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Currently, lung transplantation outcome remains inferior compared to other solid organ

transplantations. A major cause for limited survival after lung transplantation is chronic lung

allograft dysfunction. Numerous animal models have been developed to investigate chronic

lung allograft dysfunction to discover adequate treatments. The murine orthotopic lung

transplant model has been further optimized over the last years. However, different degrees

of genetic mismatch between donor and recipient mice have been used, applying a single,

minor, moderate, and major genetic mismatch. This review aims to reassess the existing

murine mismatch models and provide a comprehensive overview, with a specific focus on
chronic lung allograft dysfunction; LTx, lung transplantation; MHC, major histocompatibility complex; OB, obliterative bronchiolitis; RAS,
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their eventual histopathological presentation. This will be crucial to leverage this model and

tailor it according to specific research needs.
1. Introduction

Lung transplantation (LTx) is the last treatment option for well-
selected patients with end-stage pulmonary disease. Although
the 1-year survival is approximately 85%, long-term outcome
remains poor with a median survival of 6 years,1 mainly caused
by chronic lung allograft dysfunction (CLAD).1,2 CLAD is defined
as persistent decline (�20%) in forced expiratory volume in 1
second, compared with the baseline.3-5 Within CLAD, different
phenotypes have been described: an obstructive form (bron-
chiolitis obliterans syndrome, BOS), a restrictive form (restrictive
allograft syndrome, RAS), a mixed form (combination of
obstructive and restrictive patterns), and an undefined form
(patients not meeting the criteria).3-6 BOS is typically considered
a small airway disease and has a prevalence of 65% to 75%. On
histopathological examination, it is characterized by obliterative
bronchiolitis (OB), a collagenous obliteration of the lumen of
smaller sized bronchioles. In contrast, RAS is diagnosed in 15%
to 25% of CLAD patients and is histologically defined as (sub)
pleural fibrotic changes and alveolar fibroelastosis with OB le-
sions.3,4,6,7 To unravel the complex pathophysiological pro-
cesses leading to these CLAD phenotypes, preclinical animal
models have been developed.7-9

Indeed, various animal models have been used, including
heterotopic and orthotopic trachea transplantation and orthotopic
LTx in both rodents and larger animals, each with advantages
and limitations, which are comprehensively reviewed else-
where.7-9 To obtain a model that mimics the clinical (BOS/RAS)
situation as much as possible, orthotopic LTx is considered the
most relevant model. This model has the advantage of simulating
the transplantation of a vascularized organ in its relevant physi-
ological environment. We will focus on murine LTx models as
they are easily genetically modifiable, and the reproducibility of
rat LTx models has been questioned.9-11

In 2007, the first orthotopic LTx in mice was described.12 In
subsequent investigations, a wide variety of combinations of
different mouse strains have been used as donor or recipient
animals, leading to different end results. This review aims to
provide an overview of murine orthotopic LTx models of chronic
rejection with a particular emphasis on the different histocom-
patibility complex-mismatched strain combinations.

2. Comparison of mismatch models and strains

In human transplantation, the degree of genetic mismatch
between donor and recipient represents an important risk factor
contributing to graft rejection, determining long-term survival.13

Molecules that are responsible for rejection of transplanted tissue
and the recognition of self and nonself are encoded in a highly
polymorphic genomic region, the major histocompatibility com-
plex (MHC).14,15 In mice, the MHC is located on chromosome 17
and is named ‘H2’.15 Due to inbreeding, laboratory mice within
1931
each strain are homozygous, and each strain carries a unique
haplotype. This is the result of brother-sister mating over 20
generations or more, leading to fixation of specific sets of alleles
and causing a lack of genetic variation at most loci.16-18 However,
it is important to note that recent research has shown that inbred
mice are not entirely isogenic and thus may still display some
degree of genetic variation.19 Different degrees of genetic
mismatch between donor and recipient animals in murine
orthotopic LTx models have been used so far: a single, minor,
moderate, and major genetic mismatch (Figure 1), yielding vari-
ation in the induced pathology. An overview of the discussed
studies for each model and their histologic outcomes can be
found in Tables 1,12,20-22 2,21,23,24,25-28 3,29,30 and 4.31 Of note,
allografts were consistently compared with a control group
involving syngeneic transplantation. However, as these controls
never showed significant pathology, they are not further
discussed.
2.1. Major mismatch model

