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Be aware of overfitting by hyperparameter 
optimization!
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Abstract 

Hyperparameter optimization is very frequently employed in machine learning. However, an optimization of a large 
space of parameters could result in overfitting of models. In recent studies on solubility prediction the authors col-
lected seven thermodynamic and kinetic solubility datasets from different data sources. They used state-of-the-art 
graph-based methods and compared models developed for each dataset using different data cleaning protocols 
and hyperparameter optimization. In our study we showed that hyperparameter optimization did not always result 
in better models, possibly due to overfitting when using the same statistical measures. Similar results could be calcu-
lated using pre-set hyperparameters, reducing the computational effort by around 10,000 times. We also extended 
the previous analysis by adding a representation learning method based on Natural Language Processing of smiles 
called Transformer CNN. We show that across all analyzed sets using exactly the same protocol, Transformer CNN 
provided better results than graph-based methods for 26 out of 28 pairwise comparisons by using only a tiny frac-
tion of time as compared to other methods. Last but not least we stressed the importance of comparing calculation 
results using exactly the same statistical measures.

Scientific Contribution We showed that models with pre-optimized hyperparameters can suffer from overfitting 
and that using pre-set hyperparameters yields similar performances but four orders faster. Transformer CNN provided 
significantly higher accuracy compared to other investigated methods.

Introduction
The water solubility is crucial for different chemis-
try applications and has been a focus for studies since 
1867, when Richardson showed that the toxicities of 
ethers and alcohols were inversely related to their water 

solubility [1]. The field is actively developing, and new 
models and approaches to predict this important prop-
erty continue to be regularly published [2–6]. Recently, 
the first EUOS/SLAS challenge for the prediction of 
solubility classes measured by nephelometry assay was 
organized on Kaggle [7]. Since the applicability domain 
of models critically depends on data [8], the studies 
reporting new large datasets with solubility data, such 
as AqSolDB [9], are of considerable interest to the 
research community. That is why the recent article by 
Meng et  al. [10] which reported on the collection of 
large sets of solubility values, while also mentioning a 
significant drop in the RMSE due to the reported data 
curation, attracted our attention. One of the important 
methodological approaches reported in the article was 
the use of a hyperparameter optimization procedure 
which required a lot of computational power. There-
fore, despite the availability of the authors’ scripts, the 
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reproduction of results reported by the authors proved 
to be very challenging due to the very high computa-
tional demands associated with performing the hyper-
parameter optimization. We were interested in whether 
similar or better results could be obtained using a mod-
erate number of computational resources (a level of 
which would typically be available in academic settings, 
i.e., with several GPU cards) and whether the use of 
hyperparameter optimisation was really critical for this 
study.

Therefore in this work, we systematically investi-
gated the impact of the previously reported data pro-
cesses on calculated results and compared it with the 
result obtained using relatively modest computational 
resources, which used pre-optimisation of hyperparam-
eters of machine learning algorithms.

Our main contributions are the following:

•	 We reinforce the need of careful data cleaning to 
aggregate multiple sources and avoid data duplica-
tion

•	 We show that hyperparameter optimisation may not 
provide an advantage over using a set of pre-opti-
mised parameters and may also contribute to overfit-
ting

•	 We demonstrate that the accuracy of Trans-
formerCNN was higher than that of graph methods 
ChemProp and AttentiveFP

•	 We make a clear distinction between the cuRMSE 
(curated RMSE) and the standard RMSE (Root Mean 
Squared Error) function and highlight the impor-
tance of using the same statistical measure when 
comparing results.

Data
The authors collected seven datasets, as summarized in 
Table  1. In the article, there were three versions of the 
sets dubbed as “original” (“Org”), “cleaned” (“Cln”) and 
“curated” (“Cure”).

