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Abstract
Across the lifespan, diet and physical activity profiles substantially influence 
immunometabolic	health.	DNA	methylation,	as	a	tissue-	specific	marker	sensitive	to	
behavioral change, may mediate these effects through modulation of transcription 
factor	binding	and	subsequent	gene	expression.	Despite	this,	few	human	studies	have	
profiled	DNA	methylation	and	gene	expression	simultaneously	in	multiple	tissues	or	
examined	how	molecular	 levels	 react	and	 interact	 in	 response	 to	 lifestyle	changes.	
The	Growing	Old	Together	(GOTO)	study	is	a	13-	week	lifestyle	intervention	in	older	
adults,	 which	 imparted	 health	 benefits	 to	 participants.	 Here,	 we	 characterize	 the	
DNA	methylation	response	to	this	intervention	at	over	750	thousand	CpGs	in	muscle,	
adipose, and blood. Differentially methylated sites are enriched for active chromatin 
states, located close to relevant transcription factor binding sites, and associated with 
changing	expression	of	 insulin	sensitivity	genes	and	health	parameters.	 In	addition,	

https://doi.org/10.1111/acel.14431
www.wileyonlinelibrary.com/journal/acel
mailto:
https://orcid.org/0000-0002-9209-1266
https://orcid.org/0000-0001-5918-0534
http://creativecommons.org/licenses/by/4.0/
mailto:l.j.sinke@lacdr.leidenuniv.nl
http://crossmark.crossref.org/dialog/?doi=10.1111%2Facel.14431&domain=pdf&date_stamp=2024-12-01


2 of 19  |     SINKE et al.

1  |  INTRODUC TION

Changes in behavior across the life course, including adherence to 
healthy diets and physical activity, have major health impacts and 
in some cases are more effective at improving immunometabolic 
health	 than	 pharmacological	 interventions	 (Diabetes	 Prevention	
Program	(DPP)	Research	Group,	2002;	Knowler	et	al.,	2002;	Fiuza-	
Luces et al., 2013).	Regular	aerobic	exercise	alongside	caloric	restric-
tion promotes weight loss, insulin sensitivity, and glucose control in 
both	 younger	 and	 older	 populations	 (Eriksson	 et	 al.,	 1999;	 Kraus	
et al., 2019; Leitner et al., 2017; Zhang et al., 2020).	Epigenetic	reg-
ulation,	 such	 as	 through	 DNA	methylation	 (DNAm),	 may	 mediate	
a part of these health benefits by modulating the accessibility of 
regulatory sites for transcription factors (Gevaert et al., 2022; van 
der	Harst	et	al.,	2017;	Voisin	et	al.,	2015).	Physical	activity	has	been	
found	 to	attenuate	 the	age-	dependent	decreases	 in	DNAm	of	 the	
anti-	inflammatory	ASC gene in blood (Butts et al., 2018;	Nakajima	
et al., 2010),	and	Mendelian	randomization	has	directionally	 linked	
epigenetic signatures of a healthy diet with both type 2 diabetes and 
several	of	its	risk	factors	(Ma	et	al.,	2020).	These	findings	highlight	
the	potential	impact	of	DNAm	for	measurement	and	modification	of	
immunometabolic health in individuals of all ages.

In	comparison	to	findings	in	blood,	epigenetic	reprogramming	in	
metabolic tissues may have even greater functional consequences on 
health, but studies that collect tissues other than blood in sufficient 
sample	sizes	are	sparse	(King-	Himmelreich	et	al.,	2016).	Muscle	and	
adipose	tissues	are	known	to	secrete	a	plethora	of	proteins	and	sig-
nalling	molecules	into	the	circulation	and	engage	in	tissue-	to-	tissue	
crosstalk,	collectively	bringing	about	biological	changes	(Stanford	&	
Goodyear, 2018).	Although	several	experimental	studies	have	inves-
tigated the effects of lifestyle interventions on the methylome of 
muscle	(Barrès	et	al.,	2012; Jacobsen et al., 2012)	or	adipose	tissues	
(Fabre	et	al.,	2018; Gillberg et al., 2014; Rönn et al., 2013)	individu-
ally,	few	researchers	have	taken	a	multi-	tissue	approach	despite	this	
showing	promise	in	other-	omic	fields	(Mill	&	Heijmans,	2013; Moore 
et al., 2023;	Savikj	et	al.,	2022).	As	we	advance	our	understanding	of	
how epigenetics influences immunometabolic health, it is important 
to diversify our studies to incorporate relevant tissues, improve CpG 
coverage, and be inclusive of older adults who represent a growing 
proportion of our populations.

The	Growing	Old	Together	(GOTO)	study	is	a	13-	week	lifestyle	
intervention	in	164	older	adults	(mean	age	63 years),	which	expanded	

on	the	combined	intervention	arm	of	the	CALERIE	study	(Rickman	
et al., 2011).	Here,	we	followed	up	on	previous	work	showing	that	the	
GOTO	intervention	conferred	an	improvement	in	immunometabolic	
health	(Beekman	et	al.,	2020; van de Rest et al., 2016)	and	that	this	
benefit associates with changes in the blood (Gehrmann et al., 2021),	
adipose, and muscle transcriptomes (Bogaards et al., 2024)	and	the	
blood metabolome (Bogaards et al., 2022).	Using	data	and	bioma-
terial	from	before	and	after	the	GOTO	study,	we	profiled	DNAm	at	
over	 750	 thousand	CpG	 sites	 across	 the	 genome	 in	 skeletal	mus-
cle (n = 80),	subcutaneous	adipose	(n = 89),	and	fasted	blood	tissues	
(n = 98).	 By	 thoroughly	 characterizing	 the	 resulting	 loci,	we	 exam-
ined	how	methylomic	responses	to	the	GOTO	intervention	related	
to	genomic	 regulation	and	differential	gene	expression	 in	cis, with 
implications for immunometabolic health and epigenetic measures 
of chronological and biological age.

2  |  RESULTS

2.1  |  The GOTO intervention improves metabolic 
health, which is consistently observed in the 
tissue- dependent subsets of participants

The	Growing	Old	Together	 (GOTO)	 intervention	 (n = 164)	 imparted	
a range of metabolic health benefits, described in detail previously 
(Bogaards et al., 2022, 2024; Gehrmann et al., 2021; van de Rest 
et al., 2016).	Notably,	participants	saw	reductions	in	their	body	mass	
index	(BMI,	Δ = −1.1 kg/m	(Knowler	et	al.,	2002)),	waist	circumference	
(WC,	Δ = −4.3 cm),	and	total	body	fat	percentage	(Δ = −1.8%)	along-
side improvements in many other health measurements (Table 1, 
Table S1).	 Individuals	were	 selected	 for	DNA	methylation	 profiling	
based	on	availability	of	biological	material	and	gene	expression	data,	
and for a majority (n = 66,	64.7%),	we	were	able	to	collect	data	from	
all	three	tissues	both	before	and	after	the	GOTO	intervention.

For	each	tissue,	methylation	subsets	were	representative	of	the	
whole study population (muscle n = 80,	SAT	n = 89,	and	blood	n = 98),	
with the distribution of changes in 10 health parameters from in-
cluded	and	excluded	individuals	being	statistically	comparable	(non-
response analysis pFDR > 0.05,	Table S2).	 The	 sole	exception	was	a	
selection	bias	for	individuals	with	higher	HDL	sizes	in	the	muscle	tis-
sue subset (pFDR = 0.001)	urging	caution	in	making	inferences	about	
this	 trait	 in	 muscle.	 Each	 subset	 was	 analysed	 for	 genome-	wide	

measures of biological age are consistently reduced, with decreases in grimAge 
associated	with	observed	health	improvements.	Taken	together,	our	results	identify	
responsive	molecular	markers	and	demonstrate	their	potential	to	measure	progression	
and	finetune	treatment	of	age-	related	risks	and	diseases.

K E Y W O R D S
DNA	methylation,	epigenomics,	functional	genomics,	healthy	aging,	lifestyle,	metabolism,	
muscle
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DNAm	consequences	of	the	GOTO	intervention,	adjusting	for	age,	
sex,	 smoking	 status,	 technical	 covariates,	 and	 the	 first	 five	princi-
pal	components	(PCs;	see	Section	5).	In	the	skeletal	muscle	and	SAT	
samples, estimated bias and inflation of the test statistics was low 
(|μ| < 0.05,	λ < 1.1).	In	the	blood	samples,	there	was	some	deflation	in	
the test statistics (λ = 0.86)	alongside	minimal	bias	(μ = 0.03).	For	all	
tissues, corrected bias and inflation was under 0.01 and equal to 1.0 
respectively, indicating high quality data.

