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ABSTRACT Clustering similarity measures are essential for evaluating clustering results and ensuring
diversity in multiple clusterings of the same dataset. Common indices like the Mutual Information (MI)
and Rand Index (RI) are biased towards smaller clusters and are often adjusted using a random permutation
model. Recent advancements have standardized these measures to further correct biases, but the impact of
different randommodels on these standardized measures has not yet been studied. In this work, we introduce
equations for standardizing the MI/RI under non-permutation models, specifically focusing on a uniform
model over all clusterings and a model that fixes the number of clusterings. Our results show that while
standardization improves performance for the fixed number of clusters model, its benefits are limited in
the more general uniform model. We validate our findings with gene expression data, highlighting the
importance of choosing the right similarity metric for clustering comparison.

INDEX TERMS Clustering comparison, external evaluation metrics, mutual information, rand index,
random model, machine learning.

I. INTRODUCTION
Clustering describes the process of partitioning a set into
meaningful subsets and is a fundamental technique of
unsupervised learning. Once a clustering (set partition)
is found, its quality can be assessed by comparing it
to a reference clustering via a similarity index [1]. This
procedure is called external validation and is common
to determine the best clustering algorithm for a given
dataset [2]. In that way, clustering similarity measures are
employed in numerous domains, like topic modeling [3],
image segmentation [4] or medical applications [5]. Besides
their use in external validation, clustering similarity indices
guide multiple-clustering algorithms to generate meaning-
fully diverse solutions [6], [7]. Recently, clustering similarity
indiceswere also employed in loss functions for deep learning
methods for community detection on graphs [8], [9].
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Two of the most popular clustering similarity indices are
the Mutual Information (MI) [10] and the Rand Index (RI)
[11]. A well-known problem with these clustering similarity
indices is that they are biased towards smaller clusters [12],
[13]. The Adjusted Mutual Information (AMI) [10] and
Adjusted Rand Index (ARI) [14] achieve a constant baseline
by correcting the indices by their expected value under
random permutation of the cluster labels. However, a more
subtle bias towards smaller clusters remains when multiple
candidate solutions are compared to a single reference to
determine the best candidate [15]. To counter that second
bias, the indices are further corrected by their second statis-
tical moment under random permutation as the Standardized
Mutual Information (SMI) [15] and the Standardized Rand
Index (SRI) [16]. A recent study even demonstrated the
theoretical benefits of a p-value correction, although its steep
computational cost limits practical applications [17].

All these corrections use the random permutation model
with fixed cluster sizes as a baseline, but a different random
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FIGURE 1. Gates and Ahn [18] extended the Adjusted Rand Index (ARI)
and the Adjusted Mutual Information (AMI) to non-permutation models,
to better reflect constraints of popular clustering methods like k-means.
In a parallel development Romano et al. [15], [16] extended the
adjustment to the second statistical moment, introducing the
Standardized Rand Index (SRI) and Standardized Mutual Information
(SMI) to remove a bias in the adjusted variants. In this work, we combine
these approaches and introduce standardization for non-permutation
models.

model could be more appropriate for many popular clustering
algorithms [18]. In k-means clustering, for example, the
number of clusters is fixed, but the individual cluster sizes
can fluctuate [19]. Hence, random clusterings with a fixed
number of clusters of any size are a more appropriate
baseline for k-means. In other clustering algorithms like
DBSCAN [20], not even the number of clusters is fixed, such
that the uniform distribution over all clusterings given the
dataset size is a better baseline. Gates and Ahn [18] studied
these randommodels for the first-moment-corrected ARI and
AMI.

In this work, we extend these random models to the
second-order corrected SRI and SMI as illustrated in Figure 1.
We further derive a general formulation of these correc-
tions for any element-symmetric distribution, providing a
framework for studying custom randommodels beyond those
presented here. Our synthetic experiments validate the theo-
retical improvements offered by the second-order corrections
in the fixed number of clusters model. An experiment on
gene expression data highlights the importance of the random
model choice.

II. BACKGROUND
A clustering U : S → {1, 2, . . . , kU } is a surjection
that partitions a dataset S with N := |S| data points into
kU subsets. We denote the size of the i-th cluster with
ui := |U−1(i)|. Clustering similarity indices like the MI
and RI quantitatively compare two clusterings U ,V . For
the MI on a finite dataset, the cluster assignments U ,V
are understood as discrete random variables and hence we
use the mutual information for discrete distributions [10],

[12]. The RI counts the number of pairs of data points
that agree in both clusterings, more on that in Section III,
Equation (5).

