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Abstract

Biophysical modeling, particularly involving partial differential equations (PDEs), offers significant potential
for tailoring disease treatment protocols to individual patients. However, the inverse problem-solving aspect of
these models presents a substantial challenge, either due to the high computational requirements of model-based
approaches or the limited robustness of deep learning (DL) methods. We propose a novel framework that leverages
the unique strengths of both approaches in a synergistic manner. Our method incorporates a DL ensemble for
initial parameter estimation, facilitating efficient downstream evolutionary sampling initialized with this DL-based
prior. We showcase the effectiveness of integrating a rapid deep-learning algorithm with a high-precision evolution
strategy in estimating brain tumor cell concentrations from magnetic resonance images. The DL-Prior plays a
pivotal role, significantly constraining the effective sampling-parameter space. This reduction results in a fivefold
convergence acceleration and a Dice-score of 95%.

Index Terms—Individualized brain tumor modeling, learnable prior, evolutionary sampling, CMA-ES, MRI, in-
verse biophysics.
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Figure 1: Fitting a tumor model with a combination of
DL and evolution strategy. (a) T1c and FLAIR MR im-
ages are segmented into white matter (WM), gray matter
(GM), and cerebrospinal fluid (CSF). The respective tu-
mor segmentations are combined into one channel. (b)
DL provides a fast estimation of the tumor model pa-
rameters θ = {x, y, z, µD, µρ}. A Gaussian prior is con-
structed based on an encoder followed by an ensemble
of linear layers. (c) CMA-ES incorporates this DL-Prior
and a Dice-score-based likelihood to further optimize the
tumor model parameters.

1 Introduction

Glioblastoma is the most common primary malignant
brain tumor with a median survival time of only 14-
17 months [1] and a yearly incidence rate of 3.53 per
100,000 [2]. Despite recent advances in understanding
the biology of this disease and prolonged survival with
modern combinations of radio- and chemotherapy [3],
there is still a tremendous need for improving the treat-
ment of these patients. A central challenge is the ten-
dency of glioblastoma cells to diffusely spread from the
primary tumor into the surrounding brain.

Radiotherapy represents a central pillar in brain tu-
mor treatment. The goal of radiation therapy for brain
tumors is striking a delicate balance between delivering

an effective dose of radiation to the tumor and minimiz-
ing damage to surrounding healthy brain tissue. Current
glioblastoma radiation therapy planning predominantly
relies on MR and CT imaging, with the clinical target
volume defined as a uniform 15 mm margin around the
resection cavity plus T1 contrast-enhancing tumor [4].
While this approach aims to address the diffuse spread,
it lacks true patient individualization due to its unifor-
mity. Imaging-based individualization of radiotherapy
promises to meet the need for more effective therapy.

Radiotherapy planning is limited to the visible bound-
aries of the tumor on imaging modalities, which is known
to only show the “tip of the iceberg” [4]. Physical
modeling has been explored to predict tumor cell con-
centrations based on growth patterns to overcome this
limitation and uncover the full extent of the tumor.
These models aim to incorporate tumor pathophysiology
through the spatial and temporal dynamics of the tumor.
In the literature, various models are used, ranging from
agent-based cellular automaton over multi-scale models
to grid-based continuous models, which are applied in
this paper [5–9].

Traditionally, various sampling-based approaches are
used to solve the inverse tumor problem, i.e., to estimate
the growth model parameters best describing the ob-
served tumor. Simply put, these methods run many for-
ward tumor growth simulations [10], called samples, in an
optimized way to converge toward the most likely set of
parameters or towards an entire posterior probability dis-
tribution of the parameters [11]. For instance, Bayesian
inference executed by Markov-chain Monte Carlo can
lead to high-quality model fits [12]. With typical for-
ward solvers using the Lattice Boltzmann methods and
multi-scope adapted grid methods, a runtime of about
1-3 min per forward run can be achieved for simple tu-
mor models [11, 12]. However, multiple hundred up to a
few thousand samples must be simulated for a reasonable
inference result. Thus, although sampling strategies are
very precise and, in principle, attractive for clinical use
given their convergence robustness, they have a strongly
growing complexity with the number of parameters rele-
vant to advanced models. Therefore, these methods are
prohibitively costly to calculate, running multiple days
per patient [12], forming a significant hurdle for their
routine clinical use.

Recently, neural networks have been employed to esti-
mate parameters for brain tumor models [13–16] or tu-
mor growth volumes directly [17]. Convolutional neural
networks (CNNs) are designed to analyze images and
identify patterns, making them well-suited for analyzing
medical images and estimating growth model parame-
ters. Applying CNNs for brain tumor modeling involves
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training the network to recognize specific features within
the MR images associated with tumor growth and pro-
gression. After training, these networks can solve the
inverse problem of predicting tumor model parameters
from an imaging observation to drive a deterministic
physics simulation. Despite the fast inference time of
less than 5 minutes, the main drawback of a pure DL
approach lies in its inflexibility towards modal adapta-
tions and the lack of error guarantees, which can lead to
incorrect parameter estimation [18]. This lack of robust-
ness represents a significant challenge for their clinical
translation.
Recently, a data-driven model regularized by soft

physics-informed penalties demonstrated the ability to
predict tumor recurrence better than the current stan-
dard procedure [19]. The lack of hard physical con-
straints within the model presents a limitation, as it may
lead to biophysically implausible local minima, which
could be addressed by incorporating a physically con-
strained prior.

