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Abstract

Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely differ-
ent sizes. In recent years, it has become clear that cell size is a major regulator of cell function. However, we
are only beginning to understand how the optimization of cell function determines a given cell’s optimal size.
Here, we review currently known size control strategies of eukaryotic cells and the intricate link of cell size to
intracellular biomolecular scaling, organelle homeostasis, and cell cycle progression. We detail the cell size-de-
pendent regulation of early development and the impact of cell size on cell differentiation. Given the importance
of cell size for normal cellular physiology, cell size control must account for changing environmental conditions.
We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their
size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological
states with misregulation of cell size and how for a long time this was considered a downstream consequence
of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size
leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight the impor-
tant roles of cell size in cellular function and dysfunction, which could have major implications for both diagnos-
tics and treatment in the clinic.
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1. INTRODUCTION

Depending on ecological niche, cell type, and environ-
ment, the diameter of eukaryotic cells ranges from less
than a micrometer to several centimeters. In other
words, their volume spans more than 14 orders of magni-
tude. While cells of any size are built on the same funda-
mental biological processes, cell size has a major impact
on cell function (FIGURE 1): it is a major determinant of
biosynthetic capacity, setting the scale of transcription

and protein production (1). The timescale of ideal passive
diffusion across the cell increases with the diameter
squared. Moreover, cell size governs intracellular orga-
nization, with many organelles increasing either in size
or abundance with overall cell size (2), and the molecular
composition of a cell changes with its size because not
all cellular molecules increase in direct proportion to cell
volume (3–5). Because cell size governs cell function, it
is not surprising that proliferating cells control their size
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by balancing cell growth and cell division. To achieve
this, they are able to sense their own size and use this
information to modulate cell growth and cell cycle pro-
gression accordingly (6).
Changes in cell size are ubiquitous in biology. On one

hand, regulation of cell function, for example, during de-
velopment or in response to changing environments,
typically leads to cell size adaptation. On the other hand,
cellular dysfunction is often accompanied by altered cell
size. For example, unusual and heterogeneous cell size
is typical for cancer (7). Moreover, aging and cellular se-
nescence are associated with an increase in cell size in
yeast and mammals (8, 9). In principle, these changes
could be downstream effects because cell size is sensi-
tive to both cell growth and cell cycle progression. For
example, the large size of senescent cells was long con-
sidered to be a consequence of cells still growing
despite the permanent cell cycle arrest. However, recent
studies revealed that increased cell size itself promotes
senescence by disrupting cell function, reverting our
understanding of the underlying causality (9).
During the last decades, cell size was studied by a

small group of researchers interested in understanding
how cells control their size and how intracellular proc-
esses are coordinated with changes in cell size. Only
recently, new insights into how changes in cell size
cause a broad reorganization of the cellular transcrip-
tome and proteome (10) have sparked attention
(FIGURE 2) and have led to an increasing awareness
that because cell size impacts virtually all intracellular
processes, it must be considered in many biological con-
texts. Still, across cell biology, the role of cell size is often
ignored.

Focusing on mononucleated cells, we here aim to
give an overview of how cell size governs the function
of eukaryotic cells, how cells can control their size,
and how failure to maintain the correct size leads to
cellular dysfunction and disease. Note that unless
clarified otherwise, we use the term “cell size” to inter-
changeably refer to cell volume, cell mass, and cellu-
lar dry mass, all of which are typically, but not always,
strongly correlated.

2. CELL SIZE GOVERNS BIOSYNTHESIS AND
CELLULAR COMPOSITION

In essence, a cell is a sophisticated living machine that
functions using an intricate network of biochemical reac-
tions. The rate of these reactions is governed by the
concentration of the molecules involved. If concentra-
tions control biological function, for a cell to increase in
size without compromising the efficiency of the intracel-
lular processes, macromolecules must increase in
amount with size to maintain their constant concentra-
tions. Such a proportional increase with cell size, leading
to constant concentrations, is often termed “scaling.”
Alternatively, if the concentration decreases, that is the
molecule is diluted with size, it is called “subscaling.” If
the concentration increases, that is the molecule is con-
centrated with size, it is called “superscaling” (FIGURE
2B). Regulating these different scaling relationships
allows the cell to adjust cell function according to the
new physiological state associated with the changed
cell size and account for the associated physical
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FIGURE 1. Cell size is tightly linked to bio-
synthesis, organelle homeostasis, cell cycle
regulation, and developmental processes.
Misregulation of cell size is detrimental to
cell function and associated with diseases
and aging.
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constraints. Emphasizing the importance of the correct
scaling relationships, misregulation of size-dependent
scaling in exceedingly large cells has been shown to be
detrimental and recently has been proven to be a causal
driver of senescence (3, 11) (see sect. 8).
Typically, total cellular transcript and protein amounts

increase roughly proportionally with cell size, such that
their concentration is maintained (1, 12–19). The absolute

levels of transcripts and proteins depend on the rates of
their synthesis and degradation, and in principle, both
processes may be regulated with cell size (FIGURE 2A).
Studies spanning across four decades show larger cells
to have higher transcription (12, 14, 16, 20–25) and trans-
lation rates (20, 24–27). The relationship of global
mRNA and protein degradation rates with cell size is
less clear, but early evidence indicated that it plays a
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FIGURE 2. A: cell size can affect protein ho-
meostasis at the steps of transcription, transla-
tion, and transcript or protein degradation. B:
this can lead to scaling, subscaling, or super-
scaling behavior of individual transcripts or pro-
teins. C: a broad range of scaling behavior is
observed in human lung fibroblast cells (5). D:
scaling of global transcript amounts in budding
yeast is achieved through a combination of a
cell size-dependent increase of transcription
due to limiting polymerase II (Pol II), and a size-
dependent decrease of mRNA degradation.
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less prominent role in achieving the proportional scal-
ing (16, 24, 26, 28). However, as discussed in more
detail below, recent evidence in budding yeast dem-
onstrates that at least for mRNA, degradation rates
decrease with cell size, which especially for large cells
is necessary to maintain constant mRNA concentra-
tions (29) (FIGURE 2D).

2.1. Limiting Polymerase and Degradation Couple
mRNA Amounts to Cell Size

Total transcript amounts scale with cell size at least in
part because transcription rate increases with size. This
raises the question of how the transcription rate
increases with cell size even if the genomic DNA con-
tent, which is the template for transcription, remains con-
stant. The observation that the cellular content, not just
the genome, determines the transcriptional output, to-
gether with the fact that components of the transcrip-
tional machinery also scale with cell size, led to the
hypothesis that the transcription rate is limited by a com-
ponent of the transcriptional machinery (1, 14, 16, 30–32).
Consistent with this idea, the scaling of transcription rate
breaks down at large cell sizes (29) because at this
point, the DNA template for transcription, i.e., the genes,
becomes limiting. Accordingly, in this cell size regime,
the transcription rate per cell can be further increased
by an increase of ploidy.
One obvious candidate for the limiting factor coupling

transcription to cell size is the polymerase itself,
because RNA polymerase II (Pol II) abundance increases
with cell size across organisms (16, 19, 29, 32) and its ge-
nome occupancy has been shown to increase with cell
size in budding and fission yeast (29, 32). Indeed,
Swaffer et al. (29) recently established Pol II as the key
limiting factor in budding yeast by manipulating the con-
centration of Pol II subunits. Specifically, consistent with
the haploinsufficiency of RNA Pol II genes in yeast (33),
they show that reducing the amount of the catalytic RNA
Pol II subunit Rpb1 (encoded by POLR2A in humans) pro-
portionally decreased the RNA Pol II bound to the ge-
nome, strongly suggesting that the transcription rate
also decreases accordingly. Similarly, overexpressing
RNA Pol II subunits was sufficient to increase the RNA
Pol II genome occupancy (29). Importantly, in contrast to
a simple model where almost all RNA Pol II is bound to
the genome, Swaffer et al. (29) demonstrated that only
about half of the RNA Pol II is loaded onto the genome,
and, as a consequence of mass action kinetics, its load-
ing to DNA increases sublinearly with size. To compen-
sate for the sublinear cell size scaling of the transcription
rate, the mRNA degradation rate decreases with cell size
to maintain constant concentrations of total transcript
(FIGURE2D).

In summary, while the proportional increase of Pol II
amounts with cell size explains an increase in transcrip-
tion rates, it also becomes clear that both transcription
and degradation contribute to the global scaling of
mRNA amounts with cell size. Since mRNA degradation
and transcription are coupled via feedback mechanisms
in yeast and humans (19, 34–36), it seems likely that in
addition to the limiting-machinery mechanisms, addi-
tional layers of regulation are in place to ensure robust
scaling of transcript amounts with cell size.
Akin to total mRNA, total rRNA (18S, 26S, and 5S) and

tRNA (4S) amounts per cell also roughly scale with cell
size in budding and fission yeast (23, 37, 38). The
amount of rRNA and tRNA per cell as well as the pro-
moter occupancy of RNA Pol III also increases during
the hypertrophic growth of cardiomyocytes (39), indicat-
ing that this trend may also hold true for animal cells.
The scaling behavior of other noncoding RNAs is largely
unknown. Furthermore, whether RNA Pol I and RNA Pol
III limit the transcription of their respective transcripts
and thereby control their size scaling remains to be
investigated.

2.2. Translational Capacity Increases with Cell
Size

Since both mRNA and ribosome amounts (4, 5, 23, 40,
41) increase with cell size, it seems intuitive that a simple
model where ribosomes are limiting for global transla-
tion accounts for the size dependence of total protein
amount. However, recent evidence suggests that while
the global translation rate per cell increases with size,
this scaling is sublinear, especially in large cells (25, 42).
Besides a nonperfect scaling of ribosome amounts, one
explanation could be that the fraction of active ribo-
somes (43, 44) controls total translation and decreases
with cell size. Interestingly, such a cell size-dependent
decrease of translation rate is not observed when com-
paring cells of different ploidy and thus different sizes.
Instead, increasing ploidy leads to an increase in cel-
lular translation rate at a given cell size such that linear
size scaling is maintained between cells of different
ploidy (42). However, the exact dependence of pro-
tein amounts on ploidy and cell size might differ
between species, as it has been reported that even
when comparing yeast strains with different ploidy,
protein amounts subscale with cell volume (45).