Original sets (“Org”)
The “original” sets collected data retrieved by the authors 
from the respective data sources, as reported in Meng 
et al. [10]. Some of the original sets contained duplicates. 
For example, On-line CHEmical database and Modelling 
environment (OCHEM) [11] has a policy of collecting 
data as it is published in the original articles. This policy 
allows for easier reproduction of the respective studies. 
Thus, if some data were repeatedly reused in other pub-
lications, many of the records would likely be duplicated. 
The original Huuskonen data set [12] and its curated ver-
sion [8] (AQUA set in Table 1) were re-used in practically 
all publications on the prediction of solubility and made 
up major parts of the PHYSP, ESOL [13] and OCHEM 
sets in particular. Moreover, since the data in this set 
were extracted from the AqSolDB database [9], they 
were also present in the AQUASOL set. The AQUASOL 
set, as any other set in this article, is a collection of data 
from multiple sources. It also contained a number of sin-
gle heavy atom molecules, such as [CH4], [Mg2+], [Mo], 
[Re], [H+].[F−] etc., or inorganic complexes [O-2].[O-2].
[Mg+2].[Ca+2], [Al+3].[Cl−].[Cl−].[Cl−], etc., which 
could not be processed by graph-based neural networks 
due to the fact that there are no bonds between heavy 
atoms set for those objects to apply graph convolution 
or/and these atom/molecule/compound types are not 
supported. The authors removed duplicates and metals 

Table 1  Analysis and cleaning of clean data (“Cln”) reported in the study by Meng et al. [10]

a 192 metals and non-organics were removed from the “Org” AQSOL set

Dataset Number of records Remark to OCHEM cleaning (see also text) Unique stereochemical 
molecules (ignoring 
stereochemistry/
unique connectivities)

“Org” set” Initial “clean” 
records in Ref. 
[10]

After 
OCHEM 
cleaning

AQUA 1311 1311 1310 1311 were reported in the article [10] but 1310 values 
were used as reported in the GitHub repository

1301 (1301)

PHYSP 2010 2001 2001 2001 (2001)

ESOL 1128 1116 1115 1 duplicate was eliminated 1109 (1108)

OCHEM 6525 4218 4177 41 duplicates were eliminated 3620 (3568)

AQSOL 9982 (9790)a 8701 8687 Six duplicates and eight molecules with metals were 
removed from “clean” set

8674 (8394)

CHEMBL 30,099 30,099 31,050 30,099 were reported in article, but 31,099 values were 
found and used from the GitHub; 31 non-organic com-
pounds and 18 duplicates were removed

26,377 (25,796)

KINECT 164,273 82,057 60,392 Multiple duplicated data from the same assay were 
removed, see section “Data”

60,233 (60,233)
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during the cleaning and standardization procedure to 
create “clean” and “curated” sets as described below, and 
the 192 metal-containing compounds that remained in 
the “Org” set were excluded as reported in Table 1.

Clean sets (“Cln”)
The cleaning procedure (described in Meng et  al. [10]) 
included SMILES standardization using MolVS fol-
lowed by the removal of duplicates (only when the dif-
ference between values for the same molecules in two 
records was less than 0.01 log unit), removing records 
that followed non-standard experimental protocols (tem-
perature 25 ± 5  °C, pH 7 ± 1) as well as the removal of 
compounds containing metals.

OCHEM uses InChi keys to index molecules as well 
as rounded (0.01 log unit) property values to calculate 
unique keys. Using such keys, we identified and elimi-
nated a few additional exact duplicates for “Cln” thermo-
dynamic solubility sets, including molecules containing 
metals, which were initially not detected by the authors 
(Table 1).

The data for kinetic solubility (“KINECT” dataset) were 
all downloaded from the OCHEM database. However, it 
appears as though the authors did not initially notice that 
the majority of these records in OCHEM originally came 
from the PubChem AID1996 assay [14], which contained 
57,858 measurements. OCHEM contains the original 
data uploaded from this assay as well as data from two 
articles [15, 16] that used this assay in their studies. These 
three sources contributed a total number of 161,710 
records out of 164,273 records in the “KINECT Org” set. 
The different processing procedures (salt elimination, 
neutralization, aromatisation, etc.) in the aforementioned 
studies [15, 16], resulted in different chemical structures. 
Hence, after the deduplication procedure Meng et al. [10] 

obtained 82,057 records instead of the original 57,858, 
i.e., there were 24,199 duplicated measurements. Exam-
ples of duplicated structures are shown in Fig.  1. Some 
duplicates were SMILES with and without reported ste-
reochemistry, ionized and neutral compounds, etc. which 
appeared due to different data standardization proce-
dures in the respective data sources. Such a high value of 
duplicates (> 37%) could imply a biased estimation accu-
racy of the developed models for kinetic solubility.