The successful integration of deep learning with tradi-
tional methods for diverse inverse problems across vari-
ous fields [20–22] motivated us to explore this approach
for brain tumors.

Contributions

As outlined above, both approaches to solving the in-
verse problem have individual drawbacks, namely com-
putational cost and lacking robustness. Here, we incor-
porate the deep learning (DL) approach as a prior for
downstream evolutionary sampling. Our methodology
combines the speed of DL inference with the reliability
and precision of sampling strategies. In more detail,

• We introduce an ensemble of CNNs to predict tumor
growth model parameters in patient space, reducing
the mean squared error to simulation ground truth
by 80% compared to existing methods.

• We reduce the effective parameter space for subse-
quent precise evolutionary sampling, based on the
DL prediction, effectively accelerating convergence
time by a factor of five without sacrificing precision.

2 Methods

2.1 Framework Overview

Our goal is to predict the tumor concentration for each
voxel, which is not visible in conventional imaging modal-
ities, based on physically constrained modeling (Figure
1). As input to our model, contrast-enhanced T1 (T1c)

and FLAIR MRI scans are used, highlighting higher and
lower tumor concentrations, respectively (Figure 1 a). In
a preprocessing step, the tumor regions are segmented in
both scans into the subregions contrast-enhancing tumor
(CET) and edema, using BraTS Toolkit [23]. The tissue
segmentation is generated based on the T1c scan using
the S3 software [12].

The tumor and tissue segmentations are fed into a
neural network to predict the physical tumor model pa-
rameters (Figure 1 b). The premise is that the network
learns the growth dynamics based on the underlying tis-
sue. Therefore, an overlay of both tumor segmentations
is fed into the network as a single channel(edema: 0.33,
CET:0.66), whereas the other input channels contain the
patient-specific tissue information: white matter (WM),
gray matter (GM) and cerebrospinal fluid (CSF) to fa-
cilitate patient-specific modeling. The tissue information
in each channel is continuous and can be interpreted as
the ratio of the given tissue type per voxel. The network
output consists of scalar parameters that determine the
physical process of tumor development. From those pa-
rameters, it is possible to simulate the growth process of
the tumor within the patient’s brain.

We discuss the network architecture in section 2.5.
The DL-Prior is included in subsequent evolutionary
sampling, which is explained in section 2.6. Evolution-
ary sampling is a computational technique that leverages
multiple forward simulations to converge toward the op-
timal parameters governing tumor behavior. The DL-
Prior plays a crucial role in guiding the exploration of
this parameter space.

2.2 Tumor Growth Model

The tumor progression can be distinguished into two
main parts: growth and diffusion. From those two phe-
nomena, the tumor concentration c can be modeled by
the following partial differential equation:

∂c

∂t
= ∇ · (D∇c) + ρc(1− c) (1)

The first term describes the diffusion process with dif-
fusion coefficient D, and the second term describes the
growth process over time t. In the case of the applied
Fisher-Kolmogorov equation [24], a logistic growth pro-
cess with a growth parameter ρ is assumed.

2.3 Tumor Simulation

For the simulation, three types of brain tissue are distin-
guished: WM, GM and CSF. For each voxel i the proba-
bility p of all tissues adds up to one: p

WM
+p

GM
+p

CSF
=

1.
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The diffusion coefficient is assumed to differ for each
tissue type [12]. The ratio of diffusion within WM and
GM is fixed to D

GM
= 1

10DWM
, whereas no diffusion is

allowed inside CSF (D
CSF

= 0), as the tumor physiolog-
ically cannot grow there.

Additional parameters are the tumor origin {x, y, z}
and the total time of tumor growth T . We select a single
tumor origin as the starting point of the simulation. This
simulated origin cannot necessarily be directly associated
with the actual tumor-originating cell in medical cases.
Thus, the original set of parameters for the forward solver
is θorig = {x, y, z, ρ,D

WM
, T}. As only one time-point is

realistically available for radiotherapy planning, θorig is
ambiguous: for example, a faster-growing tumor over a
shorter time and a slower-growing tumor over a longer
time are indistinguishable based on a single time point.
Therefore we introduce end-time independent parame-
ters µD =

√
D

WM
T [cm] and µρ =

√
ρT [unitless] lead-

ing to the reduced parameter set: θ = {x, y, z, µD, µρ}.
The 3D tumor cell density c is a function of these param-
eters. For simulation, the GliomaSolver [12] software is
used.

2.4 Data

For the network training, 30,000 simulations are created
using 140 real patient tissues from the BraTS dataset [25]
to simulate synthetic tumors. By explicitly incorporating
tissues from BraTS patients, whose anatomy is already
altered by tumors, we introduce pathological anatomy
variations that the network is likely to encounter in real
patient data. This approach aims to make the model
invariant to tumor-induced anatomical differences and
typical tissue deformations, thereby enhancing its ability
to generalize to diverse patient data. The dataset is split
into 28000 training samples and 2000 validation samples.