2.3. Individual Proteins Are Differentially
Regulated with Cell Size

Even though total transcript and total protein are main-
tained at roughly constant concentrations within the
physiological cell size range, recent studies have shown
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that at the level of individual genes, the concentration of
different proteins and transcripts can change with cell
size (5, 41, 46). A prominent example of a class of pro-
teins that decreases in concentration is histones, which
need to be maintained at a constant histone-to-DNA
stoichiometry (4, 5, 41, 47–49). Similarly, cell cycle inhibi-
tors such as Whi5 in yeast (4, 50–53), Rb in mammals
(54–56), and KRP4 in Arabidopsis thaliana (57) sub-
scale, leading to their dilution in bigger cells. In contrast,
the fission yeast cell cycle activators Cdc25 and Cdc13
superscale, leading to higher concentration in larger
cells (58–61). As discussed in more detail in sect. 7, this
differential size dependence of cell cycle regulators can
serve as the basis for cell size regulation.
Recent studies have conducted transcriptomics and

mass spectrometry to reveal the genome-wide size scal-
ing of transcripts and proteins in human cell lines as well
as in budding yeast by sorting cells based on their size
or by manipulating their cell size (4, 5, 41, 42, 62). A key
finding of those studies is that individual genes show a
wide distribution of scaling behaviors, ranging from his-
tones and other DNA binding proteins on the subscaling
end of the spectrum to mitochondrial and metabolic pro-
teins involved, for example, in TCA cycle and glycolysis
on the superscaling end (FIGURE 2C). Interestingly, at
least the global patterns of scaling show high similarity
between different human cell types (5, 46) and budding
yeast (41). Moreover, the proteome composition of large
cells resembles characteristics associated with senes-
cence in mammals (5, 46) and starvation-like conditions
in budding yeast (41). This suggests that DNA becomes
limiting for transcription in large cells, leading to inad-
equate biosynthetic scaling (3) that ultimately drives cells
toward senescence and a starvation-like phenotype.
Given the broad distribution of scaling behaviors

between individual genes, the question arises of how
this differential scaling is established. At least for some
genes, including histones and the cell cycle inhibitor
Whi5 in budding yeast, subscaling is established at the
transcript level (4, 48, 58), and the promoter alone can
mediate this behavior (4, 48). One potential mechanism
for such subscaling is that for those specific genes, the
DNA template rather than Pol II is limiting for transcrip-
tion already in the physiological cell size range (31, 48,
63, 64). However, transcription is not the only step of
protein homeostasis at which cell size dependence
can be controlled. It was recently found that for the
mammalian cell cycle inhibitor Rb, protein degradation
controlled by the E3 ligase UBR5 is necessary for the
decrease of its concentration associated with growth
in G1 (56).
Across genes, subcellular localization has been identi-

fied to be the strongest predictor of the scaling behavior
of proteins in human cells, while mRNA size scaling is

the strongest predictor in the case of budding yeast. In
both cases, using multiple parameters including mRNA
scaling slope, protein turnover, codon affinity score, and
subcellular localization improved the prediction signifi-
cantly, indicating that protein scaling at the individual
gene level is regulated both transcriptionally and post-
transcriptionally (5, 41).

2.4. Cell Size Dependence of Other
Macromolecules and Metabolic Scaling

Given the plethora of tools and techniques available for
the quantification of proteins and nucleic acids, it is not
surprising that these macromolecules are the best stud-
ied in the context of cell size, while the cell size scaling
of lipids and polysaccharides is less clear. From early
studies, we know that larger human fat cells have a
higher rate of lipid synthesis in vitro (65), and fat depos-
its scale linearly with adipocyte size in migratory birds
(66) as well as rats (67). Additionally, total cellular phos-
pholipids, the building material for cell membranes, cor-
related well with cell size, while cholesterol synthesis
peaked at a certain cell size in mouse fibroblast cells
(68). A recent multi-omics-based study quantified RNAs,
proteins, metabolites, and lipids for budding yeast cells
that were cell cycle synchronized by elutriation and
separated by size and used as a proxy for the cell
cycle stage. The relative composition of the cellular
metabolome changed during the cell cycle; however,
the absolute metabolite concentrations and the causal
contribution of cell size and cell cycle remain unclear
(69). Since macromolecule biosynthesis requires the
right amounts of the appropriate monomers, such as
amino acids, nucleotides, nucleosides, fatty acids, or
simple sugars, it would be interesting to see if and
how the concentration of these metabolites changes
with cell size.
Besides the cell size dependence of various macro-

molecules and metabolites, the link between metabolic
activity and cell size is also still poorly understood.
Allometric scaling relationships similar to Kleiber’s law,
which describes a sublinear power-law scaling of an
animal’s metabolic rate with its body mass, have also
been observed for individual cells. As reviewed else-
where (70, 71), we are only at the beginning of reveal-
ing the origin of these scaling laws and, in particular,
their intricate link to multicellularity, tissue context,
and organism size (72).

2.5. Cell Density is Modulated by Cell Size

Cell density is a property determined by the cumulative
concentrations of all cellular components, and cell density
homeostasis therefore depends on a tight coordination
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of biosynthesis and cell growth (73, 74). Depending on
the experimental approach, the ratio of dry mass to total
cell volume (cellular mass density) (75, 76) or dry mass to
dry volume (77) can be used as proxy measurements. Dry
mass is dominated by large macromolecules, including
proteins, nucleic acids, and lipids. Cell volume on the
other hand is dominated by highly abundant small metab-
olites such as ions and amino acids (78, 79). Reflecting its
importance in cell function maintenance, cellular mass
density is tightly regulated, even compared to dry mass
or cell volume (76, 80) [see Neurohr and Amon (81) for a
dedicated review]. However, it changes as a function of
cell cycle (77, 82), cell differentiation, environmental con-
ditions, diseases, and senescence (81, 83).
Since the individual concentration of many cellular

components changes with cell size, in particular in large
cells, cell density will change accordingly. Indeed, a
drastic decrease in cell density has been observed in
excessively large cells (3). Besides measurements of
individual molecules, direct measurements of cell den-
sity will be needed to obtain a better understanding of
its link to cell size. A prominent technique that uses sus-
pended microchannel resonators (SMRs) to quantify cell
density can measure the buoyant mass of the cell with
high accuracy and sensitivity but does not provide spa-
tial information (75, 80, 84, 85). By contrast, optical
methods such as quantitative phase imaging or cryoe-
lectron microscopy can also provide subcellular infor-
mation (86–89). While all these techniques cannot
differentiate between macromolecules and thus can-
not be used to reveal the dry mass composition, it is
now possible to distinguish various macromolecules
as well as obtain their spatial information using Raman
scattering (SRS) microscopy (83, 90, 91). For example,
using quantitative Raman microscopy, Oh et al. (83)
could resolve the contribution of protein and lipid con-
centrations to cytoplasmic dilution in senescent mam-
malian cells.

2.6. The Relationship Between Cell Size and
Nuclear DNA

One of the most striking but still poorly understood cor-
relations with cell size is that of genome content. Across
species, and over a range of several orders of magni-
tude, eukaryotic cell size increases almost in proportion
to genome size, which in this context is often referred to
as the C value (92). By contrast, and highlighting the fun-
damentally different intracellular organization of DNA, a
much weaker scaling is observed for bacteria (93). In
addition, for cells of the same or of closely related spe-
cies, including plants (94), yeast (95), frogs (72, 96), and
human stem cells (97), cell size is often tightly linked to
DNA content, leading to a proportional increase of cell

size with cell ploidy. For example, in humans, polyploidy
associated with increased cell size occurs in specific cell
types, including megakaryocytes (98), cardiomyocytes
(99), and hepatocytes (100), in particular during aging
(101).
Interestingly, on an organismal level, polyploidy is of-

ten, but not always, also accompanied by an increase in
body size. For example, many plants, particularly culti-
vated ones, are polyploid, with increased cell and body
size (102). Similarly, the well-studied allotetraploid frog
Xenopus laevis not only has larger cells than its dip-
loid relative Xenopus tropicalis but also exhibits a
larger body size. However, this relationship is not uni-
versal, since the dodecaploid Xenopus longpipes is
smaller than X. laevis, while still having larger cells
(96). Similarly, salamanders of different ploidy were
found to have constant organism size despite scaling
cell and nuclear sizes (103).
The correlations observed between genome content,

nuclear size (see sect. 3.1), and cell size naturally sug-
gest a mechanistic link. Two possible explanations are
evident: first, nuclear size may be set by genome con-
tent and then as a consequence cause cell size to follow
accordingly. However, recent progress in understanding
nuclear size homeostasis suggests that nuclear volume
is determined by osmotic pressure rather than the vol-
ume occupied by DNA. Consistent with this idea, nuclear
size at a given cell size is rather independent of ploidy in
yeast (104). Thus, even though it is clear that DNA con-
tent at least sets a lower limit of physically possible nu-
clear volumes, this is likely not the dominant reason for
the correlation between cell size and genome content.
This leaves us with the second explanation, namely

that increased DNA content supports larger cell size
through its limiting effect on biosynthesis. As dis-
cussed in sect. 2.3, at large cell sizes, the template
DNA becomes limiting for transcription (3, 14, 29) and
thus ultimately for protein synthesis. Increasing cell ploidy
then allows cells to overcome the problem of limiting
DNA and enables larger cell sizes (105). Similarly, coevo-
lution of increased genome size might therefore help to
sustain larger cell size.
However, such a link between increased genome size

and larger cell size requires that the increased genome
size goes along with an increased amount of transcribed
DNA, and matters are therefore complicated by the
rather imperfect correlation between gene number and
genome size across species (106). Moreover, it is impor-
tant to note that even the relationship between cell size
and ploidy is not universal, even for a given species. For
example, endoreplication is common in plants and often
leads to an increase in cell size. Still, the dependency of
cell size on ploidy is tissue-specific in A. thaliana (107).
Similarly, comparing the cell sizes of Xenopus species
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with different ploidy throughout development revealed
that in the early embryo, cell size is determined by the
egg size, while the size of the nucleus is dependent on
the genome content. Only during development, a con-
stant nuclear-to-cytoplasmic ratio is established, such
that in adults, cell size then correlates with ploidy (96).

3. ORGANELLE SCALING WITH CELL SIZE

As cells change their size, they also need to adjust the
scale of intracellular structures and compartments
accordingly. Across species, the emerging picture is that
the size or abundance of many organelles, including the
nucleus, mitochondria, and the mitotic spindle, increases
roughly in proportion to cell volume (FIGURE 3). This
leads to the question of how cells can couple organelle
homeostasis to overall cell size. One intriguing regula-
tory principle is that organelle size could be set by a
pool of limiting building blocks (108, 109). Since the
global biosynthetic capacity of the cell increases with
cell size (sect. 2), the abundance of those building
blocks, for example, proteins, would then also increase
with cell size. As a consequence, this would allow larger
cells to build larger organelles. Conceptually related
mechanisms rely on enzymes that are limiting for organ-
elle maintenance and increase in abundance with cell
size (110) or couple organelle formation to protein con-
centration and cell volume through phase separation
mechanisms (111). While regulation of organelle homeosta-
sis through limiting components provides an intuitive con-
cept of how a coupling of organelle size to cell size can in
principle be achieved, extensive studies on many different
organelles and biological systems revealed a much more
complex picture. First, different organelles are regulated
by cell size through different mechanisms. Second, the
regulation of a specific organelle can also vary depending
on the biological context, including the species and its de-
velopmental stage. In the following, we will discuss the
size dependence of major organelles and our current
understanding of the underlying mechanisms. Additional
information can be found in dedicated reviews (2, 112).

3.1. Nucleus

Maybe the most obvious relationship between organelle
and cell size, noted already more than 100 years ago
(113), is the constant ratio between nuclear and cell vol-
ume, leading to a constant nuclear-to-cytoplasmic vol-
ume ratio. Since across eukaryotes the volumes of both
the nucleus and the cell itself scale with genome size
(sect. 2.6), this suggested that nuclear DNA content sets
the range of possible nuclear volumes (93). However,
detailed measurements of nuclear sizes during the cell

cycle revealed that in yeast nuclear volume increases
with cell volume even at a given cell cycle stage and
thus at a constant DNA content (104, 114). In addition,
replication of DNA during the S phase does not lead to a
dramatic increase in nuclear volume, suggesting that nu-
clear volume must be linked directly to cell volume
rather than just to DNA content. More recently, attention
has been brought to specific situations, where the cou-
pling of nuclear and cellular size breaks down (115). It
was then proposed that, instead, it is actually the nu-
clear-cytoplasmic density ratio that is maintained con-
stant (116).