2.2  |  In skeletal muscle, the GOTO intervention 
influenced DNA methylation at 162 predominantly 
hypomethylated CpGs

To record the response of the muscle methylome, we profiled 
DNAm	 in	 skeletal	 muscle	 samples	 biopsied	 before	 and	 after	 the	
GOTO	intervention	(n = 160	samples,	80	individuals).	Since	cell-	type	
proportions can be an important driver of epigenetic signals, we 
predicted proportions of seven muscle nuclei types in our samples 
by	applying	 the	MuSiC	algorithm	 (Wang	et	al.,	2019)	 to	bulk	gene	
expression	data	(Bogaards	et	al.,	2024)	and	a	publicly	available	single	
nuclei	transcriptomic	reference	(Perez	et	al.,	2022).	At	baseline,	our	
samples	were	predicted	 to	primarily	be	composed	of	 slow	 (type	 I,	
mean	36.0%)	and	 fast	 (type	 II,	mean	26.7%)	skeletal	muscle	 fibres	
and	endothelial	cells	(mean	36.6%).	Following	the	intervention,	there	
was evidence that the proportion of predicted endothelial nuclei 
in the muscle tissue had increased (Δ = +3.3%,	 pFDR = 3.5 × 10

−3),	
in	 line	 with	 expected	 angiogenesis	 during	 the	 intervention	 (Kwak	
et al., 2018),	and	there	was	insufficient	evidence	for	changes	in	any	
of the other nuclei types (pFDR > 0.05;	Figure 1a, Table S3).

In	our	initial	model,	we	identified	354	CpGs	differentially	meth-
ylated following the intervention (pFDR <0.05).	However,	considering	
the finding that an increase in endothelial nuclei could have been 
driving a portion of this methylation signal, we further adjusted our 
model for predicted endothelial nuclei proportions. This led to the 
removal of 192 CpGs from our results, leaving 162 predominantly 
hypomethylated	 (87.7%)	 CpGs	 where	 DNAm	 changes	 were	 inde-
pendent of endothelial nuclei proportions (pFDR ≤ 0.05;	 Figure 1b, 
Table S4).	Henceforth,	we	refer	to	this	set	of	162	differentially	meth-
ylated	CpGs	in	skeletal	muscle,	which	represent	160	distinct	loci,	as	
the muscle CpGs.

2.3  |  CpGs influenced by the GOTO intervention 
associate with genes important for translocation of 
GLUT4 to the muscle cell membrane

To investigate the functional capacity of these muscle CpGs to 
influence	 nearby	 gene	 expression,	 we	 annotated	 their	 genomic	
positions to 15 chromatin states using Roadmap reference epig-
enomes	 (Kundaje	et	al.,	2015).	These	consist	of	eight	active	and	
seven	repressed	states	that	show	distinct	levels	of	DNA	methyla-
tion, accessibility, and regulator binding. By testing if the muscle TA
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CpGs were enriched for any particular genomic feature in the male 
(E107)	and	female	 (E108)	skeletal	muscle	 reference,	we	revealed	
that	 both	 enhancers	 (ORE107 = 5.83	 and	ORE108 = 7.15)	 and	 genic	
enhancers	 (ORE107 = 3.56	 and	 ORE108 = 4.34)	 were	 overrepre-
sented in our results (Figure 1c, Table S5).	 In	 addition,	 since	 the	
primary	mechanism	 that	 DNAm	 influences	 nearby	 expression	 is	
through	 transcription	 factor	 (TF)	binding	 (Kaluscha	et	 al.,	2022),	
we	also	tested	if	sequences	within	50 bp	of	the	muscle CpGs were 
enriched	for	known	TF	binding	sites	 (TFBS;	Figure 1d; Table S6).	
The	 tested	 regions	 were	 enriched	 for	 21	 TFBS	 including	 ones	
known	 to	 be	 both	 upregulated	 by	 exercise	 (JunB:	 34	 CpGs)	
(Trenerry et al., 2007)	and	critical	for	muscle	regeneration	(Fos:	35	
CpGs;	Fra1:	33	CpGs)	(Almada	et	al.,	2021; Galvagni et al., 2002; 
Puntschart	et	al.,	1998).	Taken	together,	these	functional	analyses	
support this set of 162 CpGs as located at cis regulatory regions 
specifically	in	skeletal	muscle	cells.

After establishing the muscle CpGs as plausibly regulatory, 
we identified nearby genes that were candidate targets for this 
regulation	using	a	two-	step	approach.	Firstly,	we	evaluated	if	the	
expression	of	genes	in	close	proximity	(±100 kb)	to	the	162	mus-
cle CpGs	 was	 altered	 by	 the	 intervention	 using	 gene	 expression	
data previously collected from this study (pFDR ≤ 0.05)	 (Bogaards	
et al., 2024).	 Secondly,	 we	 examined	 whether	 these	 gene	 ex-
pression	changes	were	associated	with	differential	DNAm	at	the	
nearby CpG (pFDR ≤ 0.05).	 There	 were	 454	 unique	 genes	 within	
100 kb	of	a	muscle CpG, and 71 of these were both differentially 
expressed	following	the	intervention	and	associated	with	DNAm	
in cis (Table S7).	 This	 set	 of	 71	 genes	 included	 several	 directly	
implicated in the translocation of GLUT4 transporters to the 
muscle cell membrane in response to insulin and contractile ac-
tivity (TMOD3, FDFT1, and PLEKHG4)	 (Ha	 &	 Lee,	 2020; Machin 
et al., 2021; Shrestha et al., 2021)	 alongside	 an	 adaptor	 protein	

which	regulates	insulin	signalling,	including	specifically	in	skeletal	
muscle cells (GRB10)	(Edick	et	al.,	2020;	Holt	et	al.,	2018).	Gene	set	
enrichment analysis of these 71 genes also revealed enrichment 
for Striated Muscle Cell Development (padj = 0.019)	after	adjust-
ing for multiple testing, further clarifying the overrepresentation 
of	muscle-	related	genes	in	this	set	(Table S8).

2.4  |  Altered blood- based health markers and grip 
strength associate with DNA methylation responses 
in skeletal muscle

Next,	we	investigated	whether	the	observed	methylomic	responses	
to	 the	 GOTO	 intervention	 in	 muscle	 associated	 with	 changes	 in	
blood-	based	measures	 of	metabolic	 health.	We	 performed	 paired	
analyses	of	the	associations	between	DNAm	effects	and	 improve-
ments in the 10 health parameters shown in Table 1, adjusting for 
multiple	testing	using	the	FDR	method	(Table S9, Figure 2a).	DNAm	
at	33	(20.4%)	of	the	muscle CpGs	associated	with	at	least	one	blood-	
based	trait,	with	eight	CpGs	being	linked	to	improvements	in	three	
or more traits (pFDR ≤ 0.05).

We	 also	 investigated	 how	 effects	 on	 the	muscle	methylome	
related	 to	 changes	 in	 biopsy-	specific	 muscle	 physiology,	 repre-
sented	by	number	of	PAX7-	positive	cells	and	myonuclei	per	fibre	
as	 obtained	 from	 previous	 immunohistochemistry	 work	 (n = 65,	
81%	 of	 the	 original	 muscle	 subset)	 (Raz	 et	 al.,	 2020),	 and	 over-
all muscle performance as measured by average dominant hand 
grip	strength.	PAX7	is	a	satellite	cell	marker	and,	as	the	number	of	
these per fibre increases, the regenerative potential of the mus-
cle	is	also	higher	(Azhar	et	al.,	2022).	Higher	numbers	of	myonu-
clei	per	fibre	suggests	larger	and	stronger	muscle	fibres	(Hansson	
et al., 2020; Snijders et al., 2021).	 Both	 immunohistochemistry	

F I G U R E  1 Characterization	of	the	
muscle	cell	count	and	DNA	methylation	
response	to	the	GOTO	intervention	
(a)	Intervention	effect	on	muscle	cell	
types predicted using MuSiC alongside 
baseline proportions (only cells >0.5%	
at	baseline	shown),	(b)	Volcano	plot	of	
the	intervention	effect	on	DNAm	at	over	
750 thousand CpGs, showing the 162 
significant CpGs in blue and nonsignificant 
in	grey,	(c)	Forest	plots	showing	the	OR	
and	95%	CI	for	enrichment	or	depletion	of	
11	ROADMAP	chromatin	states	in	the	162	
muscle	CpGs	using	the	E107	male	skeletal	
muscle reference epigenome (four states 
with	extremely	wide	CIs	not	shown),	and	
(d)	Bar	plot	of	the	top	10	enriched	TFBS	
motifs	in	sequences	within	50 bp	of	the	
162 muscle CpGs.
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    |  5 of 19SINKE et al.

measures	were	associated	with	DNAm	responses	at	over	70	dif-
ferentially	methylated	CpGs	(NMYO = 75,	NPAX7 = 84),	and	DNAm	at	
36 CpGs was associated with increasing average dominant hand 
grip strength (Table S10).	These	CpGs	largely	included	those	found	
to	be	associated	with	improvements	in	blood-	based	health	mark-
ers.	 In	 total,	 well	 over	 half	 of	 the	muscle CpGs (N = 103,	 61.7%)	
were associated with at least one of the investigated health traits, 
demonstrating the importance of this set of CpGs to observed 
health improvements.

