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Abstract
The use of incretin agonists for managing metabolic dysfunction-associated steatohepatitis (MASH) is currently experiencing 
considerable interest. However, whether these compounds have a direct action on MASH is still under debate. This study 
aims to investigate whether GLP-1R/GIPR agonists act directly in hepatocytes and hepatic stellate cells (HSCs). For this, 
human hepatocyte and HSCs lines, as well as primary human hepatocytes and HSCs treated with Liraglutide, Acyl-GIP or 
the GLP-1/GIP dual agonist (MAR709) were used. We show that the concentrations of each compound, which were effective 
in insulin release, did not induce discernible alterations in either hepatocytes or HSCs. In hepatocytes displaying elevated 
fatty acid content after the treatment with oleic acid and palmitic acid, none of the three compounds reduced lipid concentra-
tion. Similarly, in HSCs activated with transforming growth factor-β (TGFb), Liraglutide, Acyl-GIP and MAR709 failed to 
ameliorate the elevated expression of fibrotic markers. The three compounds were also ineffective in phosphorylating CREB, 
which mediates insulinotropic actions, in both hepatocytes and HSCs. These findings indicate that incretin agonists have no 
direct actions in human hepatocytes or hepatic stellate cells, suggesting that their beneficial effects in patients with MASH 
are likely mediated indirectly, potentially through improvements in body weight, insulin resistance and glycemic control.
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Introduction

With an estimated worldwide prevalence of at least 
25%, metabolic dysfunction-associated steatohepatitis 
(MASH) is a prominent cause of end-stage liver disease 
and a primary reason for liver transplantation globally. The 
increasing incidence of MASH correlates strongly with 
the rising rates of obesity and type 2 diabetes (T2D), plus 
the impacts of the environment, the microbiome, comor-
bidities, and genetic predisposition. Despite the extensive 
research and numerous clinical trials exploring potential 
drug candidates, only resmetirom has been approved by 
the FDA for treatment of MASH with advanced fibrosis 
[9]. Weight loss and improvement of insulin sensitivity are 
cornerstones of MASH therapy [39, 46], albeit doing so 
may not be sufficient by itself to attenuate MASH progres-
sion [11]. For instance, bariatric surgery has demonstrated 
significant long-term benefits for MASH patients, with 
notable improvements in histological MASH and fibro-
sis observed five years post-operation [24]. However, the 
invasive nature, associated risks, and high costs of bariat-
ric surgery limit its accessibility to the majority of MASH 
patients.

Glucagon-like peptide-1 (GLP-1) and glucose-depend-
ent insulinotropic polypeptide (GIP) are incretin hor-
mones secreted by the gastrointestinal tract in response to 
food intake. These hormones exert multiple physiologi-
cal effects, including the stimulation of insulin secretion, 
reduction of food intake, decelerations of gastric empty-
ing and enhancement of insulin sensitivity [1, 35, 50]. As 
several GLP-1 receptor agonists have been licensed for the 
treatment of diabetes and obesity, they were also evaluated 
in patients with MASH, and successful phase 2a and 2b 
studies have resulted in progression to phase 3 clinical 

trials [37]. Recent evidence suggests that dual agonism 
of GIP/GLP-1 may offer superior efficacy compared to 
placebo in resolving MASH [12, 26].

Despite the promising results regarding the efficacy 
of a unimolecular GLP-1/GIP dual agonist in improv-
ing liver function, there is an ongoing debate on whether 
GLP-1R and GIPR agonists have direct effects on MASH 
or whether they impact on pathophysiology through 
improvements in weight, insulin resistance and glycemic 
control. The controversy is due to some studies reporting 
the expression of GLP-1R in human hepatocytes [49] and 
suggesting a role in decreasing hepatic steatosis [16, 43], 
while others failed to detect hepatic expression of GLP-
1R [22, 23].