In 2007, Okazaki et al12 introduced the first murine orthotopic
LTx model. A vascularized, aerated left LTx was achieved, using
cuff techniques for anastomoses of the bronchus, pulmonary
artery, and vein. As the allogeneic transplantations were per-
formed using the C57BL/6 (H2b) into CBA/Ca (H2k) and BALB/c
(H2d) into C57BL/6 (H2b) strain combinations, total mismatches
in class I and II MHC antigens are obtained, inducing a full MHC
mismatch. Within 7 days posttransplant, the recipient mice
developed severe acute rejection together with apoptosis of
airway epithelial cells. In addition, the adventitial zone of the
pulmonary arteries and veins near the hilum showed edema.12

As this leads to almost complete destruction of the graft, it is less
suitable for the evaluation of later time points.7,12 This problem
was addressed by 2 research groups suggesting alternate
models.20,23 A first approach used a minor histocompatibility
complex-mismatched strain combination (see below).23 Shortly
thereafter, the issue of severe rejection was circumvented by
using the major mismatch model [BALB/c (H2d) into C57BL/6
(H2b)] with daily immunosuppression (steroids and cyclo-
sporine). They succeeded in mildly suppressing acute rejection
and prolonging graft life, allowing investigation of OB-like pa-
thology. Initially, 2 weeks posttransplant, acute rejection could be
observed in all allografts, accompanied with an enlargement of
the bronchovascular axes. However, this decreased in the
following weeks and was absent at week 12. From 4 weeks on,
20% to 25% of the allografts showed distinct OB lesions. Over
time, these evolved from immature and mainly fibrinous without
cells to more organized lesions containing cells and angiogen-
esis to end-stage, dense collagenous lesions. The authors
speculated that the variation in the model might be due to vari-
ability in cyclosporine serum levels because lower levels were



Figure. In this figure, both syngeneic and allogeneic orthotopic LTx are presented. The syngeneic orthotopic LTx is shown at the top left, where left
lungs are transplanted between animals of the same inbred strain. At the bottom left, an allogeneic orthotopic LTx is depicted. Left lungs are trans-
planted between animals of the same species, which are genetically disparate individuals. Depending on the strains that are used, different degrees of
genetic mismatch between donor and recipient animals have been defined, resulting in a major mismatch model, a moderate mismatch mode, a minor
mismatch model, and a single mismatch model. Within the boxes, examples of strain combinations used in literature are provided along with their MHC
haplotypes (indicated with a color). Additionally, for each model, an histologic overview image is shown, stained with HE (left), followed by a magnified
view of the bronchovascular bundle stained with HE (middle) and Masson’s trichrome (right). Major and moderate mismatch models (8 and 6 weeks
post-LTx, respectively): Grafts show severe lymphocytic infiltration surrounding airways (Aw) and blood vessels (Bv). Additionally, mild perivascular and
peribronchiolar fibrosis can be found around the bronchovascular bundle. In both instances, the vascular lumen is almost entirely obliterated. In the lung
parenchyma, areas of fibrosis are noted. Minor mismatch model (8 weeks post-LTx): Graft shows mild to moderate lymphocytic infiltration discon-
tinuously arranged around airways (Aw) and vessels (Bv). No remarkable fibrosis is seen. Single mismatch model (2 weeks post-LTx): Graft shows
severe infiltration surrounding blood vessels (Bv) and moderate infiltration around the airways (Aw). HE, hematoxylin and eosin; LTx, lung trans-
plantation; MHC, major histocompatibility complex.
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seen in mice with OB lesions.20 Yamada and colleagues,21 who
applied similar immunosuppressive treatment, subsequently
observed obliterated airways in 83% of their major mismatch
allografts [BALB/c (H2d) into C57BL/6 (H2b)] which manifested
as intraluminal chronic airway fibrosis. Furthermore, all allografts
demonstrated a high degree of peribronchiolar and perivascular
lymphocytic infiltration (A4), as well as significant accumulation
of fibrotic tissue around the airways and in the parenchyma,
significant pleural fibrosis, and thicker airway walls, reminiscent
of RAS.21 Moreover, there are studies applying this major
mismatch model using transgenic mice as donor.22,32 By using
transgenic mice, the role of specific key players can be further
examined to better understand underlying mechanisms. In 2019,
Liu et al22 utilized triple-transgenic mice as donor [3T-FVB (H2q)
into C57BL/6 (H2b)] to investigate whether the loss of club cells
promotes the development of OB lesions. By day 16 post-LTx,
high grade airway inflammation and severe OB lesions were
observed in the allografts with club cell depletion after transient
doxycycline ingestion, whereas syngeneic recipients showed, at
1932
most, mild inflammation without OB or peribronchial lesions as
the club cell depletion-mediated bronchiolar injury was
repaired.22