Nucleus
Scales with cell size

Mechanism:
Osmotic pressure

determined by number of
macromolecules

Nucleolus
Scales with cell size

Mechanism:
Phase separation

Mitochondria
Network and mtDNA scale

with cell size
Mechanism:

Limiting machinery

Yeast vacuole
Superscales with cell size

Mechanism:
Vacuole growth

rate coupled to cell volume

Centrosomes
Scale with cell size

Mechanism:
Limiting component

Mitotic spindle
Scales with cell size

Mechanism:
Limiting component,

microtubule nucleation

Contractile ring
Diameter scales with cell size

Mechanism:
Unknown

Actin cables
Length scales with cell size

Mechanism:
Extension rate dependent
on cable and cell length

FIGURE 3. The size and/or number of many organelles is coupled
to cell size. This is achieved through a wide range of mechanisms
and can be regulated according to biological context.
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Therefore, how is nuclear size controlled? Analysis
of fission yeast nuclear size homeostasis upon pertur-
bation of the nuclear-to-cytoplasmic volume ratio
revealed fast recovery on the time scale of the cell
doubling time (117). This work led Cantwell and Nurse
(117) to suggest that nuclear size is determined by the
amount of nuclear content, which itself is given by the
balance of nuclear import and export. This idea was
developed into a refined model by two studies (118,
119), which proposed that the dominant pressure con-
trolling nuclear volume is osmotic and the nuclear-to-
cytoplasmic volume ratio is therefore determined by
the number of macromolecules, that is proteins and
RNA, in the nucleoplasm and cytoplasm. This model
predicts a constant nuclear-to-cytoplasmic volume ra-
tio across changing cell sizes. It also implies that the
nuclear volume occupied by DNA is negligible for
overall nuclear size and that the available nuclear
membrane area is not a limiting factor. Recently, Rollin
et al. (78) pointed out that in addition to proteins and
RNA, the large pool of metabolites also plays a role in
nuclear size homeostasis by contributing to nuclear
and cell volume and diluting chromatin charge.
While this model provides an intriguing framework for

nuclear size control, additional factors are likely to con-
tribute, at least for some cell types and environments.
Specifically, the increased nuclear-to-cytoplasmic ratio
observed for small epithelial cells points toward a mini-
mal nuclear size set by the volume occupied by chroma-
tin (120). Along those lines, Biswas et al. (116) suggested
that the entropic pressure exerted by chromatin contrib-
utes significantly (�20%) to the volume of X. laevis
nuclei. In addition, chromatin has an indirect effect
on nuclear size homeostasis by regulating nuclear
import. In mammalian cells, an additional contribution
may come from forces exerted on the nuclear envelope
by the cytoskeleton. By modulating nuclear transport,
mechanical forces can then lead to a decoupling of nu-
clear and cell volume during cell growth (121).

3.2. Nucleolus

Besides the nucleus itself, the size of the nucleolus also
scales with cell size. Using Caenorhabditis elegans de-
velopment as a model, Weber and Brangwynne (122)
showed that nucleolar scaling can be explained by a
phase separation mechanism of its components.
During development, this leads to a proportional
increase of nucleolar volume with cell volume, even
though nuclear volume subscales (123). Highlighting
the importance of nucleolar size regulation, and con-
sistent with its role in ribosome biogenesis, organis-
mal growth rate depends on the size of the nucleolus
relative to the cell.

3.3. Mitochondria and Chloroplasts

Mitochondria and chloroplasts are thought to have ori-
ginated from the endosymbiotic uptake of an alphapro-
teobacterium and a cyanobacterium, respectively.
They both still maintain their own genome, which often
is present in multiple copies. Accordingly, proliferating
cells need to coordinate the growth of mitochondria
and chloroplasts, as well as replication of their respec-
tive DNA with cell growth and division. One intuitive
strategy to maintain stable concentrations of an endo-
symbiont is for the host cell to control endosymbiont di-
vision and directly couple it to its own cell cycle.
Indeed, tight coupling to the host cell cycle has been
observed for the division of the endosymbiont of the
trypanosomatid Angonomas deanei (124) and chroma-
tophores of Paulinella chromatophora (125). The latter
are the only photosynthetic organelles that originated
from a primary endosymbiotic event separate from the
origin of chloroplasts. For some species, including the
kinetoplastid Trypanosoma brucei (126), cell cycle-de-
pendent mitochondrial DNA (mtDNA) replication and
mitochondria division are used as strategies for mito-
chondrial homeostasis.
For many eukaryotes, however, mitochondrial fission

and mtDNA replication can occur throughout the cell
cycle, allowing cells to regulate the amount of mitochon-
dria depending on cell type and external cues such as
nutrient availability. To still achieve stable mitochondrial
homeostasis, coupling mitochondrial biogenesis to cell
growth provides an alternative strategy to regulation by
the host cell cycle. It has been shown in budding yeast
(110, 127), insect (128), and mammalian cells (129, 130)
that for a given cell type and condition, the mitochon-
drial network amount increases with cell size. At the
same time, in budding yeast, the mtDNA copy number
also increases in proportion with cell volume, which has
been attributed to nuclear-encoded limiting machinery,
in particular the mtDNA polymerase Mip1 (homolog of
human POLG) and the mtDNA binding protein Abf2
(homolog of TFAM), whose abundance increases with
cell volume (110). Thus the mechanism underlying the
coupling of mtDNA to cell volume is reminiscent of
increasing amounts of limiting Pol II leading to a global
increase of transcription in larger cells (29) (sect. 2.1).
Although mtDNA is a major regulator of mitochondrial

function, cell volume impacts mitochondria through addi-
tional pathways. First, in budding yeast, the mitochondrial
network and mtDNA are coupled to cell volume through
independent mechanisms, since the mitochondrial net-
work scales with cell volume even in mutant cells that lack
mtDNA, and a decreased mitochondrial network amount
does not necessarily cause a decrease in mtDNA (110).
Second, despite scaling amounts of mitochondria, the
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metabolic function of animal cells varies across cell vol-
umes. In particular, cells show maximal membrane poten-
tial and oxygen consumption at intermediate cell volume,
potentially contributing to the optimal cell volume range
(128, 131).
Similar to the coordination of mitochondria and cell

growth observed from yeast to mammals, various plants
have been reported to coordinate chloroplast homeo-
stasis with cell size. Among others, chloroplast num-
ber was observed to increase with the cell size of
wheat (132) and A. thaliana mesophyll cells (133). In
addition, chloroplast number and total chloroplast
area increase with cell face area of spinach mesophyll
cells (134). Finally, chloroplast DNA copy numbers cor-
relate with cell size during the Chlamydomonas rein-
hardtii cell cycle (135).
Pointing toward fundamental constraints leading to

size scaling of organelles that emerged from metabolic
endosymbiosis, “nitroplasts” (136), nitrogen-fixing endo-
symbiotic cyanobacteria, also increase in size with the
size of their host, the alga Braarudosphaerabigelowii
(137).

3.4. Vacuoles

Both the surface area and the volume of budding yeast
vacuoles increase with cell volume. The exact scaling
relationships may vary between different strains, but in
any case, vacuole volume was observed to superscale
with cell volume, meaning that an increase in cell volume
leads to a more than proportional increase in vacuole vol-
ume (138). Vacuole size scaling can be explained by the
relative growth rates of the vacuole and the cell, with no
need for active feedback adjusting vacuole growth rate
to vacuole size (139).

3.5. Centrosome

The scaling of centrosome volume with cell volume
observed during C. elegans (140) and zebrafish (141)
early development is a prominent example for which a
simple “limiting component” model has been proposed.
In particular, Decker et al. (140) identified the pericentrio-
lar material protein SPD-2 to be a limiting factor.

3.6. Mitotic Spindle

Cytoskeletal structures built from biopolymers such as
microtubules or actin are another category of cellular
subunits that needs to be regulated with changing cell
size. Probably the best-studied example is the mitotic
spindle, which has been shown to scale with cell volume
in multiple species. By analyzing spindles formed in X.

laevis cell extract confined in vitro into defined volumes,
Hazel et al. (142) and Good et al. (143) could demon-
strate that spindle size is determined by a limiting
cytoplasmic component. One candidate for such a lim-
iting protein is the microtubule polymerase XMAP215
(144, 145), which would be consistent with the cell
size-dependent change of spindle microtubule growth
rate (146). However, complicating matters, careful analysis
of spindles in zebrafish embryos revealed that while at
small sizes, microtubule growth rate increases with cell
size, growth rate is constant at intermediate cell sizes,
where spindle size still increases. Rieckhoff et al. (147)
found that in this intermediate regime, the number of
microtubules in the spindle increases. They propose that
spindle size is determined by microtubule nucleation. A
nucleation inhibitor, which is partitioned to the cell mem-
brane, then links the scaling relationship to the cell sur-
face area. At small cell sizes, this leads to polymerization
becoming limiting. This model is also consistent with the
finding that X. laevis extracts from different developmen-
tal stages form differently sized spindles because impor-
tin-a, an inhibitor of the microtubule destabilizing factor
kif2a, is partitioned to the membrane, leading to lower
concentrations at later developmental stages (148).

3.7. Contractile Ring

Another cytoskeletal organelle that needs to be coordi-
nated with cell size is the contractile actomyosin ring.
Naturally, in organisms with symmetrically dividing cells,
such asC. elegans, the actomyosin ring is larger in bigger
cells. Nevertheless, a scaling of constriction rate and ini-
tial ring size allows cells to complete cytokinesis within a
cell size-independent time period (149). Interestingly,
even the diameters of the actomyosin and septin ring at
the bud necks connecting budding yeast buds with their
mother cells scale roughly with the diameter of the
mother cell (150, 151). While not strictly coupled, the cell
size dependence of these structures is likely intertwined
with the formation of the Cdc42 polarization cluster
that recruits the septin ring to the presumptive bud site
(151). Already the Cdc42 cluster scales in size with the
cell size, which, in contrast to fission yeast (152), in bud-
ding yeast is not due to the change in local radius of
curvature.

3.8. Actin Cables

Finally, in budding yeast, actin cables were shown to
scale in length with cell length. Rather than through a
limiting-pool mechanism (153), this has been proposed
to be achieved through a cable extension rate that
decreases with cable length, in a manner that is depend-
ent on cell length (154).
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4. OPTIMAL CELL SIZE