For the additional test set for extensive validation of
all methods, including costly additional sampling, 180
simulations are conducted in another 140 BraTS patient
anatomies with random parameters.

For validation, we apply all methods to preoperative
imaging data from nine real glioblastoma patients to
compare their ability to fit preoperative tumor segmen-
tations instead of the comparison to synthetic ground
truth.

2.5 Deep Learning Network

2.5.1 Network Training

The network encoder (Figure 1 b) is based on a resid-
ual neural network (ResNet) [26]. In contrast to former

experiments [14], the network input consists of four chan-
nels with dimensions 128× 128× 128, concatenating the
three patient-specific tissue masks and the tumor seg-
mentation map. All other parameters and conditions are
maintained as in the prior experiments [14]. The network
outputs are the five model parameters θ optimizing an
L2 loss. The simulation parameters are sampled based
on clinical experience in the same way as introduced in
the Learn-Morph-Infer (LMI) method [14].

For the original model, the input tumor is generated
by random thresholding of the synthetic ground truth tu-
mor at values cthEdema ∈ [0.05, 0.5] and cthCET ∈ [0.5, 0.85].
All voxels containing ground truth tumor concentrations
above these thresholds are considered edema (cthEdema ≤
c < cthCET ) or CET (c ≥ cthCET ) segmentations for train-
ing.

The training was conducted on an NVIDIA Quadro
RTX 8000 with 50GB RAM. We trained for 85 hours
over 50 epochs.

2.5.2 Network Ensemble

An ensemble of ten networks is introduced to increase
the model robustness towards multiple edema and CET
thresholds. The last layer of the network ensemble is
fine-tuned for a certain threshold (cthEdema, c

th
CET ) in the

ground truth training data. The premise is that the en-
semble mean is more stable toward single network fail-
ure, and the ensemble standard deviation can quantify
the uncertainty of the prediction. Technically, we fixed
all weights except the last linear layer and retrained it on
different thresholds. A Gaussian prior is generated from
this equally weighted ensemble (see section 2.6.1).

2.6 Evolutionary Sampling

Introducing a prior drastically reduces the effective pa-
rameter space for the subsequent sampling strategy. The
following sections describe the integration of this prior
into a covariance matrix adaptation evolutionary strat-
egy (CMA-ES) [27,28].

2.6.1 Prior

A Gaussian distribution around the DL-ensemble esti-
mated parameters is defined as prior. The prior distribu-
tion is based on the ensemble mean (θ̄idl) and its standard
deviation (σi

dl) for each parameter i ∈ θ. It is assumed
that the individual parameters follow independent Gaus-
sian distributions.

P (θ|θ̄dl, σdl) ∼
∏
i

1

σi
dl

√
2π

exp

(
− (θi − θ̄idl)

2

2(kσi
dl)

2

)
(2)
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The scaling parameter k is introduced to relax or
tighten the variance of the prior based on empirical find-
ings. It is found that the model sampling performs better
if we relax the prior contribution compared to the likeli-
hood. This is done by increasing k to a value of 10. In a
strict Bayesian formulation the prior does not depend on
the data. As patient data is used for DL inference, the
prior does depend on the data, so technically, we apply
empirical Bayes [29].

2.6.2 Likelihood

The likelihood describes the probability of observing the
MRI tumor segmentations (data D = {YCET, YEdema})
given a set of tumor model parameters θ. It is com-
posed of the likelihoods of edema and CET where cth =
{cthCET , c

th
Edema}.

P (D|θ, cth) = P (YCET|θ, cthCET ) · P (YEdema|θ, cthEdema)
(3)

The respective probability of observing the segmen-
tations with a given set of parameters is assumed to
be described by the Dice-score (DSC)1 [30] between the
segmentation and the proposed concentration above the
threshold cthEdema, and equivalently for T1c cthCET .

P (YEdema|θ, cthEdema) = DSC(YEdema, c(θ) > cthEdema)
(4)

2.6.3 Posterior

The posterior is calculated with the DSC-based likeli-
hood and the DL-based prior.

P (θ|D) ∼ P (D|θ, cth) · P (θ|θ̄dl, σdl) (5)

The maximum a posteriori probability (MAP) esti-
mate provides the most likely tumor model parameters
θ̂MAP under the described assumptions.

θ̂MAP =argmax
θ

P (θ, cth|D) (6)

= argmax
θ

∫
cth

P (θ, cth|D)dcth (7)

(5)
= argmax

θ

∫
cth

P (D|θ, cth)dcth · P (θ|θ̄dl, σdl) (8)

*
≈ argmax

θ
P (D|θ, cth) · P (θ|θ̄dl, σdl) (9)

1Approximating the likelihood function with the Dice-score is
mathematically inaccurate. For example, a vanishing Dice-score is
not equivalent to a zero probability of observing the data. Never-
theless, the real likelihood function is unknown, and modeling it
would imply further assumptions [12] that we want to avoid.