The aim of the current work is to investigate the effects 
of a long-acting acylated (Acyl) GLP-1 analog (Liraglu-
tide), Acyl-GIP and a GLP-1/GIP dual agonist MAR709 
directly in primary human hepatocytes and hepatic stellate 
cells (HSCs) as well as in cell lines for both cellular types. 
The Acyl-GIP analog used in this study was previously 
shown to decrease LDL cholesterol and atherosclerosis 
in LDLR KO mice [41], and to reduce body weight and 
food intake via central GIPR agonism [25, 34, 50], with-
out affecting energy and glucose metabolism in mice defi-
cient for Glp1r [34, 50]. Our findings indicate that neither 
individual nor dual agonism of GLP1R/GIPR exerts direct 
actions on hepatocytes or HSCs. Treatment with these 
compounds did not ameliorate fatty acid overload in pri-
mary human hepatocytes or a human hepatocyte cell line. 
Similarly, the activation of human HSCs, characterized 
by a transition from a quiescent state to a proliferative, 
migratory, and fibrogenic phenotype that is characteristic 
of liver fibrogenesis, remained unaffected by these drugs.

Results

Receptors of GLP‑1 and GIP are not expressed 
in the liver of people with MASLD/MASH

First, we checked the expression of both GLP1R and GIPR in 
a public dataset (GEO accessions GSE135251) consisting of 
bulk RNA sequencing results from samples of patients with 
MASH at various fibrosis stages and healthy liver controls. 
GLP1R expression is nearly zero (Supplementary Fig. 1A) 
and GIPR expression is very low (Supplementary Fig. 1B). 
In fact, genes with a read count of less than 10 are often 
considered artefacts or "noise" in downstream analysis. To 

Fig. 1   Effects of Liraglutide, Acyl-GIP and GIP/GLP-1 dual agonist 
in THLE2 human hepatocytes cells on lipid droplet accumulation. 
A Oil Red O staining in THLE2 cells treated with or without oleic 
acid (OA) 1 mM (12 h) and with Liraglutide (500 nM and 1000 nM, 
24  h) (n = 4). B Oil Red O staining in THLE2 cells treated with or 
without OA (1 mM, 12 h) and with Acyl-GIP (100 nM and 500 nM, 
24 h) (n = 4). C, D Oil Red O staining and Oil Red O quantification 
by spectrophotometry in THLE2 cells treated with or without OA 
(1  mM, 12  h) and with MAR709 (100  nM, 24  h) (n = 8). E, F Oil 
Red O staining and Oil Red O quantification by spectrophotometry 
in THLE2 cells treated with or without OA (0.25  mM) and palmi-
tate (PA) (0.125  mM) for 12  h and with MAR709 (100  nM, 24  h) 
(n = 6 and n = 8, respectively). Data are presented as mean ± SEM; 
**p < 0.01, ***p < 0.001, using a one-way ANOVA followed by a 
Bonferroni’s multiple comparison test

◂
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Fig. 2   Effects of Liraglutide, Acyl-GIP and GIP/GLP-1 dual agonist 
in primary human hepatocytes on lipid droplet accumulation. A Oil 
Red O staining in primary human hepatocytes treated with or with-
out oleic acid (OA) (0.25 mM) and Palmitate (PA) (0.125 mM, 12 h) 
and with Liraglutide (500  nM, 24  h) (n = 6). B Oil Red O staining 
in primary human hepatocytes treated with or without OA (0.25 mM) 

and PA (0.125 mM, 12 h) and with Acyl-GIP (100 nM, 24 h) (n = 6). 
C Oil Red O staining in human primary hepatocytes cells treated 
with or without OA (0.25 mM) and PA (0.125 mM, 12 h) and with 
MAR709 (100 nM, 24 h) (n = 8). Data are presented as mean ± SEM; 
***p < 0.001, using a one-way ANOVA followed by a Bonferroni’s 
multiple comparison test
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elucidate the expression of both receptors in specific hepatic 
cell populations, we next examined the Human Liver Cell 
Atlas (https://​www.​liver​cella​tlas.​org/​umap-​human​All.​php), 
and the result showed that GLP1R, and GIPR are hardly 
expressed in hepatic cells. GLP1R was only detected in 
17 cells (< 0.1%) in isolated endothelial, stromal, circu-
lating NK/NKT cells and in hepatocytes (Supplementary 
Fig. 1C). GIPR was only found in 0.8% of the total cells, 
being cholangiocytes and cDC2s the most positive clusters, 
while a more residual expression was visualized in stromal, 
hepatocytes, basophils, NK, B and cDC1 cells (Supple-
mentary Fig. 1D). Finally, we examined a public domain 
dataset to find evidence of GLP1R and GIPR expression in 
human liver. To this aim, we analyzed a recent single cell 
RNA-seq dataset including livers from healthy and cirrhotic 
individuals (GRO accessions: GSE185477, GSE174748 and 
GSE212046) [3, 10]. In this case, the GLP1R and GIPR 
genes were not present in the merge dataset, which contains 
only the intersection of the genes expressed in the 3 datasets 
after QC filtering. Looking at the expression of both genes 
in the individual datasets, we observed that in the case of 
GLP1R, there is only slight expression (0.15% of the total 
cells) in the GSE174748 dataset, while GIPR is present in 
1.42% of the total cells in GSE174748 and in 0.75% of the 
cells in GSE212046. In the case of GLP1R, the positive cells 
are almost exclusively hepatocytes (Supplementary Fig. 1E), 
whereas in the case of GIPR there is a consistently higher 
presence of positive cells in the hepatocytes, cholangiocytes, 
CD4 T cells and plasma cells clusters in both datasets (Sup-
plementary Fig. 1F, G).

