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Expression of p53 in human adipose tissue correlates positively
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Activation of Fas (CD95) in adipocytes inhibits browning and may contribute to body weight gain in mice. Moreover, Fas expression
in white adipose tissue (WAT) correlates positively with body mass index (BMI) in humans. However, molecular pathways involved in
the inhibitory effect of Fas on energy metabolism remain incompletely understood. Herein, we report that protein levels of the tumor
suppressor p53 were reduced in primary white adipocytes of adipocyte-specific Fas-knockout mice. Moreover, Fas ligand (FasL)
treatment increased p53 concentrations in cultured adipocytes and decreased mitochondrial oxygen consumption in control but not
in p53-depleted cells, indicating that Fas activation reduces energy expenditure in a p53-dependent manner. In line, in differentiated
human mesenchymal stem cells and WAT derived from different anatomical depots, FAS expression was positively associated with
p53. Furthermore, p53 expression in human subcutaneous and visceral WAT correlated positively with BMI, whereas its expression in
visceral WAT was inversely associated with insulin sensitivity (as assessed by hyperinsulinemic-euglycemic clamp). Taken together,
our data suggest that Fas regulates p53 expression in adipocytes, and may thereby affect body weight gain and insulin sensitivity.

International Journal of Obesity; https://doi.org/10.1038/s41366-024-01691-4

INTRODUCTION
We recently found that adipocyte-expressed Fas (CD95) may be a
therapeutic target to reduce obesity and associated diseases [1]. In
particular, high-fat diet (HFD)-fed adipocyte-specific Fas knockout
mice displayed reduced inflammation and elevated browning of
WAT, increased insulin sensitivity, whole body energy expenditure
and reduced body weight gain compared to control littermates. In
line, FAS expression in human WAT correlated positively with
adiposity, indicating that the negative effect of Fas may be
conserved between species [1].
Similar to Fas [1–3], expression of the tumor suppressor p53 was

increased in WAT of mice and men with obesity, and may
contribute to the development of WAT inflammation and,
consequently, insulin resistance [4–6]. In addition, p53 may blunt
energy expenditure in WAT as suggested by increased oxygen
consumption rate (OCR) in p53-depleted white adipocytes [7].
Since Fas activation may increase the abundance of the tumor
suppressor p53 [8], we aimed to investigate whether the

detrimental effects of Fas on glucose homeostasis and energy
metabolism may at least partly be mediated by p53.

MATERIAL AND METHODS
Humans
Paired abdominal and femoral subcutaneous AT needle biopsies were
obtained from 18 postmenopausal women (BMI range: 21.2–40.6 kg/m2, age
range: 50–62 years) and p53 mRNA expression was determined as described
[9]. The UK Health Research Authority National Health System Research Ethics
Committee approved the present study (approval no. 18/NW/0392). For
further details please see Supplementary Material and Methods.
In a cross-sectional study, in which 302 individuals participated (205

women, 97 men; BMI range: 16.9–85.5 kg/m², age range: 16–90 years), we
investigated FAS and p53 mRNA expression in subcutaneous and/or
visceral WAT samples collected during elective laparoscopic abdominal
surgery as described previously [10]. Hyperinsulinemic-euglycemic clamps
were performed in a subset of individuals as described therein. The study
was approved by the Ethics Committee of the University of Leipzig
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(approval no: 159-12-21052012), and performed in accordance to the
declaration of Helsinki. All subjects gave written informed consent before
taking part in this study. The probes (Life technologies, Darmstadt,
Germany) for p53 (Hs01034249_m1) and HPRT1 (Hs01003267_m1) span
exon-exon boundaries.

Isolation of white adipocytes
Adipocyte-specific Fas knockout mice were generated and housed as
described [1]. All protocols conformed to the Swiss animal protection laws
and were approved by the Cantonal Veterinary Office in Zurich, Switzer-
land. Group size was determined based on previous experiments
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performed in our laboratory. Group allocation was determined by the
genotype. Experimenters were not blinded to group allocations. White
adipocytes were isolated from 26-week old HFD-fed male mice as
previously described [11].