To correct a bias in these indices that always favors
smaller clusters, the AMI and ARI were introduced with the
random permutation model [10], [14]. Gates and Ahn [18]
generalized these adjustments to other random models as
follows

AMImodel(U ,V ) =
MI(U ,V ) − Emodel[MI]

maxmodel[MI] − Emodel[MI]
(1)

ARImodel(U ,V ) =
RI(U ,V ) − Emodel[RI]

1 − Emodel[RI]
. (2)

Note that maxmodel[MI] used to normalize the AMI, must
be chosen appropriately for the random model [12], [18].
In the following, three random models are studied in more
depth:

• In the random permutation model (perm), the
expectation value is calculated over all permuta-
tions of the cluster labels, while the cluster sizes
u1, . . . , ukU ; v1, . . . , vkV are fixed. It is the most
widely used model for clustering similarity index
adjustment.

• In the fixed number of clusters model (num), the
expectation value is over all set partitions with kU , kV
parts. This model can provide a better baseline for
clustering methods with a predetermined number of
clusters like k-means, spectral clustering, or Gaussian
mixture methods.

• The uniform model over all clusterings (all) of N data
points is the most general. It can serve as a starting point
when the internal workings of the clustering algorithm
are unknown.

Observe that all three models assign equal probability to all
permutations of clustering, i.e., they are fully defined by a
distribution over the integer partitions (cluster sizes). We call
such distributions element-symmetric:
Definition 1 (Gösgens et al. [21]): A distribution over

clusterings U is element-symmetric if it assigns the same
probability to every two clusterings U and U ′ with the same
cluster sizes.
While the permutation model is equivalent whether one or
both clusterings are permuted, one- and two-sided corrections
must be distinguished for the other random models [18].
We denote one-sided adjustments with a superscript 1, e.g.,
AMI1num for the one-sided, fixed number of clusters adjusted
Mutual Information.

The AMI and ARI satisfy the constant baseline prop-
erty, but they are still prone to a selection bias, i.e. the
tendency to select clusterings with more clusters than
a reference, when comparing multiple candidate solu-
tions [15]. Romano et al. [15], [16] introduced standardiza-
tion under the random permutation model to mitigate that
bias.
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FIGURE 2. We compare a fixed reference clustering with kU = 10 even
clusters, to random clusterings with kV ∈ {2, 6, 10, 14, 18, 22} clusters and
select the most similar random clustering. The plot shows the selection
probabilities of each kV for the standardized Rand index under the fixed
number of clusters model with two- and one-sided adjustment. The
two-sided SRInum is clearly biased towards more clusters, whereas the
one-sided SRI1num mostly mitigates that bias. In scenarios when there is
one fixed reference clustering, the one-sided adjustment is more suitable.

III. STANDARDIZATION IN NON-PERMUTATION MODELS
In this work, we generalize the SMI and SRI to other random
models as follows

SMImodel(U ,V ) =
MI(U ,V ) − Emodel[MI]

√
Varmodel[MI]

(3)

SRImodel(U ,V ) =
RI(U ,V ) − Emodel[RI]

√
Varmodel[RI]

, (4)

with Varmodel[X ] = Emodel[X2] − Emodel[X ]2. Calculating
the statistical moments is the crucial step for achieving
standardization. Particularly the secondmoment is of interest,
since the AMI and ARI already correct for the first statistical
moment, whereas standardization also takes the second
moment into account.

A. RAND INDEX
The Rand Index is the fraction of pairs of data points that
agree in two clusterings U and V . Given a pair of points i, j,
the clusterings agree when they map the points to either the
same cluster or different clusters.

RI(U ,V )

:= Ei,j∼Unif (S2)

[
1(U (i)=U (j)∧V (i)=V (j))∨(U (i)̸=U (j)∧V (i)̸=V (j))

]
= Ei,j∼Unif (S2)

[
1U (i)=U (j)1V (i)=V (j) + 1U (i)̸=U (j)1V (i)̸=V (j)

]
,

(5)

with i, j a pair of distinct elements of the dataset S chosen
uniformly at random and 1 the indicator function.

For the Rand Index, we consider the permutation model,
the fixed number of clusters model, and the uniform model
over all clusterings. The pairwise transposition model is
omitted, as its only purpose is efficiently approximating the
permutation model. Yet, the SRIperm was shown to be as
efficient as the RI itself O(kukv) [17].