Cell size has a profound impact on macromolecular (sect.
2) and organellar composition of the cell (sect. 3). In addi-
tion, it is linked tometabolic functions. For example, carbon
fixation, respiration, as well as nutrient uptake and content
have been observed to increase with cell size across
plankton species (155–157). Moreover, relative photosyn-
thesis and growth rates as well as mitochondrial efficiency
peak at intermediate-sized cells and gradually decrease in
smaller or larger cells (128, 155, 156). It is therefore not sur-
prising that cells intrinsically maintain their size within a nar-
row range, which we here refer to as the “optimal” cell size
range. However, the optimal size range drastically varies
across cell types, species, and environmental conditions.
To date, what factors dictate the varying optimal cell size
across different taxa and cell types remains an enigma.
However, due to the different size ranges and different bi-
ological functions, it seems unlikely that there is a single
universal determining factor. For example, a recent analy-
sis of thermal acclimation of phytoplankton suggests that
cell size is set by a delicate balance between nutrient
uptake, lipid dynamics, protein synthesis, andmore (158).
In both unicellular and multicellular organisms, recent

evidence indicates that relative growth rate, that is
growth rate per unit mass, peaks at intermediate cell
sizes (159–164). The decline of growth rate in exceed-
ingly large cells has been attributed to DNA becoming
limiting and consequential cytoplasm dilution (3, 14). By
contrast, it is far less understood what happens when
cells are too small (161).
In unicellular organisms, achieving maximal growth and

proliferation rate is thought to be a major determinant of
the optimal cell size range. Work on resource allocation
in bacteria suggests that maximization of growth rate can
explain the adaptation of optimal cell size, for example, to
different nutrients (165, 166) or upon overexpression of
useless protein (165, 167). In rich nutrients, a larger pro-
teome fraction is dedicated to biosynthesis, including
ribosomes, which requires larger cell sizes (168).
In multicellular species, cell-type specific function is also

considered to be a significant factor in determining opti-
mal cell size (161) (FIGURE 4). For example, certain neu-
rons maintain longer axon lengths to physically conduct
electrical signals over longer distances toward target tis-
sues, whereas interneurons have shorter axon lengths
since they connect over shorter distances (177). Mature
oocytes, the biggest mononucleated human cells, contain
a huge number of maternal factors deposited during
oogenesis that are essential for embryonic development.
Indeed, oocyte size is considered a good biomarker for
selecting oocytes for in vitro fertilization (180, 181). Another
level of complexity in multicellular organisms arises from
the need for organ homeostasis. To maintain organ

functionality, alterations in cell number can be compen-
sated by cell size (183–185) and vice versa (103).
One additional noteworthy example where cell size

seems to be linked to a specific cell function is stem
cells. Stem cells are undifferentiated cells that have a
self-renewal property, as well as the ability to differenti-
ate into a plethora of different cell types with specialized
functions and morphological characteristics, including cell
size. Many studies across different multicellular species
found that one of the most common features among
stem cells is their small size (186, 187). Moreover, the crite-
ria used for the identification of human induced pluripo-
tent stem cells (iPSCs) not only include expression of
pluripotency factors but also morphological features, in
particular a small cell size (188). Linking small cell size to
stem cell function, Lengefeld et al. (11) showed that the
stem cell renewal potential of enlarged hematopoietic
stem cells (HSCs) was negatively impacted. This is due to
a decrease in their ability to proliferate rather than a
decreased differentiation potential and was shown for
both naturally large HSCs and HSCs whose size was
increased by drug treatment. However, more generally
the small size of stem cells also raises the question of
how much of a role cell size plays in controlling cell fate
decisions during development and differentiation.

5. CELL SIZE AS A REGULATOR FOR
DEVELOPMENT AND DIFFERENTIATION

Development of a multicellular organism encompasses
cells differentiating into various cell types and organizing
into tissues, organs, and organ systems. During differen-
tiation and various stages of development, cell size can
change drastically. While in part this can be understood
as a downstream consequence of producing optimally
sized cell types, cell size can also act as a regulator of de-
velopmental processes (FIGURE 5).

5.1. DNA-to-Cytoplasm Ratio Controls Zygotic
Genome Activation

Early animal development starts from an extremely large
totipotent single cell, the zygote, that undergoes succes-
sive cleavage divisions, leading to an exponential
decrease in cell size and consequently an increase in
the DNA-to-cytoplasm ratio. After a fixed number of
cleavage divisions, which varies across species, the
embryo then transitions from rapid synchronous clea-
vages to slower nonsynchronous mitotic divisions. This
stage is called midblastula transition. The initially tran-
scriptionally inactive embryonic genome also transitions
to an active state, a process that is termed zygotic ge-
nome activation (ZGA).
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Several studies indicate that ZGA timing correlates with
a threshold DNA-to-cytoplasm (or nucleus-to-cytoplasm)
ratio in Drosophila (189–191), Xenopus (192–195), and
zebrafish (196, 197) (FIGURE 5A). The mechanism behind
this correlation involves the titration of maternally depos-
ited histones against constant DNA amounts during early
embryonic cleavages (195, 198–200). Moreover, the titra-
tion of replication factors (201) and the competition
between histones and transcription factors for DNA

binding (198) have also been shown to play a role in ZGA
timing in Xenopus and zebrafish embryos, respectively.
In addition, Xenopus embryos have a cell size-specific
spatial distribution of blastomeres, where small cells are
located at the animal pole while big cells are located on
the vegetal pole. ZGA is first triggered in the small-sized
cells, and then this activation wave gradually flows toward
the other pole in a cell size-dependent manner (202)
(FIGURE 5B).
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FIGURE 4. In mammals, cell size varies across different cell types (169), potentially to aid specific cell functions. Cell types where cell size has been
correlated with cell function include sperm (170), hematopoietic stem cells (11), kidney epithelial cells (171–173), pancreatic beta cells (7, 174), plasma cells
(175, 176), neurons (177–179), adipocytes (65), ova (180, 181), and muscle cells (182).
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5.2. Cell Size Impacts Cellular Differentiation

In addition to its importance for ZGA in early embryos,
cell size also has been linked to cell differentiation. For

example, an increase in the size of Arabidopsis root
meristems is essential for initiating differentiation and
consequently for root development (203). Moreover, the
fate of murine bone marrow mesenchymal stem cells
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(mMSCs) can be manipulated by cell volume changes
induced through osmotic perturbations (204). In hypoos-
motic conditions, mMSCs increased in volume and differ-
entiated into adipocytes. By contrast, in hyperosmotic
conditions, mMSCs decreased in volume and differenti-
ated into osteocytes. However, it is still unclear to what
extent this is explained by cell volume-dependent density
changes or other downstream effects of osmotic stress.
While correct regulation of stem cell size is important

for differentiation, cell size can also act as a regulatory
input for the underlying cell fate decisions. One intrigu-
ing example is Volvox carteri, a green alga and probably
one of the simplest multicellular species. It consists of
just two cell types, the small somatic and the large repro-
ductive cells (gonidia). During embryogenesis, Volvox
carteri undergoes asymmetric divisions, leading to cell
size-dependent differentiation (FIGURE 5C). Cells big-
ger than a threshold size become gonidia, whereas the
smaller cells differentiate into somatic cells (205). While
the molecular mechanism of this size dependence still
remains elusive, size-dependent metabolome changes
have been proposed to potentially activate cell type-
specific gene expression (206).
Size dependency is also observed in the germ-soma

differentiation in C. elegans (207), where experimentally
decreasing cell size disrupts polarization of PAR proteins
and the number of asymmetric divisions, altering the
germ cell fate program (FIGURE 5D). Similarly, during
Arabidopsis thaliana leaf growth, stem cells of the sto-
matal lineage (meristemoids) undergo one to five self-
renewing asymmetric cell divisions before terminally dif-
ferentiating into stomatal cells. With each self-renewing
asymmetric division, meristemoid cell size decreases
(208), and the differentiation into stomatal cells is trig-
gered when a critical cell size threshold is crossed (209).
Additionally, cell size-dependent regulation has been
speculated to occur during neuroblast differentiation in
C. elegans (210) and Drosophila melangaster (211),
where similar to C. elegans blastomeres, the neuronal
stem cells undergo a fixed number of asymmetric divi-
sions before differentiation.
Moreover, in some plants, the zygote undergoes an

asymmetric division, creating two differently sized cells,
where the smaller cell becomes the embryo and the
larger cell the suspensor, which forms the supporting tis-
sue for the developing embryo (212).
A more detailed overview of how cell size impacts de-

velopment and differentiation can be found in two

excellent recent reviews (213, 214). While the examples
highlighted here suggest that cell size is fundamentally
linked to developmental processes in multicellular spe-
cies, future studies are needed to reveal its role in
humans.

6. CELLSIZEADAPTATIONTOTHE
ENVIRONMENT

6.1. Cell Size Adaptation to Nutrients

In unicellular organisms, nutrient availability is well
known to be a major determinant of cell size. Both bud-
ding yeast and fission yeast cells get smaller in poor
growth media and bigger in rich growth media (51, 215–
217). For multicellular organisms, cell size needs to be
regulated in a tissue- and cell-type-specific manner.
Therefore, cell growth regulation in multicellular organ-
isms is coordinated with nutrient availability as well as
growth and proliferation signaling in the form of extracel-
lular growth and mitogenic factors, respectively (172,
218). Thus the effect of nutrients on multicellular organ-
isms may vary from tissue to tissue. The target organism
size of the adult animal is set genetically but is sensitive
to extracellular factors such as nutrient and growth fac-
tor availability during development (172). For example,
nutrient deprivation or growth-factor excess during de-
velopment can lead to size phenotypes in the adult,
both at the organismal and cellular level (218), as
observed in flies (172, 219). The average height of con-
temporary European and Central Asian humans has
been increasing for the last century, and two strong
determinants of this increase were found to be nutrition
and genetics (220, 221). While nutrients largely affect
human height during childhood and adolescence (222),
they can affect human weight at all life stages. For exam-
ple, when the consumption of a high-caloric, energy-
dense diet is combined with reduced energy expendi-
ture, an increase in the size and number of adipocytes is
observed, leading to an increase in fat tissue size and
body weight (223–225).
Why do cells adapt their size to the nutritional status

of the environment? Research into fossil records of fusu-
linoidean foraminifers has shown that a hyperoxic envi-
ronment may have enabled gigantism in the single-
celled protists around 300 million years ago (226).

FIGURE 5. Cell size acts as a regulator of embryonic development and differentiation. A: in fish, fly, and frog embryos, zygotic genome activation
(ZGA) and midblastula transition (MBT) depend on an increasing DNA-to-cytoplasm ratio. B: during the multiple cleavage divisions, repressors of ZGA
and MBT are titrated against exponentially increasing DNA concentrations. Consequently, the spatial gradient of cell size in Xenopus embryos leads to
a dependence of ZGA timing on cell position in the embryo. C: cell size is linked to cell fate specification in Volvox carteri embryos. D: asymmetric divi-
sions in Caenorhabditis elegans embryos lead to a successive decrease in cell size and a change in the polarization of PAR proteins in the P lineage.
When cell size decreases below a certain threshold, PAR polarization is disrupted, which triggers symmetric divisions and germline fate specification.
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Atmospheric CO2 levels were shown to be strongly
correlated with stomatal guard cell size over geologi-
cal time scales, as observed in plant fossil records
(227). A long-term evolution experiment in Escherichia
coli, spanning 50,000 generations and 32 years, has
revealed that the cells continued to evolve larger
sizes in rich media, and cell size and fitness remained
correlated throughout the 50,000 generations (228).
All of the above are examples of size adaptation to nu-
trient availability on evolutionary timescales. This indi-
cates that size adaptation to nutrients might increase
cellular fitness and is therefore selected for.
Therefore, how is nutrient sensing biochemically linked

to the corresponding cell size modulation? Nutrients can
affect both cell growth (217) and cell cycle progression
(229), both of which contribute to the regulation of cell
size. This is discussed in detail in the sect. 7.3 on cell size
control in changing environments.