2.2. Minor mismatch model

As it appeared that the major mismatch model induced almost
complete destruction of the graft, Fan et al23 used a minor his-
tocompatibility antigen mismatched model by transplanting the
left lungs of C57BL/10 (H2b) into C57BL/6 (H2b) mice, leaving
MHC class I and II antigens matched. In this minor mismatch
model, mild acute rejection manifested 7 days posttransplant,
which progressed to moderate acute rejection by day 14 and
severe acute rejection by days 21, 28, and 35. In addition, by day
14, OB lesions could be observed in 33% of grafts. At day 21, OB
was detected in 55% of the recipients and by day 28, in 44%.
These lesions showed progression over time, evolving from
subepithelial or polypoid fibrotic formations affecting the bron-
chiolar lumen on day 14, to larger lesions that almost completely



Table 1
Overview of published studies using the major mismatch orthotopic LTx model.

Major mismatch model

Author Strains Time

point

(post-

LTx)

Results

Donor Recipient Airways Blood vessels Pleura Parenchyma Epithelial cells

Okazaki et al12

(2007)

BALB/c

C57BL/6

C57BL/6

CBA/Ca

Day 7 N/A - Acute rejection grade A3

- Edema in adventitial

zone of pulmonary

arteries and veins

N/A Interstitial mononuclear infiltrates - Apoptosis

- Subepithelial lymphocytic

infiltration in distal airways

De Vleeschauwer

et al20 (2012)

BALB/c C57BL/6 Day 28 - Lymphocytic bronchiolitis

in >75% of the allografts

- OB in 25%-50% of the

allografts

Acute rejection N/A Endogenous lipid pneumonia with

foamy macrophages and

interstitial inflammation

Damaged in areas where

fibrotic plugs grow into the

airway lumen

Yamada et al21

(2018)

BALB/c C57BL/6J Day 56 - Severe lymphocytic

bronchiolitis

- Intraluminal airway

fibrosis in 83% of the

allografts

- Peribronchiolar fibrosis

Acute rejection grade A4 Pleural

fibrosis

Parenchymal fibrosis N/A

Liu et al22 (2019) 3T-FVB C57BL/6

exposed to

doxycycline

Day 16 - High grade lymphocytic

bronchiolitis

- Severe OB lesions

N/A N/A N/A Club cell depletion

For each study, results of the allograft group on day 28 post-LTx are shown. In the event day 28 was not examined, the last time point post-LTx is discussed.
LTx, lung transplantation; N/A, not applicable; OB, obliterative bronchiolitis.
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Table 2
Overview of published studies using the minor mismatch orthotopic LTx model.

Minor mismatch model

Author Strains Time point

(post-LTx)

Results

Donor Recipient Airways Blood vessels Pleura Parenchyma Epithelial cells

Fan et al23 (2011) C57BL/10 C57BL/6 Day 28 - Mild lymphocytic bronchiolitis

- OB in 44% of the allografts

together with peribronchiolar

fibrosis

Acute rejection grade

A4

N/A N/A N/A

Suzuki et al24

(2012)

C57BL/10 C57BL/6 Day 28 OB in 42.1% of the allografts Acute rejection grade

A3

N/A N/A N/A

C57BL/6 C57BL/10 OB in 12.5% of the allografts Acute rejection grade

A3

N/A N/A N/A

Yamada et al21

(2018)

