
Aging Cell. 2024;00:e14431.	 ﻿	   | 1 of 19
https://doi.org/10.1111/acel.14431

wileyonlinelibrary.com/journal/acel

Received: 26 August 2024  | Revised: 24 October 2024  | Accepted: 14 November 2024
DOI: 10.1111/acel.14431  

R E S E A R C H  A R T I C L E

Tissue-specific methylomic responses to a lifestyle intervention 
in older adults associate with metabolic and physiological 
health improvements

Lucy Sinke1  |   Marian Beekman1 |   Yotam Raz1 |   Thies Gehrmann1,2 |   
Ioannis Moustakas1,3 |   Alexis Boulinguiez4 |   Nico Lakenberg1 |   Eka Suchiman1 |    
Fatih A. Bogaards1,5 |   Daniele Bizzarri1,6 |   Erik B. van den Akker1,6 |   
Melanie Waldenberger7,8 |   Gillian Butler-Browne4 |   Capucine Trollet4 |    
C. P. G. M. de Groot5 |   Bastiaan T. Heijmans1  |   P. Eline Slagboom1

1Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
2Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
3Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
4Myology Center for Research, U974, Sorbonne Université, INSERM, AIM, GH Pitié Salpêtrière Bat Babinski, Paris, France
5Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
6Delft Bioinformatics Lab, Pattern Recognition and Bioinformatics, Delft, The Netherlands
7Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, 
Germany
8German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2024 The Author(s). Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.

Abbreviations: bAge, biological age; BMI, body mass index; cAge, chronological age; CALERIE, Comprehensive Assessment of Long term Effects of Reducing Intake of Energy; DEG, 
differentially expressed gene; DMP, differentially methylated probe; DMR, differentially methylated region; DNAm, DNA methylation; FDR, false discovery rate; FFQ, food frequency 
questionnaire; GO, gene ontology; GOTO, Growing Old Together; GSEA, gene set enrichment analysis; HDL, high-density lipoprotein; IL-6, interleukin-6; LLS, Leiden Longevity Study; 
MuSiC, Multi-subject Single-cell deconvolution; MVEC, microvascular endothelial cell; OR, odds ratio; PC, principal component; PCA, principal component analysis; QC, quality control; 
SAT, subcutaneous adipose tissue; SBP, systolic blood pressure; TF, transcription factor; TFBS, transcription factor binding site; TSS, transcription start site; WC, waist circumference.

Correspondence
Lucy Sinke, Molecular Epidemiology, 
Department of Biomedical Data Sciences, 
Leiden University Medical Centre, Leiden, 
The Netherlands.
Email: l.j.sinke@lacdr.leidenuniv.nl

Funding information
Nederlandse Organisatie voor 
Wetenschappelijk Onderzoek, Grant/
Award Number: 050-060-810 and 
184.021.007; ZonMw, Grant/Award 
Number: 457001001 and 529051021

Abstract
Across the lifespan, diet and physical activity profiles substantially influence 
immunometabolic health. DNA methylation, as a tissue-specific marker sensitive to 
behavioral change, may mediate these effects through modulation of transcription 
factor binding and subsequent gene expression. Despite this, few human studies have 
profiled DNA methylation and gene expression simultaneously in multiple tissues or 
examined how molecular levels react and interact in response to lifestyle changes. 
The Growing Old Together (GOTO) study is a 13-week lifestyle intervention in older 
adults, which imparted health benefits to participants. Here, we characterize the 
DNA methylation response to this intervention at over 750 thousand CpGs in muscle, 
adipose, and blood. Differentially methylated sites are enriched for active chromatin 
states, located close to relevant transcription factor binding sites, and associated with 
changing expression of insulin sensitivity genes and health parameters. In addition, 
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1  |  INTRODUC TION

Changes in behavior across the life course, including adherence to 
healthy diets and physical activity, have major health impacts and 
in some cases are more effective at improving immunometabolic 
health than pharmacological interventions (Diabetes Prevention 
Program (DPP) Research Group, 2002; Knowler et al., 2002; Fiuza-
Luces et al., 2013). Regular aerobic exercise alongside caloric restric-
tion promotes weight loss, insulin sensitivity, and glucose control in 
both younger and older populations (Eriksson et  al.,  1999; Kraus 
et al., 2019; Leitner et al., 2017; Zhang et al., 2020). Epigenetic reg-
ulation, such as through DNA methylation (DNAm), may mediate 
a part of these health benefits by modulating the accessibility of 
regulatory sites for transcription factors (Gevaert et al., 2022; van 
der Harst et al., 2017; Voisin et al., 2015). Physical activity has been 
found to attenuate the age-dependent decreases in DNAm of the 
anti-inflammatory ASC gene in blood (Butts et al., 2018; Nakajima 
et al., 2010), and Mendelian randomization has directionally linked 
epigenetic signatures of a healthy diet with both type 2 diabetes and 
several of its risk factors (Ma et al., 2020). These findings highlight 
the potential impact of DNAm for measurement and modification of 
immunometabolic health in individuals of all ages.

In comparison to findings in blood, epigenetic reprogramming in 
metabolic tissues may have even greater functional consequences on 
health, but studies that collect tissues other than blood in sufficient 
sample sizes are sparse (King-Himmelreich et al., 2016). Muscle and 
adipose tissues are known to secrete a plethora of proteins and sig-
nalling molecules into the circulation and engage in tissue-to-tissue 
crosstalk, collectively bringing about biological changes (Stanford & 
Goodyear, 2018). Although several experimental studies have inves-
tigated the effects of lifestyle interventions on the methylome of 
muscle (Barrès et al., 2012; Jacobsen et al., 2012) or adipose tissues 
(Fabre et al., 2018; Gillberg et al., 2014; Rönn et al., 2013) individu-
ally, few researchers have taken a multi-tissue approach despite this 
showing promise in other-omic fields (Mill & Heijmans, 2013; Moore 
et al., 2023; Savikj et al., 2022). As we advance our understanding of 
how epigenetics influences immunometabolic health, it is important 
to diversify our studies to incorporate relevant tissues, improve CpG 
coverage, and be inclusive of older adults who represent a growing 
proportion of our populations.

The Growing Old Together (GOTO) study is a 13-week lifestyle 
intervention in 164 older adults (mean age 63 years), which expanded 

on the combined intervention arm of the CALERIE study (Rickman 
et al., 2011). Here, we followed up on previous work showing that the 
GOTO intervention conferred an improvement in immunometabolic 
health (Beekman et al., 2020; van de Rest et al., 2016) and that this 
benefit associates with changes in the blood (Gehrmann et al., 2021), 
adipose, and muscle transcriptomes (Bogaards et al., 2024) and the 
blood metabolome (Bogaards et  al.,  2022). Using data and bioma-
terial from before and after the GOTO study, we profiled DNAm at 
over 750 thousand CpG sites across the genome in skeletal mus-
cle (n = 80), subcutaneous adipose (n = 89), and fasted blood tissues 
(n = 98). By thoroughly characterizing the resulting loci, we exam-
ined how methylomic responses to the GOTO intervention related 
to genomic regulation and differential gene expression in cis, with 
implications for immunometabolic health and epigenetic measures 
of chronological and biological age.