GLP‑1 or GIP agonism does not alter lipid content 
in human hepatocytes

Despite the gene expression data suggest that incretin recep-
tors are not expressed at meaningful levels in liver cells, we 
wanted to ensure whether these agonists could work through 
signaling pathways other than the canonical receptor such 
as non-specific binding to other G-protein coupled recep-
tors. For this, we explored the possibility that the beneficial 
actions of GLP-1/GIP dual agonism in the liver of animals 
[28] and patients [12, 17] with MASH could be exerted 
through actions within two of the most relevant cell popula-
tions involved in the progression of liver fibrosis: hepato-
cytes and HSCs. Hepatocytes are the most abundant cells 
in the liver and the relationship between hepatocytes and 
MASH is central to the understanding of the disease [44], 
while activation of HSCs is the cellular source of matrix 

protein-secreting myofibroblasts, the major driver of liver 
fibrogenesis [18]. To note, we used LX2 human hepatic 
stellate cells and THLE2 human hepatocyte cells. In agree-
ment with human databases, the staining of GLP-1R in these 
human cell lines was undetectable compared to INS-1 insu-
linoma cell line, which showed clear staining (Supplemen-
tary Fig. 2A). The staining of GIPR was not assessed since 
we could not find a specific antibody. Moreover, the gene 
expression of GLP1 and GIPR was very low compared to 
subcutaneous white adipose tissue (Supplementary Fig. 2B, 
C).

To set up functional concentrations of each compound, 
we used INS-1 cells, which is a well-established model 
for insulin secretion regulation and pancreatic islet beta-
cell function studies. We treated them with Liraglutide 
(500 and 1000 nM), Acyl-GIP (100 and 500 nM) and 
MAR709 (50, 100 and 500 nM) [25]. At all the tested 
concentrations, the compounds stimulated insulin levels 
as detected by immunofluorescence and with an ELISA kit 
(Supplementary Fig. 3A–C). Therefore, we treated THLE2 
-a human hepatocyte cell line- with oleic acid (OA) or OA 
with Liraglutide and found that the OA-induced lipid con-
tent remained unaltered after the incubation with Liraglu-
tide at the two tested concentrations, as detected by oil red 
O staining (Fig. 1A). Similar results were obtained when 
the cells were treated with Acyl-GIP (Fig. 1B) or MAR709 
(Fig. 1C, D and Supplementary Fig. 4A), which did not 
modify the high lipid concentration caused by OA. We 
also tested a combination of OA with palmitic acid, which 
as expected augmented intracellular fat content, and again, 
MAR709 did not produce any effect on lipid content, as 
measured by both oil red O staining and spectrophotom-
etry (Fig. 1E, F and Supplementary Fig. 4B).

We next performed experiments in primary human 
hepatocytes. More specifically, primary hepatocytes were 
treated with the combination of OA with palmitic acid 
and then with Liraglutide (Fig. 2A), Acyl-GIP (Fig. 2B) 
or MAR709 (Fig. 2C). Neither the treatment with the indi-
vidual incretins nor the dual-agonist were able to reverse 
the increased fat content caused by the combination of OA 
with palmitic acid.

