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SUMMARY
Identifying factors that affect treatment response is a central objective of clinical research, yet the role of
common genetic variation remains largely unknown. Here, we develop a framework to study the genetic ar-
chitecture of response to commonly prescribed drugs in large biobanks. We quantify treatment response
heritability for statins, metformin, warfarin, and methotrexate in the UK Biobank. We find that genetic varia-
tion modifies the primary effect of statins on LDL cholesterol (9% heritable) as well as their side effects on
hemoglobin A1c and blood glucose (10% and 11% heritable, respectively). We identify dozens of genes
that modify drug response, which we replicate in a retrospective pharmacogenomic study. Finally, we find
that polygenic score (PGS) accuracy varies up to 2-fold depending on treatment status, showing that stan-
dard PGSs are likely to underperform in clinical contexts.
INTRODUCTION

Initiation of drug treatment poses a risk for adverse reactions and

long-term side effects, sometimes without guaranteed effective-

ness for an individual patient.1–6 Genetic testing holds promise

for safer andmore effective treatment by predicting each individ-

ual’s specific drug response.7–10 To date, several large-effect

pharmacogenomic genes have been identified11–17; these genes

are commonly tested in the clinic to guide administration and

dosing of certain medications,18–21 which reduces the incidence

of certain severe adverse drug reactions.15,17,22,23More recently,

additional pharmacogenomic genes have been identified by

genome-wide association studies (GWASs) in randomized

controlled trials (RCTs), pharmacogenomic studies nestedwithin

large epidemiological cohort studies, or meta-analyses of

both.24,25 For example, the Clinical Pharmacogenetics Imple-

mentation Consortium (CPIC)26—which curates gene-drug pairs

and publishes corresponding clinical practice guidelines—
Cell Genomics 4, 100722, Decem
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currently lists 119 unique pharmacogenomic genes for 293

drugs with variable levels of evidence or actionability. Addition-

ally, pharmacogenomic studies have reported significant herita-

bility of drug response phenotypes,27,28 that most variants and

genes discovered in pharmacogenomic GWASs differ from

candidate genes,29 and that large-effect variants likely

contribute little to the heritability of pharmacogenomic pheno-

types.30 However, access to genetic data from RCTs is limited,

nested pharmacogenomic studies are rare, and both have

much smaller sample sizes than those available in biobanks,

so they are generally underpowered to investigate the genetic ar-

chitecture of drug response.

Even more recently, genome-wide genetic data have been

considered for clinical biomarkers of disease risk in the form of

polygenic scores (PGSs).31–35 PGSs predict disease risk by

aggregating many risk alleles identified by GWASs.36 For some

diseases, PGSs have comparable performance to current clin-

ical risk-prediction algorithms, at least in European ancestry
ber 11, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1. Drug exposures and responses examined in this work

Drug exposure

Number of users

(non-users) Description Primary effects Side effects

Statins 56,169 (286,088) low-density lipoprotein (LDL)

cholesterol-lowering therapy

prescribed to prevent

atherosclerotic cardiovascular

disease (ASCVD) events

LDL cholesterol, cardiovascular

disease (CVD)49,50
glucose, hemoglobin A1c,

type 2 diabetes (T2D)51–54

Metformin 8,606 (333,651) antidiabetic therapy glucose, A1c55–58 body mass index (BMI),59,60

LDL cholesterol, CVD61,62

Warfarin 3,753 (338,504) anticoagulant therapy reticulocyte count, hematocrit,

plateletcrit, venous

thromboembolism (VTE)63–65

none examined

Methotrexate 1,865 (340,392) antirheumatic therapy C-reactive protein (CRP)66,67 none examined
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individuals.37–39 However, very few genome-wide predictions for

treatment response have been developed,40,41 even though their

potential benefits have been discussed extensively.42–45

Here, we build a framework to study genome-wide genetic ef-

fects on the primary and side effects of common drugs. Our

approach leverages recent and novel methods for gene-environ-

ment interaction (GxE). Crucially, our methods apply to passively

obtained electronic health records (EHRs), enabling analyses of

sample sizes far exceeding randomized controlled trials.Weapply

our approach to some of the most common drugs in the UK Bio-

bank: statins, metformin, warfarin, and methotrexate. Our

methods quantify genome-wide heritability of drug response,

identify specific genesmodifying drug response, and characterize

the implications for clinical use of PGSs. We replicate many of the

gene-drug interactions in a longitudinal pharmacogenomic study

of statins’ effects on LDL cholesterol.46,47 Overall, our framework

characterizes the genetic architecture of individual-level response

to modifiable risk factors in passively obtained EHRs.

RESULTS

Study overview
We apply our framework to 342,257 unrelated white British indi-

viduals in the UK Biobank48 (STAR Methods). We focus on four

commonly prescribed drugs in this dataset: statins, metformin,

warfarin, andmethotrexate. For each drug, we study phenotypes

related to its primary effect as well as phenotypes related to its

possible side effects (Table 1).

We first define and develop a novel approach to estimate the

aggregate impact of common genetic variation on treatment

response (h2response). h
2
response is the SNP heritability of the pheno-

type change after treatment (Figure 1A, STAR Methods). We esti-

mate this parameter by post-processing results from GxEMM,68

which was developed to estimate GxE-based heritability.

GxEMM explicitly models treatment-dependent heteroscedastic-

ity, which is essential for unbiased estimates of treatment-depen-

dent heritability. Because this approach aggregates genetic ef-

fects across the genome, it is powerful but does not identify

specific genes.