2  |  RESULTS

2.1  |  The GOTO intervention improves metabolic 
health, which is consistently observed in the 
tissue-dependent subsets of participants

The Growing Old Together (GOTO) intervention (n = 164) imparted 
a range of metabolic health benefits, described in detail previously 
(Bogaards et  al.,  2022, 2024; Gehrmann et  al.,  2021; van de Rest 
et al., 2016). Notably, participants saw reductions in their body mass 
index (BMI, Δ = −1.1 kg/m (Knowler et al., 2002)), waist circumference 
(WC, Δ = −4.3 cm), and total body fat percentage (Δ = −1.8%) along-
side improvements in many other health measurements (Table  1, 
Table  S1). Individuals were selected for DNA methylation profiling 
based on availability of biological material and gene expression data, 
and for a majority (n = 66, 64.7%), we were able to collect data from 
all three tissues both before and after the GOTO intervention.

For each tissue, methylation subsets were representative of the 
whole study population (muscle n = 80, SAT n = 89, and blood n = 98), 
with the distribution of changes in 10 health parameters from in-
cluded and excluded individuals being statistically comparable (non-
response analysis pFDR > 0.05, Table  S2). The sole exception was a 
selection bias for individuals with higher HDL sizes in the muscle tis-
sue subset (pFDR = 0.001) urging caution in making inferences about 
this trait in muscle. Each subset was analysed for genome-wide 

measures of biological age are consistently reduced, with decreases in grimAge 
associated with observed health improvements. Taken together, our results identify 
responsive molecular markers and demonstrate their potential to measure progression 
and finetune treatment of age-related risks and diseases.

K E Y W O R D S
DNA methylation, epigenomics, functional genomics, healthy aging, lifestyle, metabolism, 
muscle
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DNAm consequences of the GOTO intervention, adjusting for age, 
sex, smoking status, technical covariates, and the first five princi-
pal components (PCs; see Section 5). In the skeletal muscle and SAT 
samples, estimated bias and inflation of the test statistics was low 
(|μ| < 0.05, λ < 1.1). In the blood samples, there was some deflation in 
the test statistics (λ = 0.86) alongside minimal bias (μ = 0.03). For all 
tissues, corrected bias and inflation was under 0.01 and equal to 1.0 
respectively, indicating high quality data.

2.2  |  In skeletal muscle, the GOTO intervention 
influenced DNA methylation at 162 predominantly 
hypomethylated CpGs

To record the response of the muscle methylome, we profiled 
DNAm in skeletal muscle samples biopsied before and after the 
GOTO intervention (n = 160 samples, 80 individuals). Since cell-type 
proportions can be an important driver of epigenetic signals, we 
predicted proportions of seven muscle nuclei types in our samples 
by applying the MuSiC algorithm (Wang et al., 2019) to bulk gene 
expression data (Bogaards et al., 2024) and a publicly available single 
nuclei transcriptomic reference (Perez et al., 2022). At baseline, our 
samples were predicted to primarily be composed of slow (type I, 
mean 36.0%) and fast (type II, mean 26.7%) skeletal muscle fibres 
and endothelial cells (mean 36.6%). Following the intervention, there 
was evidence that the proportion of predicted endothelial nuclei 
in the muscle tissue had increased (Δ = +3.3%, pFDR = 3.5 × 10

−3), 
in line with expected angiogenesis during the intervention (Kwak 
et al., 2018), and there was insufficient evidence for changes in any 
of the other nuclei types (pFDR > 0.05; Figure 1a, Table S3).

In our initial model, we identified 354 CpGs differentially meth-
ylated following the intervention (pFDR <0.05). However, considering 
the finding that an increase in endothelial nuclei could have been 
driving a portion of this methylation signal, we further adjusted our 
model for predicted endothelial nuclei proportions. This led to the 
removal of 192 CpGs from our results, leaving 162 predominantly 
hypomethylated (87.7%) CpGs where DNAm changes were inde-
pendent of endothelial nuclei proportions (pFDR ≤ 0.05; Figure  1b, 
Table S4). Henceforth, we refer to this set of 162 differentially meth-
ylated CpGs in skeletal muscle, which represent 160 distinct loci, as 
the muscle CpGs.

2.3  |  CpGs influenced by the GOTO intervention 
associate with genes important for translocation of 
GLUT4 to the muscle cell membrane

To investigate the functional capacity of these muscle CpGs to 
influence nearby gene expression, we annotated their genomic 
positions to 15 chromatin states using Roadmap reference epig-
enomes (Kundaje et al., 2015). These consist of eight active and 
seven repressed states that show distinct levels of DNA methyla-
tion, accessibility, and regulator binding. By testing if the muscle TA
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CpGs were enriched for any particular genomic feature in the male 
(E107) and female (E108) skeletal muscle reference, we revealed 
that both enhancers (ORE107 = 5.83 and ORE108 = 7.15) and genic 
enhancers (ORE107 = 3.56 and ORE108 = 4.34) were overrepre-
sented in our results (Figure 1c, Table S5). In addition, since the 
primary mechanism that DNAm influences nearby expression is 
through transcription factor (TF) binding (Kaluscha et  al., 2022), 
we also tested if sequences within 50 bp of the muscle CpGs were 
enriched for known TF binding sites (TFBS; Figure 1d; Table S6). 
The tested regions were enriched for 21 TFBS including ones 
known to be both upregulated by exercise (JunB: 34 CpGs) 
(Trenerry et al., 2007) and critical for muscle regeneration (Fos: 35 
CpGs; Fra1: 33 CpGs) (Almada et al., 2021; Galvagni et al., 2002; 
Puntschart et al., 1998). Taken together, these functional analyses 
support this set of 162 CpGs as located at cis regulatory regions 
specifically in skeletal muscle cells.

After establishing the muscle CpGs as plausibly regulatory, 
we identified nearby genes that were candidate targets for this 
regulation using a two-step approach. Firstly, we evaluated if the 
expression of genes in close proximity (±100 kb) to the 162 mus-
cle CpGs was altered by the intervention using gene expression 
data previously collected from this study (pFDR ≤ 0.05) (Bogaards 
et  al.,  2024). Secondly, we examined whether these gene ex-
pression changes were associated with differential DNAm at the 
nearby CpG (pFDR ≤ 0.05). There were 454 unique genes within 
100 kb of a muscle CpG, and 71 of these were both differentially 
expressed following the intervention and associated with DNAm 
in cis (Table  S7). This set of 71 genes included several directly 
implicated in the translocation of GLUT4 transporters to the 
muscle cell membrane in response to insulin and contractile ac-
tivity (TMOD3, FDFT1, and PLEKHG4) (Ha & Lee,  2020; Machin 
et  al.,  2021; Shrestha et  al.,  2021) alongside an adaptor protein 

which regulates insulin signalling, including specifically in skeletal 
muscle cells (GRB10) (Edick et al., 2020; Holt et al., 2018). Gene set 
enrichment analysis of these 71 genes also revealed enrichment 
for Striated Muscle Cell Development (padj = 0.019) after adjust-
ing for multiple testing, further clarifying the overrepresentation 
of muscle-related genes in this set (Table S8).

2.4  |  Altered blood-based health markers and grip 
strength associate with DNA methylation responses 
in skeletal muscle

Next, we investigated whether the observed methylomic responses 
to the GOTO intervention in muscle associated with changes in 
blood-based measures of metabolic health. We performed paired 
analyses of the associations between DNAm effects and improve-
ments in the 10 health parameters shown in Table 1, adjusting for 
multiple testing using the FDR method (Table S9, Figure 2a). DNAm 
at 33 (20.4%) of the muscle CpGs associated with at least one blood-
based trait, with eight CpGs being linked to improvements in three 
or more traits (pFDR ≤ 0.05).