A steatosis mechanism highly pertinent to MASLD is 
de-novo lipogenesis, and MASLD is commonly accom-
panied by hyperglycemia and hyperinsulinemia. For 
instance, it has been demonstrated that GLP-1 decreases 
lipotoxicity in people with non-alcoholic steatohepatitis 
[4]. Therefore, we modeled this situation by performing 
an experiment using THLE2 cells under these conditions 

https://www.livercellatlas.org/umap-humanAll.php
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and measured enzymes involved in lipid metabolism. In a 
medium with high glucose/high insulin, the ratio of phos-
phorylated acetyl CoA carboxylase (ACC)/total ACC, 
remained unchanged (Fig. 3A). Moreover, the ratio of 
phosphorylated hormone sensitive lipase (pHSL)/total 
HSL was reduced, suggesting reduced lipid mobilization 
(Fig. 3A); and lipoprotein lipase (LPL), which stimulates 
lipid uptake, showed a tendency to be diminished but 
without significant differences (Fig. 3A). We subsequently 
incubated hepatocytes with high glucose/high insulin and 
treated them with MAR709. This treatment failed to mod-
ify the ratio of pACC/ACC, pHSL/HSL or protein levels of 
LPL (Fig. 3B), and consistently, the increased lipid content 
observed in cells with high glucose/high insulin was unaf-
fected by the dual-agonist (Fig. 3C, D). Furthermore, we 
conducted the same experiment with high glucose/high 
insulin in primary human hepatocytes and treated them 
with MAR709, and we did not observe changes in lipid 
accumulation as marked by Biotracker (Fig. 3E).

As it is well known that both GIP and GLP-1 require 
CREB to elicit different effects in beta-cells [20, 42], we 
also measured the ratio pCREB/CREB in hepatocytes 
treated with Liraglutide, Acyl-GIP or the GLP-1/GIP dual 
agonist. We found that pCREB/CREB remined unchanged 
after the treatment with the three compounds, except for 
the highest concentration of Acyl-GIP that induced the 
pCREB/CREB ratio (Fig.  4A–C). Overall, these data 
indicate that agonism of GLP-1R or GIPR, individually 
or in combination, does not affect fatty acids in hepat-
ocytes in response to OA and the combination of OA 
with palmitic acid or in conditions of hyperglycemia and 
hyperinsulinemia.

GLP‑1R or GIPR agonism does not blunt 
TGFβ‑induced HSCs activation

Next, we studied whether these compounds could play a 
role in the activation of HSCs. For this, we treated LX2 
-human hepatic stellate cell line- with transforming growth 
factor-b (TGFβ), a potent fibrogenic inducer, alone or in 
combination with Liraglutide, Acyl-GIP or the GLP-1/
GIP dual agonist. While TGFβ increased the expression 
of the pro-fibrotic markers COL1a1, COL1a2, ACTA2, 
and TIMP1, none of the concentrations of each compound 
could alleviate the fibrotic action of TGFβ (Fig. 5A–D).

We also assessed pCREB/CREB in HSCs treated with 
Liraglutide, Acyl-GIP or MAR709. While Liraglutide 
increased the pCREB/CREB ratio at high concentra-
tions (500 and 1000 nM) (Fig. 6A), neither Liraglutide 
at 100 nM nor the other compounds at any concentration 
elicited any effect (Fig. 6A–D).

Platelet-derived growth factors (PDGFs) are cysteine 
knot–type growth factors that play a key role in mediat-
ing the activation and profibrogenic transdifferentiation 
of HSCs into myofibroblasts during hepatic fibrosis [21]. 
For instance, HSC-specific PDGF receptor α loss results in 
early reduction of fibrosis and HSC migration in a model 
of hepatotoxic liver injury, given the increase in HSC and 
myofibroblast cell death [19]. Therefore, we also studied 
whether the incretins could ameliorate the effect of PDGF. 
For this, we incubated LX2 cells with PDGF and each 
compound, and subsequently measured the expression 
of the cell cycle regulating gene cyclin D1. While PDGF 
induced the expected increase in cyclin D1 mRNA expres-
sion, neither Liraglutide, Acyl-GIP or MAR709 produced 
any effect (Fig. 6E–G).

Moreover, to corroborate that Liraglutide, Acyl-GIP or 
MAR709 did not affect the migration of HSCs, we con-
ducted a wound healing assay. While TGFβ treatment 
showed a notable impact on wound closure, the incubation 
with Liraglutide (500 nM and 1000 nM, 24 h), Acyl-GIP 
(100 nM and 500 nM, 24 h), and MAR709 (100 nM and 
500 nM, 24 h) did not elicit any significant effect on the 
wound healing process (Fig. 7).