Mitochondrial oxygen consumption in adipocytes
Differentiated subcutaneous adipocytes were treated with 0.4 ng/ml FasL
or vehicle for 72 h. After 66 h, 1 μmol/l isoproterenol was added to all wells
for 5 h to induce browning. Subsequently, medium was replaced to
Seahorse XF DMEM Medium pH 7.4 supplemented with 25mM glucose,
4 mM glutamine, 1 mM pyruvate, 2% fatty acid free BSA, and the plate was
degassed in a non-CO2 incubator at 37 °C for 1 h. After measuring basal
oxygen consumption rate (OCR) in a Seahorse XF Pro Extracellular Flux
Analyzer (Agilent Technologies, Santa Clara, CA, USA), cells were
sequentially treated with oligomycin (5 μM), isoproterenol (0.5 μM), FCCP
(7.5 μM) and antimycin A (5 μM) [12]. Sample size was determined based
on previous experiments performed in our laboratory. Only wells with
increased OCR after FCCP injection were analyzed. Outliers identified by
ROUT analyses were excluded. Basal, proton leak-linked OCR and coupling
efficiency were calculated according to manufactures’ equations.

p53 depletion in adipocytes
For details please consult Supplementary Material and Methods.

Data analysis
Data are presented as means ± SEM. Shapiro–Wilk test was used to assess
normal distribution. When comparing two groups, Mann–Whitney test was
used for not normally and unpaired two-tailed Student’s t test (with
Welch’s correction in case of unequal variances) for normally distributed
data. When comparing more than two groups, two-way ANOVA with
Tukey’s multiple comparison test was used. In human studies, linear
relationships were assessed by Spearman correlation. Statistical tests were
calculated using GraphPad Prism (GraphPad Software, San Diego, CA, USA).

RESULTS
Fas regulates p53 protein levels in adipocytes
We first analyzed p53 protein levels in primary adipocytes isolated
from adipocyte-specific Fas knockout mice. As depicted in Fig. 1a,
p53 protein abundance was markedly reduced in HFD-fed
knockout compared to control mice. Conversely, treatment of
subcutaneous white adipocytes [13] with non-apoptotic concen-
trations of Fas ligand (FasL) [1] significantly increased p53 protein
levels (Fig. 1a). These data indicate that Fas regulates p53 levels.
Next, we aimed to investigate whether the Fas-p53 axis affects
energy expenditure in adipocytes. To this end, Seahorse experi-
ments were performed in FasL-treated adipocytes with or without
CRISPR-Cas9-mediated knockout of p53 (Fig. 1b). Confirming
previous findings [7], p53-knockout significantly increased OCR
(Fig. 1b). The latter was paralleled by lower coupling efficiency and
elevated protein levels of uncoupling protein 1 (UCP1) (Supple-
mentary Fig. 1a, b). Importantly, FasL treatment significantly
reduced basal and proton leak-linked OCR in control but not in
p53-knockout cells (Fig. 1c), indicating that activation of Fas
reduces energy expenditure in a p53-dependent manner.
To further investigate whether Fas regulates p53 levels in

human adipocytes, we determined gene expression of FAS and

p53 in differentiated human multipotent femoral and abdominal
adipose-derived stem cells (hMADS). As depicted in Fig. 1d, we
found a significant positive correlation between FAS and p53
mRNA expression in hMADS from both fat depots, suggesting that
Fas may be a positive regulator of p53 in human adipocytes.

p53 in human WAT correlates positively with FAS and BMI
Next, we aimed to investigate whether p53 expression in human
WAT correlates with measures of obesity and insulin resistance. Of
note, the positive correlation between FAS and p53 expression in
hMADS (Fig. 1d) was confirmed in human abdominal subcuta-
neous as well as in visceral WAT (Fig. 2a). Importantly, p53 and FAS
mRNA expression in both WAT depots correlated positively with
BMI (Fig. 2b and Supplementary Fig. 2a). Moreover, we found a
significant negative correlation between glucose infusion rates
(GIR) during hyperinsulinemic-euglycemic clamps and p53 as well
as FAS expression in visceral WAT, while such correlation was
significant for FAS but not p53 in subcutaneous WAT (Fig. 2c and
Supplementary Fig. 2b). In addition, p53 expression in both WAT
depots correlated significantly negative with UCP1 (Fig. 2d).