C57BL/

10J

C57BL/6J Day 56 - Moderate lymphocytic

bronchiolitis

- Mild fibrosis in peribronchiolar

areas

Moderate acute

rejection

Pleural fibrosis No significant fibrosis N/A

C57BL/

10J

C57BL/6N Moderate lymphocytic

bronchiolitis

Moderate perivascular

inflammation

Pleural fibrosis No significant fibrosis N/A

Martinu et al25

(2019)

C57BL/

10J

C57BL/6J Day 28 33% of the grafts are severely affected:

- Lymphocytic bronchiolitis

- OB in �50% of the airways

- Peri-airway fibrosis

- Moderate to severe

acute rejection

- Severe vascular

fibrosis

- Endothelialitis

Significant pleural

thickening and

fibrosis

Parenchymal fibrosis

with fibroelastosis

Epithelial hyperplasia

and flattening

22% of the grafts are mildly affected:

- Lymphocytic bronchiolitis

- OB in �15% of the airways

- Minimal peri-airway fibrosis

- Minimal acute

rejection

- Endothelialitis

- Occasional vascular

fibrosis

- Minimal pleural

fibrosis

- Mildly thickened

pleura

Rare areas of patchy

parenchymal fibrosis

Minimal epithelial

hyperplasia and

flattening

(continued on next page)
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C57BL/6J C57BL/10J - Lymphocytic bronchiolitis

- OB in 30% of the allografts

- Peri-airway fibrosis

Vascular fibrosis Pleural fibrosis Parenchymal fibrosis

with fibroelastosis

Epithelial hyperplasia

and flattening

Watanabe et al26

(2019)

C57BL/10 C57BL/6 with

prolonged

storage

Day 28 - Lymphocytic bronchiolitis

- OB

- Peribronchial fibrosis

Acute rejection No significant pleural

thickening

Parenchymal fibrosis N/A

Watanabe et al27

(2023)

C57BL/10 C57BL/6

exposed to LPS

Day 28 - Lymphocytic bronchiolitis

- Peri-airway fibrosis

- OB

Acute rejection grade

A3

N/A Parenchymal fibrosis Epithelial destruction

and hyperplasia

Hata et al28 (2022) C57BL/

6JThy-1 -/-

C57BL/10J Day 30 - OB

- Collagen deposition

N/A N/A - Parenchymal fibrosis

- Collagen deposition

N/A

For each study, results of the allograft group on day 28 post-LTx are shown. In the event day 28 was not examined, the last time point post-LTx is discussed.
LPS, lipopolysaccharide; LTx, lung transplantation; N/A, not applicable; OB, obliterative bronchiolitis.
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blocked the airways on days 21 and 28, but were absent at day
35.23 This variability was hypothesized to be due to the variable
expression of minor histocompatibility antigens.23,33 Therefore, if
OB is minor antigen-dependent, this can lead to a nonuniform
occurrence of OB in the allografts.23 Similarly, Suzuki et al24 did
not observe OB uniformly in all recipient mice. At days 21 and 28
posttransplant, OB was observed in 42.1% of the allografts
accompanied by moderate acute rejection (A3). In addition,
transplantation was also performed with C57BL/6 as donor while
C57BL/10 served as recipient. Now, OB was only found in 12.5%
of the recipient mice at days 21 and 28 posttransplant.24 This
difference was also observed by Martinu et al.25 At day 28
posttransplant, OB was observed in 66% of the recipient
C57BL/6J grafts with C57BL/10J donors, whereas it was only
present in 30% of the recipient C57BL/10J grafts with C57BL/6J
donors. In the C57BL/10J to C57BL/6J group, 44%were affected
with severe obliterative airway fibrosis, 22% showed mild oblit-
erative airway fibrosis, and 33% demonstrated no OB. In re-
cipients with severe obliterative airway fibrosis, >50% of the
airways were obliterated and showed peribronchial fibrosis,
extensive parenchymal fibrosis with a fibroelastosis pattern,
thickened fibrotic pleura, severe vascular fibrosis, moderate to
severe acute rejection, endothelialitis, and epithelial hyperplasia
and flattening. The allografts that were mildly affected showed
fewer lesions (<15% of the airways were obliterated) and con-
tained relatively normal lung tissue in the other areas.25 Once
more, this indicates the variability in airway fibrosis in this minor
mismatch model. Yamada et al21 further investigated 2 minor
antigen mismatched combinations: C57BL/10J (H2b) into
C57BL/6J (H2b) and C57BL/10J (H2b) into C57BL/6N (H2b).
Both recipient animals are substrains derived from C57BL/6 and
were obtained from 2 different suppliers. With this approach, they
aimed to assess whether genetic drift in these substrains could
affect their susceptibility to airway fibrosis and whether diverse
origins of the mice could impact phenotype expression. How-
ever, neither C57BL/6J nor C57BL/6N recipients showed airway
obliteration at 8 weeks posttransplant, wheras both groups
showed the same degree of moderate perivascular and peri-
bronchiolar inflammation.21 However, it later became clear that
only performing minor mismatch transplants might not be suffi-
cient, and an additional trigger seems needed. Indeed, Wata-
nabe et al26 showed that only grafts C57BL/10 (H2b) into
C57BL/6 (H2b) with prolonged cold and warm ischemia leading
to ischemia-reperfusion injury exhibited OB, peribronchial thick-
ening, and parenchymal fibrosis, whereas grafts with minimal
storage showed no pathology. This was later confirmed as
repeated intratracheal administrations of lipopolysaccharides
posttransplant led to significant airway obliteration, peribronchial
fibrosis, and parenchymal fibrosis 28 days posttransplant, as well
as significant perivascular and peribronchiolar acute rejection
(A3), but not in phosphate-buffered saline-instilled controls,
which only showed minimal fibrosis and acute rejection.27 This
was also corroborated by the study of Hata et al28 where
repeated lipopolysaccharide administration contributed to a
significantly increased OB and fibrosis score compared to
phosphate-buffered saline-treated recipients. Moreover, LTx was