6.2. Cell Size Adaptation to Physical and
Chemical Properties of the Environment

Physical properties of the environment can affect cell
size. For example, it has been shown in bacteria that
changes in the turgor pressure on the cell wall, which is
changes in the difference between the osmolarities of
the cell and the extracellular environment, can lead to
reversible changes in cell size due to influx or efflux of
water (230, 231). Cellular osmolarity-dependent cell vol-
ume changes have also been reported for animal and
yeast cells (232–236). Cells must sense cell volume
changes caused by osmotic perturbations and counter-
act them to maintain cell membrane integrity and size
homeostasis (237). Additionally, external mechanical
forces have been shown to affect cell size and cell cycle
progression, as discussed in sect. 7.1.5.
An increase in temperature is associated with an

increase in enzymatic rates but also an increase in pro-
tein denaturation (158, 238). In line with that, for bacteria
grown in steady-state conditions, different temperatures
affected cell size (239). Cell size changes were also
observed in yeast spheroplasts and human leukemia
cells facing rapid temperature shifts (240). In all of these
cell types, cells were found to be bigger at higher tem-
peratures or after heat shock and this increase in vol-
ume could be a reason for heat-shock-induced death
(239, 240). A relevant question, therefore, is how global
warming might affect cellular size and function in the
coming years. Leles and Levine (158) have developed a
proteomic model of a phytoplankton cell to study ther-
mal acclimation in phytoplankton. While theoretical stud-
ies suggest that cells are expected to become smaller
and more heterotrophic with an increase in temperature,
their model suggests that under certain environmental

conditions, cells might adapt to warming by evolving
larger sizes, faster growth rates, and changing their lipid
metabolism. Since phytoplankton are responsible for
half of all oxygen production on Earth, this finding could
be significant for understanding the global effects of
ocean warming (158). A study in zebrafish larvae showed
cell size-dependent phenotypes under warmer or cooler
rearing temperatures, indicating the existence of differ-
ent selection pressures for ectotherm cell sizes under
different temperatures (241).
Similarly, changes in extracellular pH led to changes

in cell size in bacteria and yeast (242, 243). In both
organisms, acidic extracellular environments led to
reduced cell sizes (242, 243), and in bacteria, basic
extracellular environments led to longer cells (242).
There are also indications that extracellular pH can
affect the proliferation of mammalian cells (244, 245). In
addition, for cultured mammalian cell lines, the stiffness
of the substrate can affect cell size and shape, with a
stiffer substrate leading to increased cell volume (246)
or area (247). These examples describe how physical
properties of the environment can alter cell size and
how the cellular response can be either to maintain the
original size or to adapt to a size better suited to the
environmental change. Moreover, this indicates that
multiple environmental parameters signal to a complex
cell size control system. The effect that a multicellular
environment such as a tissue may have on cell size con-
trol is discussed in sect. 7.1.5.

7. MECHANISMS OF CELL SIZE CONTROL

7.1. Steady-State Cell Size Control in Proliferating
Cells

Cell size control is the regulation through which cell pop-
ulations maintain narrow size distributions by correcting
deviations in size. Cell size homeostasis then emerges
from single-cell level size control, which, in proliferating
cells, is typically executed through a coupling of cell divi-
sion and cell growth to cell size (FIGURE 6). While our
understanding of the coupling between growth rate reg-
ulation and cell size is only at the beginning (248), the
coupling between cell division and cell size has been
extensively studied and multiple mathematical mod-
els have been proposed. Conceptually, simplified
mathematical descriptions have often been catego-
rized into sizers, adders, or timers, depending on
what is prioritized in the cellular decision to divide
(249–253) (FIGURE 6A).
Sizers prioritize attaining a specific cell size at a given

point of the cell cycle, for example, at division. In this
kind of size control, cells that are bigger at birth grow
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less during the cell cycle whereas cells that are smaller
at birth grow more to achieve similar sizes at division.
Adders, on the contrary, add the same volume (or mass)
in every cell cycle, independently of birth size. While
strong sizers that are close to an ideal sizer mechanism
can correct size deviations within one cell cycle, adders
require multiple generations. A third kind of size control
regime, described as timers, prioritizes keeping cell
cycle durations constant. In cells that grow linearly, i.e.,
cells in which growth rate is constant across cell sizes,
both big- and small-born cells would grow the same in a
given amount of time. Thus a timer in linearly growing
cells has the same emergent phenotype as an adder.
For cells that grow exponentially, the growth rate
increases proportionally with cell size. In such cells, a
timer leads to a continuous broadening of the size
distribution over time, and no longer qualifies as a
size control mechanism. Timers, in particular for dis-
tinct cell cycle phases, are sometimes observed in
conjunction with sizers because while timers cannot
correct size deviations in exponentially growing cells,
they can largely maintain the size homeostasis instated
by a sizer.
For size to be controlled by a sizer- or an adder-like

mechanism, a molecular signal that measures cell size is
required. While the aforementioned size control models
have been amply reviewed previously (254), our goal
here is to describe the range of mechanisms that facil-
itate the molecular size sensing required for these
models.
One way for a cell to sense its size is by comparison

of two biochemical properties: one that changes with
cell size (a “reporter” property) and one that stays con-
stant as cell size changes (a “constant” property), similar
to a titration. Multiple different size-sensing mechanisms
have now been discovered in different species, with this
kind of regulation as the underlying strategy. It is impor-
tant to note here that since the total protein amount in a
cell typically scales with cell size, the concentrations of
most proteins in a cell size regulation network may be
constant and size-independent. Given that, the size scal-
ing of the whole regulatory network may serve as the
constant property for size sensing.

7.1.1. Dilution of a reporter.

As described in the section on biosynthetic scaling above,
total protein and total mRNA content typically scale with
cell size. However, individual proteins and their transcripts
may scale differently. Strongly subscaling or superscaling
proteins make great candidates for reporters of cell size
(FIGURE 6B). In the budding yeast Saccharomyces cere-
visiae, for example, the cell cycle inhibitor protein Whi5, a
functional analog of Rb, is subscaling both at the time of

cell birth and during G1 (4, 50–53), and its reducing con-
centration serves as a reporter of cell size (FIGURE 6C).
Whi5 binds to and inhibits the transcription factor SBF
[functional analog of E2F (255)], whose target genes drive
the G1/S transition (256, 257). The number of SBF-binding
sites in the genome remains unchanged during G1, and
the antagonists of Whi5, the G1/S activators Cln3 and
Bck2, and the SBF-subunit Swi4 are maintained at roughly
constant concentrations or are even superscaling (50,
62). Thus, although the exact mechanism of how the
decreasing Whi5 concentration is translated into an
increased activity of SBF-controlled genes is unclear, both
the DNA and the activators can serve as the constant
property for the reporter to be titrated against. This mech-
anism sets up a size-dependent likelihood of commitment
to the G1/S transition (Start), with bigger cells being more
likely to enter the S phase (50, 162). Crucially, all cells
have a similar amount of Whi5 at birth. This leads to a
higher Whi5 concentration in smaller born cells, keeping
them longer in G1 and allowing them to grow more. Whi5-
dilution-based size-sensing results in an imperfect sizer
during budding yeast G1, with G1 growth being negatively
correlated with volume at birth.
A similar mechanism has recently been described in the

shoot apical meristem of the flowering plant Arabidopsis
thaliana. While both the G1/S and the G2/M transitions are
size-dependent in the shoot apical meristem, cell size reg-
ulation primarily occurs at the G1/S transition (57, 258).
D’Ario et al. (57) propose that this G1/S size regulation is
implemented through the size-based dilution of the KIP-
related protein 4 (KRP4), a CYCD/CDKA inhibitor (259),
which indirectly inhibits the G1/S transition (FIGURE 6G). In
this scenario, KRP4 serves as a subscaling reporter. Like
Whi5 in budding yeast, KRP4 is partitioned equally
between sister cells. This is likely due to its association
with mitotic chromosomes. Consequently, cells that are
born smaller have to grow more to dilute KRP4 enough to
proceed through the G1/S transition (57).
Animal cells also show birth size-dependent growth

during G1 (260–264), which is mediated via a similar
sizer mechanism: a decrease in the concentration of the
cell cycle inhibitor protein Rb as G1 progresses (54, 56)
(FIGURE 6E). Rb inhibits the G1/S transition by inhibiting
E2F, the main G1/S transcription factor in mammals. Rb
serves as a subscaling reporter, and the decrease in its
concentration during G1 is attributed to its degradation
via the E3 ligase UBR5 (56). Rb is phosphorylated by
CyclinD-Cdk4/6, and at the commitment point, a positive
feedback loop involving Cyclin E-Cdk2 leads to Rb
hyperphosphorylation, enabling transition into S phase
(54, 56, 265).
Moreover, recent work in animal cells has shown that

size homeostasis employs not only size-dependent
modulation of cell cycle phase durations but also size-
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dependent modulation of growth rate (252, 264).
Specifically, Cadart et al. (252) and Ginzberg et al. (264)
showed that cell-to-cell variability and perturbations of
cell size or cell cycle length can lead to compensatory
changes in growth rates of animal cells. Liu et al. (266)
suggest that this size-dependent reduction of growth
rates in large cells is executed through the activation of
global protein degradation by proteasomes. Additional
information can be found in a detailed review by Liu
et al. (248).
It should be noted here that size control studies in

mammalian cells have largely been performed in cul-
tured cell lines. While the aforementioned sizer is
observed in some cell lines (54, 267), immortalized or
primary cell lines often exhibit adders over the entire
cell cycle (252). In part this can be rationalized by the
fact that many of these cultured cell lines carry cancer
mutations, which disrupt the G1/S regulation (268) and
thereby affect size control. In addition, how growing
mammalian cells outside of their natural tissue environ-
ments affects cell size control can only now be
answered thanks to the advent of size control studies
performed in intact tissues of living animals (269–271). In
vivo mouse epidermis cells exhibit a sizer over the full
cell cycle, which arises from Rb-dependent G1 size con-
trol (270–272). In vivo, cells can have fivefold longer G1

than cultured cells, while showing comparable S/G2/M
lengths (252, 270, 272). Proulx-Giraldeau et al. (272)
hypothesize that the emergent size-control behavior
over the complete cell cycle depends on the relative
lengths of the sizer-G1 phase and the timer-S/G2/M
phase. Their model shows that the size control mecha-
nism of the entire cell cycle is dominated by the size
control mechanism observed in the longer cell cycle
phase.

7.1.2. Accumulation of a reporter.

Similar to subscaling inhibitors of cell cycle progression,
superscaling activators can also be reporters of cell size.
In this case, a protein accumulates with cell growth and
its increasing concentration serves as a readout of cell
size. Such a strategy for size control has, for example,
been observed in the single-celled alga C. reinhardtii
(47) (FIGURE 6F). To understand how accumulation of a
reporter is converted into a size signal in C. reinhardtii, it
is important to first understand its unique multiple fission
cell cycle.
Given the alga’s photosynthetic abilities, its cell cycle

can synchronize to a diurnal light cycle. If C. reinhardtii
cells are grown in a cycle of, for example, 12hours of
light followed by 12hours of darkness, the growth phase
(G1) occurs during the light phase and the division phase
(S/M), also known as the multiple fission phase, occurs

during the dark phase (273). Under favorable conditions,
C. reinhardtii cells can grow more than 10-fold in size in
a prolonged G1 phase of between 10 to 14hours (273)
and then undergo rapid successive S/M phases, each
�30 to 40minutes long, to give rise to multiple daughter
cells. Daughter cell size is close to uniform. The number
of divisions, and thus the number of daughters born,
therefore depends on the growth of the mother cell in
the elongated G1. This indicates the existence of two
size thresholds in the C. reinhardtii cell cycle, one that
initiates the multiple fission and one that sets the size of
daughter cells. The first threshold, also known as the
“commitment point,” ensures that G1 cells achieve a cer-
tain size before entering a division-competent stage
(274–276). The second threshold sets the number of
rapid division cycles that the committed cell will undergo
to achieve a certain daughter cell size. In this manner,
both size thresholds are implemented at the G1/S transi-
tion (276). Heldt et al. (276) propose a model that sug-
gests that both entry into and exit from the multiple
fission phase of the cell cycle are controlled by a light-re-
sponsive sizer.
In the search for a protein that could facilitate this sizer,