To further investigate the efficacy of the compounds, we 
extended our study to primary human HSCs. We decided to 
evaluate both the direct effects of MAR709 and its poten-
tial to modulate TGFβ-induced activation in these cells. 
First, we incubated primary human HSCs with MAR709 
alone for 24 h. Subsequent analysis revealed no statistically 
significant changes in the expression of typical activation 

Fig. 3   Effects of dual agonist MAR709 in THLE2 cells under high 
glucose and high insulin enviroment. A Protein levels of pACC, 
ACC, pHSL, HSL and LPL in THLE2 cells treated with KHH low 
glucose (6.25 mM, 24 h) and high glucose (25 mM, 24 h), high insu-
lin (100 nM, 24 h) (n = 5). B Protein levels of pACC, ACC, pHSL, 
HSL and LPL in THLE2 cells treated KHH high glucose (25  mM, 
24  h), high insulin (100  nM, 24  h) with and without dual ago-
nist MAR709 (100 nM, 24 h) (n = 5–6). C, D Oil red O staining in 
THLE2 cells treated with KHH low glucose (6.25  mM, 24  h) and 
KHH high glucose (25 mM, 24 h), high insulin (100 nM) with and 
without dual agonist MAR709 (100 nM, 24 h) and Oil Red O quan-
tification by spectrophotometry, respectively (n = 4–5). E Biotracker 
staining in human primary hepatocytes treated with low glucose 
(6.25 mM, 24 h) and KHH high glucose (25 mM, 24 h), high insu-
lin (100 nM, 24 h) with and without dual agonist MAR709 (100 nM, 
24  h). Data are presented as mean ± SEM; *p < 0.05, **p < 0.01, 
***p < 0.001, using one-way ANOVA followed by a Bonferroni’s 
multiple comparison test

◂
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markers (Supplementary Fig. 5A). Then, we stimulated the 
HSCs with TGFβ for 24 h to induce activation. As expected, 
this treatment resulted in a marked upregulation of fibrotic 
markers (Fig. 8A). Next, we treated primary human HSCs 
with TGFβ together with Liraglutide, Acyl-GIP or MAR709. 
However, despite a trend towards lower ACTA2 expression in 
cells treated with the dual agonist, none of these compounds 
showed capacity to reduce TGFβ-induced levels of fibrotic 
markers (Fig. 8B–D).

Together, these results indicate that agonism of GLP-1R 
or GIPR, individually or in combination, does not regulate 
HSCs activation.

Discussion

Among different clinical trials, both GLP-1RAs and GLP-1/
GIP dual agonists are showing positive effects in reducing 
liver fat content and reversion of MASH [12, 38]. However, 

the ongoing discussion revolves around whether GLP-1RAs 
exert direct standalone effects on MASH or if their impact 
on pathophysiology arises from improvements in weight, 
insulin resistance, and glycemic control [31, 47]. In preclini-
cal models, whereas several studies found low expression 
of Glp1r from mouse liver [43], others failed to detect Glp-
1r mRNA transcripts in liver and isolated hepatocytes [22, 
23]. The latter was further corroborated in diet-induced liver 
steatosis animal models [32]. In humans, the hepatic expres-
sion of GlP-1R has also been questioned, even though earlier 
studies have reported its presence in human hepatocytes, 
and suggested that GLP1R decreased hepatic steatosis by 
modulating the insulin signaling pathway [16] or activat-
ing lipid oxidation [43]. Indeed, these discrepancies might 
be explained by not using properly validated reagents for 
endogenous GLP-1R/GIPR detection [5]. Our search in dif-
ferent databases indicated that GLP1R could not be found 
in human liver cells, at least at meaningful expression lev-
els. The presence of GIPR in the liver is also controversial. 

Fig. 4   Effects of Liraglutide, Acyl GIP and GIP/GLP-1 dual ago-
nist in human hepatocytes cells on protein levels. A Protein levels 
of CREB and pCREB in THLE2 cells treated with Liraglutide (500 
and 1000 nM, 24 h) (n = 4). B Protein levels of CREB and pCREB in 
THLE2 cells treated with Acyl-GIP (100 and 500 nM, 24 h) (n = 4). 