Table 4
Published study using the single mismatch orthotopic LTx model.

Single mismatch model

Author Strains Time point

(post-LTx)

Results

Donor Recipient Airways Blood vessels Pleura Parenchyma Epithelial cells

Smirnova et

al31 (2019)

C57BL/6-

Tg(HLA-

A2.1)1Enge/J

C57BL/6 2 mo - Lymphocytic

bronchiolitis

- ECM deposition

around bronchi

- Acute rejection

- ECM deposition

around vessels

N/A N/A Subepithelial

fibrosis

For this study, results of the allograft group 2 months post-LTx are shown.
ECM, extracellular matrix; LTx, lung transplantation; N/A, not applicable; OB, obliterative bronchiolitis.
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not only performed from C57BL/6J into C57BL/10J mice. They
also used Thy-1 knockout mice as donors to investigate the role
of Thy-1 in CLAD [C57BL/6JThy-1 -/- (H2b) into C57BL/10J (H2b)],
which is a surface glycoprotein that controls fibroblast differenti-
ation and activation. Compared to LTx with C57BL/6J wild type
grafts, loss of Thy-1 resulted in increased fibrosis, OB lesions,
parenchymal fibrosis, and collagen deposition.28 Additionally,
Kawashima and colleagues34 conducted a retrospective review
of their minor model [C57BL/10 (H2b) into C57BL/6 (H2b)] to
explore important determinants of the observed pathologic vari-
ability. They found that pathologic outcomes significantly differed
within and across surgeons.
2.3. Moderate mismatch model