an obvious candidate was MAT3, the Rb homolog in C.
reinhardtii. While Fang et al. (277) showed that a mutation
of MAT3 leads to a smaller commitment size and a higher
number of divisions postcommitment, Olson et al. (278)
showed that MAT3 concentration seems constant as the
cell grows in size during G1. Another protein implicated in
commitment size regulation is the C. reinhardtii homolog
for CDK1, CDKA1 (279). Epistatic analyses show that both
CDKA1 and MAT3 affect commitment via independent
pathways (279). The size reporter property for the com-
mitment decision, however, remains elusive. The second
threshold, which sets the number of rapid divisions,
depends on the accumulating size reporter CDKG1 (47).
CDKG1 is a cyclin-dependent kinase that binds D-type
cyclins and phosphorylates MAT3. CDKG1 was found to
superscale with mother size during late G1 and might con-
vey size information to the pathways controlling division
(47, 280). Additionally, a recent study (280) has identified
a cytoplasmic RNA-binding protein TNY1 that subscales
during G1 and represses CDKG1, possibly by affecting
CDKG1 RNA stability. Hence, the size control system in C.
reinhardtii seems to employ both dilution and accumula-
tion of reporters as size-sensing strategies.
Another organism where reporter accumulation is

clearly employed as a size-sensing strategy is the well-
studied rod-shaped fission yeast, Schizosaccharomyces
pombe (FIGURE 6D). Fission yeast size control occurs
mostly at the G2/M transition and comprises a sizer and
a timer that integrate cell length, cell surface area, and
time information (60). The fission yeast sizer is one of
the strongest size control mechanisms observed in
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eukaryotes, as it can correct most deviations from mean
cell size in a single cell cycle (216).
The G2/M transition in fission yeast is initiated by the

activation of the cyclin-dependent kinase Cdk1 (281–283)
when it is in a complex with the B-type cyclin Cdc13 (284).
Cdk1 is phosphorylated and inhibited by the protein ki-
nase Wee1 and is dephosphorylated and activated by
phosphatase Cdc25 (281, 285). Thus the balance
between Wee1 and Cdc25 tightly regulates Cdk1 activity.
Wee1 is in turn inhibited by related kinases Cdr1 and Cdr2
(286–290). Cdr2 is inhibited by the protein kinase Pom1
(283, 285). There are at least three size-dependent sig-
nals in the fission yeast cell size control system. Cdr2
forms cortical nodes, which are plasma-membrane-bound
multiprotein assemblies concentrated in the central part
of the cell, around the nucleus (283, 291, 292). As the cell
grows in size, the number of nodes in the central band
increases, leading to a higher concentration of nodes.
This increase in local Cdr2 node density is coupled to the
increase in cellular surface area and integrates cell-sur-
face-area information into the mitotic entry decision (251,
293). The second accumulating reporter is Cdc25. Cdc25
synthesis is coupled to cell volume, leading to higher
Cdc25 concentrations in larger cells (58–60, 294). Similar
to Cdc25, Cdc13, the fission yeast mitotic B-type cyclin,
also superscales with size (59), but Cdc13 concentration
has been found to be coupled to time rather than directly
to cell size (60). Together, Cdc25, Cdr2, and Cdc13 input
cell volume, cell surface area, and time information into
the fission yeast size control system, respectively (60).
The spatial restriction of Cdr2 nodes is regulated partly
by the mitotic inhibitor Pom1, discussed in sect. 7.1.3.

7.1.3. Cell geometry-based gradients.

In this kind of size sensing, the distribution of a reporter
with respect to the geometry of a cell changes as the
cell grows in size. A well-studied example is that of the
fission yeast mitotic inhibitor Pom1, which localizes at
the two ends of the rod-shaped cell (283, 285).
Since Pom1 is a cell polarity protein, its concentration

is higher at the cell tips and lower in the cell center,
forming a spatial gradient in its concentration (283, 285,
295) (FIGURE 6D). This spatial gradient consists of sta-
ble clusters of Pom1 (296). Cdr2, which is inhibited by
Pom1, localizes in cortical nodes in the central part of the
cell. Among other factors, Pom1 prevents the Cdr2
nodes from occurring at the cell poles and restricts them
to the central band around the nucleus (297, 298). Since
the concentration of Pom1 in the center of the cell does
not seem to be a major determinant of cell cycle pro-
gression in averaged-sized cells, this suggests that
Pom1 localization inhibits mitotic entry in very short cells
(7, 283, 285, 297).

7.1.4. Overall size control emerges frommultiple
size control modules.

It is important to differentiate between size control
mechanisms controlling individual cell cycle transitions
and the resulting size control that emerges over the
entire cell cycle. For example, in budding yeast, the G1

phase exhibits a weak sizer and the S/G2/M phase
exhibits a timer, but an approximate adder emerges
when the entire cell cycle is considered (162, 253, 272,
299). On the contrary, fission yeast exhibits a more
timer-like behavior in G1 and a sizer in S/G2/M, with the
overall cell cycle exhibiting a sizer. Hence, size control
may be modular, i.e., cell cycle phase specific (162).
Interestingly, a plasticity to fission yeast size control has
recently been described, where disrupting one of fission
yeast size control’s two size-dependent inputs can shift
the size control from an overall sizer to an overall adder
(60). This indicates that multiple inputs regulate size con-
trol in both fission yeast and budding yeast (299) and
the redundancy of these inputs confers robustness and
adaptability to size control. That cells have evolved mul-
tiple pathways to control size further indicates a high
selective pressure associated with an “optimal” cell size.
Perfect sizers, adders, and timers do not occur in nature.
For example, a perfect sizer at a cell cycle transition
would mean that at a defined threshold size, 100% of
cells would make the cell cycle transition and that cells
that do not attain this defined size do not transition. In
reality, size control is often noisy. In the budding yeast
Start sizer, for example, there is no defined size
threshold. Cell-to-cell stochasticity leads to cells pass-
ing Start at a range of different cell sizes, albeit the
likelihood of passing Start increases with an increase
in cell size (50, 162). This cell-to-cell stochasticity,
coupled with multiple partially redundant pathways
contributing to size control, makes identification of
molecular size control mechanisms a complex task.
One explanation for cells evolving multiple size con-
trol pathways could be that each pathway is evolved
for a specific environmental condition (300). Size con-
trol, so far, has mostly been studied under steady-
state conditions, and this could explain why the multi-
ple size control pathways appear redundant. While
steady-state studies have been extremely valuable for
identifying the various cell size regulators and strat-
egies, studying cell size control under changing envi-
ronmental conditions may be key to revealing specialized
roles for these seemingly redundant regulators.

7.1.5. Mechanosensing in tissues.

Our understanding of size control in vivo is still very lim-
ited. One possibility is that in addition to intracellular
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regulation, tissue context facilitates additional strategies
for size sensing and size regulation. Liu et al. (248) outline
multiple examples of how extracellular mechanical sig-
nals can affect cell size. Kidney epithelial cells have been
shown to detect extracellular urine flow via primary cilia
and regulate their cell size in response (171). Mammalian
cells have been shown to sense local mechanical forces,
such as compression or stretching, and to respond by in-
hibiting or promoting growth respectively (248, 301, 302).
In fact, mechanical load is one of the known growth stim-
uli for human skeletal muscle cells (303). Regular exercise
and strength training seem to upregulate mammalian tar-
get of rapamycin (mTOR) activity and induce skeletal
muscle cell growth (304–306). Recently, a stretch-acti-
vated mechanosensor was identified that could link
stretch-detection and growth signaling in animal skeletal
muscle cells (306) and adipocytes (307, 308). It has long
been known that cells stop proliferating when they reach
confluence, i.e., fill up the available growth space. This
property is known as contact inhibition of proliferation
(CIP) (309, 310). Streichan et al. (301) show that the mam-
malian cell cycle has a mechanosensitive checkpoint at
the G1-S transition that monitors the space available to
the cell before cycle progression. In epithelial cell mono-
layers, the G1/S transition was also found to be sensitive
to high mechanical stress, with cells facing higher inter-
cellular tension exhibiting a higher likelihood of G1/S tran-
sition (311). This conversion of a mechanical signal into a
biochemical response likely involves proteins of the
Hippo-YAP pathway (302, 312–314). Mugahid et al. (315)
have shown that YAP controls cell size and cell number
via independent circuits. Recently, Stojanovski et al. (314)
have proposed a bidirectional coupling between pharynx
size and body growth in C. elegans, which seems to also
be mediated by the mechanotransducer YAP. This sug-
gests a role for mechanosensing in organ size regulation
and maintenance of body plan uniformity. Taken to-
gether, these observations highlight that to understand
cell size regulation of a specific cell type in vivo, it is not
sufficient to understand how an isolated cell would sense
and control its size, but instead the inputs provided by
the surrounding tissue, both mechanical and biochemical,
need to be taken into account.

7.2. Cell Size Regulation in Nonproliferating Cells

The size control mechanisms described earlier depend
on cell division. However, most animal cells in vivo are
nonproliferating cells that have temporarily, through quies-
cence, or permanently, through senescence, exited the
cell cycle (316). A consequential question is therefore how
size homeostasis is maintained in nonproliferating cells.
On average, proliferating cells double their biomass

before division and hence have a high biosynthetic

requirement. Nondividing cells are relieved of this replica-
tive biosynthetic burden but surprisingly still exhibit a
large range of metabolic activity (161, 172). Lymphocytes,
for example, have reduced metabolic rates when quies-
cent but can upregulate metabolism upon stimulation
and conversion to a proliferative and secretory state (317,
318). This kind of a metabolic shift is well-suited to their
“waiting and watching” role in the immune response.
Quiescent fibroblasts, on the other hand, have protein
synthesis rates similar to their proliferative counterparts
(318). This could be explained by quiescent fibroblasts
being primary synthesizers of the extracellular matrix
required for tissue formation and proliferating fibroblasts
being important for wound healing after injury (319).
These examples debunk the common assumption that
nondividing cells are metabolically inactive and instead
indicate that they can have a range of biogenic rates
depending on their physiological functions (161, 172).
For nondividing cells to be metabolically active and

also maintain size homeostasis, the rate of macromo-
lecular accumulation must be balanced by macromo-
lecular degradation and secretion. This would require
feedback mechanisms coupling degradation to biosyn-
thesis and maintenance of a fixed level of growth signal-
ing (172). Indeed, studies performed on sensory neurons
showed that protein synthesis and protein degradation
rates are coupled for long-lived proteins (320). When
these neurons were treated with neurotrophin NGF, a
growth factor, and increasing amounts of a protein synthe-
sis inhibitor, the degradation rates of long-lived proteins
decreased in proportion to the protein synthesis disrup-
tion (320). This coupling between degradation and syn-
thesis rates has also been observed at the mRNA level,
albeit in proliferating mammalian cells (19). Speculatively
speaking, the feedback mechanism between nuclear
mRNA concentrations and transcription could also exist in
nonproliferating cells. In addition to mRNA transcription
being linked to cell size via limiting Pol II (29), it could con-
tribute to mRNA concentrations scaling with size in quies-
cent cells, at concentrations that are comparable to the
concentrations in proliferating cells (16). Another require-
ment for size homeostasis in nondividing cells is a robust
response to osmotic changes in the environment (172).
When osmotic challenges lead to changes in cell volume
due to influx of efflux of water, a system of osmotic sen-
sors, transducers, and effectors is in place to counteract
deformations and restore original cell volume (237). This
may be vital for the maintenance of size homeostasis in a
dynamic environment.

7.3. Cell Size Control in Changing Environments

Cell size adaptation to changing environments is imple-
mented by regulation of both cell growth and cell cycle
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progression. In eukaryotes, this response to nutrient
availability, and in the case of metazoans, also to growth
factors, is in part attributed to the target of rapamycin
(TOR) signaling pathway (321–323). The protein kinase
A (PKA) pathway is another signaling pathway found in
both mammals and yeast, whose role as a cell growth
and cell cycle regulator in response to nutrient availabil-
ity is well studied in budding yeast (324, 325). Here, we
provide a brief overview of how these pathways sense
nutrients and regulate cell growth and cell cycle pro-
gression accordingly and how they affect each other
(FIGURE 7).