We also investigated how effects on the muscle methylome 
related to changes in biopsy-specific muscle physiology, repre-
sented by number of PAX7-positive cells and myonuclei per fibre 
as obtained from previous immunohistochemistry work (n = 65, 
81% of the original muscle subset) (Raz et  al.,  2020), and over-
all muscle performance as measured by average dominant hand 
grip strength. PAX7 is a satellite cell marker and, as the number of 
these per fibre increases, the regenerative potential of the mus-
cle is also higher (Azhar et al., 2022). Higher numbers of myonu-
clei per fibre suggests larger and stronger muscle fibres (Hansson 
et  al.,  2020; Snijders et  al.,  2021). Both immunohistochemistry 

F I G U R E  1 Characterization of the 
muscle cell count and DNA methylation 
response to the GOTO intervention 
(a) Intervention effect on muscle cell 
types predicted using MuSiC alongside 
baseline proportions (only cells >0.5% 
at baseline shown), (b) Volcano plot of 
the intervention effect on DNAm at over 
750 thousand CpGs, showing the 162 
significant CpGs in blue and nonsignificant 
in grey, (c) Forest plots showing the OR 
and 95% CI for enrichment or depletion of 
11 ROADMAP chromatin states in the 162 
muscle CpGs using the E107 male skeletal 
muscle reference epigenome (four states 
with extremely wide CIs not shown), and 
(d) Bar plot of the top 10 enriched TFBS 
motifs in sequences within 50 bp of the 
162 muscle CpGs.
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measures were associated with DNAm responses at over 70 dif-
ferentially methylated CpGs (NMYO = 75, NPAX7 = 84), and DNAm at 
36 CpGs was associated with increasing average dominant hand 
grip strength (Table S10). These CpGs largely included those found 
to be associated with improvements in blood-based health mark-
ers. In total, well over half of the muscle CpGs (N = 103, 61.7%) 
were associated with at least one of the investigated health traits, 
demonstrating the importance of this set of CpGs to observed 
health improvements.

More specifically, there were 16 CpGs that were differentially 
methylated, located in cis regulatory regions, and also associ-
ated with both differential gene expression and observed health 
benefits. One example of these CpGs that highlights the poten-
tial relevance of our findings in skeletal muscle is cg21005024, 
whose methylation decreased following the GOTO interven-
tion (β = −0.047). This CpG flanks an active transcription start 
site (TSS) of GRB10 within 50 bp of multiple enriched TFBS. 
Hypomethylation of cg21005024 is associated with decreasing 
GRB10 expression (β = 0.083), waist circumference (β = 0.003), 
and total body fat percentage (β = 0.005) following the interven-
tion, as well as increases in both immunohistochemistry measures 

(βPAX7 = −0.220, βMYO = −0.011) and average dominant hand grip 
strength (β = −0.004; Figure 2b).

2.5  |  In adipose tissue, the GOTO intervention 
influenced DNA methylation at 230 predominantly 
hypermethylated CpGs

Next, we investigated DNAm changes in the subcutaneous adipose 
tissue (SAT) following the GOTO intervention (n = 89 individuals, 
178 samples). We identified 230 differentially methylated CpGs at 
201 distinct loci (pFDR ≤ 0.05), henceforth referred to as the adipose 
CpGs. To explore whether this methylation signal was driven by 
changes in cellular tissue composition, we predicted five cell-type 
proportions from bulk gene expression data using the CIBERSORTx 
algorithm (Newman et al., 2019) and a publicly available signature 
matrix (Glastonbury et al., 2019) (Figure 3a, Table S11). The most 
prevalent cells at baseline were adipocytes (mean 72.4%) followed 
by a large minority of microvascular endothelial cells (MVECs; 
mean 24.1%). However, since there was insufficient evidence to 
support a change in any of these predicted cell types following 

F I G U R E  2 Multi-omic analyses in muscle (a) Clustered heatmap of association p values between changes in DNAm at the 162 muscle 
CpGs and 10 health parameters (BMI, body mass index; HDL, high-density lipoprotein; IL-6, inetrleukin-6; SBP, systolic blood pressure; WC, 
waist circumference) and (b) Dot plots showing hypomethylation of DNAm in muscle at cg21005024, positively associated with decreases in 
muscle GRB10 gene expression and in waist circumference.
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6 of 19  |     SINKE et al.

the intervention (pFDR >0.05), we did not consider further adjust-
ment appropriate in our paired analyses investigating differential 
methylation in SAT.

2.6  |  CpGs influenced by the GOTO intervention 
associated with genes linked to lipid metabolism and 
insulin resistance

The majority (60.4%) of the 230 adipose CpGs were hypermethylated 
following the intervention (Figure 3b, Table S12) and, to determine 
whether this represented a plausibly functional signal, we annotated 
their genomic positions to 15 chromatin states using the Roadmap 
adipose reference epigenome (E063) (Kundaje et  al., 2015). Since 
the adipose CpGs were enriched for several repressive marks, such 
as polycomb repressed regions (OR = 7.76, pFDR = 7.35 × 10

−43) 
and depleted for regulatory states, like enhancers (OR = 0.38, 
pFDR = 1.10 × 10

−2) and active TSS (OR = 0.11, pFDR = 5.21 × 10
−4), 

there was insufficient evidence to suggest that the adipose CpGs as 
a whole were controlling nearby transcription (Figure 3c, Table S13). 
Despite this, sequences within 50 bp of the adipose CpGs were en-
riched for seven known TFBS (Figure 3d, Table S14), including four 
GATA family TFBS whose associated TFs are involved in the initial 
stages of adipogenesis and obesity (Tong et al., 2000).

Although the adipose CpGs did not likely represent a regulatory 
set overall, we explored whether they were individually associated 

with changes in expression of nearby genes (±100 kb). We first in-
vestigated if genes in cis were differentially expressed (DEGs) fol-
lowing the GOTO intervention and, if so, whether this change in 
gene expression was associated with altered methylation at the 
nearby CpG. Within 100 kb of the 230 adipose CpGs there were 
412 genes, and for 23 of these there was both evidence that ex-
pression changed as a result of the intervention (pFDR ≤ 0.05) and 
that this change was associated with the nearby DNAm response 
(pFDR ≤ 0.05, Table S15).

These 23 genes included many relevant for adipogenesis, such 
as ZBTB7A (Laudes et al., 2004) and ALX1 (Breitfeld et al., 2020) 
and multiple developmental genes including EN1 and NR2F1 
(Singh et al., 2015). Of particular interest were PITX2 and DMRT3, 
whose decreasing expressions were associated with responses 
at 3 and 16 unique adipose CpGs, respectively. PITX2 encodes a 
transcription factor which has been linked to changes in fasting 
glucose following weight loss (Macartney-Coxson et al., 2017) and 
DMRT3, which associates with exercise training and diet (Divoux 
et  al.,  2021; Nono Nankam et  al.,  2020), has been proposed as 
a marker of insulin resistance specifically in SAT (Clemente-Olivo 
et al., 2021). To further investigate the importance of this set of 23 
genes, we performed GSEA using clusterProfiler (Table S16). This 
revealed enrichment for 27 terms, including many relevant for lipid 
metabolism and transport (e.g., Phospholipid Efflux pFDR = 0.019), 
as well as transcription (e.g., Regulation of Transcription by RNA 
Polymerase II pFDR = 0.019).