All the above studies indicate that there is a lot of variability and
a very delicate balance between either futile rejection or too se-
vere rejection. More recently, a moderate MHC mismatch model
has been developed, transplanting from a F1 hybrid (cross be-
tween 2 inbred strains) into the parent strain. As a result, donor
and recipient differ in 50% of MHC class I and II antigens. Mimura
et al29 used the B6D2F1/J (H2b/d) strain (cross between
C57BL/6J and DBA/2J) as donor mice and DBA/2J (H2d) as re-
cipients. In these grafts, an evolution was noticed from mild to
moderate perivascular and peribronchial immune cell infiltration
(lymphocytes, neutrophils, and eosinophils) and evidence of
endothelial damage to the development of OB lesions and graft
fibrosis in all mice by day 28. Intraluminal fibrinous exudate or
fibrotic plugs were observed along with peribronchial and peri-
vascular fibrosis. In addition, further progression was observed by
day 40, with smooth muscle hypertrophy and an increase in
collagen leading to luminal narrowing. As all allografts developed
airway remodeling and fibrotic changes were observed consis-
tently, this moderate mismatch combination was suggested as a
reproducible model to investigate chronic graft failure.29 Several
years later, the same research group transplanted the lungs of F1
mice (B6D2F1/J) into the other parent strain (C57BL/6J). One
week posttransplant, the allografts revealed moderate acute
rejection together with mild cellular infiltration in the pleura. The
latter showed progression by day 14 with plasma cell infiltration
and evolving fibrosis, along with the presence of patchy fibrinous
exudates in the alveoli. At day 28, acute cellular rejection
1937
persisted, and increasing fibrosis was observed in the pleura and
along the bronchovascular bundles, with some airway lumina
presenting with fibroblast plugs. Key observations on day 40
posttransplant included severe pleural fibrosis and thickening,
along with peribronchial fibrosis and interlobular septal thickening
and fibrosis. Moreover, in some allografts, pleuroparenchymal
fibroelastosis was observed. As shown, histopathological features
of RAS were demonstrated by transplanting B6D2F1/J into
C57BL/6J, whereas a more OB-like pathology is observed when
transplanting into DBA/2J recipients.30

2.4. Single mismatch model

In 2019, Smirnova et al31 transplanted left lungs from
HLA-A2–knockin mice in a C57BL/6J background (HLA mice)
into C57BL/6J recipients. By using transgenic mice expressing
the human HLA-A2 transgene, a single MHC class I mismatch
occurred between donor and recipient.35 Unlike the major
mismatch model with total mismatches in class I and II MHC
antigens, driving direct allorecognition, an indirect allorecognition
response is triggered within this single mismatch model.31,36 This
is important because indirect allorecognition has been associ-
ated with chronic rejection and BOS31,37,38 as the recipient’s
antigen-presenting cells can process and present donor MHC
molecules to CD4þ T cells. In this model, large mononuclear
infiltrates could be observed in the perivascular and peribronchial
areas 1 month after transplantation. These infiltrates appeared
more organized 2 months post-LTx. In addition, large amounts of
extracellular matrix deposition could be observed around the
bronchi and vessels as well as subepithelial fibrosis.31

2.5. Beyond histology: immunology and therapy

Although histologic analysis remains a fundamental compo-
nent in assessing orthotopic LTx in mice, these models have also
proven to be of great value in gaining deeper immunologic in-
sights. For instance, using a major mismatch model, Kaes et al39

investigated the alloimmune-related mechanism in rejection and
showed that a classic immune response occurs involving both
innate and adaptive immunity. At day 7 post-LTx, an increase in
most of the measured immune cells including monocytes, inter-
stitial macrophages, dendritic cells, natural killer cells, natural
killer T cells, CD4þ T and CD8þ T cells, and B cells was
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observed. By day 35, only dendritic and CD4þ T cells remained
elevated.39 Although the adaptive response in this study primarily
demonstrated cell-mediated immunity, there is also mounting
evidence indicating the significant role of humoral immunity in
CLAD. Using a single mismatch model, Smirnova et al31

demonstrated that B cells are an important driver of chronic
rejection, as they were necessary for lymphoid follicle formation.
This was also confirmed by Misumi et al30 using the moderate
mismatch model, who observed significant B cell and plasma cell
infiltration in the allografts. Moreover, they indicated the crucial
role of antibody secretion by B cells in mediating RAS-like
pathology.

Additionally, these models are also relevant for testing po-
tential therapeutic interventions. For instance, using the minor
mismatch model, the potential therapeutic treatment with hal-
ofuginone was investigated. This plant derivative has been
shown to have antifibrotic activities and inhibit Th17. Treatment
with halofuginone reduced the percentage of obliterated airways
as well as parenchymal fibrosis. It also decreased the expression
of Th17- and fibrosis-associated genes.40 In addition to the minor
mismatch model, the other models have shown implications of
findings for clinical care and therapeutic applications.41,42

Translational studies confirming murine findings are crucial in
further translating these findings to the clinic.