More specifically, there were 16 CpGs that were differentially 
methylated, located in cis regulatory regions, and also associ-
ated	with	both	differential	gene	expression	and	observed	health	
benefits.	One	example	of	 these	CpGs	 that	highlights	 the	poten-
tial	 relevance	 of	 our	 findings	 in	 skeletal	 muscle	 is	 cg21005024, 
whose	 methylation	 decreased	 following	 the	 GOTO	 interven-
tion (β = −0.047).	 This	 CpG	 flanks	 an	 active	 transcription	 start	
site	 (TSS)	 of	 GRB10	 within	 50 bp	 of	 multiple	 enriched	 TFBS.	
Hypomethylation	 of	 cg21005024 is associated with decreasing 
GRB10	 expression	 (β = 0.083),	 waist	 circumference	 (β = 0.003),	
and total body fat percentage (β = 0.005)	following	the	 interven-
tion, as well as increases in both immunohistochemistry measures 

(βPAX7 = −0.220,	 βMYO = −0.011)	 and	 average	 dominant	 hand	 grip	
strength (β = −0.004;	Figure 2b).

2.5  |  In adipose tissue, the GOTO intervention 
influenced DNA methylation at 230 predominantly 
hypermethylated CpGs

Next,	we	investigated	DNAm	changes	in	the	subcutaneous	adipose	
tissue	 (SAT)	 following	 the	GOTO	 intervention	 (n = 89	 individuals,	
178	samples).	We	identified	230	differentially	methylated	CpGs	at	
201 distinct loci (pFDR ≤ 0.05),	henceforth	referred	to	as	the	adipose 
CpGs.	 To	 explore	whether	 this	methylation	 signal	was	 driven	 by	
changes	in	cellular	tissue	composition,	we	predicted	five	cell-	type	
proportions	from	bulk	gene	expression	data	using	the	CIBERSORTx	
algorithm	(Newman	et	al.,	2019)	and	a	publicly	available	signature	
matrix	(Glastonbury	et	al.,	2019)	 (Figure 3a, Table S11).	The	most	
prevalent	cells	at	baseline	were	adipocytes	(mean	72.4%)	followed	
by	 a	 large	 minority	 of	 microvascular	 endothelial	 cells	 (MVECs;	
mean	 24.1%).	However,	 since	 there	was	 insufficient	 evidence	 to	
support a change in any of these predicted cell types following 

F I G U R E  2 Multi-	omic	analyses	in	muscle	(a)	Clustered	heatmap	of	association	p	values	between	changes	in	DNAm	at	the	162	muscle	
CpGs	and	10	health	parameters	(BMI,	body	mass	index;	HDL,	high-	density	lipoprotein;	IL-	6,	inetrleukin-	6;	SBP,	systolic	blood	pressure;	WC,	
waist	circumference)	and	(b)	Dot	plots	showing	hypomethylation	of	DNAm	in	muscle	at	cg21005024,	positively	associated	with	decreases	in	
muscle GRB10	gene	expression	and	in	waist	circumference.
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6 of 19  |     SINKE et al.

the intervention (pFDR >0.05),	we	did	not	consider	further	adjust-
ment appropriate in our paired analyses investigating differential 
methylation in SAT.

2.6  |  CpGs influenced by the GOTO intervention 
associated with genes linked to lipid metabolism and 
insulin resistance

The	majority	(60.4%)	of	the	230	adipose CpGs were hypermethylated 
following the intervention (Figure 3b, Table S12)	and,	to	determine	
whether this represented a plausibly functional signal, we annotated 
their genomic positions to 15 chromatin states using the Roadmap 
adipose	 reference	 epigenome	 (E063)	 (Kundaje	 et	 al.,	2015).	 Since	
the adipose CpGs	were	enriched	for	several	repressive	marks,	such	
as	 polycomb	 repressed	 regions	 (OR = 7.76,	 pFDR = 7.35 × 10

−43)	
and	 depleted	 for	 regulatory	 states,	 like	 enhancers	 (OR = 0.38,	
pFDR = 1.10 × 10

−2)	 and	 active	 TSS	 (OR = 0.11,	 pFDR = 5.21 × 10
−4),	

there was insufficient evidence to suggest that the adipose CpGs as 
a whole were controlling nearby transcription (Figure 3c, Table S13).	
Despite	this,	sequences	within	50 bp	of	the	adipose CpGs were en-
riched	for	seven	known	TFBS	(Figure 3d, Table S14),	including	four	
GATA	family	TFBS	whose	associated	TFs	are	 involved	in	the	 initial	
stages of adipogenesis and obesity (Tong et al., 2000).

Although the adipose CpGs	did	not	likely	represent	a	regulatory	
set	overall,	we	explored	whether	they	were	individually	associated	

with	changes	in	expression	of	nearby	genes	(±100 kb).	We	first	in-
vestigated if genes in cis	were	differentially	expressed	(DEGs)	fol-
lowing	 the	GOTO	 intervention	 and,	 if	 so,	whether	 this	 change	 in	
gene	 expression	 was	 associated	 with	 altered	 methylation	 at	 the	
nearby	 CpG.	Within	 100 kb	 of	 the	 230	 adipose CpGs there were 
412	genes,	 and	 for	23	of	 these	 there	was	both	evidence	 that	ex-
pression changed as a result of the intervention (pFDR ≤ 0.05)	 and	
that	 this	change	was	associated	with	the	nearby	DNAm	response	
(pFDR ≤ 0.05,	Table S15).

These 23 genes included many relevant for adipogenesis, such 
as ZBTB7A (Laudes et al., 2004)	and	ALX1 (Breitfeld et al., 2020)	
and multiple developmental genes including EN1 and NR2F1 
(Singh et al., 2015).	Of	particular	interest	were	PITX2 and DMRT3, 
whose	 decreasing	 expressions	 were	 associated	 with	 responses	
at 3 and 16 unique adipose CpGs, respectively. PITX2 encodes a 
transcription	 factor	which	has	 been	 linked	 to	 changes	 in	 fasting	
glucose	following	weight	loss	(Macartney-	Coxson	et	al.,	2017)	and	
DMRT3,	which	associates	with	exercise	training	and	diet	 (Divoux	
et al., 2021;	 Nono	Nankam	 et	 al.,	 2020),	 has	 been	 proposed	 as	
a	marker	of	insulin	resistance	specifically	in	SAT	(Clemente-	Olivo	
et al., 2021).	To	further	investigate	the	importance	of	this	set	of	23	
genes,	we	performed	GSEA	using	clusterProfiler	(Table S16).	This	
revealed enrichment for 27 terms, including many relevant for lipid 
metabolism	and	transport	(e.g.,	Phospholipid	Efflux	pFDR = 0.019),	
as	well	as	transcription	 (e.g.,	Regulation	of	Transcription	by	RNA	
Polymerase	II	pFDR = 0.019).

F I G U R E  3 Characterization	of	the	adipose	cell	count	and	DNA	methylation	response	to	the	GOTO	intervention	(a)	Intervention	effect	
on	adipose	cell	types	predicted	using	CIBERSORTx	alongside	baseline	proportions	(only	cells	>0.5%	at	baseline	shown),	(b)	Volcano	plot	
of	the	intervention	effect	on	DNAm	at	over	750	thousand	CpGs,	showing	the	230	significant	CpGs	in	blue	and	nonsignificant	in	grey,	(c)	
Forest	plots	showing	the	OR	and	95%	CI	for	enrichment	or	depletion	of	11	ROADMAP	chromatin	states	in	the	230	adipose	CpGs	using	the	
E063	adipose	reference	epigenome	(four	states	with	extremely	wide	CIs	not	shown),	and	(d)	Bar	plot	of	the	seven	enriched	TFBS	motifs	in	
sequences	within	50 bp	of	the	230	adipose	CpGs.
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    |  7 of 19SINKE et al.

2.7  |  Reductions in total body fat percentage 
associate with DNA methylation responses in 
adipose tissue

To	link	the	epigenetic	findings	in	SAT	to	changes	in	health,	we	per-
formed	paired	analyses	of	the	association	between	DNAm	effects	at	
the adipose CpGs and changes in the 10 health parameters shown in 
Table 1 (Figure 4a, Table S17).	In	total,	almost	a	third	of	the	adipose 
CpGs (N = 75,	32.6%)	were	associated	with	improvements	in	at	least	
one tested trait, and responses at more than five unique CpGs were 
associated	with	total	body	fat	percentage	(39	CpGs),	adipocytokine	
levels	(adiponectin:	8	CpGs;	interleukin	6:	48	CpGs),	BMI	(12	CpGs),	
and	WC	(12	CpGs).	Of	these,	12	had	been	linked	with	nearby	gene	
expression	in	the	previous	analyses.	Indeed,	hypomethylation	at	two	
of the three DMRT3 associated adipose CpGs was associated with re-
ductions in total body fat percentage (Figure 4b).	Notably,	these	re-
sults	link	DNAm	effects	at	multiple	CpGs,	differential	expression	of	
relevant genes, and improvements in health, indicating the relevance 
of the identified loci for physiological and molecular responses to 
lifestyle changes in older adults.