F I G U R E  3 Characterization of the adipose cell count and DNA methylation response to the GOTO intervention (a) Intervention effect 
on adipose cell types predicted using CIBERSORTx alongside baseline proportions (only cells >0.5% at baseline shown), (b) Volcano plot 
of the intervention effect on DNAm at over 750 thousand CpGs, showing the 230 significant CpGs in blue and nonsignificant in grey, (c) 
Forest plots showing the OR and 95% CI for enrichment or depletion of 11 ROADMAP chromatin states in the 230 adipose CpGs using the 
E063 adipose reference epigenome (four states with extremely wide CIs not shown), and (d) Bar plot of the seven enriched TFBS motifs in 
sequences within 50 bp of the 230 adipose CpGs.
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    |  7 of 19SINKE et al.

2.7  |  Reductions in total body fat percentage 
associate with DNA methylation responses in 
adipose tissue

To link the epigenetic findings in SAT to changes in health, we per-
formed paired analyses of the association between DNAm effects at 
the adipose CpGs and changes in the 10 health parameters shown in 
Table 1 (Figure 4a, Table S17). In total, almost a third of the adipose 
CpGs (N = 75, 32.6%) were associated with improvements in at least 
one tested trait, and responses at more than five unique CpGs were 
associated with total body fat percentage (39 CpGs), adipocytokine 
levels (adiponectin: 8 CpGs; interleukin 6: 48 CpGs), BMI (12 CpGs), 
and WC (12 CpGs). Of these, 12 had been linked with nearby gene 
expression in the previous analyses. Indeed, hypomethylation at two 
of the three DMRT3 associated adipose CpGs was associated with re-
ductions in total body fat percentage (Figure 4b). Notably, these re-
sults link DNAm effects at multiple CpGs, differential expression of 
relevant genes, and improvements in health, indicating the relevance 
of the identified loci for physiological and molecular responses to 
lifestyle changes in older adults.

2.8  |  Altered blood-based health parameters 
associate with the relatively small DNA methylation 
responses in blood

Next, we analysed individuals with DNAm data from paired fasted 
blood samples (N = 98 individuals, 196 samples) and identified 441 
CpGs at distinct loci where methylation was altered following the in-
tervention (pFDR ≤ 0.05), henceforth referred to as the blood CpGs. In 
cross-sectional blood-based EWAS, cell-type proportions are a well-
known driver of association signals, and therefore we extensively 
assessed if changes in cell types not captured by the individual-level 
random effects existed in our data. We measured five cell types 
and predicted a further 36 from DNAm and gene expression data. 
Neutrophils and their progenitors accounted for the majority of 
cells (between 47.7% and 51.8% of cells at baseline), followed by 
lymphocytes (36.9% to 41.1%) and then monocytes (7.4% to 10.1%). 
There was insufficient evidence to suggest any of the measured or 
predicted nucleated cell-types changed following the intervention 
at either the 5% nominal or FDR level, indicating that cell-type pro-
portions were captured within the individual random effects in the 

F I G U R E  4 Multi-omic analyses in adipose (a) Clustered heatmap of association p values between changes in DNAm at the 230 adipose 
CpGs and 10 health parameters (BMI, body mass index; HDL, high-density lipoprotein; IL-6, inetrleukin-6; SBP, systolic blood pressure; WC, 
waist circumference) and (b) Dot plots showing hypomethylation of DNAm in muscle at cg14434922, positively associated with decreases in 
adipose DMRT3 gene expression and in total body fat percentage.
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8 of 19  |     SINKE et al.

models and additional adjustment would be redundant (Figure 5a; 
Table S18).

In contrast to the findings in skeletal muscle and SAT, all effect 
sizes at the 441 blood CpGs were small (β < 4%; Figure 5b, Table S19), 
but this alone did not preclude them from functionality. To investigate 

the likelihood that changes in DNAm at the blood CpGs were regula-
tory, we performed chromatin state and TFBS enrichment analyses 
as before. The blood CpGs were enriched (Figure 2c, Table S20) for 
regions flanking active TSS (OR: 1.50, pFDR = 1.1 × 10

−2), although the 
size of this enrichment was less convincing than seen in previous 

F I G U R E  5 Characterization of the blood cell count and DNA methylation response to the GOTO intervention (a) Intervention effect on 
immune cell types predicted using the IDOL algorithm alongside baseline proportions (only cells >0.5% at baseline shown), (b) Volcano plot 
of the intervention effect on DNAm at over 750 thousand CpGs, showing the 441 significant CpGs in blue and nonsignificant in grey, (c) 
Forest plots showing the OR and 95% CI for enrichment or depletion of 15 ROADMAP chromatin states in the 441 blood CpGs using the 
E062 PBMC reference epigenome, (d) Bar plot of enriched TFBS motifs in sequences within 50 bp of the 441 blood CpGs, and (e) Clustered 
heatmap of association p values between changes in DNAm at the 441 blood CpGs and 10 health parameters (BMI, body mass index; HDL, 
high-density lipoprotein; IL-6, inetrleukin-6; SBP, systolic blood pressure; WC, waist circumference).
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    |  9 of 19SINKE et al.

tissues. Sequences within 50 bp of the blood CpGs were enriched 
for three known TFBS (Figure  5d, Table  S21), including NFE2L2 
and MafK, which are involved in oxidative stress responses (Hwang 
et al., 2013; Ryoo & Kwak, 2018). When we investigated genes within 
100 kb of the blood CpGs, there were only three genes both differ-
entially expressed and linked to nearby methylation (Table S22), but 
these included ones critical for inflammatory and immune responses 
such as LTBR and TNFRSF1A (McDermott, 2001; Piao et al., 2021).

To explore possible distant or pleiotropic effects of the DNAm 
responses in blood on health, we performed paired analyses of 
the association between DNAm at the blood CpGs and changes in 
the 10 health parameters shown in Table 1 (Figure 5e, Table S23). 
Differential methylation at 66 (15.0%) blood CpGs associated with 
changes in nine traits, namely total body fat percentage (24 CpGs), 
BMI (27 CpGs), WC (32 CpGs), HDL cholesterol levels (2 CpGs) and 
size (18 CpGs), interleukin-6 (3 CpGs), leptin (19 CpGs), systolic 
blood pressure (2 CpGs), and fasting insulin (5 CpGs), showing that 
despite the size of these smaller methylomic responses and the lack 
of support for cis regulatory effects, they were still able to mark im-
provements in immunometabolic health.

2.9  |  Chronological age predictors have increased 
in accuracy but still capture more than just the 
passage of time

In the field of epigenetics and aging, several algorithms have been 
developed to predict chronological age (cAge) from DNAm data. 
Here, we predicted cAge changes following the GOTO interven-
tion by applying three such clocks (namely Horvath,  (2013), Zhang 
et al. (2019), and Bernabeu et al. (2023)) to DNAm from pre- and post-
intervention blood samples. Correlations between actual age, which 
increased by 13 weeks across this longitudinal study, and predicted 

cAge were then calculated (Table  S24). Predictions of cAge using 
Horvath, one of the original epigenetic clocks, were moderately cor-
related with actual age (r = 0.730, pFDR = 7.6 × 10

−34), showing that 
from its inception these algorithms have performed well.