1) EXPECTED RAND INDEX
Theorem 1: Let U and V denote two element-symmetric

clustering distributions. The expected Rand Index under such
distributions is

EU∼U ,V∼V [RI(U ,V )] = p=

Up
=

V + p ̸=

Up
̸=

V , (6)

with p=

U := EU∼U;i,j∼Unif (S2)

[
1U (i)=U (j)

]
the probability that

a random pair of datapoints i, j share the same cluster in a
clustering drawn from U . The probability that i and j are in
different clusters is p̸=

U = 1 − p=

U .
All formal proofs are relegated to the appendix. Essentially,

the restriction to element-symmetric distributions allows for
factorization into individual probabilities since everything
is fully determined by the cluster sizes (integer partitions),
leaving 1U (i)=U (j) and 1V (i)=V (j) uncorrelated.
Note that the expected Rand Index is fully determined by

p=

U . Following Gates and Ahn [18], we derive expressions for
p=

U for each of the random models.

a: PERMUTATION MODEL
When the cluster sizes ui are fixed, the number of pairs where
both points are inside the same cluster is

∑kU
i=1

(ui
2

)
. Divided

by the total number of pairs, we get the desired probability

p=
perm =

kU∑
i=1

(
ui
2

)/(
N
2

)
(7)

b: FIXED NUMBER OF CLUSTERS
If we pick a random pair of data points from a random
clustering with k clusters, p=

num is the probability that these
points are in the same cluster. The total number of clusterings
of a dataset of size N into exactly k clusters is S(N , k), the
Stirling Number of the second kind [22]. Given a pair of data
points i, j, we count the number of clusterings for which i
and j are in the same cluster. To that end, we first hold out
i and cluster all data points but i into k clusters. Then we
add i to the same cluster as j. Hence, there are S(N − 1, k)
clusterings where i and j are in the same cluster [23]. Note that
this number is completely independent of i and j and therefore
the probability p=

num is

p=
num =

S(N − 1, k)
S(N , k)

. (8)

c: ALL CLUSTERINGS
The number of clusterings of any size, where a uniformly
chosen pair i, j is in the same cluster, is simply the sum of
that count for a given number of clusters k over all possible
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numbers of clusters (from a single large cluster toN singleton
clusters)

p=

all =

∑N
k=1 S(N − 1, k)∑N
k=1 S(N , k)

=
BN−1

BN
, (9)

where BN denotes the N -th Bell number [24].

2) VARIANCE RAND INDEX
Given the expected Rand Index from above, we lack the
second moment of the Rand Index to compute the Variance.
Theorem 2: Let U and V denote two element-symmetric

clustering distributions. Let

p=,=
U := E

U∼U;(i,j),(i′,j′)∼
(

(S2)
2

) [1U (i)=U (j)1U (i′)=U (j′)
]

(10)

denote the joint probability that two distinct pairs of distinct
data points chosen uniformly at random, each lie inside a
cluster in a clustering U drawn from U . Further, let

p=,̸=

U = p̸=,=

U = p=

U − p=,=
U (11)

denote the probability of one pair falling inside a cluster
while the other falls in two distinct clusters, with p=

U as in
Theorem 1. Finally, let the probability of both pairs being split
across clusters be

p̸=,̸=

U = 1 − p=,=
U − p=,̸=

U − p̸=,=

U . (12)

Then the second statistical moment of the Rand Index
under U and V is

EU∼U ,V∼V [RI(U ,V )2]

=

(
N
2

)−1

(p=

Up
=

V + p̸=

Up
̸=

V ) +

(
1 −

(
N
2

))−1

(
p=,=
U p=,=

V + 2 · p=,̸=

U p=,̸=

V + p̸=,̸=

U p ̸=,̸=

V

)
. (13)

Similarly to the expected Rand Index, the variance is now
fully determined by p=

U and p=,=
U . In the following we derive

explicit expressions for p=,=
U for each of the random models.

a: PERMUTATION MODEL
We first pick a pair where both points are inside the same
cluster with probability p=

perm (Equation (7)). Then there are(N
2

)
− 1 pairs left out of which

∑kU
i=1

(ui
2

)
− 1 are in the same

cluster, hence

p=,=
perm = p=

perm

( kU∑
i=1

(
ui
2

)
− 1

)/((
N
2

)
− 1

)
. (14)

b: FIXED NUMBER OF CLUSTERS
Similar to p=

num, we hold out two distinct data points i, i′

and assign the remaining data points to kU clusters. Then we
assign i to the same cluster as j and i′ to the same cluster as
j′, giving

p=,=
num = S(N − 2, k)/S(N , k). (15)

Note that j = j′ is possible, but since the expectation value in
Equation (10) is over two distinct pairs, we can always pick
i ̸= i′ in the first step.

c: ALL CLUSTERINGS
As for the expected Rand Index, we take the sum of p=,=

num over
all possible values for k

p=,=
all = BN−2/BN . (16)

B. MUTUAL INFORMATION
Nguyen et al. [10] found that the expectedmutual information
under random permutation can be expressed using the
hypergeometric distribution

Hyp(n|u, v,N ) =

(u
n

)(N−u
v−n

)(N
v

) , (17)

that has finite support on the integers in [max(u + v −

N , 0),min(u, v)]. Here, we generalize this result to other
random models.