Next, we develop a new method called TxEWAS to identify

specific genes that modify drug response. TxEWAS is a

GxE extension of the transcriptome-wide association study
2 Cell Genomics 4, 100722, December 11, 2024
(TWAS69,70) framework. It genetically imputes gene expression

levels using reference transcriptomics data, as in a TWAS, and

then tests whether the imputed expression interacts with an

environmental (‘‘E’’) variable (Figure 1B, STARMethods). Amajor

challenge in TxEWAS is accounting for treatment-dependent

heteroscedasticity, which we accomplish using the sandwich

variance estimator (SVE)71 (Figures 1C, S1A, and S1B, STAR

Methods). Compared to SNP-level tests, TxEWAS improves

interpretability by suggesting possible causal genes and can

improve power by aggregating multiple SNP effects and there-

fore reducing the number of statistical tests.69,70

Like all existing gene-environment interaction models,

GxEMM and TxEWAS are susceptible to endogeneity bias

because individuals’ treatments depend on their baseline phe-

notypes. We use theory, simulations, and additional data to

characterize and account for this bias (Figures S2 and S3, sup-

plemental note). Importantly, we test the gene-statin interaction

effects on LDL cholesterol in a retrospective longitudinal phar-

macogenomic study, which validates these specific results as

well as our cross-sectional approach.

Finally, we study the impact of treatment status, which varies

significantly between individuals, on the performance of poly-

genic scores. We evaluate changes in PGS prediction accuracy

by varying the proportion of treated individuals in the training

and/or validation data.

Primary effects and side effects of commonly
prescribed drugs are heritable
We estimated h2response for statins’ association with LDL choles-

terol at 9% (Table 2). This is consistent with a prior estimate of

12% (SE = 9%) derived by comparing first-degree relatives.46

Statin-dependent genetic effects on A1c and blood glucose

were estimated at 10% and 11%, respectively (Table 2). For

comparison, the statin-independent heritabilities for these traits

(h2hom) are 21%, 29%, and 11% for LDL cholesterol, A1c, and

blood glucose, respectively (Table 2).

We next found that the h2response for metformin’s associations

with LDL cholesterol and BMI are 2% and 17%, respectively (Ta-

ble 2), and the metformin-independent heritabilities are 11% and

28%, respectively. However, we did not find significant heritabil-

ity of response to warfarin or methotrexate, which was expected

as we have lower power for less common drugs (Table S1).
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Figure 1. Schematic of the GxE framework

to analyze treatment response in cross-

sectional data

(A) We use GxEMM to estimate the heritability of

treatment response (h2response) based on the genetic

(v) and nongenetic (w) variances specific to treat-

ment status (STAR Methods).

(B) We identify genes that modify treatment

response using TxEWAS, a new method to esti-

mate gene-level GxE interaction. TxEWAS geneti-

cally imputes gene expression and tests if this

gene’s effect interacts with some ‘‘E.’’

(C) Statistical interactions with treatment status

induce treatment-dependent heteroscedasticity

that must be modeled in GxEMM and TxEWAS.
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We next separately evaluated heritabilities in statin users vs.

non-users. We observe that the heritability of LDL cholesterol

is much higher in individuals who do not take statins (41% vs.

27%, Tables S2 and S3). This suggests that statins mitigate

the genetic effects on LDL cholesterol present in untreated in-

dividuals (Table S4). We found a qualitatively different pattern

for the side effect of statins on A1c and blood glucose, where

statin users had comparable or higher heritability (Table S2).

This suggests that statins activate or amplify genetic effects

on blood sugar compared to untreated individuals. For met-

formin users, we found significantly higher heritability for

BMI (51% vs. 31%) and lower heritability for LDL cholesterol

(11% vs. 23%).

Identifying gene-drug interactions for primary and side
effects
We next sought to identify specific genes that modify drug

response. We found 156 genes that modify statins’ associa-

tion with LDL cholesterol (hierarchical FDR72,73:

hFDR < 10%, Figures 2A and S4A, Table S5). These genes

include APOE, which has been previously implicated in

response to statin therapy25 and is listed by CPIC as one of

13 gene-statin pharmacogenes. None of the other 12 CPIC

genes overlap our TxEWAS genes, but four of them are within

200 kb of our TxEWAS genes (CYP2C9, HMGCR, CETP,

LDLR). Overall, this demonstrates some alignment of our re-

sults with existing evidence. Additionally, our discovery of

many genes that are not in CPIC further documents the

complexity of drug response phenotypes.29,30

Of the 156 genes significantly interacting with statins, 131 also

have significant additive effects (hFDR < 10%). Interestingly, all
Cell Gen
131 interaction effects have opposite

signs to the main effects (Figures 3A and

S5). That is, statins uniformly buffer these

genetic effects on LDL cholesterol. This is

consistent with our observation that LDL

cholesterol has higher heritability in statin

non-users than users (Table S2).

At the time of conducting this study, the

NHGRI-EBI GWAS Catalog74 reports 10

unique SNP associations with LDL choles-

terol change in response to statin therapy,
and 2,766 such associations with LDL cholesterol levels (STAR

Methods). These SNP associations were mapped—either by the

studies or the GWAS Catalog—to 17 and 1,468 genes, respec-

tively. Of the 156 gene-statin interactions identified in the LDL

cholesterol TxEWAS, four overlap the 17 genes reported by

GWAS for LDL cholesterol change (SMARCA4, APOE, PCSK9,

APOC1). Those four, as well as 51 additional TxEWAS genes,

overlap the 1,468 GWAS genes for LDL cholesterol levels (Fig-

ure S6A). Compared to a TWAS for LDL cholesterol (STAR

Methods), 135 of the 156 TxEWAS genes are shared, and 21

are new (Figure S6B). These 135 shared genes include the 55

shared with GWAS (Figure S6C).