Looking at more recent clocks, we observe increases in accuracy 
over time with the Zhang (r = 0.888, pFDR = 2.7 × 10

−67) and Bernabeu 
(r = 0.923, pFDR = 8.6 × 10

−82) cAge predictions both correlating re-
markably strongly with actual age at visit date. When looking at the 
predicted change in chronological age over this 13 week interven-
tion, however, all three clocks calculated a reduction in age ranging 
from a 22.3 week decrease over the intervention (pFDR = 0.200) re-
turned by the original Horvath clock (Horvath, 2013), to a 12.5 week 
reduction (pFDR = 0.155) predicted by the most recent Bernabeu 
cAge algorithm (Bernabeu et al., 2023). Overall, these results show 
that chronological age predictors are well correlated with and in-
creasingly in line with actual age but considering that participants 
increased in age by 13 weeks over the intervention, they still have 
considerable residuals in some cases. This could indicate that such 
clocks are swayed by other factors, such as health improvements, 
and still need some refinement in order to capture only the passage 
of time.

2.10  |  GrimAge captures the effect of the GOTO 
intervention and associates with metabolic and 
physiological health improvements

Recent biological age (bAge) predictors are commonly trained on a 
combination of age, health parameters, and mortality data. We inves-
tigated four such recent bAge clocks (namely Bernabeu et al. (2023), 
grimAge (Lu et al., 2019), phenoAge (Levine et al., 2018), and MEAT 
(Voisin et al., 2020)). The first three of these algorithms were trained 
using blood samples, and therefore we predicted bAge using DNAm 

F I G U R E  6 Characterization of the GOTO effects on measures of epigenetic age (a) Predicted decreases in biological age following GOTO 
for four modern algorithms, and (b) scatter plot showing the associations between grimAge and observed BMI both before (red) and after 
(blue) the GOTO intervention.
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from blood taken before and after the GOTO intervention. In con-
trast, MEAT is a muscle-specific algorithm and so was applied to 
DNAm data from the GOTO muscle samples instead. Using a paired 
analysis, we estimated the effect of the GOTO intervention on bio-
logical age, adjusting for age, sex, and technical covariates (Figure 6; 
Table S25).

For all four clocks, bAge was predicted to decrease following 
the GOTO intervention with estimates ranging from a 16.1 week 
decrease as predicted by Bernabeu (pFDR = 2.4 × 10

−1) in blood to a 
57.9 week decrease as predicted by the muscle-specific MEAT algo-
rithm (pFDR = 2.1 × 10

−2), with the majority of predicted reductions 
here being greater than estimated cAge decreases. After adjusting 
for multiple testing, however, we found that only the decreases in 
bAge predicted by grimAge (β = −34.6 weeks, pFDR = 1.4 × 10

−4) and 
MEAT (β = −57.9 weeks, pFDR = 2.1 × 10

−2) remained significant at the 
5% level. As we saw the strongest methylation response to GOTO in 
muscle, these results support the development of tissue-specific al-
gorithms for the prediction of biological age. Additionally, since grim-
Age was reported to be more strongly associated with frailty risk as 
compared with other epigenetic age measures (Lieke et al., 2022), 
this finding highlights differences in developed algorithms and sug-
gests a specific relevance of grimAge to aging populations.

To explore whether the observed reductions in bAge following 
the GOTO intervention were associated with immunometabolic 
health improvements, we performed paired analyses to calculate 
the association between changes in clocks with significant effects 
and 10 metabolic health parameters shown in Table 1 (Table S26). 
The directions of the observed associations supported grimAge and 
MEAT reductions as being linked to increases in metabolic health, 
with both measures having a negative association with adiponectin 
and positive associations with BMI, WC, leptin, IL-6, and total body 
fat percentage. Seven of the 10 tested traits significantly associated 
with grimAge at the 5% level after adjusting for multiple testing, in-
cluding BMI (β = 0.30, pFDR = 5.2 × 10

−3), total body fat percentage 
(β = 0.10, pFDR = 3.9 × 10

−2), and leptin (β = 0.08, pFDR = 1.3 × 10
−2), all 

of which were also associated with genome-wide DNAm responses 
to GOTO in blood (Figure 6b). Taken together, these results demon-
strate the power of blood based DNAm markers and bAge algo-
rithms to capture health improvements, in particular in older adults.

3  |  DISCUSSION

3.1  |  Tissue-specific DNA methylation responses 
potentially relate to key regulatory changes in muscle, 
adipose, and blood

Following a 13-week combined lifestyle intervention, we observed 
DNA methylation (DNAm) responses at 162 CpGs in skeletal muscle, 
230 CpGs in subcutaneous adipose tissue (SAT), and 441 CpGs in 
fasted blood. We characterized the regulatory nature of these 
CpGs, finding enrichments for active chromatin states and relevant 
transcription factor binding sites (TFBS). Then, by using gene 

expression and health parameter data from the same individuals, 
we performed multi-omic analyses and uncovered relationships 
between epigenetic changes and metabolic health, with links to 
insulin sensitivity, regeneration potential, and body composition.

On a molecular level, the directions of DNAm responses were as 
expected from previously observed effects of this intervention on 
gene expression (Bogaards et al., 2024). In skeletal muscle, the CpGs 
predominantly decreased in methylation, aligning both with known 
effects of increasing physical activity on the muscle methylome 
(Plaza-Diaz et al., 2022) and the genome-wide increases in gene ex-
pression previously seen in muscle from this study. In contrast, there 
were increases in methylation at CpGs identified in SAT, tying in with 
global decreases in gene expression observed in this tissue after the 
GOTO intervention. Lastly, in blood, the signal was small in both the 
methylome and the transcriptome (Bogaards et al., 2024; Gehrmann 
et al., 2021), possibly due to molecular changes in blood lying further 
from functionally responding tissues.

In addition to linking our findings to previous genome-wide tran-
scriptome investigations, we also utilized the available RNA-Seq data 
to investigate cis associations between differential gene expression 
and DNAm in the three tissues. In skeletal muscle, expression changes 
at 71 genes in close proximity to identified CpGs were associated with 
differential methylation. In contrast, 23 genes were linked to DNAm 
changes in SAT and there were only three genes with evidence of 
clear cis associations between genes and CpGs in blood. Looking at 
the function of the genes identified in muscle and SAT, many were 
responsible for insulin sensitivity and glucose uptake in relevant cell 
types. This included GRB10 (Edick et  al.,  2020; Holt et  al.,  2018), 
which directly binds to and regulates insulin receptors, PLEKHG4 (Ha 
& Lee, 2020; Machin et al., 2021; Shrestha et al., 2021), which is im-
plicated in the translocation of GLUT4 transporters to the membrane 
in skeletal muscle cells, and DMRT3 (Pujar et al., 2019), an insulin sen-
sitivity marker specific to subcutaneous adipose tissues. In particular, 
the lowered expression of GRB10 observed here is known to enhance 
insulin induced PI3K/Akt signalling and glucose uptake in myotubes 
and increase muscle size (Holt et al., 2012, 2018; Mokbel et al., 2014; 
Plaza-Diaz et  al., 2022). Observed changes in fasting insulin levels 
were associated with DNAm responses in all three tissues (muscle: 
2 CpGs, SAT: 3 CpGs; blood: 5 CpGs), although there was no over-
lap with the relevant genes. As caloric restriction and exercise have 
established effects on insulin resistance (Dubé et al., 2011; Johnson 
et al., 2016) with consequences for immunometabolic health (Roberts 
et al., 2013), this finding illustrates potential molecular mechanisms 
behind these effects.