2.8  |  Altered blood- based health parameters 
associate with the relatively small DNA methylation 
responses in blood

Next,	we	analysed	individuals	with	DNAm	data	from	paired	fasted	
blood samples (N = 98	 individuals,	196	samples)	and	 identified	441	
CpGs at distinct loci where methylation was altered following the in-
tervention (pFDR ≤ 0.05),	henceforth	referred	to	as	the	blood CpGs.	In	
cross-	sectional	blood-	based	EWAS,	cell-	type	proportions	are	a	well-	
known	 driver	 of	 association	 signals,	 and	 therefore	we	 extensively	
assessed	if	changes	in	cell	types	not	captured	by	the	individual-	level	
random	 effects	 existed	 in	 our	 data.	We	measured	 five	 cell	 types	
and	predicted	a	further	36	from	DNAm	and	gene	expression	data.	
Neutrophils	 and	 their	 progenitors	 accounted	 for	 the	 majority	 of	
cells	 (between	 47.7%	 and	 51.8%	 of	 cells	 at	 baseline),	 followed	 by	
lymphocytes	(36.9%	to	41.1%)	and	then	monocytes	(7.4%	to	10.1%).	
There was insufficient evidence to suggest any of the measured or 
predicted	nucleated	 cell-	types	 changed	 following	 the	 intervention	
at	either	the	5%	nominal	or	FDR	level,	indicating	that	cell-	type	pro-
portions were captured within the individual random effects in the 

F I G U R E  4 Multi-	omic	analyses	in	adipose	(a)	Clustered	heatmap	of	association	p	values	between	changes	in	DNAm	at	the	230	adipose	
CpGs	and	10	health	parameters	(BMI,	body	mass	index;	HDL,	high-	density	lipoprotein;	IL-	6,	inetrleukin-	6;	SBP,	systolic	blood	pressure;	WC,	
waist	circumference)	and	(b)	Dot	plots	showing	hypomethylation	of	DNAm	in	muscle	at	cg14434922,	positively	associated	with	decreases	in	
adipose DMRT3	gene	expression	and	in	total	body	fat	percentage.
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8 of 19  |     SINKE et al.

models and additional adjustment would be redundant (Figure 5a; 
Table S18).

In	contrast	to	the	findings	in	skeletal	muscle	and	SAT,	all	effect	
sizes	at	the	441	blood CpGs were small (β < 4%;	Figure 5b, Table S19),	
but this alone did not preclude them from functionality. To investigate 

the	likelihood	that	changes	in	DNAm	at	the	blood CpGs were regula-
tory,	we	performed	chromatin	state	and	TFBS	enrichment	analyses	
as before. The blood CpGs were enriched (Figure 2c, Table S20)	for	
regions	flanking	active	TSS	(OR:	1.50,	pFDR = 1.1 × 10

−2),	although	the	
size	 of	 this	 enrichment	was	 less	 convincing	 than	 seen	 in	 previous	

F I G U R E  5 Characterization	of	the	blood	cell	count	and	DNA	methylation	response	to	the	GOTO	intervention	(a)	Intervention	effect	on	
immune	cell	types	predicted	using	the	IDOL	algorithm	alongside	baseline	proportions	(only	cells	>0.5%	at	baseline	shown),	(b)	Volcano	plot	
of	the	intervention	effect	on	DNAm	at	over	750	thousand	CpGs,	showing	the	441	significant	CpGs	in	blue	and	nonsignificant	in	grey,	(c)	
Forest	plots	showing	the	OR	and	95%	CI	for	enrichment	or	depletion	of	15	ROADMAP	chromatin	states	in	the	441	blood	CpGs	using	the	
E062	PBMC	reference	epigenome,	(d)	Bar	plot	of	enriched	TFBS	motifs	in	sequences	within	50 bp	of	the	441	blood	CpGs,	and	(e)	Clustered	
heatmap of association p	values	between	changes	in	DNAm	at	the	441	blood	CpGs	and	10	health	parameters	(BMI,	body	mass	index;	HDL,	
high-	density	lipoprotein;	IL-	6,	inetrleukin-	6;	SBP,	systolic	blood	pressure;	WC,	waist	circumference).
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    |  9 of 19SINKE et al.

tissues.	 Sequences	within	 50 bp	 of	 the	 blood CpGs were enriched 
for	 three	 known	 TFBS	 (Figure 5d, Table S21),	 including	 NFE2L2	
and	MafK,	which	are	involved	in	oxidative	stress	responses	(Hwang	
et al., 2013;	Ryoo	&	Kwak,	2018).	When	we	investigated	genes	within	
100 kb	of	the	blood CpGs, there were only three genes both differ-
entially	expressed	and	linked	to	nearby	methylation	(Table S22),	but	
these included ones critical for inflammatory and immune responses 
such as LTBR and TNFRSF1A (McDermott, 2001;	Piao	et	al.,	2021).

To	explore	possible	distant	or	pleiotropic	effects	of	the	DNAm	
responses in blood on health, we performed paired analyses of 
the	association	between	DNAm	at	 the	blood CpGs and changes in 
the 10 health parameters shown in Table 1 (Figure 5e, Table S23).	
Differential	methylation	 at	66	 (15.0%)	blood CpGs associated with 
changes	in	nine	traits,	namely	total	body	fat	percentage	(24	CpGs),	
BMI	(27	CpGs),	WC	(32	CpGs),	HDL	cholesterol	levels	(2	CpGs)	and	
size	 (18	 CpGs),	 interleukin-	6	 (3	 CpGs),	 leptin	 (19	 CpGs),	 systolic	
blood	pressure	(2	CpGs),	and	fasting	insulin	(5	CpGs),	showing	that	
despite	the	size	of	these	smaller	methylomic	responses	and	the	lack	
of support for cis	regulatory	effects,	they	were	still	able	to	mark	im-
provements in immunometabolic health.

2.9  |  Chronological age predictors have increased 
in accuracy but still capture more than just the 
passage of time

In	the	field	of	epigenetics	and	aging,	several	algorithms	have	been	
developed	 to	 predict	 chronological	 age	 (cAge)	 from	 DNAm	 data.	
Here,	 we	 predicted	 cAge	 changes	 following	 the	 GOTO	 interven-
tion	by	applying	three	such	clocks	(namely	Horvath,	 (2013),	Zhang	
et al. (2019),	and	Bernabeu	et	al.	(2023))	to	DNAm	from	pre-		and	post-	
intervention blood samples. Correlations between actual age, which 
increased	by	13 weeks	across	this	longitudinal	study,	and	predicted	

cAge were then calculated (Table S24).	 Predictions	 of	 cAge	 using	
Horvath,	one	of	the	original	epigenetic	clocks,	were	moderately	cor-
related with actual age (r = 0.730,	 pFDR = 7.6 × 10

−34),	 showing	 that	
from its inception these algorithms have performed well.

Looking	at	more	recent	clocks,	we	observe	increases	in	accuracy	
over time with the Zhang (r = 0.888,	pFDR = 2.7 × 10

−67)	and	Bernabeu	
(r = 0.923,	 pFDR = 8.6 × 10

−82)	 cAge	 predictions	 both	 correlating	 re-
markably	strongly	with	actual	age	at	visit	date.	When	looking	at	the	
predicted	change	 in	chronological	 age	over	 this	13 week	 interven-
tion,	however,	all	three	clocks	calculated	a	reduction	in	age	ranging	
from	a	22.3 week	decrease	over	the	intervention	(pFDR = 0.200)	re-
turned	by	the	original	Horvath	clock	(Horvath,	2013),	to	a	12.5 week	
reduction (pFDR = 0.155)	 predicted	 by	 the	 most	 recent	 Bernabeu	
cAge algorithm (Bernabeu et al., 2023).	Overall,	these	results	show	
that chronological age predictors are well correlated with and in-
creasingly in line with actual age but considering that participants 
increased	 in	age	by	13 weeks	over	the	 intervention,	they	still	have	
considerable residuals in some cases. This could indicate that such 
clocks	are	swayed	by	other	 factors,	 such	as	health	 improvements,	
and still need some refinement in order to capture only the passage 
of time.

2.10  |  GrimAge captures the effect of the GOTO 
intervention and associates with metabolic and 
physiological health improvements

Recent	biological	age	(bAge)	predictors	are	commonly	trained	on	a	
combination	of	age,	health	parameters,	and	mortality	data.	We	inves-
tigated	four	such	recent	bAge	clocks	(namely	Bernabeu	et	al.	(2023),	
grimAge (Lu et al., 2019),	phenoAge	(Levine	et	al.,	2018),	and	MEAT	
(Voisin	et	al.,	2020)).	The	first	three	of	these	algorithms	were	trained	
using	blood	samples,	and	therefore	we	predicted	bAge	using	DNAm	

F I G U R E  6 Characterization	of	the	GOTO	effects	on	measures	of	epigenetic	age	(a)	Predicted	decreases	in	biological	age	following	GOTO	
for	four	modern	algorithms,	and	(b)	scatter	plot	showing	the	associations	between	grimAge	and	observed	BMI	both	before	(red)	and	after	
(blue)	the	GOTO	intervention.
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from	blood	taken	before	and	after	the	GOTO	intervention.	In	con-
trast,	MEAT	 is	 a	muscle-	specific	 algorithm	 and	 so	was	 applied	 to	
DNAm	data	from	the	GOTO	muscle	samples	instead.	Using	a	paired	
analysis,	we	estimated	the	effect	of	the	GOTO	intervention	on	bio-
logical	age,	adjusting	for	age,	sex,	and	technical	covariates	(Figure 6; 
Table S25).