C, D Protein levels of CREB and pCREB in THLE2 cells treated 
with MAR709 (50, 100 and 500  nM, 24  h) (n = 4). Protein levels 
were normalized using HSP90. Data are presented as mean ± SEM; 
*p < 0.05, using one-way ANOVA followed by a Bonferroni’s multi-
ple comparison test
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Fig. 5   Effects of Liraglutide, Acyl-GIP and GIP/GLP-1 dual agonist 
in human hepatic stellate cells (LX2) on fibrosis onset. A mRNA 
expression of fibrotic markers in LX2 treated with TGFβ (8  ng/
mL, 24 h) and with Liraglutide (500 nM, 12 h) (n = 5–6). B mRNA 
expression of fibrotic markers in LX2 treated with TGFβ (8  ng/ml, 
24  h) and with Acyl-GIP (100  nM, 12  h) (n = 5–6). C, D mRNA 
expression of fibrotic markers in LX2 treated with TGFβ (8  ng/ml, 

24  h) and with MAR709 (100  nM, 12  h) (n = 5–6) and with TGFβ 
(48  h) and with MAR709 (100  nM, 24  h) (n = 5–6), respectively. 
mRNA levels were normalized to the housekeeping gene HPRT. Data 
are presented as mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001, 
using a one-way ANOVA followed by a Bonferroni’s multiple com-
parison test
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While Gipr was not found in the liver of rodents [45], GIP 
enhances lipid deposition in liver and inhibition of GIP sig-
nal prevents this process [13, 30, 33]. Similarly to GLP1R, 
our search in different databases failed to detect a representa-
tive GIPR expression in liver cells.

Despite these receptors could not be detected in liver 
cells, numerous studies in mice and some clinical trials 
have reported that GLP-1RAs [2, 6] and the co-agonism 
of GLP-1R and GIPR [12] reduce liver fat content. How-
ever, there is the possibility that these agonists might work 
through an extremely small population of receptors that 
could be present in these cells at levels below the quanti-
tative limits of the transcript measurements. In addition, 
GLP-1R and GIPR belong to family B of the seven trans-
membrane G-protein coupled receptors that include recep-
tors for glucagon-like peptide-2 (GLP-2), GIP, vasoactive 
intestinal polypeptide (VIP), pituitary adenylate cyclase-
activating polypeptide (PACAP), GHRH, secretin, calci-
tonin, corticotropin releasing hormone (CRH) or PTH. The 
N-terminal extracellular domain of family B receptors is 
important for selective ligand interaction however, the 
extracellular loops and the extracellular end of the trans-
membrane segments can provide additional determinants 
of ligand selectivity [40]. These receptors are known to 
play different functions in liver metabolism. For example, 
VIP receptor 1 is found in the liver [7], and a high-fat 

diet increases its hepatic expression [36]. PACAP recep-
tors have been detected in the liver, and PACAP attenu-
ates hepatic lipid accumulation during overnutrition [27]. 
Additionally, PACAP-null mice developed microvascular 
fat accumulation in the liver, skeletal muscle, and heart, 
and displayed significantly higher serum triglycerides and 
cholesterol levels than littermates [15]. Secretin (Sct) is an 
important homeostatic regulator of pancreatic and liver 
secretory function, as it binds to its receptors on large 
cholangiocytes. Sct secretion increases biliary mass and 
liver fibrosis [14]. Calcitonin receptor agonists have dem-
onstrated robust body weight loss, improved glucose tol-
erance and a decreased deposition of fat in liver tissue 
beyond what is observed after a body weight loss. relevant 
metabolic effects in the context of MASLD [29].

Therefore, we assessed whether the agonists of GLP-1R 
and GIPR could act directly in the liver. More specifically, 
we tested two liver cell types that are strongly linked to the 
progression of MASH. For instance, hepatocytes are central 
to the understanding of the disease since these cells accu-
mulate fat in the early stages of the disease and suffer dif-
ferent processes such as inflammation, oxidative stress, and 
cellular damage. Moreover, activation of HSCs upon liver 
injury induces their transformation into myofibroblast-like 
cells, which are the main producers of extracellular matrix 
proteins and leads to the formation of fibrous scar tissue 
within the liver.