We also observed enrichments for regulatory chromatin states, 
such as enhancers and regions flanking active transcription start 
sites (TSS), in our muscle and blood CpGs, and relevant TFBS were 
enriched in sequences within 50 bp of the differentially methylated 
CpGs in all three tissues. In muscle, we identified Fos and JunB bind-
ing sites in proximity of our CpGs, and these transcription factors are 
known to be important for muscle health (Puntschart et al., 1998), 
and in SAT, there was enrichment for binding sites of four known 
GATA family TFs, established as involved in the initial stages of 
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    |  11 of 19SINKE et al.

adipogenesis and obesity (Tong et al., 2000). Since the main mech-
anism by which DNAm is thought to elicit functional effects on 
nearby expression is by modulating the accessibility of regulatory 
sites for transcription factors (Kaluscha et al., 2022), these findings 
strengthen the plausibility that DNAm changes at the identified 
CpGs are regulatory and may have functional effects on expression 
of the associated nearby DEGs.

3.2  |  Differential methylation is linked to metabolic 
health improvements and decreases in estimated 
epigenetic age

Since the Growing Old Together (GOTO) intervention imparted 
a metabolic health benefit on the study population (Beekman 
et  al.,  2020; van de Rest et  al.,  2016), we investigated how these 
improvements associated with identified changes in DNAm. At over 
half of the muscle CpGs and almost a third of the adipose CpGs, 
DNAm responses were associated with changes in one or more 
health parameters. For example, DNAm in all three tissues was 
associated with not only fasting insulin but also a total of eight of the 
10 tested traits, including total body fat percentage (blood: 24 CpGs, 
adipose: 39 CpGs, muscle: 13 CpGs), leptin (blood: 19 CpGs, adipose: 
4 CpGs, muscle: 14 CpGs), and BMI (blood: 27 CpGs, adipose: 12 
CpGs, muscle: 7 CpGs). Favorable changes in body composition, as 
seen in the GOTO intervention study, are associated with a more 
balanced secretion of adipokines from adipose tissue, reducing the 
risk of insulin resistance and type 2 diabetes. We show here that 
DNAm responses in relevant tissues are associated with these key 
measures of immunometabolic risk.

Previous investigations into the health benefits imparted by this 
intervention have demonstrated sex-specific effects, possibly due to 
both physiological differences between sexes and the personalized 
nature of the protocol. For example, sex-specific differences in mus-
cle performance are partly attributed to larger proportions of type-I 
fibres in women and characterized by slow oxidative metabolism 
(Haizlip et al., 2015). When looking at the transcriptomic responses 
to the GOTO intervention, previous studies were able to identify 
these sex-specific responses (Bogaards et al., 2024). However, in this 
study where we investigated effects at over 750 thousand CpGs 
across the genome, we had insufficient power to consider the two 
sexes separately. In the future, it will be important to uncover the 
molecular mechanisms behind observed disparities between men 
and women by performing larger intervention studies that are ade-
quately powered for stratification by sex.

Lastly, we calculated chronological (cAge) and biological (bAge) 
age in our blood and muscle samples using available methylome al-
gorithms (Bernabeu et al., 2023; Horvath, 2013; Levine et al., 2018; 
Lu et al., 2019; Voisin et al., 2020; Zhang et al., 2019). These demon-
strated the impressive precision and accuracy of current epigenetic 
clocks for calendar age prediction, with estimates from the most re-
cent model (Bernabeu et al., 2023) being highly correlated with actual 
age (r = 0.923). However, all tested cAge algorithms still supported a 

decrease in age following the intervention despite participants actu-
ally aging 13 weeks, making it plausible that these estimates are still 
influenced by other factors such as metabolic health improvements.

To investigate this further, we evaluated if four predictors of bi-
ological age (bAge) could capture the health benefits of the GOTO 
intervention. All four algorithms predicted a decrease in bAge follow-
ing the GOTO intervention ranging from −16.1 weeks to −57.9 weeks, 
larger than the previous cAge estimates. The muscle-specific MEAT 
algorithm represented the greatest effect and it, alongside reduc-
tions in bAge as predicted by grimAge, were still significant at the 
5% level after adjusting for multiple testing. GrimAge, in particu-
lar, was associated with observed improvements in seven of the 10 
tested health parameters, including BMI, circulating leptin levels, 
and total body fat percentage, with all three also associated with 
DNAm in all tissues. GrimAge and the metabolomics-based score, 
MetaboHealth, have both previously been reported as good mea-
sures of health improvements (Bogaards et al., 2024), frailty (Lieke 
et al., 2022), and mortality (Deelen et al., 2019; Lu et al., 2019). The 
beneficial shifts observed here in these scores indicate potentially 
global and long-term health improvements from the GOTO inter-
vention protocol, and also highlight the possible value of molecular 
algorithms such as these for monitoring effects of interventions in 
general, and specifically in older populations.

It is important to note that this intervention was carried out in 
healthy, older adults. For older individuals, for example with a risk 
of sarcopenia, this mild intervention may not be the most optimal 
regime. Other interventions, including ProMuscle and a novel up-
coming study VOILA, are better focused on improving muscle mass 
and strength by including resistance training, increased protein in-
take, or protein supplementation (Leenders et al., 2013; van Dongen 
et al., 2017). Clinical study populations of older individuals may also 
require other response markers due to the higher levels of acute in-
flammatory proteins in population-based elderly.

Overall, our in-depth study of the methylome, transcriptome, and 
phenome exemplifies, the biological changes that older adults expe-
rience following a mild intervention, such as GOTO. The absence of 
any overlap between the identified sets of CpGs demonstrates the 
strong tissue-specificity of these findings and this, coupled with the 
distinct directional differences (hypermethylation in adipose tissue 
and hypomethylation in muscle), highlights the importance of using 
a multi-tissue approach when investigating the influence of environ-
mental changes on the methylome. As DNAm is only one type of epi-
genetic modification, more in-depth interpretation of these findings 
may require examination of other layers of the epigenome, such as 
chromatin accessibility using ATAC-seq, and larger sample sizes would 
enable explorations of how DNAm in various tissues influences meta-
bolic health and examination of any sex-specific responses.

4  |  CONCLUSIONS

This study established the methylomic responses to a 13-week 
lifestyle intervention in older adults in both circulating cells and 
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relevant metabolic tissues. We identified differential methyla-
tion at CpGs located in regulatory regions in close proximity to 
transcription factor binding sites. Effects at these CpGs were as-
sociated with differential expression of genes important for insu-
lin sensitivity, including GRB10 in muscle and DMRT3 in adipose, 
and with imparted metabolic health benefits. Identified loci may 
be investigated to monitor immunometabolic risk, progression 
of disease, and response to treatment in the future. The GOTO 
response was also represented by four epigenomic biological age 
markers and GrimAge, in particular, was able to capture the health 
improvements imparted to the participants. This study further 
demonstrates the importance of collecting biologically relevant 
tissues in intervention studies and highlights how modifiable mo-
lecular markers can capture health improvements following life-
style changes in older people.