For	 all	 four	 clocks,	 bAge	was	 predicted	 to	 decrease	 following	
the	 GOTO	 intervention	 with	 estimates	 ranging	 from	 a	 16.1 week	
decrease as predicted by Bernabeu (pFDR = 2.4 × 10

−1)	 in	blood	to	a	
57.9 week	decrease	as	predicted	by	the	muscle-	specific	MEAT	algo-
rithm (pFDR = 2.1 × 10

−2),	with	 the	majority	 of	 predicted	 reductions	
here being greater than estimated cAge decreases. After adjusting 
for multiple testing, however, we found that only the decreases in 
bAge predicted by grimAge (β = −34.6 weeks,	pFDR = 1.4 × 10

−4)	and	
MEAT (β = −57.9 weeks,	pFDR = 2.1 × 10

−2)	remained	significant	at	the	
5%	level.	As	we	saw	the	strongest	methylation	response	to	GOTO	in	
muscle,	these	results	support	the	development	of	tissue-	specific	al-
gorithms for the prediction of biological age. Additionally, since grim-
Age	was	reported	to	be	more	strongly	associated	with	frailty	risk	as	
compared	with	other	epigenetic	age	measures	 (Lieke	et	al.,	2022),	
this finding highlights differences in developed algorithms and sug-
gests a specific relevance of grimAge to aging populations.

To	explore	whether	the	observed	reductions	in	bAge	following	
the	 GOTO	 intervention	 were	 associated	 with	 immunometabolic	
health improvements, we performed paired analyses to calculate 
the	association	between	changes	 in	clocks	with	significant	effects	
and 10 metabolic health parameters shown in Table 1 (Table S26).	
The directions of the observed associations supported grimAge and 
MEAT	reductions	as	being	 linked	to	 increases	 in	metabolic	health,	
with both measures having a negative association with adiponectin 
and	positive	associations	with	BMI,	WC,	leptin,	IL-	6,	and	total	body	
fat percentage. Seven of the 10 tested traits significantly associated 
with	grimAge	at	the	5%	level	after	adjusting	for	multiple	testing,	in-
cluding	 BMI	 (β = 0.30,	pFDR = 5.2 × 10

−3),	 total	 body	 fat	 percentage	
(β = 0.10,	pFDR = 3.9 × 10

−2),	and	leptin	(β = 0.08,	pFDR = 1.3 × 10
−2),	all	

of	which	were	also	associated	with	genome-	wide	DNAm	responses	
to	GOTO	in	blood	(Figure 6b).	Taken	together,	these	results	demon-
strate	 the	 power	 of	 blood	 based	 DNAm	markers	 and	 bAge	 algo-
rithms to capture health improvements, in particular in older adults.

3  |  DISCUSSION

3.1  |  Tissue- specific DNA methylation responses 
potentially relate to key regulatory changes in muscle, 
adipose, and blood

Following	a	13-	week	combined	lifestyle	intervention,	we	observed	
DNA	methylation	(DNAm)	responses	at	162	CpGs	in	skeletal	muscle,	
230	CpGs	 in	 subcutaneous	adipose	 tissue	 (SAT),	 and	441	CpGs	 in	
fasted	 blood.	 We	 characterized	 the	 regulatory	 nature	 of	 these	
CpGs, finding enrichments for active chromatin states and relevant 
transcription	 factor	 binding	 sites	 (TFBS).	 Then,	 by	 using	 gene	

expression	 and	 health	 parameter	 data	 from	 the	 same	 individuals,	
we	 performed	 multi-	omic	 analyses	 and	 uncovered	 relationships	
between	 epigenetic	 changes	 and	 metabolic	 health,	 with	 links	 to	
insulin sensitivity, regeneration potential, and body composition.

On	a	molecular	level,	the	directions	of	DNAm	responses	were	as	
expected	from	previously	observed	effects	of	this	 intervention	on	
gene	expression	(Bogaards	et	al.,	2024).	In	skeletal	muscle,	the	CpGs	
predominantly	decreased	in	methylation,	aligning	both	with	known	
effects of increasing physical activity on the muscle methylome 
(Plaza-	Diaz	et	al.,	2022)	and	the	genome-	wide	increases	in	gene	ex-
pression	previously	seen	in	muscle	from	this	study.	In	contrast,	there	
were increases in methylation at CpGs identified in SAT, tying in with 
global	decreases	in	gene	expression	observed	in	this	tissue	after	the	
GOTO	intervention.	Lastly,	in	blood,	the	signal	was	small	in	both	the	
methylome and the transcriptome (Bogaards et al., 2024; Gehrmann 
et al., 2021),	possibly	due	to	molecular	changes	in	blood	lying	further	
from functionally responding tissues.

In	addition	to	linking	our	findings	to	previous	genome-	wide	tran-
scriptome	investigations,	we	also	utilized	the	available	RNA-	Seq	data	
to investigate cis	 associations	between	differential	gene	expression	
and	DNAm	in	the	three	tissues.	In	skeletal	muscle,	expression	changes	
at	71	genes	in	close	proximity	to	identified	CpGs	were	associated	with	
differential	methylation.	In	contrast,	23	genes	were	linked	to	DNAm	
changes in SAT and there were only three genes with evidence of 
clear cis	associations	between	genes	and	CpGs	in	blood.	Looking	at	
the function of the genes identified in muscle and SAT, many were 
responsible	for	insulin	sensitivity	and	glucose	uptake	in	relevant	cell	
types. This included GRB10	 (Edick	 et	 al.,	 2020;	 Holt	 et	 al.,	 2018),	
which directly binds to and regulates insulin receptors, PLEKHG4	(Ha	
&	Lee,	2020; Machin et al., 2021; Shrestha et al., 2021),	which	is	im-
plicated in the translocation of GLUT4 transporters to the membrane 
in	skeletal	muscle	cells,	and	DMRT3	(Pujar	et	al.,	2019),	an	insulin	sen-
sitivity	marker	specific	to	subcutaneous	adipose	tissues.	In	particular,	
the	lowered	expression	of	GRB10	observed	here	is	known	to	enhance	
insulin	induced	PI3K/Akt	signalling	and	glucose	uptake	in	myotubes	
and	increase	muscle	size	(Holt	et	al.,	2012, 2018;	Mokbel	et	al.,	2014; 
Plaza-	Diaz	 et	 al.,	2022).	 Observed	 changes	 in	 fasting	 insulin	 levels	
were	associated	with	DNAm	responses	 in	all	 three	 tissues	 (muscle:	
2	CpGs,	SAT:	3	CpGs;	blood:	5	CpGs),	although	there	was	no	over-
lap	with	the	relevant	genes.	As	caloric	restriction	and	exercise	have	
established effects on insulin resistance (Dubé et al., 2011; Johnson 
et al., 2016)	with	consequences	for	immunometabolic	health	(Roberts	
et al., 2013),	 this	 finding	 illustrates	potential	molecular	mechanisms	
behind these effects.

We	also	observed	enrichments	for	regulatory	chromatin	states,	
such	 as	 enhancers	 and	 regions	 flanking	 active	 transcription	 start	
sites	(TSS),	in	our	muscle	and	blood	CpGs,	and	relevant	TFBS	were	
enriched	in	sequences	within	50 bp	of	the	differentially	methylated	
CpGs	in	all	three	tissues.	In	muscle,	we	identified	Fos	and	JunB	bind-
ing	sites	in	proximity	of	our	CpGs,	and	these	transcription	factors	are	
known	to	be	important	for	muscle	health	(Puntschart	et	al.,	1998),	
and	 in	SAT,	 there	was	enrichment	 for	binding	 sites	of	 four	known	
GATA	 family	 TFs,	 established	 as	 involved	 in	 the	 initial	 stages	 of	
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adipogenesis and obesity (Tong et al., 2000).	Since	the	main	mech-
anism	 by	 which	 DNAm	 is	 thought	 to	 elicit	 functional	 effects	 on	
nearby	 expression	 is	 by	modulating	 the	 accessibility	 of	 regulatory	
sites	for	transcription	factors	(Kaluscha	et	al.,	2022),	these	findings	
strengthen	 the	 plausibility	 that	 DNAm	 changes	 at	 the	 identified	
CpGs	are	regulatory	and	may	have	functional	effects	on	expression	
of the associated nearby DEGs.