7.3.1. Nutrient-sensing and regulation of growth
by the PKA signaling pathway.

In budding yeast, the PKA signaling pathway detects the
presence of extracellular glucose or sucrose through
Gpr1 (330), as well as intracellular glucose via Cdc25/

Ras (331, 332). Gpr1, a G protein-coupled transmem-
brane receptor (GPCR), together with the small GTPase
Ras and its guanine nucleotide exchange factor Cdc25
(not to be confused with the phosphatase Cdc25 in
mammals, mentioned below) then activates Cyr1, an ad-
enylate cyclase (333, 334). The activated Cyr1 converts
ATP to cyclic AMP (cAMP), which serves as a secondary
messenger and regulates many physiological processes
(335). It activates PKA by binding to its regulatory subunit
and releasing its catalytic unit, which in turn triggers phos-
phorylation cascades downstream of PKA’s multiple tar-
gets (335, 336). These signaling cascades mediate the
increase in growth associated with the availability of fer-
mentable sugars in the growth media (337). Additionally,
multiple cAMP-independent nutrient-signaling circuits for
PKA activation have been proposed (338), where the
reintroduction of nutrients such as amino acids, ammo-
nium, phosphate, sulfate, iron, and zinc after a period of
starvation leads to increased PKA activity via high-affinity

Growth factors and other conditions Hormones or glucose

TSC

Rheb

Nutrients

EnergySAMLeucine

GATOR supercomplex
GATOR1, GATOR2, KICSTOR

RAG-Ragulator

Arginine Oxygen Growth
factors

Hormone/GPCR-ligand
Glucose (in budding yeast)

GPCR/Gpr1 Intracellular glucose

Cdc25/Ras

ATP

Adenylate cyclase/Cyr1

cAMP

PKA

Insulin

AMPKSAMTORSestrin2CASTOR1 REDD1 ERK

GAP activity
Lysosomal
localization

Allosteric
activation

AND logic gate

Stabilization

BiosynthesisG1 and G1/S
cyclins

Cell growth

Decreased concentration/
dilution

Rb/Whi5Cell cycle progression

mTORC1

GAP activity

PI3K
mTORC2

Akt

FIGURE 7. Cell size is adapted in response to environmental stimuli, including nutrient conditions and growth factors. In part, this is achieved through
the target of rapamycin (TOR) and PKA signaling pathways, which feed into the regulatory networks controlling cell cycle progression and cell growth.
The nutrient-sensing arm of the mammalian target of rapamycin complex 1 (mTORC1) pathway includes the following sensor proteins or protein com-
plexes: the Sestrin2 complex detects cytosolic leucine (326); the CASTOR1 complex detects cytosolic arginine (327); SLC38A9, a lysosomal transmem-
brane protein, detects lysosomal arginine (328); and SAMTOR detects cytosolic S-adenosylmethionine (329). Conserved regulators are shown in black,
and budding yeast-specific PKA signaling is shown in blue. GPCR, G protein-coupled transmembrane receptor.
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transceptors (transporters with an additional receptor
function) (339). While the exact molecular mechanisms by
which the transceptors activate PKA are still under investi-
gation, it has been shown that some of these transcep-
tors interact with Sch9, a PKA-associated protein kinase
(340).
While the core of the PKA pathway is conserved among

eukaryotes (335), differences have been observed in its
regulation and its upstream activators between species
(324, 341). In multicellular organisms, certain cell types,
such as pancreatic a- and b-cells and neurons involved in
the regulation of the pancreatic endocrine function, are
specialized for sensing blood glucose levels (342).
Glucose sensing and the subsequent glucagon or insulin
secretion by pancreatic a- and b-cells, respectively, are
mainly regulated via a network of GLUT2 glucose trans-
porters, ATP-sensitive potassium channels, and voltage-
gated calcium channels (343). The role of the PKA path-
way in these cells is to enhance or suppress insulin or glu-
cagon secretion by binding to extracellular signaling
molecules such as hormones and neurotransmitters (343).
Thus, while the budding yeast PKA pathway can be acti-
vated by glucose binding, its mammalian counterpart is
usually activated by binding hormones or neurotrans-
mitters (324, 344). Additionally, a role for PKA in the regu-
lation of the mTOR pathway has recently been described
in mammalian cells. Hormone-sensing GPCRs coupled
to a specific type of Ga protein, Gas, can activate PKA,
which can in turn inhibit mTORC1, an important com-
plex of the mTOR pathway (345, 346). This interaction
could add a layer of hormonal control in cell growth
and size regulation.

7.3.2. Nutrient/growth factor-sensing and
regulation of growth by mTOR.

The mammalian TOR protein [mTOR; which is also the
accepted abbreviation for mechanistic TOR (321)] is a
highly conserved protein kinase, which acts as the cata-
lytic subunit of two protein complexes, mammalian TOR
complex 1 and 2 (mTORC1 and mTORC2) (332), both of
which have been extensively reviewed previously (347–
349). The coincidence detector model describes how
mTORC1, upon detecting the presence of both nutrients
and growth factors, upregulates growth by upregulating
ribosome biogenesis, mRNA translation, lipid synthesis,
and nucleotide synthesis and downregulating autoph-
agy and lysosome biogenesis (348).
The nutrient-sensing arm of the mTORC1 pathway

consists of many dedicated sensor proteins or protein
complexes, each specialized to detect the availability of
either a particular amino acid or S-adenosylmethionine
(SAM) by binding to it (347) (FIGURE 7). This nutrient
detection is communicated to the mTORC1 pathway by

the GATOR supercomplex, comprising the GATOR1,
GATOR2, and KICSTOR protein complexes. The GATOR
supercomplex alters the nucleotide state of RAG
GTPases, which are localized to the lysosome by bind-
ing to the lysosome-tethered Ragulator complex (349).
RAG GTPases are small guanosine triphosphatases
belonging to the Ras superfamily. Upon nutrient detec-
tion, the RAG GTPase heterodimers acquire a specific
nucleotide configuration, which allows them to promote
mTORC1 localization at the lysosome (347, 349). Finally,
since the activation of mTORC1 follows the principle of
coincidence detection, it functions as a molecular AND
gate and needs a second “on” input, for which it relies
on the growth-factor-sensing arm of the mTORC1 path-
way (347, 349).
The growth-factor-sensing arm of the coincidence de-

tector model relies on the Rheb GTPase and the TSC
protein complex. The TSC protein complex can detect
multiple stimuli from the environment, such as growth
factors, energy, oxygen, and insulin. TSC is localized to
the lysosome by tethering to Rheb and upon detection
of these stimuli leads to a nucleotide configuration
switch in Rheb, making it GTP-bound. GTP-bound Rheb
acts as an allosteric activator of mTORC1 kinase activity
and provides the second “on” input for the mTORC1 acti-
vation AND gate (347, 349).
While the GATOR complexes and RAG GTPases

are conserved across most model organisms, conser-
vation of the nutrient-sensing components of the
mTORC1 pathway is largely limited to vertebrates
(326). This indicates the existence of different nutri-
ent sensors in organisms inhabiting unique environ-
ments or prioritizing nutrients different from those
important to vertebrates (347). Indeed, Drosophila
flies were found to have a unique S-adenosylmethio-
nine (SAM) sensor that signaled methionine availabil-
ity to the mTORC1 pathway (350). Thus, while
additional sensors remain to be discovered in other
organisms, it seems that modular composition of the
mTORC1 pathway allows for evolutionarily flexible
nutrient-sensing modules to signal to the conserved
core of the pathway (350).
The mTORC2 complex is also relevant to nutrient sens-

ing as it plays an important role in glucose metabolism
(348). When insulin binds its receptor at the plasma mem-
brane, it triggers a cascade of activation of phosphoinosi-
tide 3-kinase (PI3K), mTORC2, and Akt (protein kinase-B)
(348, 351, 352). PI3K coordinates glucose intake and utili-
zation (351), while Akt promotes cell growth, proliferation,
and survival by inhibiting a range of substrates (348). One
of these substrates is the TSC complex, the aforemen-
tioned inhibitor of mTORC1 (348). In this manner, insulin
detection can lead to activation of the mTORC1 pathway
via the mTORC2 complex.
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The role of the mTOR network in cell size control is
evident from cell size studies performed under mTOR
disruption. Inactivating mutations of the Drosophila
mTOR homolog led to a reduced cell size (353). Genetic
analyses linked this cell size phenotype to the S6K ki-
nase downstream of mTORC1. An inactivating mutation
of the Drosophila S6K indeed led to a small cell and
body size (354). In mammals, disruption of the mTOR ki-
nase by rapamycin or of the PI3K kinase (of the PI3K/
Akt/mTORC1 circuit) by the drug LY294002 led to a
decreased growth rate and a smaller cell size (355,
356). In budding yeast, Kellogg and coworkers (357–
359) proposed that TORC2 is involved in the nutrient-
dependent regulation of cell size and cell growth, in a
manner that is dependent on ceramides.

7.3.3. Regulation of cell cycle progression by
mTOR and PKA.

Apart from regulating growth, the nutrient and growth-
factor sensing module of the mTOR network also
directly affects cell cycle progression. The phosphoryla-
tion cascade initiated by the binding of growth factors to
their receptors leads to increased transcription of cell
cycle genes, such as G1 cyclins and cyclin-dependent ki-
nases (CDKs) (323). In addition, growth factor signaling
stabilizes G1 cyclins by protecting them from protein
degradation (323), thereby promoting G1/S transition in
the presence of nutrients and growth factors.
In budding and fission yeasts, cell size adaptation to

changing nutrients can be partly explained by the regu-
lation of the Greatwall-Endosulfine pathway by mTOR
and, in the case of budding yeast, also by PKA (360, 361)
(FIGURE 8). The Greatwall-Endosulfine pathway is highly
conserved from yeast to mammals and serves as a mo-
lecular switch to aid cell cycle transitions (361, 362). The
Greatwall kinase Gwl (also known as Rim15 in budding
yeast, and Ppk18 and Cek1 in fission yeast) promotes
phosphorylation of Endosulfine, made up of the two
small proteins named ENSA and ARPP-19 in animal cells,
Igo1 and Igo2 in budding yeast, and Igo1 in fission yeast
(363). Phosphorylated Endosulfine potently inhibits PP2A/
B55, the protein phosphatase 2A subcomplex bound to
its regulatory subunit B55. When active, the PP2A phos-
phatase dephosphorylates CDK/Cyclin substrates, acti-
vates CDK/Cyclin inhibitors such as Wee1, and inhibits
CDK/Cyclin activators such as Cdc25 (360, 364, 365).
Thus active PP2A antagonizes CDK/Cyclin activity and
thereby prevents cell cycle transitions (361).
The availability of nutrients leads to an upregulation of

TORC1, which leads to an activation of the conserved
TORC1 target Sch9 kinase in budding yeast (Sck2 in fis-
sion yeast) (360, 366). The Sch9 kinase phosphorylates
and inhibits Rim15, the budding yeast homolog of

Greatwall, thereby preventing cell cycle progression in
nutrient-rich conditions and promoting larger cell sizes
(361, 367). This nutrient-based regulation of the cell
cycle by the TORC1-Greatwall-Endosulfine-PP2A circuit
takes place at the G1/S transition in budding yeast and at
the G2/M transition in fission yeast. PP2A regulates G1/S
transition inhibitors Whi5 and Sic1 in budding yeast (368,
369), and G2/M regulators CyclinB/CDK1, Cdc25, and
Wee1 in fission yeast (360, 361).
In budding yeast, the PKA pathway also regulates the

G1/S transition in response to nutrient availability by in-
hibiting the Greatwall kinase Rim15 (370, 371) [see Ewald
(325) for a detailed review]. In rich nutrients, when both
TOR and PKA are active, Rim15 is inactive, promoting
PP2A activity. PP2A in turn maintains active Whi5, leading
to low CDK activity and ultimately allows progression
through Start, the commitment point of the G1/S transition,
only at larger sizes. Paradoxically, PP2A also pro-
motes S-phase entry by facilitating the degradation of
the Cyclin/CDK inhibitor Sic1. Additionally, the PKA path-
way affects the G1/S transition independently of the
Greatwall-Endosulfine network. PKA inhibits Swi4, a com-
ponent of the major G1/S transcription factors SBF and
MBF (372). In line with the regulation through Greatwall,
this therefore delays Start in rich nutrients, promoting
larger cell sizes. However, in rich nutrients, PKA also
inhibits the expression of Cip1, an inhibitor of the Cyclin/
CDK complex, leading to high CDK activity and a higher
likelihood of cell cycle progression (373, 374).