5  |  METHODS

5.1  |  Recruitment

The GOTO study is nested within the Leiden Longevity Study (LLS), 
a longitudinal cohort of long-lived Caucasian siblings, their offspring, 
and partners thereof. The GOTO study (van de Rest et  al., 2016) 
recruited healthy, older (mean age 63 years) adults (N = 164) between 
June 2012 and April 2013. Individuals between 46 and 75 years with 
a BMI between 23 and 35 kg/m (Knowler et al., 2002) from the pool 
of offspring and partners were eligible for the study.

Exclusion criteria included being on diabetic medication (for type 
1 or 2 diabetes), having high fasting blood glucose levels (≥7.0 mmol/L), 
recent weight change (≥3 kg in the past 6 months), engagement in 
heavy or intensive physical activity (top sport or physically heavy 
work), any disease or condition that seriously affects body weight 
and/or body composition, recent immobilization (for over 1 week in 
the last 3 months), psychiatric or behavioral problems, use of thyroid 
medication or immunosuppressive drugs, concurrent participation in 
any other intervention studies or weight management programs, or 
not being registered with a general practitioner.

5.2  |  Intervention protocol

Expanding on the combined lifestyle arm of the CALERIE study 
(Kraus et al., 2019), GOTO participants reduced their energy balance 
by 25% for 13 weeks, through a combination of caloric restriction 
and increased physical activity. Informed by baseline questionnaires 
on energy intake (150-item FFQ) and expenditure (IPAQ-SF), 
dieticians and physiotherapists prescribed individual guidelines 
to achieve the intervention. Participants were advised to increase 
physical activity in a way that was compatible with their lifestyle, 
and dietary guidelines aimed to follow the “Dutch Guidelines for a 
Healthy Diet” (2006).

To check and stimulate adherence to the intervention, there 
was weekly contact with both the dietician and physiotherapist. 
Participants recorded their adherence to the intervention plan in 
a diary, and two 24-h recalls were performed during the first and 
last month of the intervention. Days of the recall were unannounced 
to the participants and randomized to obtain a good distribution of 
weekdays and weekends. During monthly home visits, body weight 
and composition were measured.

5.3  |  Sample collection

Both prior and post intervention, blood (95 mL) was drawn by ve-
nepuncture between 8 and 9 a.m. in the hospital after at least 10 h 
of fasting. The participants consumed a SLM Nutridrink TM72 
representative of a typical Northern European meal (300 kcal: 
35% energy from fat, 50% from carbohydrate, and 16% protein) 
between 9 a.m. and noon on the same day. Following this, skel-
etal muscle biopsies were taken from the musculus vastus lateralis 
and a subcutaneous adipose biopsy was taken from the abdomen. 
Biopsies were taken under local anaesthetic and immediately fro-
zen in liquid nitrogen before being stored at −80°C for subsequent 
analysis.

Of the 164 individuals in the GOTO study, we profiled DNAm 
from 104 individuals at both timepoints for multiple tissues (sam-
ple n = 562). All 562 samples represented distinct samples from a 
unique timepoint, individual, and tissue combination and not dupli-
cates. DNA from whole blood (n = 206) was isolated using QIAmp 
DNA Mini kits (QIAgen) and using NucleoMag Tissue kits (Machery 
Nagel) for adipose (n = 188) and muscle (n = 168) samples. Pairs of 
samples were shuffled and plated so that they would be adjacent on 
the same array. These pairs were randomized across eight 96-well 
plates by tissue, age, and sex using Omixer (Sinke et al., 2021), and 
sent for profiling using the Infinium MethylationEPIC Kit (Illumina, 
Helmholtz Institute).

5.4  |  DNA methylation data

Following receipt of the methylation data as. IDAT files, preprocessing 
and QC followed the DNAmArray pipeline (Sinke et  al.,  2019). 
MethylAid (van Iterson et  al.,  2014) plots were used to visualize 
and check sample quality. Due to technical issues with three of the 
Infinium MethylationEPIC arrays, 25 samples failed quality control 
checks. These alongside their pairs (n = 30) were removed from 
the data, and 24 samples with sufficient remaining material were 
reprofiled and subsequently passed QC checks.

After combining data from both waves, tissue identity was con-
firmed with PCA plots, and four outlying samples and their pairs 
(n = 8) were removed. Sample mismatches were detected and re-
solved by comparing genotype data with DNAm-derived geno-
types using omicsPrint (van Iterson et al., 2018). Individuals (n = 6) 
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identified from diary data as non-compliers were also removed. 
Lastly, methylation-predicted sex was used as a final check of 
sample identity.

The data underwent functional normalization using four PCs, 
followed by removal of outlying or unreliable values, such as those 
based on low bead number (0.20%), intensity (0.08%), that were 
not distinguishable from background noise (0.37%), or more than 3 
IQR from the nearest quartile per CpG (0.28%). Any probes or sam-
ples with over 5% missingness were removed (0.00% of samples, 
1.06% of CpGs). Additionally, cross-reactive, polymorphic (Zhou 
et al.,  2016), poorly reproducible (Sugden et  al., 2020), blacklisted 
(Amemiya et al., 2019), and sex chromosomal probes were removed. 
The resulting dataset contained DNA methylation data at 755,777 
CpGs from 534 samples (196 blood, 178 adipose, and 160 muscle) 
from 102 individuals (mean age 63 years). For 66 individuals (64.7%), 
we had complete data from all three tissues at both timepoints.

5.5  |  RNA sequencing data

RNA isolation and sequencing has been described previously 
(Bogaards et al., 2024). In short, libraries were prepared using Illumina 
TruSeq version 2 library preparation kits. Data processing was per-
formed using the in-house BIOPET Gentrap pipeline (Zhernakova 
et  al.,  2017). The following steps were part of the data process-
ing: low quality trimming using sickle version 12.00. Cutadapt ver-
sion 1.1 was used to perform the adapter clipping. The reads were 
aligned to GRCh37 while masking for SNPs common in the Dutch 
population (GoNL 45 MAF > 0.01), using STAR version 2.3.0e. Picard 
version 2.4.1. was used to perform sam to bam conversion and sort-
ing. Read quantification was performed using htseq-count version 
0.6.1.p1 using Ensembl gene annotations version 86 for gene defini-
tions. In blood, the sequencing resulted in an average of 37.2 million 
reads per sample, 97% (±0.4%) of which were mapped. In SAT, sam-
ples had an average of 11.4 million sequenced reads, 95% (±1.6%) of 
which were mapped. In muscle, an average of 36.9 million sequence 
reads per sample, 98% (±0.4%) of which were mapped.

5.6  |  Cell type proportion data

In muscle, we predicted cell types using the MuSiC algorithm (Wang 
et al., 2019), which has been shown to outperform other methods in its 
characterization of cellular heterogeneity in complex tissues when pro-
vided with an appropriate reference (Avila Cobos et al., 2020). Using 
publicly available single nuclei expression data, we predicted muscle 
cell-type proportions from bulk expression data (Perez et al., 2022). 
For fat samples, no suitable scRNA reference atlas was available, and 
therefore we utilized CIBERSORTx (Newman et  al., 2019), the suc-
cessor of one of the highest performing bulk deconvolution methods 
(Avila Cobos et al., 2020). We input a publicly available signature ma-
trix which has previously predicted cell types from bulk adipose tissue 
RNAseq in TwinsUK and GTEx (Glastonbury et al., 2019).