3.2  |  Differential methylation is linked to metabolic 
health improvements and decreases in estimated 
epigenetic age

Since	 the	 Growing	 Old	 Together	 (GOTO)	 intervention	 imparted	
a	 metabolic	 health	 benefit	 on	 the	 study	 population	 (Beekman	
et al., 2020; van de Rest et al., 2016),	we	 investigated	how	 these	
improvements	associated	with	identified	changes	in	DNAm.	At	over	
half of the muscle CpGs and almost a third of the adipose CpGs, 
DNAm	 responses	 were	 associated	 with	 changes	 in	 one	 or	 more	
health	 parameters.	 For	 example,	 DNAm	 in	 all	 three	 tissues	 was	
associated with not only fasting insulin but also a total of eight of the 
10 tested traits, including total body fat percentage (blood: 24 CpGs, 
adipose:	39	CpGs,	muscle:	13	CpGs),	leptin	(blood:	19	CpGs,	adipose:	
4	CpGs,	muscle:	14	CpGs),	 and	BMI	 (blood:	27	CpGs,	 adipose:	12	
CpGs,	muscle:	7	CpGs).	Favorable	changes	in	body	composition,	as	
seen	 in	 the	GOTO	 intervention	 study,	 are	 associated	with	 a	more	
balanced	secretion	of	adipokines	from	adipose	tissue,	reducing	the	
risk	 of	 insulin	 resistance	 and	 type	2	diabetes.	We	 show	here	 that	
DNAm	responses	in	relevant	tissues	are	associated	with	these	key	
measures	of	immunometabolic	risk.

Previous	investigations	into	the	health	benefits	imparted	by	this	
intervention	have	demonstrated	sex-	specific	effects,	possibly	due	to	
both	physiological	differences	between	sexes	and	the	personalized	
nature	of	the	protocol.	For	example,	sex-	specific	differences	in	mus-
cle	performance	are	partly	attributed	to	larger	proportions	of	type-	I	
fibres	 in	 women	 and	 characterized	 by	 slow	 oxidative	 metabolism	
(Haizlip	et	al.,	2015).	When	looking	at	the	transcriptomic	responses	
to	 the	GOTO	 intervention,	 previous	 studies	were	 able	 to	 identify	
these	sex-	specific	responses	(Bogaards	et	al.,	2024).	However,	in	this	
study where we investigated effects at over 750 thousand CpGs 
across the genome, we had insufficient power to consider the two 
sexes	separately.	 In	the	future,	 it	will	be	 important	to	uncover	the	
molecular mechanisms behind observed disparities between men 
and women by performing larger intervention studies that are ade-
quately	powered	for	stratification	by	sex.

Lastly,	we	calculated	chronological	(cAge)	and	biological	(bAge)	
age in our blood and muscle samples using available methylome al-
gorithms (Bernabeu et al., 2023;	Horvath,	2013; Levine et al., 2018; 
Lu et al., 2019;	Voisin	et	al.,	2020; Zhang et al., 2019).	These	demon-
strated the impressive precision and accuracy of current epigenetic 
clocks	for	calendar	age	prediction,	with	estimates	from	the	most	re-
cent model (Bernabeu et al., 2023)	being	highly	correlated	with	actual	
age (r = 0.923).	However,	all	tested	cAge	algorithms	still	supported	a	

decrease in age following the intervention despite participants actu-
ally	aging	13 weeks,	making	it	plausible	that	these	estimates	are	still	
influenced by other factors such as metabolic health improvements.

To investigate this further, we evaluated if four predictors of bi-
ological	age	(bAge)	could	capture	the	health	benefits	of	the	GOTO	
intervention. All four algorithms predicted a decrease in bAge follow-
ing	the	GOTO	intervention	ranging	from	−16.1 weeks	to	−57.9 weeks,	
larger	than	the	previous	cAge	estimates.	The	muscle-	specific	MEAT	
algorithm represented the greatest effect and it, alongside reduc-
tions in bAge as predicted by grimAge, were still significant at the 
5%	 level	 after	 adjusting	 for	multiple	 testing.	 GrimAge,	 in	 particu-
lar, was associated with observed improvements in seven of the 10 
tested	 health	 parameters,	 including	 BMI,	 circulating	 leptin	 levels,	
and total body fat percentage, with all three also associated with 
DNAm	 in	all	 tissues.	GrimAge	and	 the	metabolomics-	based	 score,	
MetaboHealth,	have	both	previously	been	 reported	as	good	mea-
sures of health improvements (Bogaards et al., 2024),	frailty	(Lieke	
et al., 2022),	and	mortality	(Deelen	et	al.,	2019; Lu et al., 2019).	The	
beneficial shifts observed here in these scores indicate potentially 
global	 and	 long-	term	 health	 improvements	 from	 the	 GOTO	 inter-
vention protocol, and also highlight the possible value of molecular 
algorithms such as these for monitoring effects of interventions in 
general, and specifically in older populations.

It	 is	 important	to	note	that	this	 intervention	was	carried	out	 in	
healthy,	older	adults.	For	older	 individuals,	 for	example	with	a	risk	
of sarcopenia, this mild intervention may not be the most optimal 
regime.	Other	 interventions,	 including	ProMuscle	 and	 a	 novel	 up-
coming	study	VOILA,	are	better	focused	on	improving	muscle	mass	
and strength by including resistance training, increased protein in-
take,	or	protein	supplementation	(Leenders	et	al.,	2013; van Dongen 
et al., 2017).	Clinical	study	populations	of	older	individuals	may	also	
require	other	response	markers	due	to	the	higher	levels	of	acute	in-
flammatory	proteins	in	population-	based	elderly.

Overall,	our	in-	depth	study	of	the	methylome,	transcriptome,	and	
phenome	exemplifies,	the	biological	changes	that	older	adults	expe-
rience	following	a	mild	intervention,	such	as	GOTO.	The	absence	of	
any overlap between the identified sets of CpGs demonstrates the 
strong	tissue-	specificity	of	these	findings	and	this,	coupled	with	the	
distinct directional differences (hypermethylation in adipose tissue 
and	hypomethylation	 in	muscle),	highlights	 the	 importance	of	using	
a	multi-	tissue	approach	when	investigating	the	influence	of	environ-
mental	changes	on	the	methylome.	As	DNAm	is	only	one	type	of	epi-
genetic	modification,	more	in-	depth	interpretation	of	these	findings	
may	 require	examination	of	other	 layers	of	 the	epigenome,	such	as	
chromatin	accessibility	using	ATAC-	seq,	and	larger	sample	sizes	would	
enable	explorations	of	how	DNAm	in	various	tissues	influences	meta-
bolic	health	and	examination	of	any	sex-	specific	responses.

4  |  CONCLUSIONS

This	 study	 established	 the	 methylomic	 responses	 to	 a	 13-	week	
lifestyle intervention in older adults in both circulating cells and 
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relevant	 metabolic	 tissues.	 We	 identified	 differential	 methyla-
tion	 at	 CpGs	 located	 in	 regulatory	 regions	 in	 close	 proximity	 to	
transcription factor binding sites. Effects at these CpGs were as-
sociated	with	differential	expression	of	genes	important	for	insu-
lin sensitivity, including GRB10 in muscle and DMRT3 in adipose, 
and	with	 imparted	metabolic	health	benefits.	 Identified	 loci	may	
be	 investigated	 to	 monitor	 immunometabolic	 risk,	 progression	
of	 disease,	 and	 response	 to	 treatment	 in	 the	 future.	 The	GOTO	
response was also represented by four epigenomic biological age 
markers	and	GrimAge,	in	particular,	was	able	to	capture	the	health	
improvements imparted to the participants. This study further 
demonstrates the importance of collecting biologically relevant 
tissues in intervention studies and highlights how modifiable mo-
lecular	markers	 can	 capture	health	 improvements	 following	 life-
style changes in older people.

5  |  METHODS

5.1  |  Recruitment

The	GOTO	study	is	nested	within	the	Leiden	Longevity	Study	(LLS),	
a	longitudinal	cohort	of	long-	lived	Caucasian	siblings,	their	offspring,	
and	 partners	 thereof.	 The	GOTO	 study	 (van	 de	 Rest	 et	 al.,	2016)	
recruited	healthy,	older	(mean	age	63 years)	adults	(N = 164)	between	
June	2012	and	April	2013.	Individuals	between	46	and	75 years	with	
a	BMI	between	23	and	35 kg/m	(Knowler	et	al.,	2002)	from	the	pool	
of offspring and partners were eligible for the study.

Exclusion	criteria	included	being	on	diabetic	medication	(for	type	
1	or	2	diabetes),	having	high	fasting	blood	glucose	levels	(≥7.0 mmol/L),	
recent	weight	 change	 (≥3 kg	 in	 the	 past	 6 months),	 engagement	 in	
heavy or intensive physical activity (top sport or physically heavy 
work),	 any	disease	or	 condition	 that	 seriously	 affects	body	weight	
and/or	body	composition,	recent	immobilization	(for	over	1 week	in	
the	last	3 months),	psychiatric	or	behavioral	problems,	use	of	thyroid	
medication or immunosuppressive drugs, concurrent participation in 
any other intervention studies or weight management programs, or 
not being registered with a general practitioner.

5.2  |  Intervention protocol

Expanding	 on	 the	 combined	 lifestyle	 arm	 of	 the	 CALERIE	 study	
(Kraus	et	al.,	2019),	GOTO	participants	reduced	their	energy	balance	
by	25%	 for	13 weeks,	 through	a	 combination	of	 caloric	 restriction	
and	increased	physical	activity.	Informed	by	baseline	questionnaires	
on	 energy	 intake	 (150-	item	 FFQ)	 and	 expenditure	 (IPAQ-	SF),	
dieticians and physiotherapists prescribed individual guidelines 
to	achieve	 the	 intervention.	Participants	were	advised	 to	 increase	
physical activity in a way that was compatible with their lifestyle, 
and dietary guidelines aimed to follow the “Dutch Guidelines for a 
Healthy	Diet”	(2006).