We applied the midpoint approximation (*) over the

likelihood for the average thresholds cth = {0.25, 0.675},
as the threshold values are sampled over a uniform dis-
tribution, and the difference in likelihood is small on a
relative scale (about max 5%) for various thresholds. As

there is no analytical solution for θ̂MAP, the optimization
is carried out by CMA-ES as described in the following.

2.6.4 Sampling Algorithm

The novelty of our approach lies in integrating a DL-
Prior into sampling strategies. This is realized by the
state-of-the-art covariance matrix adaptation evolution
strategy algorithm [27] (Figure 1 c).

The CMA-ES algorithm is employed due to the inher-
ently ill-posed, non-convex, and non-differentiable nature
of the inverse tumor growth problem [31]. Furthermore,
CMA-ES exhibits robust performance on unsteady prob-
lems frequently encountered at tissue interfaces. For in-
stance, a tumor might not grow at all if its origin lies in a
voxel where CSF is dominant, whereas it may proliferate
unimpeded in an adjacent white matter voxel.

The idea of the CMA-ES is based on sampling within
a multivariate Gaussian distribution in parameter space.
In each step, samples are evaluated according to their
fitness. In our case, the fitness function is represented
by the estimated posterior P (θ|D), describing the prob-
ability of the parameter set θ given the measured data D
(Eq. 5). The fittest samples are selected, and the sam-
pling mean and the covariance matrix of the multivariate
Gaussian are adapted accordingly [32]. Eventually, the

sampling distribution converges to the MAP θ̂MAP (Eq.
9). We sampled for a maximum of 600 simulations.

To ensure an equitable comparison of runtime between
sampling methods with and without a prior, we imple-
ment a specific initialization protocol for the absence of
a prior, the naive sampling. The tumor origin is initial-
ized at the center of mass of the FLAIR segmentation.
The diffusion coefficient µD and µrho are initialized at its
lower limit, given that the forward simulation runtime
increases linearly with µD. This initialization results
in a sampling strategy that converges towards optimal
parameters while commencing with a small tumor and
subsequently increasing in size. As smaller tumors fa-
cilitate expedited simulation time, this initialization im-
proves the entire sampling runtime. For this comparative
analysis, a subset of 13 patients was randomly selected
for cost reasons. We sampled until a convergence up to
99 % of the maximum posterior up to a total of 2000
samples for the case without prior and 600 samples for
the case with DL-Prior. All simulations were conducted
on an AMD EPYC 7313 16-core CPU. We published our
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code on GitHub2.

2.7 Evaluation

The predicted parameters can be compared to the ground
truth as an intermediate evaluation. Here, the distance
to the ground truth origin and the deviation from the
ground truth growth and diffusion parameters are of in-
terest. Note, however, that due to the ill-posedness of
the problem, several combinations of parameters can de-
scribe a given tumor observation equally well. In view
of the potential clinical application for individualized ra-
diotherapy, the accurate estimation of tumor cell concen-
tration is more important.

Thus, different metrics are applied to evaluate the sim-
ilarity between predictions and ground truth concentra-
tion. The mean absolute error (MAE) and mean squared
error (MSE) provide information about the pixel-wise
differences between the proposed tumor and the ground
truth. The problem with those metrics lies in the aver-
aging over all pixels. For example, a tumor where every
voxel concentration differs a bit can have the same error
as a tumor where some areas are utterly distinct while
some regions fit very well. Therefore, the commonly used
Dice-score [30] is also applied. The Dice-score measures
the overlap of two binary segmentations. A tumor den-
sity threshold must be applied as the solver’s output is
continuous.

For synthetic data, where ground truth tumor concen-
tration is available, any clinically relevant threshold can
be selected to binarize the ground truth and the pro-
posed tumor density map. As a benchmark, the atlas-
specific network LMI is integrated into our synthetic
workflow [14].

To ensure statistical robustness, we have highlighted
the significant results by marking them with an asterisk
(*). We set the threshold for significance to a p-value
of 1%. If not stated otherwise, we compared the dif-
ferent methods to our proposed method, ”DL-Prior +
Sampling”. As we cannot assume Gaussian distributions
and as we analyze paired data, we used the Wilcoxon
signed-rank test.

3 Results

In this section, we present the evaluation of various
methodologies to predict tumor cell distribution. We
compare the following methods:

2github.com/jonasw247/a-learnable-prior-improves-inverse-
tumor-growth-modeling

• LMI, which is a DL method requiring atlas regis-
tration [14].

• DL, which is the in-patient-space DL approach with
a single network.

• DL Ensemble, which is the mean of an ensemble
of networks, finetuned for different Edema and CET
thresholds.

• Naive Sampling, which is the CMA-ES.

• DL-Prior + Sampling, which is the subsequent
evolutionary sampling incorporating a DL-Prior
based on the DL ensemble.

First, we qualitatively compare the proposed tumor con-
centrations, highlighted in Figure 2. Subsequently, we
delve into a detailed comparison of estimated parame-
ters. This is illustrated in Table 1, where deviations
from ground truth parameters are analyzed. The fol-
lowing evaluation of tumor concentrations, as detailed in
Figure 4 and Table 2, provides the most relevant metric
of different methodologies. Additionally, we compare the
runtime efficiency of these methods in Figure 5, evaluat-
ing the convergence times of each approach. Finally, we
evaluate our method with nine real patients (Figure 6,
Table 4).