3. Critical remarks

Although the murine orthotopic LTx model is a major devel-
opment to gain more insight into the pathogenesis of CLAD, it is
also important to approach this model critically. A first important
aspect is that mice lack small airways. Terminal bronchioles
terminate directly into the alveoli because no respiratory bron-
chioles are present.43,44 This anatomical difference poses a
challenge in translating findings to the human context, particu-
larly in terms of clinical similarity. Consequently, the extent to
which human pathology is mirrored in this murine model is
questionable. Although BOS and RAS-like pathology has been
observed, no research has addressed the mixed and undefined
phenotypes. The futility of lung function measurements in mice
makes it difficult to fully correlate the findings to human CLAD.
Therefore, to further increase the value of the model, it could be
important to link histopathological findings to functional out-
comes such as Flexi-vent measurements and in vivo imaging
such as micro-computed tomography or positron emission
tomography/computed tomography. Additionally, given that
BOS is typically considered a small airway disease, it remains
important to be aware of potential histopathological differences
between human and murine lesions, and a careful comparison
of these clinical manifestations is essential. Moreover, in
humans, different presentations of this pathology can be
defined, such as proliferative vs constrictive bronchiolitis, which
thus far has not been addressed in the murine model. Finally,
the lack of bronchial artery circulation in this murine model could
also be considered a limitation. However, it is important to note
that the significance of this circulation is debated in the human
setting as well.45,46
1938
In addition, it is important to consider the purpose of the study
when choosing a model, as differences in outcome and repro-
ducibility have been observed. Depending on the degree of ge-
netic mismatch, a different allorecognition pathway (direct or
indirect) will be activated. The major mismatch model primarily
drives direct allorecognition because both MHC class I and II
differ between donor and recipient. Although this model repre-
sents the clinical situation most closely (ie, full MHC mismatch
and use of immunosuppression), variability in outcome was
observed, possibly due to variability in immunosuppression
serum levels,20 questioning the reproducibility of this model. As
such, one could consider whether an immunosuppressed model
is ideal when investigating the mechanisms leading to CLAD or
testing possible therapeutic applications. Unlike in patients,
regular titration to adjust immunosuppression dosage is not
performed in this murine model, and daily administration of
immunosuppression may be considered a disadvantage due to
its labor-intensive nature. Therefore, this model may be more
suitable for studying acute rejection or immunologic responses
rather than broader mechanistic studies.

In contrast, the single mismatch model is based on the indirect
allorecognition response. For studying CLAD, this is particularly
interesting given that indirect allorecognition is a commonly
accepted mechanism driving chronic rejection. Despite its
promise, not much research has been conducted using this
model. However, it is an appealing option to use transgenic mice
when examining the specific key players that might be involved.

In addition to the single mismatch model, the minor mismatch
model also activates the indirect allorecognition pathway. How-
ever, this model demonstrated significant variability in airway
fibrosis, and an additional ‘insult’ seems to be needed to induce
CLAD.21,26-28 Therefore, this model might seem less optimal in
this context.

Finally, the moderate mismatch model seems to display an
adequate level of rejection, neither too weak nor too severe.
Because donor and recipient differ in 50% of MHC class I and II
antigens, direct allorecognition will be activated, which will be
followed by contribution of indirect allorecognition. Here, how-
ever, no immunosuppression is needed. Although the number of
studies using this model is limited, it has already yielded prom-
ising results and seems to be reproducible, which can be inter-
esting to test therapeutic applications. Moreover, as
histopathological features of both BOS and RAS have been
demonstrated,29,30 it has potential as a model to study CLAD.

A final important reflection is the need for consistent time
points for examination and a more uniform pathologic diagnosis
and terminology across studies.47 For example, OB lesions have
been denominated OB, obliterative airway fibrosis, intraluminal
chronic airway fibrosis, intraluminal fibrotic airway obliteration,
and intraluminal fibrosis, likely reflecting the same pathology.

The murine orthotopic LTx model could be crucial for
enhancing human LTx outcomes, but variations in model out-
comes highlight the importance of understanding each model’s
background, advantages, and limitations. Greater insights and a
deeper understanding of these models will be essential for
progress in this field.
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