To	 check	 and	 stimulate	 adherence	 to	 the	 intervention,	 there	
was	 weekly	 contact	 with	 both	 the	 dietician	 and	 physiotherapist.	
Participants	 recorded	 their	 adherence	 to	 the	 intervention	 plan	 in	
a	diary,	 and	 two	24-	h	 recalls	were	performed	during	 the	 first	 and	
last month of the intervention. Days of the recall were unannounced 
to	the	participants	and	randomized	to	obtain	a	good	distribution	of	
weekdays	and	weekends.	During	monthly	home	visits,	body	weight	
and composition were measured.

5.3  |  Sample collection

Both	prior	and	post	intervention,	blood	(95 mL)	was	drawn	by	ve-
nepuncture	between	8	and	9 a.m.	in	the	hospital	after	at	least	10 h	
of	 fasting.	 The	 participants	 consumed	 a	 SLM	 Nutridrink	 TM72	
representative	 of	 a	 typical	 Northern	 European	 meal	 (300 kcal:	
35%	energy	 from	 fat,	50%	 from	carbohydrate,	 and	16%	protein)	
between	 9 a.m.	 and	 noon	 on	 the	 same	 day.	 Following	 this,	 skel-
etal	muscle	biopsies	were	taken	from	the	musculus	vastus	lateralis	
and	a	subcutaneous	adipose	biopsy	was	taken	from	the	abdomen.	
Biopsies	were	taken	under	local	anaesthetic	and	immediately	fro-
zen	in	liquid	nitrogen	before	being	stored	at	−80°C	for	subsequent	
analysis.

Of	 the	164	 individuals	 in	 the	GOTO	study,	we	profiled	DNAm	
from 104 individuals at both timepoints for multiple tissues (sam-
ple n = 562).	 All	 562	 samples	 represented	 distinct	 samples	 from	 a	
unique timepoint, individual, and tissue combination and not dupli-
cates.	DNA	 from	whole	blood	 (n = 206)	was	 isolated	using	QIAmp	
DNA	Mini	kits	(QIAgen)	and	using	NucleoMag	Tissue	kits	(Machery	
Nagel)	 for	adipose	 (n = 188)	 and	muscle	 (n = 168)	 samples.	Pairs	of	
samples were shuffled and plated so that they would be adjacent on 
the	same	array.	These	pairs	were	randomized	across	eight	96-	well	
plates	by	tissue,	age,	and	sex	using	Omixer	(Sinke	et	al.,	2021),	and	
sent	 for	profiling	using	the	 Infinium	MethylationEPIC	Kit	 (Illumina,	
Helmholtz	Institute).

5.4  |  DNA methylation data

Following	receipt	of	the	methylation	data	as.	IDAT	files,	preprocessing	
and	 QC	 followed	 the	 DNAmArray	 pipeline	 (Sinke	 et	 al.,	 2019).	
MethylAid	 (van	 Iterson	 et	 al.,	 2014)	 plots	 were	 used	 to	 visualize	
and	check	sample	quality.	Due	to	technical	issues	with	three	of	the	
Infinium	MethylationEPIC	arrays,	25	samples	failed	quality	control	
checks.	 These	 alongside	 their	 pairs	 (n = 30)	 were	 removed	 from	
the data, and 24 samples with sufficient remaining material were 
reprofiled	and	subsequently	passed	QC	checks.

After combining data from both waves, tissue identity was con-
firmed	with	PCA	plots,	 and	 four	outlying	 samples	 and	 their	 pairs	
(n = 8)	were	 removed.	 Sample	mismatches	were	 detected	 and	 re-
solved	 by	 comparing	 genotype	 data	 with	 DNAm-	derived	 geno-
types	using	omicsPrint	(van	Iterson	et	al.,	2018).	Individuals	(n = 6)	

 14749726, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/acel.14431, W

iley O
nline L

ibrary on [06/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  13 of 19SINKE et al.

identified	 from	 diary	 data	 as	 non-	compliers	 were	 also	 removed.	
Lastly,	 methylation-	predicted	 sex	 was	 used	 as	 a	 final	 check	 of	
sample identity.

The	 data	 underwent	 functional	 normalization	 using	 four	 PCs,	
followed by removal of outlying or unreliable values, such as those 
based	 on	 low	 bead	 number	 (0.20%),	 intensity	 (0.08%),	 that	 were	
not	distinguishable	from	background	noise	(0.37%),	or	more	than	3	
IQR	from	the	nearest	quartile	per	CpG	(0.28%).	Any	probes	or	sam-
ples	with	 over	 5%	missingness	were	 removed	 (0.00%	 of	 samples,	
1.06%	 of	 CpGs).	 Additionally,	 cross-	reactive,	 polymorphic	 (Zhou	
et al., 2016),	 poorly	 reproducible	 (Sugden	et	 al.,	2020),	 blacklisted	
(Amemiya et al., 2019),	and	sex	chromosomal	probes	were	removed.	
The	resulting	dataset	contained	DNA	methylation	data	at	755,777	
CpGs	from	534	samples	(196	blood,	178	adipose,	and	160	muscle)	
from	102	individuals	(mean	age	63 years).	For	66	individuals	(64.7%),	
we had complete data from all three tissues at both timepoints.

5.5  |  RNA sequencing data

RNA	 isolation	 and	 sequencing	 has	 been	 described	 previously	
(Bogaards et al., 2024).	In	short,	libraries	were	prepared	using	Illumina	
TruSeq	version	2	library	preparation	kits.	Data	processing	was	per-
formed	 using	 the	 in-	house	 BIOPET	Gentrap	 pipeline	 (Zhernakova	
et al., 2017).	 The	 following	 steps	 were	 part	 of	 the	 data	 process-
ing:	 low	quality	trimming	using	sickle	version	12.00.	Cutadapt	ver-
sion 1.1 was used to perform the adapter clipping. The reads were 
aligned	 to	GRCh37	while	masking	 for	SNPs	common	 in	 the	Dutch	
population	(GoNL	45	MAF > 0.01),	using	STAR	version	2.3.0e.	Picard	
version 2.4.1. was used to perform sam to bam conversion and sort-
ing.	Read	quantification	was	performed	using	htseq-	count	version	
0.6.1.p1 using Ensembl gene annotations version 86 for gene defini-
tions.	In	blood,	the	sequencing	resulted	in	an	average	of	37.2	million	
reads	per	sample,	97%	(±0.4%)	of	which	were	mapped.	In	SAT,	sam-
ples	had	an	average	of	11.4	million	sequenced	reads,	95%	(±1.6%)	of	
which	were	mapped.	In	muscle,	an	average	of	36.9	million	sequence	
reads	per	sample,	98%	(±0.4%)	of	which	were	mapped.

5.6  |  Cell type proportion data

In	muscle,	we	predicted	cell	types	using	the	MuSiC	algorithm	(Wang	
et al., 2019),	which	has	been	shown	to	outperform	other	methods	in	its	
characterization	of	cellular	heterogeneity	in	complex	tissues	when	pro-
vided with an appropriate reference (Avila Cobos et al., 2020).	Using	
publicly	available	single	nuclei	expression	data,	we	predicted	muscle	
cell-	type	proportions	from	bulk	expression	data	 (Perez	et	al.,	2022).	
For	fat	samples,	no	suitable	scRNA	reference	atlas	was	available,	and	
therefore	we	 utilized	 CIBERSORTx	 (Newman	 et	 al.,	2019),	 the	 suc-
cessor	of	one	of	the	highest	performing	bulk	deconvolution	methods	
(Avila Cobos et al., 2020).	We	input	a	publicly	available	signature	ma-
trix	which	has	previously	predicted	cell	types	from	bulk	adipose	tissue	
RNAseq	in	TwinsUK	and	GTEx	(Glastonbury	et	al.,	2019).

In	fasted	blood,	the	percentages	of	cell	types	(neutrophils,	lym-
phocytes,	 monocytes,	 eosinophils,	 and	 basophils)	 were	 measured	
with a blood differential test. To investigate the intervention effect 
on specific subtypes, we also predicted blood cell type propor-
tions.	Using	 an	 scRNA	 reference	 atlas	 (Xie	 et	 al.,	2020)	 combined	
with	 whole	 blood	 expression	 data,	 the	 MuSiC	 algorithm	 (Wang	
et al., 2019)	 estimated	 32	 different	 cell	 types.	 Furthermore,	 the	
IDOL	(Koestler	et	al.,	2016)	and	IDOL	extended	(Salas	et	al.,	2022)	
algorithms	predicted	six	and	12	subtypes	from	the	DNA	methylation	
data, respectively.

