophysiology, it is important to
expand the analysis to additional cell types, including
neutrophils, lymphocytes, dendritic cells, and liver sinu-
soidal endothelial cells, which are also known to
contribute to MASLD development (90–92) and express
high levels of both the GCKIII kinases and their key
interaction partners (i.e., PDCD10, MAP4K4, and
HSD17B11) https://www.livercellatlas.org/index.php,
http://www.liverproteome.org/. Finally, this study
sought to clarify the molecular network surrounding
MST3, STK25, and MST4, yet comprehensive experi-
mental validation of the interaction partners and phos-
phorylation targets of the GCKIII kinases identified by
Y2H screens and in vitro kinase assays, respectively, is still
pending, and will be the focus of our future studies.

In conclusion, we show that the members of the
GCKIII kinase subfamily regulate hepatocyte lipid
metabolism via common pathways. The results from a
series of comprehensive experiments provide new in-
sights into the role of MST3, STK25, andMST4, as well as
their interactions with PDCD10, MAP4K4, and HSD17B11,
in the control of liver lipid homeostasis. This knowledge
can lay a platform for future investigations aimed at
identifying novel targets for the prevention and/or
treatment of MASLD and MASH, which remain major
clinical challenges.
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