1) EXPECTED MUTUAL INFORMATION
Theorem 3: Let U,V be two element-symmetric clus-

tering distributions. Let pU (u) denote the probability of a
random datapoint i ∼ Unif(S) lying in a cluster of size u
in a clustering U drawn from U . Then, the expected mutual
information is

EU∼U ,V∼V [MI(U ,V )]

=

∑
u

∑
v

pU (u)pV (v)
∑
n

nN
uv

log
(
nN
uv

)
Hyp(n|u, v,N ).

(18)

We define n log n = 0 for n = 0 for notational simplicity.
The idea of factoring out the probabilities pU (u) is not

new and has proven beneficial for an efficient Monte Carlo
approximation of the expected MI for the permutation
model [25]. Here, we find pU (u) also for the other random
models, following the argumentation in [18].

a: PERMUTATION MODEL
In the random permutationmodel, the probability of picking a
datapoint in a cluster of size u is simply u/N times the number
of clusters of size u in the clustering U

pUperm(u) =
|{i : ui = u}|u

N
. (19)

b: FIXED NUMBER OF CLUSTERS
pk,Nnum(u) denotes the probability that for a random clustering
of N points with k clusters, a uniformly chosen data point
lies in a cluster of size u. We can adapt the strategy from
section III-A1b, yet here we are interested in the size of the
cluster of a single point in contrast to a pair of points being in
the same cluster as for the Rand Index. The total number of
clusterings of N data points into k clusters is again S(N , k)
[22]. First, we search the number of clusterings that contain
at least one cluster of size u. To ensure that such a cluster
exists, we first pick u out of the N data points and put them
in a cluster - there are

(N
2

)
ways to do that. Then there are

S(N − u, k − 1) ways to put the remaining N − u data points

179882 VOLUME 12, 2024
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FIGURE 3. We compare a fixed reference clustering with kU = 10 even clusters, to random clusterings with kV ∈ {2, 6, 10, 14, 18, 22} clusters. The plot
shows the selection probabilities of each kV for the NMImodel, AMI1model, SMI1model for the permutation model (perm), the fixed number of clusters
model (num) and the all clusterings model (all). For the permutation model and the fixed number of clusters model, standardization effectively removes
the bias towards smaller clusters. Since the number of clusters N is constant throughout this experiment, the adjustments using the all clusterings model
are effectively a constant scaling factor and standardization has no impact. This highlights the importance of not choosing a random model that is too
general for the comparison scenario.

in k−1 remaining clusters. Finally the chance of picking one
of the u elements when randomly choosing a data point is
u/N , and hence

pk,Nnum(u) =

(
N
u

)
S(N − u, k − 1)

S(N , k)
u
N

. (20)

c: ALL CLUSTERINGS
For the all clusterings model, we take the sum over all
possible numbers of clusters

∑
k p

k,N
num, giving

pNall(u) =

(
N
u

)
BN−u

BN

u
N

. (21)

2) VARIANCE MUTUAL INFORMATION
Theorem 4: Let U,V be two element-symmetric distribu-

tions and pU (u) as in Theorem 3. We further denote the
probability of two random datapoints i, i′ ∼ Unif(S) being
in clusters of size u and u′ in a clustering drawn from U as
pU (u, u′). For convenience, we further define the conditional
probability of cluster size u′, given u, but reduced by the case
where both i and i′ are in the same cluster

qU (u
′
|u) =

pU (u, u′)
pU (u)

− 1u=u′

u′

N
. (22)

The second moment of the Mutual Information is then

EU∼U ,V∼V [MI(U ,V )2] =∑
u

∑
v

pU (u)pV (v)
∑
n

nN
uv

log
(
nN
uv

)
Hyp(n|u, v,N )

[
n
N

log
(
nN
uv

)
+

∑
u′

qU (u
′
|u)
∑
n′

n′

u′
log

(
n′N
u′v

)
Hyp(n′

|u′, v− n,N − u) +

∑
v′
qV (v

′
|v)
∑
n′

Hyp(n′
|v′, u− n,N − v)

(
n′

v′
log

(
nN
uv′

)
+

∑
u′

qV (u
′
|u)
∑
n′′

n′′N
u′v′

log
(
n′′N
u′v′

)

Hyp(n′′
|u′, v′ − n′,N − u)

)]
. (23)

In the following we derive qU (u′
|u) for the three random

models.
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a: PERMUTATION MODEL
In the case of the random permutationmodel, finding a cluster
of size u and another of size u′ is independent since there
is only one fixed clustering U , and the two data points are
chosen independently. From Equation (22) follows

qUperm(u
′
|u) = pUperm(u

′) − 1u=u′

u
N

. (24)

For non-permutation models, we first pick one of multiple
possible clusterings and only then pick two cluster sizes in
that clustering, leading to statistical dependence in general.