A pathway enrichment analysis with ConsensusPathDB75 of

the 156 interacting genes found enrichments mostly in choles-

terol and lipoprotein metabolism pathways, as well as regulatory

and transcription pathways (Table S6). For example, the two

most significant Wikipathways were ‘‘Metabolic pathway of

LDL, HDL, and TG, including diseases’’ and ‘‘Statin inhibition

of cholesterol production,’’ and the top KEGG and Reactome

pathways also included cholesterol-related biology.

We next tested which genes modify the side effects of statins

on A1c and blood glucose, and we identified 53 and 6, respec-

tively (Figures 2B, 2C, S4B, and S4C). 28 of the 53 genes with

statin-dependent effects on A1c lie in the highly complex MHC

region, and it is likely that many of these are not causal.76 One

example gene outside the MHC is GIPR, which is known to

regulate insulin levels in the presence of elevated glucose in

mice77 and is associated with increased risk of hyperinsulinemia

after an antipsychotic treatment.78 All six genes that modify sta-

tins’ association with glucose overlap the statin-dependent A1c

loci (Figure 2C).
omics 4, 100722, December 11, 2024 3



Table 2. Statistically significant drug-independent heritability

and heritability of drug response estimates

Drug/response h2hom h2response h2response p value

Statins

LDL cholesterol 0.21 0.089 1.13 3 10�30

A1c 0.29 0.102 1.79 3 10�6

glucose 0.11 0.111 2.26 3 10�4

Metformin

LDL cholesterol 0.11 0.023 0.016

BMI 0.28 0.170 2.51 3 10�4

Corresponding estimates for all tested drug exposures and responses

can be found in Table S1.
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Of the 53 genes with statin-dependent effects on A1c, 36 have

significant additive effects. However, unlike the genes modifying

statins’ association with LDL cholesterol, only four of them have

an interaction effect with opposite sign to the main effect

(Figures 3B and S7). Similarly, only three of the six genes with

statin-dependent effects on glucose exhibit significant additive

effects, and all of these effects have the same sign as the corre-

sponding interaction effects (Figure 3C). Broadly, this suggests

that some genetic effects on A1c and glucose are amplified by

statins, while others are dampened.

We next analyzed metformin, warfarin, and methotrexate for

gene-drug interactions. Although these have many fewer users

(Table 1), we identified three gene-warfarin interactions effects

on reticulocyte count (HIF3A, implicated in the response to hyp-

oxia79; ITGA1, shown to be upregulated at high oxygen levels in

the environment80; and AL049542.1) and one gene-metho-

trexate interaction effect on C-reactive protein levels (C6orf164).

The results are highly concordant if we exclude individuals

who take combinations of the aforementioned drugs (Figure S8;

Table S5, supplemental note).

Replicating gene-drug interactions in a
pharmacogenomic study
The UK Biobank EHR data are passively obtained from an obser-

vational cohort andmay suffer from confounding due to endoge-

neity in treatment status—sick individuals are more likely to be

on treatments, and this may be driven in part by genetics. There-

fore, we validated our approach by replicating the gene-level in-

teractions for statins’ primary effect in a pharmacogenomic

study. The replication study analyzed statin-induced LDL

cholesterol change in 34,874 statin users from the Kaiser Perma-

nente GERA cohort (Genetic Epidemiology Research on Adult

Health and Aging)46,47 (STAR Methods). Of the 156 significant

genes that we identified from cross-sectional data, 155 could

be studied in the replication cohort (STAR Methods). We found

that 36/155 genes replicated (hFDR < 10%, Table S5) and that

the remaining genes were significantly enriched for low p

values < 0.1 (binomial test p value = 0.002).

Two of the 36 replicated interacting genes (APOE and APOC1)

were previously reported in GWASs of LDL cholesterol change in

response to statin therapy. These two and 16 more were re-

ported by GWASs for LDL cholesterol levels. We then studied

the remaining 18/36 genes using pathway analysis, which re-
4 Cell Genomics 4, 100722, December 11, 2024
vealed enrichments in plasma lipoprotein processes, statin inhi-

bition of cholesterol production, and cholesterol metabolism

(Table S7). All of the 36 replicated interacting genes were identi-

fied by the standard TWAS for LDL cholesterol levels.

Gene-drug interactions impact polygenic prediction
accuracy
Gene-drug interactions may reduce the performance of ordinary

PGSs, which are additive genetic predictors and must compro-

mise between optimizing for users and non-users. We assessed

the impact of this bias on PGS performance by varying the pro-

portion of individuals on a drug in the training and/or testing co-

horts, keeping the training sample size fixed. We focused on sta-

tins and metformin because they had treatment response

heritability (Table S1, STAR Methods).

First, we evaluated PGSs for A1c as a function of statin use

(Table 3). We find that statin users are better predicted by the

PGS trained on statin users, and vice versa for statin non-users.

Numerically, prediction accuracy of the PGS for A1c in statin

users increases by 31%when it is trained in treated vs. untreated

individuals. While this is intuitive, it need not hold in general. For

example, if two groups share identical genetic effects but have

different levels of non-genetic noise, the PGS should always

be trained in the less-noisy group. Indeed, we observe this

pattern for LDL cholesterol, which has higher heritability in statin

non-users than users, and we find that training a PGS in non-

users is optimal for predicting in users (Table 3). We performed

extensive simulations to confirm these results (Table S8, STAR

Methods). Finally, we evaluated an ‘‘agnostic’’ PGS built from a

mix of users and non-users without accounting for statins, and

we found that this PGS performedworst of all (Table 3). This illus-

trates an unappreciated limitation of standard approaches to

building PGSs in biobanks.