3.1 Deep Learning Methods

In the first results part, we focus on the DL methods
described in Figure 1 b.

3.1.1 Qualitative Results

In Figure 2, a qualitative comparison of the different ap-
proaches is visualized. It is visible that the LMI tumor
prediction (b) does not align perfectly with the underly-
ing tissue. This discrepancy is caused by the registration
process from the atlas space into the patient space. Fur-
thermore, the LMI prediction overestimates the tumor
size. Our in-patient space method (c) slightly underes-
timates the tumor size, whereas the ensemble mean (d)
overestimates it.

3.1.2 Estimated Parameter Comparison

The parameter estimation is compared to the simulated
ground truth (Table 1). All parameter estimations are
Gaussian distributed, as expected3. Therefore, only the
mean deviation and the RMSD are reported.

3The distribution of origin-deviation is not Gaussian itself, but
it is composed of three Gaussian distributions (x,y,z).
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Ground Truth

e

Figure 2: Example tumors created by different models are compared. The ground truth tumor is shown in black
(a). Its outline is displayed in the other images as well. The atlas-based LMI approach (b), our DL-Prior (c), the
ensemble mean (d), and the combination of the DL-Prior and sampling (e) are compared.

Figure 3: Example simulations with parameters created
by the ensemble of the networks. The difference (cyan,
positive; pink, negative) to the ensemble mean (gray, Fig-
ure 2 d) is shown.

The estimation of the tumor origin is generally pre-
cise, with an average deviation of 3.7 mm to the ground
truth for the single network (3.6 mm for the ensemble
mean). This is twice as good as the LMI approach, with
a mean displacement of 8.7 mm. As a baseline, the edema
segmentation’s center of mass is included as a rough es-
timation. The CET center of mass mean displacement
is 12.7 mm away from the ground truth, demonstrating
the superiority of our method.

For µD, the time-independent diffusion parameter, a
three-fold improvement in root means square deviation
(RMSD) is found for DL over LMI. An average overes-
timation (16.5 mm) can be found for LMI, whereas our
approach underestimates µD slightly (-2.4 mm). Regard-
ing the unitless, time-independent growth parameter µρ,
a two-fold improvement (in RMSD) is found, whereas no
systematic deviation is detected.

The DL ensemble (orange), finetuned with different

edema and CET thresholds, performs similarly to our
original (DL, non-ensemble) model (red) on parameter
level.

3.1.3 Estimated Tumor Concentration

Due to the variations in the employed methodologies, ex-
clusive reliance on parameter estimation is inadequate. A
comprehensive evaluation of the resulting tumor concen-
tration is imperative, especially considering the intended
use for individualized radiotherapy. Therefore, we com-
pare the MAE, the MSE, and the Dice-score for different
threshold values.

The errors of the presented methods are shown in Ta-
ble 2. It is found that our proposed in-patient-space DL
ensemble and single networks (DL) perform significantly
better than the atlas-registration-based LMI.

Additionally, we compare the Dice-score between
thresholded ground truth and predicted tumor cell dis-
tributions for a clinically more relevant measure. Figure
4 shows a general decrease in the Dice-score for increas-
ing thresholds independent of the applied method. This
decrease is intrinsic to the Dice, which is biased towards
larger volumes.

Compared to the atlas-based DL approach (LMI),
there is a significant improvement in the Dice-score (Fig-
ure 4) for all of the shown methods. The single network
already reaches Dice-scores of about 90% in the clinically
relevant range of low tumor concentrations. This result
is slightly, but not significantly, outperformed by the en-
semble mean. Still, the ensemble provides an additional
variance utilized by the subsequent sampling approach
in the form of a prior.
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Table 1: The tumor model parameter mean displacement (MD) and the root-means-squared deviation (RMSD)
from the simulation ground truth are shown for different methods. MD is a criterion for the systematic deviation,
the shift between the means. RMSD is a measure of the spread of differences in distribution and, thus, determines
the quality of the fit. The distance from the edema and CET center of mass to the ground truth tumor origin is
included. A significant improvement in origin estimation of DL-Prior + sampling is found over the core center of
mass. For µD and µρ, subsequent sampling results in worse parameter results. This highlights that the problem is
ill-posed, meaning that finding a better fit to the observed tumor data can result in deviations or instability in the
estimated parameter values (see also Table 2)
Metric Parameter DL-Prior + Sampling DL DL Ensemble LMI Edema Center of Mass CET Center of Mass

Origin [mm] 3.51 ± 0.19 3.72 ± 0.20 3.57± 0.19 8.72 ± 0.27 * 15.87 ± 0.73 * 12.66 ± 0.56 *
MD µD [mm] -0.30± 0.08 -0.24± 0.06 -0.25± 0.06 1.66± 0.15 *

µρ 0.01 ± 0.02 -0.02 ± 0.02 0.05 ± 0.02 0.01 ± 0.06
Origin [mm] 4.38 ± 0.24 4.56 ± 0.24 4.37 ± 0.24 10.30 ± 0.31 * 18.64 ± 0.88 * 14.9± 0.96 *

RMSD µD [mm] 1.05 ± 0.10 0.84 ± 0.06 0.82 ± 0.06 2.56 ± 0.13 *
µρ 0.40 ± 0.06 0.33 ± 0.03 0.33 ± 0.03 0.74 ± 0.07

Table 2: The mean absolute (MAE) and mean squared
error (MSE) are compared between the predicted tumor
concentration and the ground truth for different algo-
rithms. A significant improvement of DL-Prior + sam-
pling over the second-best method is demonstrated.