b: FIXED NUMBER OF CLUSTERS
Given a clustering of size u, the probability of finding a
clustering of size u′ in the remaining k − 1 clusters of N − u
data points is

qk,Nnum(u
′
|u) = pk−1,N−u

num (u′). (25)

Note that this excludes the case of picking the same cluster
twice as desired in the definition of qU .

c: ALL CLUSTERINGS
Similar to the fixed number of clusters case, there are N − u
data points left, given a cluster of size u, such that

qNall(u
′
|u) = pN−u

all (u′). (26)

IV. COMPUTATIONAL COMPLEXITY AND MONTE CARLO
APPROXIMATION
While the ARI and SRI retain the same asymptotic time com-
plexity as the RI itself O(kUkV ) in the random permutation
model [17], the AMI has complexity O(max(kU , kV )N ) and
the SMI is even worse withO(kUkVN 3) [15], [16]. The other
random models essentially increase the cardinality of the
support for pU (See Equation (18) and (23)), making these
adjustments impractical for larger datasets. For the random
permutation model, Lazarenko and Bonald [26] address this
by iterating only over pairwise permutations, however strictly
speaking this is a different random model and it is unclear
how to generalize this to the fixed number of clusters and
the all clusterings models. Instead, we implement an efficient
Monte Carlo estimator for cases where the exact SMI exceeds
a timeout, similar to the approach described in [25] and [27].
For the fixed number of clusters model a brute force sampling
technique based on the recurrence relation S(N + 1, k) =

kS(N , k) + S(n, k − 1) is sufficient, whereas we leverage
Dobiński’s formula for the all clusterings model [28].
An experimental comparison of the runtimes obtained

using this Monte Carlo approach is shown in Figure 4.1

The results confirm that while the exact computation of the
SMI is computationally infeasible for even small datasets
(N ≃ 100), the Monte Carlo approximation significantly
reduces the computational cost, making the SMI applicable
to datasets with sizes on the order of N ≃ 10, 000. The

1Code available at https://github.com/mad-lab-fau/standardized-
clustering-comparison

FIGURE 4. Runtime comparison of the SMI, SRI and Monte Carlo SMI at a
precision of 0.1 for the random models perm, num, and all, averaged
over 100 random trials on an AMD Ryzen 9 5950X. The SRI is the fastest
method, followed by the Monte Carlo SMI. The exact SMI is
computationally inaccessible, even for small datasets N ≃ 100. The brute
force sampling technique used for the num model takes a toll on the
runtime of the Monte Carlo approximation, whereas Knuth’s algorithm for
the all model adds minimal overhead compared to the perm model [28].
For the SRI, the calculation of the Bell numbers slows the all model down
compared to the more efficient calculation of Stirling numbers of the
second kind for small k in the num model.

exact SRI is the fastest method overall, yet the calculation of
the Bell numbers makes the all variant slightly less efficient
than the other random models. For the Monte Carlo SMI,
the num model stands out, as the brute force approach for
generating clusterings with a fixed number of clusters could
be improved. A more sophisticated approach could borrow
ideas from probabilistic divide and conquer methods [29],
[30], though this improvement is beyond the scope of the
current work.

V. SYNTHETIC EXPERIMENTS
Similar to the experiments in the original SMI paper [15],
we model an external validation scenario where a fixed
ground truth reference is given, and multiple candidate
solutions are compared to the same reference. We first split
N = 500 data points into kU = 10 evenly sized clusters,
the clustering u. Then we generate random clusterings with
kV ∈ {2, 6, 10, 14, 18, 22} clusters and compare them with u.
The clustering with the highest similarity is selected and we
record the selection probability for each kV over 5000 trials.
While the AMIperm and ARIperm are known to be biased
in this scenario (Figure 3), the SMIperm and SRIperm were
introduced to mitigate that bias [16]. While there is no
difference between a one- and two-sided adjustment in the
permutationmodel, it doesmake a difference aswe generalize
the experiment to the other randommodels. It could be argued
that the one-sided correction is the appropriate choice for
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FIGURE 5. Comparison of agglomerative hierarchical clusterings to the
reference clustering using SRIperm and SRI1num for gene expression data
from 35 studies on cancerous and healthy tissue samples. The absolute
evaluation (better than chance) of most studies would not change had a
one-sided fixed number of clusters correction been employed instead of
the usual permutation model. However, the relative significance of the
results varies and the assessment of significance changes for some
studies.

the proposed experiment since it involves a fixed reference
clustering. Figure 2 confirms that argument and shows
the results for the one- and two-sided SRInum. While the
two-sided variant has a clear tendency to select higher
numbers of clusters, the one-sided variant is more balanced.
The discrepancy from a perfectly balanced selection stems
can be explained by the fact that standardization is just an
approximation to the true p-value, yet a useful simplification
for a computationally feasible adjustment [17].
In Figure 3 we compare the normalized MI (NMI), AMI1,

and SMI1 across all three random models, otherwise using
the same setup. For the random permutation model and the
fixed number of clusters model, standardization removes
the bias towards smaller clusters. The all clusterings model
on the other hand amounts to a constant correction in this
scenario, as the number of data points is kept constant and
standardization does not remove the bias towards clusterings
with large numbers of clusters. An analogous analysis with
similar results for Rand Index based indices is in Appendix B.