Nutrients

mTOR

Sch9

PKA

Rim15Greatwall kinase

Igo1Endosulfine

PP2A complex

Sic1 Whi5 Swi4 Cip1

G1/S transition

FIGURE 8. In budding yeast, the Greatwall kinase Rim15 is one
major regulator of nutrient-dependent cell-cycle progression. In the
presence of nutrients, mammalian target of rapamycin (TOR) and
PKA signaling both inhibit Rim15. Through activation of the down-
stream phosphatase PP2A and its targets Sic1 and Whi5, this regu-
lates the G1/S transition.
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In summary, evidence from budding and fission yeasts
indicates that mTOR and PKA regulate cell growth and
cell cycle progression in a nutrient-dependent manner.
Since the components of mTOR, PKA, and Greatwall-
Endosulfine pathways are well conserved, it is possible
that these pathways mediate nutritional control of cell
cycle progression in multicellular organisms as well.
Another fundamental but poorly understood way how
nutrients can modulate cell cycle regulation is through
the cell cycle-dependent expression of many cell cycle
regulators. Since nutrients affect translation rates as well
as the relative durations of cell cycle phases, this will
inevitably lead to nutrient-dependent regulation of the
concentrations of those cell cycle regulators, feeding
back on cell size. Indeed, it has been reported that nutri-
ent-dependent changes in cell cycle duration modulate
Whi5 concentrations and thereby cell size in budding
yeast (51).

8. PATHOPHYSIOLOGICAL CONSEQUENCES
OF ALTERED CELL SIZE

Given that cell size impacts many of themajor cellular func-
tions, including cell growth, cell cycle progression, protein
homeostasis, and organelle function, it may not be surpris-
ing that misregulation of cell size has been associated with
various human diseases (7). For example, increased adipo-
cyte size is associated with obesity and type 2 diabetes
(225), a-motoneuron degeneration in amyotrophic lateral
sclerosis (ALS) is correlated with their size (375), hypertro-
phy of cardiomyocytes is associated with increased risk of
cardiac disorders (376, 377), and cancer cells often exhibit
unusually heterogeneous size distributions (7). The latter
may be attributed to the fact that a hallmark of cancers is
misregulation of cell cycle and growth, and cancer cells of-
ten carry mutations in cell cycle regulators that are known
to be involved in cell size regulation.
In addition to increased cell size, small cell size has

also been associated with several diseases. For example,
neurological diseases such as Alzheimer’s (378), autism
(379), and schizophrenia (380) have been correlated with
cellular atrophy of neurons as well as the supporting glial
cells. Moreover, for muscular atrophy (381) and glaucoma
in monkeys (382), a decrease in size has been observed
for myocytes and relay neurons, respectively. In some
cases of iron deficiency anemia, the red blood cells ex-
hibit a smaller size than usual, a condition known as
microcytic hypochromic anemia (383).
Despite common observations that altered cell sizes

are correlated with disease states, it is often difficult to
dissect the causal relationships. For example, large cell
size has long been recognized as a hallmark of cellular
senescence and aging. However, it has long not been

clear whether this reflects a contribution of cell size to cel-
lular malfunction or whether the increased cell size is a
byproduct of a decreased cell division rate. Only recently,
it was shown that an enlarged cell size can be a driver of
cellular senescence and aging (8–10, 384) (FIGURE 9).

8.1. Cellular Senescence

While it was long thought that the large size of senes-
cent cells is a consequence of continued cell growth de-
spite their exit from the cell cycle, it was already
suggested about 15years ago that large cell size itself
promotes senescence (385). A landmark study by
Neurohr et al. (3) then used budding yeast as a model to
study the mechanistic consequences of drastic cell
enlargement on cell function. They found that large cell
size impairs gene expression and cell cycle progression
and attributed this cellular malfunction to a decrease in
mRNA and protein concentrations in large cells. While
within a range around the optimal cell size, protein bio-
synthesis roughly scales in proportion to cell size (sect.
2), at very large cell sizes the nuclear DNA becomes lim-
iting for transcription, and as a consequence eventually
also for protein synthesis. In mammalian cells, large cell
size not only leads to a global dilution of the cytoplasm
(3) but also to a remodeling of the cellular proteome that
resembles the changes usually associated with senes-
cence (5, 46).
A valuable strategy to investigate the consequence of

increased cell size in mammalian cells has been a tempo-
rary treatment with drugs that induce a G1 arrest during
which cells keep growing (3, 5). Comparison with a control
experiment in which cell growth is reduced, for example,
through a simultaneous treatment with rapamycin or a
reduction of the serum concentration, then allows to dis-
entangle the causal contribution of increased cell size and
the cell cycle arrest itself. Using this approach, several
recent studies identified multiple pathways through which
strongly increased cell size leads to cell cycle exit (3, 5,
386–389) (FIGURE 9). First, p53- and p38-dependent p21
upregulation in large G1 cells, potentially due to an osmotic
stress response, can prevent cell cycle entry (5, 388, 389).
Second, enlarged cells that manage to enter the S phase
may experience replication stress. Due to impaired DNA
damage repair, this then leads to mitotic failure and per-
manent cell cycle exit, either from the G2 and M phases or
from the next cell cycle (388–390). For more details on
the link between cell size and senescence, we recom-
mend a recent review by Manohar and Neurohr (9).

8.2. Implications for Cancer Treatment

The observation that excessive cell growth during a pro-
longed G1 arrest, as caused by CDK inhibitors such as
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the cancer drugs palbociclib and samuraciclib, leads to
cellular senescence may also have important implica-
tions for cancer treatment (386, 387). Since it is the
increased cell size caused by the G1 arrest, rather than
the arrest itself, which causes permanent cell cycle exit,
the fast cell growth of tumor cells seems to be a key
requirement for their selective sensitivity to drug treat-
ment. Indeed, oncogenic mutations affect the probability
of cells to enter senescence in vitro (386, 387). Obtaining
a better understanding of how cell size determines drug-

induced senescence in vivo will therefore provide impor-
tant insights for patient stratification and multidrug treat-
ments. In particular, the dependence on cell size needs
to be considered when pairing CDK inhibitors with drugs
that modulate cell growth.

8.3. Aging

In addition to senescence, enlarged cell size recently
has also been causally linked to aging, both in yeast (3)
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FIGURE 9. Large cell size promotes cellular senescence through cellular malfunction at different stages of the cell cycle. In G1, excessively increased
cell size leads to cytoplasm dilution, which promotes permanent cell cycle exit. If large cells enter the cell cycle, DNA damage and impaired DNA repair
cause cell cycle exit and mitotic failure.
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and mammals (11). For yeast, it has long been clear that
because mother cells grow between each budding
event, replicative aging leads to a continuous increase
in cell size. More recently, it has been reported that the
replicative lifespan of budding yeast, that is the number
of budding events a single cell undergoes before exiting
the cell cycle, depends on the initial size of the cell: If
young cells are larger, either due to a temporary G1

arrest (3, 391) or due to cell size mutations (392), they
will undergo fewer divisions. Lengefeld et al. (11) showed
that increased cell size also contributes to aging in mam-
mals. Specifically, they found that the size of hematopoi-
etic stem cells increases with the age of mice and
humans, which causes decreased proliferation and thus
stem cell potential. The recent mechanistic work linking
cell size to cellular senescence described above also
sheds light on why increased stem cell size can contrib-
ute to aging. However, this leaves the question of why
older stem cells would be bigger to begin with? One in-
triguing explanation is that stress conditions, in particular
DNA damage, typically lead to cell cycle delays.
Because cells still keep growing despite the cell cycle
arrest, this leads to increased sizes. Above a certain
threshold, the impaired function of larger cells then
causes problems in the next cell cycle, leading to a
vicious cycle that eventually leads to excessively large
cells and permanent cell cycle exit [see Davies et al. (8)
for a dedicated review].
Telomere shortening (393) and cell size have both

individually been linked to senescence and aging.
Moreover, across individuals, shorter telomeres are cor-
related with larger mean red blood cell size, even after
accounting for age, suggesting that telomere length and
cell size might be causally linked (394). Indeed, inducing
shortened telomeres through reduced telomerase activ-
ity leads to DNA damage and increased cell size (395).
On the other hand, no dependence of telomere length
on cell size has been found in cell size-sorted primary

human lung fibroblast (5), suggesting that increased cell
size itself does not cause telomere shortening.

8.4. Adipocyte Size and Type 2 Diabetes

Adipocytes are a major component of adipose tissue
and essential for its function. The size of adipocytes is
highly heterogeneous and adapts to external inputs. To
store excess energy, adipose tissue expands by an
increase in both cell number and cell size. The size of
adipocytes is a crucial determinant of metabolic function
and has been linked to type 2 diabetes (225, 396). In
particular, in the context of severe obesity, increased
adipocyte size predicts insulin resistance, even after
accounting for total fat mass (397, 398). However, the
underlying mechanisms remain largely unclear.

9. CONCLUDING REMARKS

For a long time, cell size, in particular the question of
how cells control their own size, has been studied as a
mostly isolated problem in the cell cycle community.
Driven by the finding that changes in cell size cause a
global change of absolute and relative protein concen-
trations, this situation started to rapidly change in the
last few years. In essence, the broad changes across the
proteome suggest that cell size has the potential to
affect almost any biological process. The causal contri-
bution of cell size to aging and cellular senescence are
two prominent examples, but it seems likely that the
coming years will bring to light many more cell size-
driven phenomena. In any scenario where cell size
changes in response to drug treatment, biological proc-
esses, or genetic or environmental perturbations, it will
be critical to reassess the changes of the transcriptome,
proteome, or metabolome that are attributed to the

Open questions:

?
Which diseases are causally
linked to cell size changes?

What molecular mechanisms determine
cell size dependence of proteins?

What determines a cell’s
optimal size range?

What is the role of cell size during mammalian
development and cell differentiation?

Are there unique roles for apparently
redundant size control strategies?

How do metabolites
scale with cell size?

What happens when cells
are too small?

How do non-proliferating cells
control their size?

How do cells modulate growth
rates to control their size?

? FIGURE 10. Open questions in the field of
cell size control.
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specific process by “normalizing” the purely cell size-de-
pendent signature. An important prerequisite for this will
be the careful quantification of these cell size-dependent
changes. Using orthogonal strategies of cell size-depend-
ent sorting or cell size manipulation, the first studies have
already succeeded in distilling the genome-wide changes
caused by changes in cell size. However, at this point, it is
not yet entirely clear to what extent these depend on bio-
logical context, such as cell type or environmental condi-
tions. Understanding how cell size affects specific cell
types will also be of major importance in revealing poten-
tial causal links to cell size and the underlying mecha-
nisms for the many diseases where correlations with
altered cell size have been observed (FIGURE 10).
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