We found qualitatively similar results for PGSs dependent on

metformin, though they had smaller sample size and were

weaker: BMI for users were better predicted using the PGS built

from users, while LDL cholesterol was always better predicted

using non-users (Table 3).

Overall, our results demonstrate that the accuracy of poly-

genic prediction is significantly affected by the distribution of

drug use status in both GWAS and prediction cohorts, and

that the optimal approach varies across drugs and phenotypes.

In particular, when genetic effects on an outcome are simply

buffered by a drug, the optimal PGS for both users and non-

users will be trained solely in drug non-users. This is because

the genetic effects are perfectly correlated between groups,

yet larger in the non-user group. Conversely, if the drug does

not simply buffer baseline genetic effects, then the genetic cor-

relation between users and non-users will decrease, and it be-

comes more important to match drug use status between

GWAS and prediction cohorts. We hypothesize that the former

scenario will be more frequent when studying the primary effect

of a drug, and the latter will be more frequent for side effects;

this hypothesis is consistent with our observation for statins’

associations with LDL cholesterol and A1c. In general, the

optimal PGS will depend on the net effect of these parameters

and the available sample sizes for users and non-users

(Table S9).
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Figure 2. Manhattan plots of gene-statin in-

teractions for low-density lipoprotein

cholesterol and for hemoglobin A1c and

blood glucose

(A) Manhattan plot of gene-statin interaction effects

for LDL cholesterol (primary effect). Each point

represents a single gene, with physical position

plotted on the x axis and standardized effect size

plotted on the y axis. The most extreme effect

across tissues is shown for each gene. Significant

associations are highlighted in red, and the stron-

gest associations on each chromosome are

labeled.

(B and C) Same as (A), but for A1c and blood

glucose (side effects).
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DISCUSSION

We quantified the genome-wide contribution of genetic

variation to drug response (h2response) for some of the most

commonly prescribed drugs worldwide. We identified specific

genes driving this variation, and we validated the gene-statin

interaction effects on LDL cholesterol in a longitudinal

pharmacogenomic study. We found that such genetic effects

on drug response have downstream implications for PGSs,

which are moving toward clinical use. In particular, we

showed that current PGSs will often underperform in the clinic

because they are biased toward untreated individuals. While

our paper focuses on drug treatments, we note that our novel

framework can characterize the genetic basis of any covari-

ate’s effect, including sex/gender, age, or modifiable risk

factors.
Cell Gen
Our results suggest that genome-wide

genetic variation broadly modifies drug

response. This is an important extension

of pharmacogenomic studies, which usu-

ally focus on large-effect genes directly

involved in drug metabolism. This exten-

sion is consistent with the overall arc of

human genetic studies, where first

large-effect genes are identified and

then, as sample sizes grow and methods

mature, genome-wide signals are

identified.81,82

We observe a large, but not complete,

overlap between statin-interacting genes

identified with TxEWAS for LDL choles-

terol and TWAS and GWAS associations

with baseline LDL cholesterol (STAR

Methods). This result calls for caution,

since it could be explained by endogeneity

(Figure S2, supplemental note) or model

misspecification, which are one of the

main concerns in all GxE studies. None-

theless, reassuringly, many of these genes

replicated in a longitudinal study, and

some have additional forms of experi-

mental evidence.83–85
An interesting finding is PCSK9—an LDL cholesterol-lowering

drug target, which we observed to have a stronger effect in statin

users than non-users (Figure 3A). This interaction effect did not

replicate in our longitudinal study, which could be due to insuffi-

cient power in this study, or due to endogeneity in our discovery

analysis. There is a possibility of endogeneity bias because

PCSK9 has a strong effect on baseline LDL cholesterol (supple-

mental note). On the other hand, known facts about PCSK9

make it an interesting candidate for a statin pharmacogene: (1)

loss-of-functionandgain-of-functionvariants inPCSK9are known

to reduceandelevateLDLcholesterol levels, respectively,86,87 and

(2) statin therapyhasbeenshown to increaseserumPCSK9 levels,

which can buffer statin LDL cholesterol-lowering effects.84,87

Furthermore, a genetic study88 identified loss-of-function variants

associated with improved LDL cholesterol response to statins.

However, the strongest association reported in this study was
omics 4, 100722, December 11, 2024 5
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Figure 3. Gene-statin interaction effect sizes for low-density lipoprotein cholesterol, hemoglobin A1c, and blood glucose

(A) Estimated effect sizes of selected genes on LDL cholesterol in statin users and non-users and from a standard additive model. Color boxes depict standard

errors around effect size estimates. Reported p values PfGxEg are for the gene-statin interaction effects. The top 10 genes have significant interaction effects; for

comparison, the bottom three genes are only additively significant.

(B and C) Same as (A), but for A1c and blood glucose. See also Figures S5 and S7.
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estimated with just three carriers, and the effect of a loss-of-func-

tion variant is easier to predict than the combined effect of small

andmoderateeffect variants,whichwestudied.Amore recent ge-

netic study89 reported variants with statin-dependent effects on

PCSK9 levels, and stronger causal effects of PCSK9 on LDL

cholesterol in statin non-users compared to statin users. This is

in linewith our result. However, this study evaluated statin interac-

tions on small preselected sets of variants and suffered similar lim-

itations as ours in regards to observational data.

Importantly, our results identify an unappreciated limitation of

the clinical use of PGSs, which are systematically less predictive

in treated individuals than healthy controls. This complements

other known limitations of PGSs, including limited transferability

across socio-economic status, age, sex,90,91 and ancestry,92,93

which could also be driven in part by gene-environment interac-

tions.94 On the other hand, our results pave a path to developing

context-specific PGSs that incorporate context-specific genetic

effects, which could directly predict an individual’s response to

common drugs by the difference between their on-drug PGS

and their off-drug PGS.