VI. EXPERIMENTS ON REAL DATASETS
Expectation value adjustment indicates whether a clustering
method is more similar to a desired reference than a random
clustering, an assessment that crucially depends on the
selected random model. In this work, we extended this
adjustment to the second statistical moment, indicating not
only whether a clustering method is better than chance, but
also if it is significant. To analyze the impact of the choice
of random model on standardized clustering comparison,

TABLE 1. The number of gene expression studies with the same, the
opposite, or a change in significance of the assessment when choosing a
non-permutation random model. Particularly when all possible
clusterings of a dataset are taken into account, the assessment of the
gene expression studies changes drastically.

we apply 12 different clustering algorithms to 35 datasets of
gene expression in tissue samples from cancerous and healthy
cells and compare the results with a reference clustering [31].
Figure 5 shows an in-depth comparison of the standardized
Rand Index using the permutation model and the one-sided
fixed number of cluster model for agglomerative hierarchical
clustering. We categorize the changes in study assessment
into four distinct categories:

• Same assessment (same): If the either the assessment
remained better/worse than chance or it was deemed
insignificant (SRI ≤ 3) by both variants.

• Opposite asssessment (opposite): If the assessment
changed from better than chance to worse than chance
or vice versa.

• Significant to insignificant (sig. → insig.): If the
observation is deemed significant (SRI > 3) in the
permutation model but insignificant in the other model.

• Insignificant to significant (insig. → sig.): If the
observation is deemed insignificant in the permutation
model but significant in the other model.

Table 1 shows the number of studies that fall into these
categories for different random models compared to their
respective baseline SRIperm or SMIperm. While the macro
assessment remains the same for most studies in the fixed
number of clusters model, the all clusterings model offers an
entirely different perspective, underlining the importance of
choosing an appropriate random model.

Figure 6 shows the Spearman correlation of the various
clustering similarity indices when comparing the 12 clus-
tering algorithms for each of the 35 studies. Essentially
three different groups of similarity indices emerge: The all
clustering adjusted measures, the fixed number of clusters
adjusted RI variants, and the commonplace permutation
variants with the fixed number of clusters adjusted MI
variants. In practice, this means that the choice of MI or RI
matters far less than the choice of random model, except
in the case of the num model, where it should be carefully
considered whether the MI or RI is used. In that case, the
study by Romano et al. [16] indicates that RI-based measures
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FIGURE 6. Spearman correlation of the adjusted and standardized MI,
RI for the permutation, the fixed number of clusters, and the uniform
random model on clusterings of gene expression data from 35 studies on
cancerous and healthy tissue samples using 12 different clustering
algorithms. The MI adjustments using the num model correlate with the
perm adjusted measures, whereas the num-adjusted RI and the
all-adjusted methods provide a novel interpretation of the results.

are favorable in scenarios with large equal-sized clusters,
whereas MI-based measures should be used in scenarios with
unbalanced clusterings. However, further research is required
to understand if these guidelines hold in the same way for
non-permutation based adjustments.

VII. DISCUSSION
This work introduces non-permutation models for the stan-
dardization of Mutual Information (MI) and Rand Index (RI).
The standardization helps alleviate a bias towards smaller
numbers of clusters, that prior non-permutation indices like
the ARI and AMI had, particularly in the fixed number of
clusters case. Compared to the existing permutation-based
SMI,SRI, the adjustments in this work are more suitable
for algorithms like k-means and DBSCAN, as they better
align with these algorithms’ characteristics by accounting
for variable cluster sizes or an a priori unknown number
of clusters. Other clustering comparison indices, such as
the Jaccard Index or the Sokal and Sneath index, that are
not based on the MI or RI, are known to exhibit similar
biases [13]. Future work could investigate if these biases can
be corrected using similar approaches to the ones presented
in this work.

Our experiments on gene expression data show that the
choice of a suitable random model can drastically influence
the interpretability and utility of clustering evaluations.
This has practical implications for the process of algorithm
selection for clustering, where multiple clustering results
are typically compared to a single ground truth reference.
We showed that exchaning permutation model with for
instance the uniform model over all clusterings, completely
changes the interpretation of the clustering results and
practitioners might chose a different clustering algorithm

based on this analysis. This emphasizes how crucial the
careful choice of a random model is and by providing a
framework for standardization using any element-symmetric
randommodel and two concrete example models, we provide
a good starting point for such considerations.