MAE [10−4] MSE [10−5] Dice 0.5
DL-Prior + Sampling 16 ± 2 30 ± 7 0.93 ± 0.01

DL 24 ± 2 * 68 ± 10 * 0.88 ± 0.01 *
DL Ensemble 27 ± 3 * 72 ± 11 * 0.89 ± 0.01*

LMI 79 ±6 * 401± 40 * 0.75 ± 0.01 *

0.0 0.2 0.4 0.6 0.8
Tumor Concentration Threshold

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Di
ce

DL-Prior + Sampling
DL
DL Ensemble
LMI

Figure 4: Mean Dice-score results between prediction
and ground truth at different threshold concentrations.
The single network approach is compared to the ensemble
mean, LMI and the final combined version with CMA-ES
sampling + DL-Prior.

3.2 Subsequent Evolutionary Sampling

In the second part of the results, we focus on subsequent
sampling methods in combination with the DL-Prior, as
described in Figure 1 c.

3.2.1 Qualitative Results

The combined method of DL-Prior and CMA-ES sam-
pling (Figure 1 e) closely aligns with the ground truth
(Figure 1 a). These qualitative findings are validated
with quantitative results in the following sections.

3.2.2 Estimated Parameter Comparison

Similar results to DL and DL ensemble are found for
subsequent evolutionary sampling (Table 1). Limited in-
formation, introduced by stochastic thresholding of test
data, might lead to a performance threshold that is im-
possible to overcome theoretically. For the combined ver-
sion of sampling and prior, a slightly worse result is found
for µD and µρ, whereas the origin deviation is compara-
ble to the ensemble mean and significantly better than
the center of mass.

Even though parameter estimation does not improve
with the network ensemble and subsequent evolution-
ary sampling, the rationale for training the ensemble
is founded on the anticipation of achieving more sta-
ble predictions and providing variance estimation for the
DL-Prior to optimally initialize the subsequent sampling.
Further, the ill-posedness of the problem allows multiple
parameter combinations to result in similar tumors. The
following section examines this premise by comparing the
resulting tumor concentrations.
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3.2.3 Estimated Tumor Concentration

Subsequent sampling decreases the error to the ground
truth of the estimated tumor concentration as shown in
Table 2. This highlights the synergistic combination of
sampling with a DL-Prior. Further, the combined version
of CMA-ES sampling and DL-Prior achieves a signifi-
cantly better Dice-score than the DL-Prior alone over the
whole range of tumor concentrations (Figure 4). Within
the clinically relevant range, up to 40% tumor concen-
tration, a Dice overlap of 95% is found, further demon-
strating the superiority of combining DL with traditional
sampling.

3.2.4 Runtime comparison

In Figure 5, we compare the convergence times across
various methods for a subset of samples. Convergence
time for the evolutionary sampling method is defined as
the duration required to achieve 99% of the maximum
posterior probability. All calculations were performed
on a single CPU to maintain consistency in compari-
son. The convergence time associated with evolutionary
sampling using a DL-Prior is not directly comparable to
the inference time of DL alone, as the latter is predom-
inantly determined by the duration of a single forward
simulation run, while the duration of the DL inference is
negligible. When comparing against naive evolutionary
sampling, integrating a DL-Prior into our optimization
strategy demonstrates an 80% improvement in conver-
gence time.
To guarantee the integrity of our comparative analysis

regarding time, we have included performance metrics
for the specific subset of samples utilized in the tem-
poral comparison, as detailed in Table 3. Sampling en-
hanced with a DL-Prior demonstrates improved results in
terms of the Dice. However, the observed differences be-
tween these methods fall within the range of the method-
specific error margins. These observations suggest that
both approaches converge towards a similar minimum,
legitimizing the time comparison of Figure 5.

Table 3: Tumor concentration comparison between DL-
Prior with subsequent sampling and sampling without a
prior for a subset of patients. The Dice-score at different
thresholds (0.01, 0.1, 0.5) is given, and no substantial dif-
ference was found. Simulation time differences are shown
in Figure 5.