Limitations of the study
Our study has several limitations. First, it has focused on the UK

Biobank, which is a cross-sectional cohort with non-random allo-

cation of drugs. This raises the possibility of endogeneity biases

causing false positives or false negatives, where our results reflect

causes of drug prescription rather than its consequences. None-

theless, we have validated many of our results in a longitudinal

pharmacogenomic study, which took steps to reduce biases

from dosing and baseline LDL cholesterol levels. Robust replica-

tion for one drug-outcome pair does not imply that our results

will replicate for every such pair. Nonetheless, it is an important

reassurance that our exploratory approach has value to partly

recover longitudinal analyses. More importantly, for many traits,

the results are inconsistent with simple endogeneity-driven biases

because we observed both positive and negative interaction ef-

fects (supplemental note). A related limitation is that our cross-
6 Cell Genomics 4, 100722, December 11, 2024
sectional approach to estimate heritability provides only a lower

bound to h2response (supplemental note). In the future, methods to

formally account for such endogeneity would give more precise

estimates of treatment response heritability. Second, large-scale

projects, like the UKBiobank, measure many shallow phenotypes

but often do not measure the most clinically relevant phenotypes

for a specific study. For this study, for example, we were unable

to extract relevant phenotypes to investigate statin-induced

myopathy, andwewereonly able to extract proxies for the primary

clinical measure of warfarin’s effect (international normalized ra-

tio95). If the number of drug users in a large biobank is relatively

small, as in our warfarin study, bespoke small-scale studies can

have more power to model genetic effects on drug response.96

Third, biobanks often lack detailed information about drug dose

formanyorall participants.Our study in theUKBiobankdidnot ac-

count for drug dose, which is an important limitation, even though

we were able to validate an important part of our discoveries in a

pharmacogenomic study that did correct for it. Fourth, patients

are often onmultiple drugs simultaneously. Results of our second-

ary analysis, which excluded individuals on combinations of drugs

considered in this study, showed high concordancewith results of

theprimary analysis. However,more targeted studies can improve

by including information about important drugs taken concur-

rently. Fifth, statistical genetic interactions need not reflect

biochemical interactions between a gene and drug. This contrasts

with large-effect pharmacogenomic genes, which typically

encode enzymes that directly metabolize the drug. Sixth, the

TxEWASmethod is liable todetectgenesor tissues that aremerely

correlated with causal genes of tissues. In the future, established

TWAS methods to fine-map causal genes76 or tissues97–99 could

beadapted to theTxEWASsetting.Seventh, due tobiases in avail-

able data, we analyzed only individuals of European ancestry. For

example, GxEMM requires tens of thousands of samples for

robustness, and TxEWAS requires reference genomic data which

currently is heavily biased toEuropean ancestries.100More ances-

trally diverse data are needed to obtain more generally applicable

results. Nonetheless, we expect that our qualitative conclusions



Table 3. Prediction accuracy of polygenic scores trained in drug users, non-users, and a 50:50 mixture of both agnostic to treatment

status

Training Prediction accuracy (incremental R2 [%] [SE])

Statins Metformin

LDL cholesterol A1c LDL cholesterol BMI

On drug Off drug On drug Off drug On drug Off drug On drug Off drug

On drug 7.18 (0.30) 12.60 (0.36) 3.36 (0.23) 2.32 (0.18) 1.32 (0.37) 3.24 (0.54) 0.919 (0.286) 0.0040 (0.0592)

Off drug 7.98 (0.32) 14.87 (0.39) 2.56 (0.20) 5.79 (0.28) 2.75 (0.51) 5.43 (0.67) 0.041 (0.080) 0.0077 (0.0636)

Agnostic 5.86 (0.29) 10.49 (0.36) 2.60 (0.20) 3.75 (0.23) 2.25 (0.44) 5.00 (0.66) 0.255 (0.164) 0.0931 (0.1078)

See also Table S9.
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about the genetic architecture of treatment response will apply to

all individuals. Eighth, since estimated heritability depends on the

choice of covariates, and since our analyses always adjust for

the main effect of the specific drug being tested, our estimates

of h2hom for an outcome depend on the drug being tested. Similar

issues apply to ordinary additive heritability estimates101 (supple-

mental note, TableS10).Nonetheless, this doesnot affect our con-

clusions about h2response.

Despite these limitations, we provided evidence for substan-

tial polygenic contributions to drug response and showed how

large-scale cross-sectional studies like the UK Biobank can be

used to estimate genetic effects on drug response. Although

validation with randomized controlled trials is needed before

drawing definitive conclusions about causal genetic effects on

treatment response, our results demonstrate that cross-

sectional data can generate compelling hypotheses on genetic

modifiers and statistical predictions for treatment response. It

is important, as advances in pharmacogenomics cannot be

made with sole input from randomized controlled trials,24 which

have strict inclusion and exclusion criteria, cannot always be

performed due to ethical issues and are limited to small sample

sizes due to high cost. Based on these results, we envision that

novel PGS approaches incorporating treatment information will

provide actionable clinical guidelines for optimizing primary ef-

fects and minimizing harmful side effects of drugs.
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UK Biobank Resource UK Biobank https://www.ukbiobank.ac.uk/

Response to statins (LDL cholesterol

percent change) GWAS summary statistics

Oni-Orisan et al.46,47 GWAS Catalog: GCST009821

GTEx (context-by-context) eQTL weights Thompson et al.98 http://gusevlab.org/projects/fusion/