Broader implications of this work might extend to the
design of clustering algorithms themselves. By providing
a method to accurately measure the similarity between
clusterings under different assumptions about cluster config-
urations, we enable a more nuanced evaluation of clustering
quality. This can guide the development of new algorithms
or the refinement of existing ones to better fit the structural
characteristics of specific types of data.

VIII. CONCLUSION
When performing multiple comparisons of clusterings
against a reference, as is typically the case when comparing
different clustering algorithms, standardization is vital to
adjust for second-order bias. To this end both SRI and SMI
are well-established metrics. However, these metrics are only
designed for the random permutation model, which assumes
label assignments are shuffled, but otherwise stay the same.
Gates and Ahn [18] showed that this model assumption may
not be optimal when using the AMI and ARImetrics for some
clustering algorithms, such as k-means, spectral clustering,
or Gaussian mixture models, all of which assume only that
the number of clusters is fixed, but not necessarily their
sizes. We extend their work to the SMI and SRI metrics
by deriving adjustment equations for two additional random
models: one that only fixes the number of clusters and one
that allows all possible label assignments. We formulate the
adjustment equations to be easily extensible to any other
element-symmetric random model.

While it is impossible to make general statements about
which random model is the best, we hope to raise awareness
with practitioners for the impact the choice of randommodels
has on the evaluation of clustering algorithms and offer
additional choices. Results on a gene expression dataset show
that the evaluation of SRI and SMI with respect to better
than chance outcomes and their significance can change
drastically depending on the random model. In particular
for clustering algorithms that assume a fixed number of
clusterings, such as k-means, we thus postulate that the
equivalent random model may be better suited and should
at least be considered or compared against instead of the
standard random permutation model. To this end we also
make our code available such that it may easily be used in
practice.

APPENDIX A
PROOFS FOR EXPECTATION VALUES AND VARIANCE
A. RAND INDEX
First we derive the expression for the expected Rand index for
any pair of element-symmetric clustering distributions, which
is a generalization of the results in [18].
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Proof of Theorem 1: The expected Rand Index is by
definition

EU∼U ,V∼V [RI(U ,V )]

= EU∼U ,V∼V
[
Ei,j∼Unif (S2)

[
1U (i)=U (j)1V (i)=V (j)

+ 1U (i)̸=U (j)1V (i)̸=V (j)
] ]

(27)

= Ei,j∼Unif (S2)

[
EU∼U [1U (i)=U (j)]EV∼V [1V (i)=V (j)]

+ EU∼U [1U (i)̸=U (j)]EV∼V [1V (i)̸=V (j)]
]
. (28)

Now, for any i, j, i′, j′ ∈ S, there exists a permutation σ such
that

EU∼U [1U (i′)=U (j′)] = EU∼U [1U◦σ (i)=U◦σ (j)]. (29)

Since U is element-symmetric, U ′
= U ◦ σ has the

same probability as U and the expectation value remains
unchanged

EU∼U [1U (i′)=U (j′)] = EU∼U [1U (i)=U (j)]. (30)

Hence, the inner expectation values in Equation (28) are
constants to the outer expectation value, and the statement
follows. □
Similarly, we proceed for the variance of the RI under any

pair of element-symmetric distributions.
Proof of Theorem 2: First, we introduce two pairs of

distinct data points i, j and i′, j′ in the expectation value in
RI(U ,V )2

RI(U ,V )2 = Ei,j∼Unif (S2)

[
1U (i)=U (j)1V (i)=V (j)

+ 1U (i)̸=U (j)1V (i)̸=V (j)
]2

= Ei,j;i′,j′∼Unif (S2)

[(
1U (i)=U (j)1V (i)=V (j)

+ 1U (i)̸=U (j)1V (i)̸=V (j)
)
·
(
1U (i′)=U (j′)1V (i′)=V (j′)

+ 1U (i′)̸=U (j′)1V (i′)̸=V (j′)
)]

. (31)

Then in
(N
2

)
out of

(N
2

)2
cases i = i′ and j = j′ and we can use

Theorem 1 to obtain

EU∼U ,V∼V [RI(U ,V )2]

=

(
N
2

)−1 (
p=

Up
=

V + p̸=

Up
̸=

V

)
+

(
1 −

(
N
2

))−1

·

E
U∼U;V∼V;(i,j),(i′,j′)∼Unif

(
(S2)
2

)[
1U (i)=U (j)1U (i′)=U (j′)1V (i)=V (j)1V (i′)=V (j′)

+ 1U (i)=U (j)1U (i′)̸=U (j′)1V (i)=V (j)1V (i′)̸=V (j′)