DISCUSSION
The presented findings in mice and humans suggest that Fas
regulates p53 levels in adipocytes, and may thereby negatively impact
body weight gain and glucose metabolism. The regulatory role of Fas
is supported by the findings that Fas activation increased p53 protein
levels in adipocytes and that Fas-depleted adipocytes revealed
markedly reduced p53 levels. In line, FAS correlated positively with
p53 expression in differentiated adipose-derived mesenchymal stem
cells as well as human WAT of different anatomical locations. Thus,
elevated Fas expression in WAT of mice and men with obesity may
underlie the parallel increase in p53 levels [2–6]. Our data reveal
significant correlations between BMI and p53 expression in human
subcutaneous as well as visceral WAT and are in contrast with
previous findings reporting a positive correlation between BMI and
p53 expression in omental but not subcutaneous WAT [5]. Further
studies are needed to better understand these discrepant findings as
well as the clinical significance of the present results.
Seahorse analysis revealed that p53 depletion increased

mitochondrial oxygen consumption in cultured adipocytes,
whereas Fas activation reduced the latter in a p53-dependent
manner. Hence, reduced p53 concentrations in adipocytes may be
at least partly responsible for the higher energy expenditure and,
hence, blunted body weight gain in HFD-fed adipocyte-specific
Fas knockout mice [1]. Since Fas activation reduced uncoupling
protein 1 (UCP1) content in adipocytes [1], further studies may
unravel whether the inhibitory effect of the Fas-p53 pathway on
oxygen consumption is mediated via a reduction in UCP1
concentration and/or other molecular pathways. In support of
the former, we report herein that p53 expression correlates
positively with FAS but negatively with UCP1 in human WAT.
Possibly, the stronger correlation between peripheral insulin

sensitivity and p53 expression in visceral compared to subcuta-
neous WAT may be explained by the fact that visceral fat is more
prone to obesity-induced inflammation. The latter is an important

Fig. 1 Fas regulates p53 protein levels in adipocytes. a Left panel: Western blot and quantification of Fas and p53 protein levels in white
adipocytes harvested from HFD-fed FasF/F and FasΔadipo mice. n= 6–7 mice per group. **p < 0.01. Right panel: Western blot and quantification
of p53 protein levels in subcutaneous white adipocytes treated with or without 0.4 ng/ml FasL for 24 h. n= 5 cell culture wells of 3
independent experiments. *p < 0.05. b Representative Western blot and oxygen consumption rate (OCR; n= 37–41 cell culture wells of 2
independent experiments) in control (Co) and p53-depleted (p53 KO) subcutaneous adipocytes treated with or without 0.4 ng/ml FasL for
72 h. Co vs. Co+ FasL, p < 0.001; p53 KO vs. p53 KO+ FasL, p= 0.43; Co vs. p53 KO, p < 0.001. c Basal and proton leak-linked respiration
calculated from OCR data. *p < 0.05, **p < 0.01, ***p < 0.001. d Scatter plot and correlation coefficient (r) of FAS and p53 mRNA expression in
differentiated human mesenchymal stem cells derived from paired femoral (n= 18) and abdominal (n= 16) subcutaneous adipose tissue
samples. Statistical tests used: Mann–Whitney (left panel) and Student’s t test (right panel) for (a); two-way ANOVA for (b, c); Spearman
correlation for (d).
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Fig. 2 p53 expression in human WAT correlates positively with FAS and BMI. a Scatter plot and correlation coefficient (r) of subcutaneous
(sc; n= 254) or visceral (v; n= 250) WAT FASmRNA and p53mRNA expression. b Scatter plot and correlation coefficient (r) of p53 expression in
scWAT (n= 281) or vWAT (n= 284) and BMI. c Scatter plot and correlation coefficient (r) of p53 expression in scWAT (n= 129) or vWAT (n= 128)
and glucose infusion rate during hyperinsulinemic-euglycemic clamps. d Scatter plot and correlation coefficient (r) of scWAT (n= 255) or vWAT
(n= 265) UCP1 and p53 mRNA expression. Statistical tests used: Spearman correlation.
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driver of obesity-induced insulin resistance [14, 15] and may be
further enhanced by p53. Indeed, expression of p53 in omental
WAT was positively associated with WAT inflammation (i.e.,
expression of TNFα and the macrophage marker CD68) but
negatively with HbA1c [5]. Along the same line, reduced p53 levels
in HFD-fed adipocyte-specific Fas knockout mice may have
contributed to reduced WAT inflammation and, consequently,
improved insulin sensitivity in these animals [1].
In conclusion, the present study identifies Fas as a regulator of

p53 levels in adipocytes. Consequently, the detrimental effects of
Fas on glucose homeostasis and energy metabolism may at least
partly be mediated by p53.

DATA AVAILABILITY
The data supporting the findings of this study are available within the article or from
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