#multi-context-content-expression

LDL cholesterol change in response to

statin therapy GWAS associations

Oni-Orisan et al.,47

Barber et al.,102

Chasman et al.,103

Deshmukh et al.,104

Postmus et al.105

GWAS Catalog: GCST010338, GCST009821,

GCST000635, GCST001408, GCST001425,

GCST002675

LDL cholesterol levels GWAS associations Sollis et al.74 GWAS Catalog: GCST90002412, GCST008238,
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GCST009043, GCST000132, GCST006612, GCST90079033,
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GCST004236, GCST90244653, GCST008077, GCST000759,

GCST002222, GCST002220, GCST009147, GCST009150,

GCST008676, GCST90255506, GCST90255507,

GCST90255505, GCST90239655, GCST90239659,

GCST90239660, GCST90239658, GCST90239656,

GCST90239657

Software and algorithms

TxEWAS this paper https://doi.org/10.5281/zenodo.12192083

GxEMM Dahl et al.68 https://github.com/andywdahl/gxemm

NetworkX Hagberg et al.106 https://github.com/networkx/networkx

bigstatsr Prive et al.107,108 https://privefl.github.io/bigstatsr

GCTA Yang et al.109 https://yanglab.westlake.edu.cn/software/gcta

sandwich Zeileis et al.110,111 https://sandwich.r-forge.r-project.org

TreeQTL Peterson et al.72,73 http://bioinformatics.org/treeqtl

FUSION Gusev et al.70 http://gusevlab.org/projects/fusion

ConsensusPathDB Kamburov et al.75 http://cpdb.molgen.mpg.de
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METHOD DETAILS

UK Biobank data
Analyses presented in this work were performed in the UK Biobank population of 342,257 unrelated white British individuals.

Samples

The 342,257 unrelated white British individuals were identified by performing the following steps. From among 488,363 UK Biobank

participants, we retained putative ‘‘White British’’ individuals using field 22006–0.0 (n = 409,692). We then filtered out 199 individuals

with excess genotype missingness (>0.05), 312 individuals with a mismatch between self-reported and genetic sex, 999 individuals

with excess heterozygosity (R5 standard deviations above the mean), and 90 individuals who requested their data be redacted. We

then removed 629 individuals related to ten or more individuals (KING coefficientR 2� 9=2) as a preprocessing step to the application

of the maximal_independent_set algorithm implemented in the NetworkX Python package.106

In contrast to Bycroft et al.,112 who estimated kinships using approximately 92,000 common SNPswith small loadings onto the first

few principal components (PCs) in the full sample (including multiple ancestries; see S3.7 of Bycroft et al.), we estimated kinships

using 561,780 common SNPs in a sample of European ancestry individuals. The close relatives the UK Biobank identified in field

22021–0.0 are a subset of our more conservative approach: we identified all 81,218 related individuals in this subsample identified

by the UK Biobank plus an additional 3,261 not identified by Bycroft et al.

Genotypes

For heritability and PGS analyses, we used 579,566 UK Biobank variants with minor allele frequency (MAF) larger than 0.01, Hardy-

Weinberg equilibrium (HWE) test p value below 10�10, and imputation INFO score of 1. For the TxEWAS analysis, UK Biobank SNPs

that matched eQTLs trained in the GTEx consortium113 were used.

Phenotypes

Individuals who take statins were identified by UK Biobank field 20003-0.0-47 using the following codes: 1140861958, 1140861970,

1141146138, 1140888594, 1140888648, 1140910632, 1140910654, 1141146234, 1141192410, 1141192414, 1141188146,

1140881748 and 1140864592. There were 56,169 such subjects within the UK Biobank population of 342,257 unrelated white British

individuals. Individuals who take metformin (n = 8,606) were identified by codes 1140884600 and 1141189090 in the same UK Bio-

bank field. Warfarin users (n = 3,753) were identified by codes 1140888266 and 1140910832; and methotrexate users (n = 1,865) by

codes 1140869848 and 1140910036.

LDL cholesterol, glucose, A1c, BMI, hematocrit, plateletcrit, reticulocyte count and C-reactive protein levels were retrieved from

UK Biobank fields 30780–0.0, 30740–0.0, 30750–0.0, 21001–0.0, 30030–0.0, 30090–0.0, 30240–0.0 and 30710–0.0, respectively.

C-reactive protein levels were inverse normally transformed before fitting themodels. For other traits, we discardedmeasurements

greater than five standard deviations from the mean, with the assumption that such extreme levels were results of non-modeled

circumstances.

CVD was defined as in Thompson et al.114 The T2D disease status and the VTE status were extracted from the UK Biobank EHRs.

The former was defined using ICD10 code E11. The latter, using ICD10 codes I26, I80.1, I80.2, I81 and I82.0, and OPCS procedure

code L90.2.115 For testing associations with drug use, we only retained diagnoses recorded after the date of the initial assessment

with the UK Biobank initiative (when the information about medication use was collected), which resulted in 29,393 (278,675), 18,193

(297,399), 7,356 (332,403) cases (controls) for CVD, T2D and VTE, respectively.

Covariates

The main analyses reported in this work were performed using the following covariates: age, sex, birth date, Townsend deprivation

index, and the first 16 genetic PCs.92 We additionally accounted for the measuring device type when an outcome required it, which

was the case for hematocrit, plateletcrit, and reticulocyte count. All non-binary covariates were standardized (transformed to mean-

zero, variance 1) before calculating interaction variables.

Heritability of treatment response
GxEMM quantifies the heritability contributed by genome-wide additive effects and genome-wide GxE effects. The general GxEMM

model for phenotype y of an individual i in environment k (i.e., Zi = k) is:

yijZi = k �
X
q

Xiqaq + shom

X
s

Gisbs +
ffiffiffiffiffi
vk

p X
s

Gisgsk +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wk+s2

e

q
ei

In this model, X are covariates (indexed by q) with fixed effects a, and G is a matrix of SNPs (indexed by s), with additive effects b.