In fasted blood, the percentages of cell types (neutrophils, lym-
phocytes, monocytes, eosinophils, and basophils) were measured 
with a blood differential test. To investigate the intervention effect 
on specific subtypes, we also predicted blood cell type propor-
tions. Using an scRNA reference atlas (Xie et  al., 2020) combined 
with whole blood expression data, the MuSiC algorithm (Wang 
et  al.,  2019) estimated 32 different cell types. Furthermore, the 
IDOL (Koestler et al., 2016) and IDOL extended (Salas et al., 2022) 
algorithms predicted six and 12 subtypes from the DNA methylation 
data, respectively.

5.7  |  Statistical analysis

To evaluate the effect of the intervention on DNAm, we performed 
a mixed model test with a fixed effect for the intervention (time) and 
an individual random effect (ID), adjusting for confounders (age, sex, 
and smoking), technical covariates (plate and array row), and the first 
five PCs. The Bioconductor package bacon (van Iterson et al., 2017) 
was used to inspect and adjust for bias and inflation of the test statis-
tics, using default priors (α = 1.28, β = 0.36). For all models, estimates 
of inflation and bias were used to identify any anomalies in the data. 
p values were adjusted for multiple testing using the FDR method.

In muscle, we additionally adjusted for predicted endothelial nu-
clei proportions. These models were fit for each tissue individually 
using the limma package in R.

5.8  |  CpG interpretation

5.8.1  |  Differentially methylated regions

To assess the number of distinct genomic loci in our results, dif-
ferentially methylated regions (DMRs) were identified using the 
DMRfinder algorithm (Slieker et  al.,  2013) as implemented in the 
DNAmArray workflow (Sinke et al., 2019). DMRs were defined as re-
gions with at least three differentially methylated positions (DMPs) 
with an inter-CpG distance of less than 1 kb, allowing a maximum of 
three non-DMPs across a DMR. Next, the number of distinct loci 
were calculated as the total number of DMPs minus the number of 
DMPs in DMRs plus the number of DMRs called by DMRfinder.

5.8.2  |  Chromatin state enrichment analyses

FDR significant CpGs were annotated to chromatin state using an 
appropriate Roadmap reference epigenome (E062 for blood, E063 
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for adipose, E107 and E108 for muscle) (Kundaje et  al.,  2015). 
Logistic regressions models were fit using the glm function in R to 
calculate and test odds ratios (ORs) of significance for each of the 
15 chromatin states. Nominal p values were adjusted for multiple 
testing using FDR and enrichments or depletions were identified at 
the 5% significance threshold.

5.8.3  |  Transcription factor-binding site (TFBS) 
enrichment analyses

A 50 bp window around significant CpGs was scanned using find-
MotifsGenome.pl. from HOMER (Heinz et al., 2010) for enrichment 
of known motifs compared to background noise. ENCODE TFBS an-
notation for 171 TFs and CpGs on the EPIC array (Zhou et al., 2016) 
was used to further investigate the size of binding sites and distance 
from CpG to summit. TFs associated with enriched TFBS were ex-
amined for links with pathways specific to the tissue in which the 
enrichment was found.

5.8.4  |  Gene annotation

Genomic locations of human transcripts, exons, CDS, and genes 
were imported from the Ensembl database using makeTxDbFro-
mEnsembl from the GenomicFeatures Bioconductor package 
(Lawrence et  al.,  2013). These were used to annotate each of our 
CpGs to their nearest gene, in addition to saving a list of all genes 
which lay within 100 kb of each CpG.

5.8.5  |  Differential gene expression

Gene expression changes were analysed as described previously but 
with both sexes combined in a single analysis (Bogaards et al., 2024). 
Briefly, the differential gene expression analysis was performed 
using linear mixed models in limma in combination with VOOM 
normalization. p values were adjusted for multiple testing using the 
FDR method and assessed at the 5% significance level. Models were 
adjusted for technical factors, age, and sex as fixed effects and in-
cluded a random effect for ID.

5.8.6  |  eQTM analyses

Using GOTO gene expression data from each tissue, we investigated 
the association between DNA methylation at our set of CpGs and ex-
pression levels of genes within 100 kb. Expression data was filtered 
for genes with low levels of expression and the edgeR Bioconductor 
package was used to calculate log2 CPM (Robinson et  al.,  2010). 
Lastly, RIN transformations were applied for each gene as described 
previously (Bonder et al., 2017).

Nominal p values were adjusted for multiple testing using FDR 
and assessed at the 5% significance level.

5.8.7  |  Gene set enrichment analyses (GSEA)

Using a list of genes whose expression changed with nearby meth-
ylation as input, we performed GSEA. The associated gene names 
were then used as input for GSEA. We used recent (updated in the 
last 5 years) databases relating to human health and disease down-
loaded from Enrichr (GO Biological Process 2023, KEGG Human 
2021, and Reactome 2022). These were imported into R and analy-
ses were performed using the enrichr function from clusterProfiler 
(Xu et al., 2024). p values were adjusted for multiple testing using 
FDR and significance was assessed at the 5% level.

5.8.8  |  Health parameter associations

We investigated the association between DNA methylation at 
our set of CpGs and 10 health parameters, adjusting for age, sex, 
smoking, technical covariates, and with a random effect for ID.

For each trait, nominal p values were adjusted for multiple test-
ing using FDR and assessed at the 5% significance level.

5.9  |  Epigenetic clock algorithms

5.9.1  |  Chronological age prediction

Using the dnaMethyAge package (Wang et al., 2023), we predicted 
Horvath,  (2013), Zhang et  al.  (2019), and Bernabeu et  al.  (2023) 
chronological ages (cAges). Correlations between these estimates 
and actual age was assessed using a Pearson's correlation test with 
the cor.test function in R. Coefficients, 95% confidence intervals, 
and p values were saved and further adjusted for multiple testing 
using FDR. Significance was assessed at the 5% level.

5.9.2  |  Biological age predictions

Using the dnaMethyAge package (Wang et al., 2023), we predicted 
LevineM2018 (PhenoAge) (Levine et  al., 2018). grimAge was es-
timated using the coefficients, R, and Python scripts provided 
by the researchers who developed this measure (Lu et al., 2019). 

DNAmij∼geneij+agei+sexi+smokei+plate1ij+ … +plate10ij

+arrayRowij+ flowcellij+
(
1| IDi

)

DNAmij∼ traitij+agei+sexi+smokei+plate1ij+ … +plate10ij

+arrayRowij+
(
1| IDi

)

 14749726, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/acel.14431, W

iley O
nline L

ibrary on [06/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  15 of 19SINKE et al.

Bernabeu's bAge (Bernabeu et  al., 2023) was predicted by com-
bining grimAge, DNAm data, and phenotype data in the bage_
predictor.R script provided on their GitHub (elenabernabeu/
cage_bage). Lastly, MEAT biological ages (Voisin et al., 2020) were 
predicted from muscle DNAm data using the MEAT Bioconductor 
package for R.

For all four bAge predictions, paired analyses were used to es-
timate how they changed following the GOTO intervention, ad-
justing for age, sex, technical covariates and with a random effect 
for ID:

Nominal p values were adjusted for multiple testing using FDR 
and assessed at the 5% significance level.

5.9.3  |  Associations between grimAge and 
metabolic health parameters

We investigated the association between grimAge as predicted 
from our blood DNAm data and 10 health parameters using a paired 
analysis, adjusting for age, sex, technical covariates, and with a 
random effect for ID.

For each trait, nominal p values were adjusted for multiple test-
ing using FDR and assessed at the 5% significance level.
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