Our results indicate that individual or dual agonism of 
GLP-1R and GIPR could not prevent the high fatty acid con-
tent induced by OA- or the combination of OA together with 
palmitic acid in hepatocytes. The TGFβ-induced activation 
of HSCs remained also unaffected after the treatment with 
the three compounds. Importantly, the selected concentra-
tions for each compound have been selected according to 
previous reports [8, 48, 51] and we tested that they were effi-
cient in terms of insulin secretion from beta cells. Although 
we cannot discard the role of other cell types residing in the 
liver different than hepatocytes and HSCs, the low expres-
sion of GLP1R and GIPR in hepatic cell types (according 
to datasets), makes it unlikely that those cell types could be 
responsible for the entire beneficial effects of the GLP-1R/
GIPR dual-agonism in people with MASH.

Fig. 6   Effects of Liraglutide, Acyl-GIP and GIP/GLP-1 dual agonist 
in human hepatic stellate cells (LX2). A Protein levels of CREB and 
pCREB in LX2 cells treated with Liraglutide (100 nM, 500 nM and 
1000 nM, 12 h) (n = 5–7). B CREB and pCREB protein levels in LX2 
cells treated with Acyl-GIP (100 and 500 nM, 12 h) (n = 3–5). C Pro-
tein levels of CREB and pCREB in LX2 cells treated with MAR709 
(50  nM, 100  nM and 500  nM, 12  h) (n = 4–7). D Protein levels of 
CREB and pCREB in LX2 cells treated with GIP/GLP-1 dual ago-
nist (100 nM and 500 nM, 24 h) (n = 4–5). E mRNA expression of 
cyclin D1 in LX2 cells treated with PDGF (20 ng/ml) and Liraglutide 
(500 nM, 12 h) (n = 4–6). F mRNA expression of cyclin D1 in LX2 
cells treated with PDGF (20  ng/ml) and Acyl-GIP (100  nM, 12  h) 
(n = 4–6). G mRNA expression of cyclin D1 in LX2 cells treated 
with PDGF (20  ng/ml) and MAR709 (100  nM, 24  h) (n = 5–6). 
mRNA levels were normalized to the housekeeping gene HPRT, and 
protein levels were normalized using HSP90. Data are presented as 
mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001, using a one-way 
ANOVA followed by a Bonferroni’s multiple comparison test

◂
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Conclusions

Our findings demonstrate that individual or dual agonism of 
GLP-1R/GIPR has no direct actions in hepatocytes or HSCs, 
which might suggest that the effects of dual agonism on liver 
function are mediated by the reduction of weight loss and 
enhancement in insulin sensitivity.

Fig. 7   Effects of Liraglutide, Acyl-GIP and GIP/GLP-1 dual agonist 
on migration in human hepatic stellate cells (LX2). A Representa-
tive images of the scrape wound generated in the cell layer and then 
treated with Liraglutide (500 nM and 1000 nM, 24 h) (n = 10), Acyl-
GIP (100 nM and 500 nM, 24 h) (n = 10) or MAR709 (100 nM and 
500 nM, 24 h) (n = 8). TGFβ (8 ng/ml, 24 h) was used as a positive 
control. B Quantification of the % of wound closure after 24  h of 
treatment with each compound, Data are presented as mean ± SEM; 
*p < 0.05, **p < 0.01, ***p < 0.001, using a one-way ANOVA fol-
lowed by a Bonferroni’s multiple comparison test

◂

Fig. 8   Effects of Liraglutide, Acyl-GIP and GIP/GLP-1 dual agonist 
in primary human hepatic stellate cells on fibrosis onset. A mRNA 
expression of fibrotic markers in human primary hepatic stellate 
cells (pHSCs) treated with TGFβ (8 ng/ml, 24 h) (n = 4–5). B mRNA 
expression of fibrotic markers in pHSCs treated with TGFβ (8 ng/ml, 
24 h) and TGFβ with Liraglutide (500 nM, 12 h) (n = 5). C mRNA 

expression of fibrotic markers in pHSCs treated with TGFβ (8  ng/
ml, 24 h) with or without Acyl-GIP (100 nM, 12 h) (n = 5). D mRNA 
expression of fibrotic markers in pHSCs treated with TGFβ (8 ng/ml, 
24 h) and TGFβ with MAR709 (100 nM, 12 h) (n = 5). mRNA levels 
were normalized to the housekeeping gene HPRT. Data are presented 
as mean ± SEM; **p < 0.01, ***p < 0.001, using a t-test
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