We assume that b and the noise, e, are i.i.d. standard normal, and the additive heritability is determined by the genetic and noise

variances, s2hom and s2e . GxEMMadditionally captures SNP-environment interaction effects, g, which are also assumed i.i.d. standard

normal. Further, GxEMM allows environment-specific genetic (vk ) and noise (wk ) variances. If the phenotype is scaled to variance 1,

s2hom = h2hom.
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Here, we use treatment status as the ‘‘environment’’ in order to quantify the heritability due to treatment-specific effects. We

approximate the heritability of treatment response, Dyi = yiðZi = 1Þ � yiðZi = 0Þ, by:

h2
responsed

v0+v1
v0+v1+w0+w1

%
v0+v1

v0+v1+w0+w1 � 2w01

= h2ðDyÞ

wherew01 captures the covariance in effect sizes for unmodeled risk factors between treated/untreated states (Supplemental Note).

For warfarin, methotrexate, and metformin, we studied a sample of 30,000 individuals that included all users of that drug and an

accordingly-sized random draw of non-users. To assess stability of our results, we repeated the analysis five times by randomly re-

sampling non-users, and reported results from the sample with median additive heritability (h2hom, Figure S9). Because statins are

much more common, we instead randomly split all 342,257 individuals into 11 non-overlapping subsets and meta-analyzed the re-

sults. This is a common approach employed in biobank-scale datasets to reduce computational complexity.116

Genes responsible for variable drug response
TxEWAS extends the transcriptome-wide association study (TWAS69,70) framework to test gene-environment interactions. The

TxEWAS framework involves two major steps: First, gene expression levels of each gene are genetically imputed using a reference

dataset. Second, the interaction effect, g, between imputed gene expression and the drug is tested in the regression model:

yi = b0 +
X
j

b1jXij +
X
j

b2jziXij +
X
j

b3jgiXij + b4gi + b5zi +ggizi + ei;

where ei � N
�
0;s2

�
; zi and gi are the drug use indicator and imputed expression of some gene for individual i, respectively, and X is a

matrix of covariates.

For binary phenotypes, the interaction effect is tested in the logistic regression model with the same covariates (Supplemental

Note). In both models, the variance of the effect size estimates is estimated with the sandwich variance estimator to control for het-

eroskedasticity and/or misspecification of the functional form of the environmental factor117,118 (Figure S1, Supplemental Note).

In this study, we imputed gene expression into the UK Biobank using 48 tissues from the GTEx consortium, and we used hierar-

chical FDR72,73 (hFDR < 10%) to account for multiple hypothesis testing across genes and tissues. Hierarchical FDR has been shown

to properly control the false discovery rate across contexts when there are multiple hypothesis tests being run for a given group, in

this case, a gene.72,73,119 It also boosts power in cases where a gene has a significant association in multiple contexts. Finally, since

TxEWAS is liable to detect genes that aremerely correlatedwith the causal gene due to the genetic LD structure in the proximity of the

causal gene, we define TxEWAS association loci by adding consecutive genes until there is no gene within 500 kb from the last

added gene.

Gene expression prediction models
In TxEWAS, gene expression (or rather its genetic component) is imputed as a linear combination of genetic variants (SNPs). The

coefficients used for the imputation are referred to as ‘‘weights’’ or ‘‘eQTL weights’’ and are calculated on a per-gene basis by fitting

a linear model of gene expression onto the gene’s cis-genotypes in an external reference dataset. We fit eachmodel using the elastic

net, as it has been found to be the most robust across a wide range of genetic architectures.120 We used package bigstatsr107 to fit

each model using 10-fold cross-validation, and after determining whether the expression of a gene was significantly predicted using

cis-genotypes at a nominal p value of 0.05, we retrained themodel using the entire set of individuals to generate a final set of weights.

The weights has been deposited at http://gusevlab.org/projects/fusion/#multi-context-content-expression under the ‘‘GTEx

(context-by-context)’’ download link.

Replication in a pharmacogenomic study
We initially discovered gene-drug associations in cross-sectional data using TxEWAS. To validate these discoveries, we performed

an ordinary TWAS on the change in LDL cholesterol after statin initiation in an external pharmacogenomic study (we term this analysis

PGx TWAS, Table S11). More concretely, we used data from a longitudinal study of 28,616 individuals with European ancestries from

the Kaiser Permanente GERA cohort (Genetic Epidemiology Research on Adult Health and Aging).46,47 In this study, the phenotype

was rigorously characterized utilizing electronic health records, and the analysis was adjusted for carefully selected covariates. For

every TxEWAS interacting gene identified in the UK Biobank cohort, we calculated the PGx TWAS statistic in all available GTEx tis-

sues, and employed an hFDR correction to call statistically significant genes at FDR < 10%.