5.7  |  Statistical analysis

To	evaluate	the	effect	of	the	intervention	on	DNAm,	we	performed	
a	mixed	model	test	with	a	fixed	effect	for	the	intervention	(time)	and	
an	individual	random	effect	(ID),	adjusting	for	confounders	(age,	sex,	
and	smoking),	technical	covariates	(plate	and	array	row),	and	the	first	
five	PCs.	The	Bioconductor	package	bacon	(van	Iterson	et	al.,	2017)	
was used to inspect and adjust for bias and inflation of the test statis-
tics, using default priors (α = 1.28,	β = 0.36).	For	all	models,	estimates	
of inflation and bias were used to identify any anomalies in the data. 
p	values	were	adjusted	for	multiple	testing	using	the	FDR	method.

In	muscle,	we	additionally	adjusted	for	predicted	endothelial	nu-
clei proportions. These models were fit for each tissue individually 
using	the	limma	package	in	R.

5.8  |  CpG interpretation

5.8.1  |  Differentially	methylated	regions

To assess the number of distinct genomic loci in our results, dif-
ferentially	 methylated	 regions	 (DMRs)	 were	 identified	 using	 the	
DMRfinder	 algorithm	 (Slieker	 et	 al.,	 2013)	 as	 implemented	 in	 the	
DNAmArray	workflow	(Sinke	et	al.,	2019).	DMRs	were	defined	as	re-
gions	with	at	least	three	differentially	methylated	positions	(DMPs)	
with	an	inter-	CpG	distance	of	less	than	1 kb,	allowing	a	maximum	of	
three	non-	DMPs	across	 a	DMR.	Next,	 the	number	of	distinct	 loci	
were	calculated	as	the	total	number	of	DMPs	minus	the	number	of	
DMPs	in	DMRs	plus	the	number	of	DMRs	called	by	DMRfinder.

5.8.2  |  Chromatin	state	enrichment	analyses

FDR	significant	CpGs	were	annotated	to	chromatin	state	using	an	
appropriate Roadmap reference epigenome (E062 for blood, E063 

DNAmijk∼ timeij+agei+sexi+smokei+plate1ij+ … +plate10ij

+arrayRowij+PC1ij+ … +PC5ij+
(
1| IDi

)

DNAmijk∼ timeij+agei+sexi+smokei+plate1ij+ … +plate10ij

+arrayRowij+endoij+PC1ij+ … +PC5ij+
(
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for	 adipose,	 E107	 and	 E108	 for	 muscle)	 (Kundaje	 et	 al.,	 2015).	
Logistic regressions models were fit using the glm function in R to 
calculate	and	test	odds	ratios	(ORs)	of	significance	for	each	of	the	
15	chromatin	 states.	Nominal	p values were adjusted for multiple 
testing	using	FDR	and	enrichments	or	depletions	were	identified	at	
the	5%	significance	threshold.

5.8.3  |  Transcription	factor-	binding	site	(TFBS)	
enrichment analyses

A	50 bp	window	around	 significant	CpGs	was	 scanned	using	 find-
MotifsGenome.pl.	from	HOMER	(Heinz	et	al.,	2010)	for	enrichment	
of	known	motifs	compared	to	background	noise.	ENCODE	TFBS	an-
notation	for	171	TFs	and	CpGs	on	the	EPIC	array	(Zhou	et	al.,	2016)	
was	used	to	further	investigate	the	size	of	binding	sites	and	distance	
from	CpG	to	summit.	TFs	associated	with	enriched	TFBS	were	ex-
amined	 for	 links	with	pathways	specific	 to	 the	 tissue	 in	which	 the	
enrichment was found.

5.8.4  |  Gene	annotation

Genomic	 locations	 of	 human	 transcripts,	 exons,	 CDS,	 and	 genes	
were	 imported	 from	 the	 Ensembl	 database	 using	 makeTxDbFro-
mEnsembl	 from	 the	 GenomicFeatures	 Bioconductor	 package	
(Lawrence et al., 2013).	These	were	used	 to	annotate	each	of	our	
CpGs to their nearest gene, in addition to saving a list of all genes 
which	lay	within	100 kb	of	each	CpG.

5.8.5  |  Differential	gene	expression

Gene	expression	changes	were	analysed	as	described	previously	but	
with	both	sexes	combined	in	a	single	analysis	(Bogaards	et	al.,	2024).	
Briefly,	 the	 differential	 gene	 expression	 analysis	 was	 performed	
using	 linear	 mixed	 models	 in	 limma	 in	 combination	 with	 VOOM	
normalization.	p values were adjusted for multiple testing using the 
FDR	method	and	assessed	at	the	5%	significance	level.	Models	were	
adjusted	for	technical	factors,	age,	and	sex	as	fixed	effects	and	in-
cluded	a	random	effect	for	ID.

5.8.6  |  eQTM	analyses

Using	GOTO	gene	expression	data	from	each	tissue,	we	investigated	
the	association	between	DNA	methylation	at	our	set	of	CpGs	and	ex-
pression	levels	of	genes	within	100 kb.	Expression	data	was	filtered	
for	genes	with	low	levels	of	expression	and	the	edgeR	Bioconductor	
package	was	 used	 to	 calculate	 log2	 CPM	 (Robinson	 et	 al.,	 2010).	
Lastly,	RIN	transformations	were	applied	for	each	gene	as	described	
previously (Bonder et al., 2017).

Nominal	p	values	were	adjusted	for	multiple	testing	using	FDR	
and	assessed	at	the	5%	significance	level.

5.8.7  |  Gene	set	enrichment	analyses	(GSEA)

Using	a	list	of	genes	whose	expression	changed	with	nearby	meth-
ylation as input, we performed GSEA. The associated gene names 
were	then	used	as	input	for	GSEA.	We	used	recent	(updated	in	the	
last	5 years)	databases	relating	to	human	health	and	disease	down-
loaded	 from	 Enrichr	 (GO	 Biological	 Process	 2023,	 KEGG	 Human	
2021,	and	Reactome	2022).	These	were	imported	into	R	and	analy-
ses	were	performed	using	the	enrichr	function	from	clusterProfiler	
(Xu	et	al.,	2024).	p values were adjusted for multiple testing using 
FDR	and	significance	was	assessed	at	the	5%	level.

5.8.8  |  Health	parameter	associations

We	 investigated	 the	 association	 between	 DNA	 methylation	 at	
our	 set	of	CpGs	and	10	health	parameters,	 adjusting	 for	 age,	 sex,	
smoking,	technical	covariates,	and	with	a	random	effect	for	ID.

For	each	trait,	nominal	p values were adjusted for multiple test-
ing	using	FDR	and	assessed	at	the	5%	significance	level.

5.9  |  Epigenetic clock algorithms

5.9.1  |  Chronological	age	prediction

Using	the	dnaMethyAge	package	(Wang	et	al.,	2023),	we	predicted	
Horvath,	 (2013),	 Zhang	 et	 al.	 (2019),	 and	 Bernabeu	 et	 al.	 (2023)	
chronological	 ages	 (cAges).	 Correlations	 between	 these	 estimates	
and	actual	age	was	assessed	using	a	Pearson's	correlation	test	with	
the	 cor.test	 function	 in	 R.	 Coefficients,	 95%	 confidence	 intervals,	
and p values were saved and further adjusted for multiple testing 
using	FDR.	Significance	was	assessed	at	the	5%	level.

5.9.2  |  Biological	age	predictions

Using	the	dnaMethyAge	package	(Wang	et	al.,	2023),	we	predicted	
LevineM2018	 (PhenoAge)	 (Levine	et	 al.,	2018).	 grimAge	was	es-
timated	 using	 the	 coefficients,	 R,	 and	 Python	 scripts	 provided	
by the researchers who developed this measure (Lu et al., 2019).	

DNAmij∼geneij+agei+sexi+smokei+plate1ij+ … +plate10ij

+arrayRowij+ flowcellij+
(
1| IDi

)

DNAmij∼ traitij+agei+sexi+smokei+plate1ij+ … +plate10ij

+arrayRowij+
(
1| IDi
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Bernabeu's	bAge	 (Bernabeu	et	 al.,	2023)	was	predicted	by	 com-
bining	 grimAge,	 DNAm	 data,	 and	 phenotype	 data	 in	 the	 bage_
predictor.R	 script	 provided	 on	 their	 GitHub	 (elenabernabeu/
cage_bage).	Lastly,	MEAT	biological	ages	(Voisin	et	al.,	2020)	were	
predicted	from	muscle	DNAm	data	using	the	MEAT	Bioconductor	
package	for	R.

For	all	four	bAge	predictions,	paired	analyses	were	used	to	es-
timate	 how	 they	 changed	 following	 the	GOTO	 intervention,	 ad-
justing	for	age,	sex,	technical	covariates	and	with	a	random	effect	
for	ID:

Nominal	p	values	were	adjusted	for	multiple	testing	using	FDR	
and	assessed	at	the	5%	significance	level.

5.9.3  |  Associations	between	grimAge	and	
metabolic health parameters

We	 investigated	 the	 association	 between	 grimAge	 as	 predicted	
from	our	blood	DNAm	data	and	10	health	parameters	using	a	paired	
analysis,	 adjusting	 for	 age,	 sex,	 technical	 covariates,	 and	 with	 a	
random	effect	for	ID.

For	each	trait,	nominal	p values were adjusted for multiple test-
ing	using	FDR	and	assessed	at	the	5%	significance	level.
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