Metric DL-Prior + Sampling Naive Sampling
Dice at 0.01 0.94 ± 0.02 0.90 ± 0.02
Dice at 0.1 0.94 ± 0.03 0.92 ± 0.03
Dice at 0.5 0.93 ± 0.02 0.95 ± 0.03

a

b

Figure 5: (a) The mean likelihood over time for Naive
Sampling and DL-Prior + Sampling is shown. Shaded ar-
eas represent standard error over different patients. DL-
Prior + Sampling consistently yields higher likelihoods,
with a significant difference around the clinically relevant
2-hour mark, resulting in a likelihood of 0.85 ± 0.03,
while Naive Sampling only reached 0.41 ± 0.05. This
translates to a p-value of 1.2× 10−5 and an effect size of
2.0. (b) The mean convergence time of our DL-inference
(orange) and our combination of classical sampling with
DL-Prior (blue) is compared to sampling without prior
(purple, dashed). The paired t-test results in an effect
size of 1.0 and a p-value of 0.003
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4 Validation on Patient Data

To demonstrate that simulation advancements can trans-
late into clinical application, we tested our method on
nine patients. An example is shown in Figure 6. As
already found in Figure 2, the LMI simulation is not
limited to white and gray matter regions and, therefore,
grows into the CSF region due to registration inaccura-
cies. DL and DL ensemble already roughly estimate the
tumor location, while overestimating the volume, while
DL-Prior + sampling and naive sampling estimate the
segmentation well. The faster convergence becomes evi-
dent, considering the likelihood over time.

The quantitative ability of different methods to fit
real tumor segmentations is compared in Table 4. The
Dice-score is compared for CET and edema regions. It
is clearly visible that sampling improves the simulation
fit dramatically. The differences in mean Dice-score be-
tween naive sampling and prior included sampling are
small, but those results do not allow for statistical state-
ments. Therefore, we qualitatively analyze the results
case-specific in Figure 7. Regarding the runtime, a clear
advantage is seen for DL-Prior + sampling.

Table 4: For nine real patients, the Dice-score to the tu-
mor segmentation is compared for different algorithms,
thresholded at the cth = {0.25, 0.675}. Additionally, the
convergence time is reported for each method. It be-
comes apparent that naive sampling and sampling with
a prior reach similar Dice-score with significant time dif-
ferences in runtime.

Dice CET Dice Edema Runtime
DL-Prior + Sampling 0.68 ± 0.03 0.68 ± 0.02 (4.9 ± 1.2) h

Naive Sampling 0.70 ± 0.03 0.70 ± 0.02 (16.3 ± 1.7) h*
DL 0.39 ± 0.06* 0.44 ± 0.04* < 1 min*

DL Ensemble 0.44 ± 0.08* 0.47 ± 0.05* < 1 min*
LMI 0.34 ± 0.09* 0.55 ± 0.04* < 1 min*

Our method generally demonstrates strong perfor-
mance, as illustrated in Figure 5, which also shows sig-
nificant runtime improvements. However, there are oc-
casional instances where it encounters challenges. We
analyze various example scans in Figure 7 to assess the
types of tumors that our method accurately characterizes
and to identify specific scenarios where our approach falls
short, highlighting potential for future research. For the
small tumor (a), the likelihood plot indicates a strong ad-
vantage for including the DL-Prior convergence, which is
reached much faster than with naive sampling. The naive
sampling approaches the optimal prior region only after
exploring a larger space, while the diffusion and growth
rate stay close to the initial prior. For the larger tumor
(b), the prior estimate of the origin is close to the final

LMI DLTumor Segmentation

DL-Prior + Sampling Naive SamplingDL Ensemble

Figure 6: Real patient example with different inversion
strategies. The first image shows the ground truth tu-
mor segmentation before surgery. Light green shows
the edema region, while dark green represents the CET,
which is included in the following images as a black out-
line. The mean likelihood development over time com-
paring DL-Prior sampling to naive sampling is plotted.
The margin shows the minimum and maximum values
for each CMA-ES epoch, and the vertical lines depict
the time points of convergence. The likelihood for the
other methods is 0.39 for LMI, 0.23 for DL, and 0.13 for
DL ensemble.

estimate of the naive process. The prior sampling early
advantage diminishes over time, as the DL-Prior restricts
the diffusion rate to decrease further, which seems ben-
eficial for this tumor. However, for the example with
large mass effect (c), all methods struggle to fit the tu-
mor, which is expected, as the mass effect is not part of
the physical tumor model. Due to the insufficient tumor
model, the DL-Prior becomes obsolete, and no improve-
ment in likelihood is achieved. Neither method fits the
scans well in this case.

In summary, the introduction of a DL-Prior helps the
sampling strategy to converge faster to the optimal solu-
tion (Figure 5, 7 a). In some cases, the underlying tumor
model is clearly oversimplified (7 b), and in a few other
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cases, the prior can lead the sampling in the wrong di-
rection (7 c). The last problem could be overcome by
relaxing the prior constraint over time.

5 Discussion

We developed a novel technique combining DL with
CMA-ES sampling to estimate brain tumor density based
on magnetic resonance images, synergistically exploiting
the unique advantages of each approach.
A new DL-based method is introduced, operating

solely in patient image space compared to previous atlas-
based methods [14] by explicitly incorporating patient
anatomy into the network. With our method, a better
parameter estimation is found (Table 1). Additionally,
a better Dice overlap to the ground truth concentration
is observed (Figure 4). We assume that the abundance
of registration errors between the patient and the atlas
space causes this improvement.