Implications for polygenic scores
PGSs are weighted sums of risk alleles optimized to predict some training dataset. Thismakes PGSs depend on characteristics of the

training data, such as ancestry,93 age,90 or sex.91 We assessed the accuracy of PGSs as a function of drug use, including PGSs

trained in users and tested in non-users and vice-versa. In the main analysis, we varied the proportion of individuals on a drug in

the training cohort, keeping the sample size fixed. We evaluated additional scenarios in the Supplemental Note. We fit PGSs using

a fast implementation of penalized linear regression with the lasso penalty92,108 and we measured prediction accuracy by the incre-

mental R2 over baseline covariates. Standard errors around the estimates were calculated using bootstrap.
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Simulating polygenic scores
We performed realistic simulations to examine two scenarios observed in real data. Scenario 1 mimicked statin-LDL, where ‘‘on’’

genetic effects are buffered to be half the size of ‘‘off’’ effects. As expected, we found that training a PGS in ‘‘off’’ individuals is optimal

regardless of the test set (Table S8). Scenario 2 mimicked statin-A1c, where ‘‘on’’ and ‘‘off’’ effects are highly correlated but vary

randomly in magnitude. As expected, we found that training a PGS in training samples matching the test samples is optimal in

this scenario. These simulations show how prediction accuracy of a PGS depends on the genetic correlation and heritability between

the train and test dataset and explain the discordant results for statins’ effects on A1c and LDL cholesterol (Table S9). In both cases,

we simulated the unexposed population to have 40%heritability. In the exposed population, we either (Scenario 1) divided all genetic

effect sizes by two, reflecting systemic buffering of the unexposed effects, or (Scenario 2) randomly deflated (with probability 0.4) or

inflated (with probability 0.6) each individual genetic effect by a random fraction between 0.2 and 1.We then performed PGS analyses

as in the real data by varying the distribution of drug use in the train and test populations.

GWAS data
GWAS associations with LDL cholesterol change in response to statin therapy, and LDL cholesterol levels were collected from the

NHGRI-EBI GWAS Catalog74 on 04/17/2024.

Associations with LDL cholesterol change in response to statin therapy were identified using the following names of traits:

‘‘Response to statin therapy’’, ‘‘Response to statins (LDL cholesterol change)’’, ‘‘Response to statins (LDL cholesterol percent

change)’’.102–105

Associations with LDL cholesterol levels were identified using the following names of traits: ‘‘LDL cholesterol levels’’, ‘‘Low-density

lipoprotein cholesterol levels’’, ‘‘Direct low-density lipoprotein cholesterol levels’’, ‘‘LDL cholesterol’’, ‘‘Direct low-density lipoprotein

levels (UKB data field 30780)’’.

Only associations that reached the genome-wide significance level of p value < 5 3 10�8 were considered. For gene-level com-

parisons, lists of associated genes were created for each of the above phenotypes by taking the union of the ‘‘reported genes’’ and

‘‘mapped genes’’ columns of a given summary table.

TWAS for LDL cholesterol levels
TWAS for LDL cholesterol levels was performed in the UK Biobank analogously to the TxEWAS for statins’ association with LDL

cholesterol (see above), only no interaction terms were included in the model. TWAS tests were performed in 48 tissues from the

GTEx consortium, and significant genes were called at hFDR < 10%.

QUANTIFICATION AND STATISTICAL ANALYSIS

General statistical analysis
Unless otherwise specified, all analyses were conducted using custom scripts implemented in the R programming language.

Heritability estimation with GxEMM
GxEMM heritability estimates and their standard errors were calculated using the GxEMM package.68 Specifically, we fit the

GxEMM’s Free model using REML. p values for h2response were obtained by testing for non-additive heritability, i.e., by testing whether

the off-drug (v0) and on-drug (v1) genetic variances are both zero. Because GxEMM does not scale to the whole UK Biobank, we

perform meta-analysis across 11 non-overlapping subsets of data (method details). More specifically, we use inverse variance

weighting to meta-analyze heritabilities and Fisher’s method to meta-analyze p values.

Heritability estimation with GCTA
Estimates of the additive heritability and their standard errors reported in Table S3were calculated using theGCTA software.109 Sam-

ple sizes of metformin users who were not statin users were: 1,584 for LDL cholesterol, 1,337 for A1c, and 1,243 for blood glucose.

Sample sizes of the rest of the drug user groups were matched to those available for users of statins and metformin: 6,572 for LDL

cholesterol, 5,800 for A1c, and 5,157 for blood glucose.

Estimates of the additive heritability and their standard errors reported in Table S10 were calculated using the GCTA software.

Similarly to GxEMM, GCTA only scales up to tens of thousands samples. Thus, for the analyses that did not include drug use as co-

variates or included statin use (which has high frequency of �16% in our dataset), we randomly split all 342,257 individuals into 11

non-overlapping subsets andmeta-analyzed the results, as described above for GxEMM. For the analyses which includedmetformin

use as a covariate, we estimated the additive heritability in a sample of 30,000 individuals that included all users of the drug and an

accordingly-sized random draw of non-users. As in the corresponding GxEMM analysis, we repeated the analysis five times by

randomly resampling non-users, and reported results from the sample with median estimate.

GxE tests with TxEWAS
The TxEWAS model of a continuous response is fitted using R’s lm() function, and the model of a binary response using the glm()

function with the parameter family = "binomial" and logit link function. For both models, robust standard errors are calculated using
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White’s estimator implemented in the vcovHC() function from R package sandwich.110,111 p values are obtained from a two-sided

Wald test. Hierarchical FDR correction from package TreeQTL72,73 is applied to p values across genes tested for multiple tissues,

and significant genes are called at 10% FDR.

Replication analysis
TWAS on summary statistics from our replication pharmacogenomic study (method details) was performed using FUSION70 and the

LD reference data for individuals of European ancestry provided with the software. The LD reference was calculated based on ge-

notypes from the 1000 Genomes Project, which provided fewer SNPs than the UK Biobank. As a result, FUSION could not build

expression models for some of the genes that were identified with TxEWAS using the individual-level UK Biobank data. This is

why, in the main analysis, we report replication rate relative to 155 genes, and not all 156 genes identified in the statin-LDL TxEWAS.

Pathway enrichment analysis
All pathway enrichment analyses presented in this work were performed with ConsensusPathDB.75
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