For the CHEMBL set, 30,099 values were reported 
in the article [10] but 30,099 and 31,099 records were 
made available in the repository for “Org” and “Cln” sets, 
respectively. For the “Cln” set, we used 31,099 records as 
provided in the article’s repository (the chembl_stand_
clean.csv file). The differences in the number of mol-
ecules in the datasets could contribute some changes in 
calculated statistical parameters.

In the case of duplicated records for analyzed mol-
ecules within the same set, the authors used a weight-
ing to avoid their overrepresentation during learning 
(so-called “inter-dataset curation”). The authors assigned 
each record a weight, inversely proportional to the total 
number of records per molecule. Thus each molecule had 
a total weight equal to “1”.

Curated sets (“Cure”)
The authors (Meng et al.) also produced curated datasets. 
The authors first assigned weights to datasets correspond-
ing to their quality (high quality: AQUA, PHYSP, ESOL 
with weight “1.0” and OCHEM with weight 0.85 as well as 
low quality: AQSOL with weight 0.4 and CHEMBL with 
weight 0.8), which was determined manually based on the 
performance of ChemProp. In the first step of this analysis, 
records were assigned a weight based on the sets they origi-
nated from. After that, the authors extended each analyzed 

Fig. 1  Examples of duplicated structures with exactly the same solubility values but different SMILES in the kinetic solubility dataset. These 
and other similar duplicated structures contributed about 37% of records in the combined kinetic solubility set of Meng et al. [10]
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set with records for the same molecule found in other sets. 
In cases where several solubility values were present for the 
same molecule, and the differences between their values 
were less than d = 0.5 log units (corresponding to the esti-
mated experimental accuracy of solubility measurements 
[8]), their values were merged and the weight of the merged 
record was updated. Otherwise, records were kept with 
the weights assigned according to their respective data-
sets. For more details about this procedure, we refer to the 
original article by Meng et al. [10]. As a result of this proce-
dure, new solubility sets with weights for each record were 
obtained and provided by the authors, which were named 
“curated” (Cure) datasets.

Table  2 indicates the number of records, the average 
weight for all records in the respective dataset, and the per-
formance of the models using clean and curated data. We 
noticed that results reported for the PHYSP set in Ref. [10] 
are inconsistent and likely to be a reporting error.

Statistical parameters
One of the traditional statistical parameters used to esti-
mate the accuracy of models is RMSE (Eq. 1)

However, the authors used a modified RMSE (an ad hoc 
“curated RMSE” or “cuRMSE”), which incorporated the 
weights of records to estimate the performance of their 
models (see Eq. 2)

In both formulas yi are predicted values (which were 
averaged across several models to improve model 

(1)RMSE =

√

√

√

√

n−1
∑

i=0

(

yi − yi

)2

/n

(2)cuRMSE =

√

√

√

√

n−1
∑

i=0

wi ∗

(

yi − yi

)2

/n

accuracy, as stated by Weng et al. [10]) and yi are experi-
mental values.

The cuRMSE is an interesting loss function for train-
ing of neural networks, since it decreases the impact of 
some individual data points. However, this measure 
depends on the distribution of weights and could poten-
tially be a source of bias when comparing model perfor-
mance across different sets. Indeed, it decreases errors 
for molecules that have more than one value in the data-
set. For example, if a molecule has two records, each with 
the same difference between predicted and experimen-
tal values, e.g., 0.6, and each record has the same weight 
1/2 = 0.5 for all records (as seen in “Cln” datasets to 
account for inter-set redundancy), its cuRMSE will be sqr
t((0.5*0.6*0.6 + 0.5*0.6*0.6)/2) = 0.3, i.e., its cuRMSE will 
be artificially halved in comparison to the RMSE for the 
same molecule. Assignment of small weights to records 
from datasets with high errors may have an even more 
pronounced effect.

Methods
In this section, we examine whether or not hyperparam-
eter optimization provides a significant improvement in 
the performance of analyzed methods.