No significant improvement in parameter estimation is
achieved by combining multiple fine-tuned networks into
an ensemble, whereas a significant improvement in Dice
overlap is found compared to the single network. This
can be attributed to the fact that the network ensemble
provides higher stability in prediction [33].

The primary strength of the proposed method lies in
the combination of DL and CMA-ES sampling. Within
the confines of our simulation, we observed that the com-
bined method provides a faster and more accurate rep-
resentation of tumor dynamics compared to individual
approaches (Figure 4).

In synthetic data, the combined optimization time was
improved by a factor of five compared to the optimiza-
tion without prior (Figure 5) while the performance is
increased to 95% Dice compared to 80% reached by a
previous DL approach [14] (Figure 4).

For real data, the advantage of sampling over pure DL
methods becomes apparent. The DL-Prior reduced the
convergence time by a factor of three with similar results.

Regarding brain tumor modeling in general, despite
being enclosed inside the skull, it is highly debatable
to which degree the complex biological system of brain
tumors can be modeled using deterministic models, to
which degree it results from chaotic behavior, and what
role intratumoral heterogeneity and evolution play. De-
spite this, modeling-based approaches open a unique per-
spective on the diffuse spread of tumor cells, which might
be sufficient for radiotherapy improvement.

Regarding the validity of our findings, the model’s
limitations are primarily centered around its simplic-
ity, which, while beneficial for understanding the pro-
posed combination of two modeling worlds, may not

accurately represent the underlying complex biological
systems. The model’s exclusion of necrosis and mass
effect factors is a significant limitation. Additionally,
the isotropic diffusion, particularly the distinction be-
tween white and gray matter, is somewhat arbitrary, po-
tentially oversimplifying these complex dynamics. Fur-
thermore, the main findings of the method are confined
within the narrow boundaries of these simulations, where
tumor behavior is strictly deterministic. Therefore, ex-
tended real data validation with advanced tumor models
is critical to validate our approach.

Regarding clinical implications, we demonstrate a
method to combine general, flexible sampling methods
with specialized DL. Changing the DL model, e.g., with
respect to higher tumor model complexity, can be time-
consuming since the network must be retrained. How-
ever, this should not be an issue in clinical use, as the
model will not be updated frequently.

6 Outlook

For an impact on radiotherapy planning, more sophis-
ticated tumor growth models are needed to explain the
data. The presented combination of DL and classical
sampling enables more complex models and models with
more parameters to be solved in clinically relevant time
frames. Such models are crucial for several well-studied
tumor properties like mass effect [34, 35], nutrient flow
[36], and necrosis [37]. The mass effect takes the tumor-
induced tissue shift into account, whereas nutrient flow
and necrosis formation affect the growth dynamic of the
tumor based on complex interaction with itself and sur-
rounding tissue.

It has been shown that tumors grow along fiber tracts,
explaining the so-called butterfly tumors [38, 39]. Ad-
ditional imaging modalities like diffusion tensor imaging
contain information about fiber tracts that can be in-
corporated in the tumor model [40–42]. Therefore, the
shown framework can be adapted and finetuned in mul-
tiple ways. For example, by incorporating multiple sim-
ulation time points into the CMA-ES selection process
or by relaxing the prior weight over time.

Finally, an evaluation of large-scale clinical data is
needed. As the availability of longitudinal data is highly
limited due to the rapid surgery after detection for most
patients, other validation metrics are considered. Pre-
diction of tumor recurrence represents one of the most
promising approaches. Besides the influence of treat-
ment procedures like surgery and radiotherapy, it was
shown that a certain degree of recurrence prediction is
possible [43–45]. Showing the ability to predict recur-
rence with a physically constrained model would provide
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LMI DLTumor Segmentation DL-Prior + Sampling Naive SamplingDL Ensemble

LMI DLTumor Segmentation DL-Prior + Sampling Naive SamplingDL Ensemblec

a

LMI DLTumor Segmentation DL-Prior + Sampling Naive SamplingDL Ensembleb

Figure 7: Evaluation of our method focusing on multiple scans of varying sizes and mass effects, particularly
analyzing challenging cases. The final tumor concentration predictions are shown in the first row. Below, the time
developments of µD, µρ, the likelihood, and the tumor origin are shown. The DL and ensemble results are shown
in red and orange. It becomes apparent that for small tumors without mass effect (a), the DL-Prior estimation
provides a solid estimate leading to faster convergence. Large mass effects (c) can result in a failure of the network,
constraining the sampling process into a suboptimal parameter set, which becomes apparent concerning the origin
in this case.

an excellent argument for proceeding with clinical trials
testing model-based radiotherapy planning.

7 Conclusion

This study introduces a novel framework that synergisti-
cally combines deep learning with evolutionary sampling
to enhance brain tumor modeling. By leveraging a DL

ensemble for initial parameter estimation and incorporat-
ing it into a high-precision evolution strategy, we achieve
a fivefold acceleration in convergence time and a Dice-
score of 95%. This approach significantly constrains the
sampling parameter space, offering a powerful and effi-
cient solution for individualized radiotherapy planning
with the potential to substantially improve patient out-
comes.
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