+ 1U (i)̸=U (j)1U (i′)=U (j′)1V (i)̸=V (j)1V (i′)=V (j′)

+ 1U (i)̸=U (j)1U (i′)̸=U (j′)1V (i)̸=V (j)1V (i′)̸=V (j′)

]
(32)

Now, with the same argument as in Proof of Theorem 1, since
U ,V are element-symmetric, the expectation value factorizes,
giving

EU∼U ,V∼V [RI(U ,V )2]

=

(
N
2

)−1 (
p=

Up
=

V + p̸=

Up
̸=

V

)
+

(
1 −

(
N
2

))−1

·(
p=,=
U p=,=

V + p=,̸=

U p=,̸=

V + p̸=,=

U p̸=,=

V + p̸=,̸=

U p̸=,̸=

V

)
.

(33)

The statement follows as p=,̸=

U = p ̸=,=

U . □

B. MUTUAL INFORMATION
Similar to the proofs for the Rand Index, we derive the
expressions for the first and second statistical moment of
the mutual information under any pair of element-symmetric
clustering distributions.
Proof of Theorem 3: Nguyen et al. [12] showed that the

expected mutual information under the random permutation
model is

Eperm[MI(U ,V )]

=

∑
i,j

min(ui,vi)∑
n=max(ui+vi−N ,0)

n
N

log
(
nN
uivi

)
Hyp(n|ui, vi,N )

=

∑
u,v

pUperm(u)p
V
perm(v)

∑
n

nN
uv

log
(
nN
uv

)
Hyp(n|u, v,N ).

(34)

Since U,V are element-symmetric, we can introduce an
expectation value under random permutation as follows

EU∼U ,V∼V [MI(U ,V )] = EU∼U ,V∼V [Eperm[MI(U ,V )]].

(35)

The only U ,V dependence in Equation (34) is in
pUperm(u), p

V
perm(v) and

EU∼U [p
U
perm(u)]

= EU∼U [Eσ∈SN ,i∼Unif(S)[1|σ−1◦U−1◦U◦σ (i)|=u]]

= EU ′∼U ,i∼Unif(S)[1|U ′−1◦U ′(i)|=u] = pU (u), (36)

since U is element-symmetric. □
Proof of Theorem 4: Theorem 1 in [15] gives an explicit

expression for the second moment of the mutual information
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FIGURE 7. We compare a fixed reference clustering with kU = 10 even clusters, to random clusterings with kV ∈ {2, 6, 10, 14, 18, 22}

clusters. The plot shows the selection probabilities of each kV for the RI, ARI1 and SRI for the permutation model (perm), the fixed number
of clusters model (num) and the all clusterings model. The results are in line with the observations for the respective MI variants in Figure 3.

under random permutation

Eperm[MI(U ,V )2]

=

∑
i,j

∑
n

n
N

log
(
nN
uivi

)
Hyp(n|ui, vj,N ) ·

[
n
N

log
(
nN
uivj

)

+

∑
i′ ̸=i

∑
n′

n′

N
log

(
n′N
ui′vj

)
Hyp(n′

|ui′ , vj − n,N − ui)

+

∑
j′ ̸=j

∑
n′

Hyp(n′
|ui − n, vj′ ,N − vj)

(
n′

N
log

(
n′N
uivj′

)

+

∑
i′ ̸=i

∑
n′′

n′′

N
log

(
n′′N
ui′vj′

)
Hyp(n′′

|ui′ , vj′ −n
′,N − ui)

)]
.

(37)

Analogous to Equation (34) we can replace
∑

i f (ui)
with

∑
u p

U
perm(u)

N
u f (u). For the sums where the i-th

clustering is excluded, we can replace
∑

i′ ̸=i f (ui, ui′ )
with

∑
u′ qUperm(u

′
|u)Nu′ f (u, u′), as by definition it explicitly

excludes the case where u and u′ refer to the same
cluster. Using the fact that U,V are element-symmetric,
we can then apply the same argument as in Proof of
Theorem 3 Equations (35) - (36) and the statement
follows. □

APPENDIX B
SYNTHETIC EXPERIMENTS FOR THE RAND INDEX
For completeness, we repeat the same experiment as in
Figure 3 also for Rand Index based similarity indices,
modelling the external validation setup. A fixed ground
truth reference of kU = 10 evenly sized clusters is
compared to randomly generated clusterings with kV ∈

{2, 6, 10, 14, 18, 22} clusters. We then select the clustering
with the highest similarity and record the selection probabil-
ity for each kV over 5000 trials for the RI,ARI1,SRI1 and all
three random models. The results in Figure 7 are in line with
the observations in section V. The fixed number of clusters
model benefits from standardization, while the all number of
clusters model is too general for this scenario.
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