Analyzed methods
Attentive FingerPrint (AttFP) [2], ChemProp [18] and 
Transformer CNN [19] methods were used for the 
analysis. The first two methods were based on keras 
GCNN (KGCNN) repository code [20]. While a Chem-
Prop implementation was available, we preferred to use 
the KGCNN implementation since it allowed for better 
control as well as optimization of several hyperparam-
eters by testing the algorithm against datasets from our 
previous study [21]. The implementation of Transformer 
CNN is available elsewhere [22]. All three methods are 
available as part of openOCHEM software [23]. Both 

Table 2  Summary of clean and curated sets and model performance based on these sets extracted from Ref. [10] and its GitHub [17]

*The clean and curated sets results for the PHYSP set are inconsistent and some of them are likely to be a reporting error

Dataset Clean (“Cln”) dataset Curated “Cure” dataset

Records Average weight Published cuRMSE Records Average weight Published cuRMSE

ChemProp AttFP ChemProp AttFP

AQUA 1311 0.993 0.58 ± 0.06 0.64 ± 0.01 1354 0.866 0.54 ± 0.04 0.58 ± 0.02

PHYSP 2001 1 0.60 ± 0.03* 0.64 ± 0.01* 2001 1 0.52 ± 0.02* 0.55 ± 0.01*

ESOL 1116 0.995 0.62 ± 0.04 0.64 ± 0.03 1157 0.866 0.51 ± 0.05 0.59 ± 0.02

OCHEM 4218 0.869 0.64 ± 0.04 0.65 ± 0.02 3766 0.712 0.52 ± 0.02 0.60 ± 0.01

AQSOL 8701 1 0.82 ± 0.04 0.76 ± 0.01 9061 0.496 0.52 ± 0.01 0.59 ± 0.01

CHEMBL 30,099 0.848 0.81 ± 0.02 n/a 28,675 0.325 0.50 ± 0.01 n.a

KINECT 82,057 1 0.431 ± 0.003 n/a 81,935 0.999 0.43 ± 0.003 n.a
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AttFP and ChemProp are generally among the Top 5 best 
graph models applied to physical property predictions, 
including 3D graphs. However, because both methods 
are based on RDKit, there were some cases of failure on 
compounds that could not be processed by this pack-
age or by each method. The Transformer CNN is a non-
graph method based on the Transformer architecture 
[24], which analyzes the representation of compounds 
as SMILES strings. This method was added to provide a 
point of comparison with graph-based architectures. All 
results from this study are publicly available online [25] 
and instructions on how to reproduce the calculations 
(and/or assess development models) are provided on 
GitHub [26].

Meng et  al. [10] performed an extensive optimization 
of hyperparameters using a large GPU cluster. In par-
ticular, the authors noted that one round of calculations 
(solely for results of the ChemProp method) reported in 
Table 3 of their article (half of which are listed in Table 3 
below) took approximately two weeks on a cluster with 
1200 compute nodes (38,200 cores and 4800 GPU accel-
erators). Thus, the process required > 1.8 M (4800*24*16) 
hours of calculations on GPU cards. Moreover, the 
authors stated that they could not produce results with 
AttFP for the CHEMBL and KINECT sets since the cal-
culations would be too time-consuming. Since we did not 
have access to such a powerful cluster, we decided to skip 
parameter optimization and use default hyperparam-
eters provided by OCHEM developers for the respective 
methods and implemented in openOCHEM [23]. The 
employed hyperparameters were selected based on anal-
ysis of several small sets used in our previous study [21]. 
We performed our analysis on a communal cluster with 
16 GPU cards, usually running two tasks simultaneously 

as it was typically faster than running only one task per 
card. The training of all three models in Table 3 typically 
required less than 6 h on all available cards (ca 100 GPU 
hours), with the exception of the largest “KINECT Org” 
set which required about 100 GPU hours for the devel-
opment of models with three analyzed methods. Assum-
ing that the GPU cards we used (Nvidia GeForce RTX 
2070, Titan V, Tesla V100) had similar specifications to 
those used by Meng et al. [10] (the authors did not spec-
ify which cards were used for production, but we assume 
standard hardware accessible on cloud services for this 
comparison, with a speed similar to or higher than that of 
cards used by us), all results reported in this study would 
require about 10,000 times less computational power, i.e., 
less than 3 min of calculations on their GPU cluster.

The workflow for molecule processing in OCHEM 
included standardization, de-salting (keeping the major 
fragment), and neutralization. We noticed that graph-
based methods failed for some compounds in some sets 
(e.g., AQSOL, CHEMBL, KINECT) because of an RDKit 
error after the neutralization of molecules. For smaller 
sets, we noticed that both results of the methods were 
similar, both with and without neutralization. There-
fore for these two methods, the neutralization step was 
skipped. The partitioning of data on folds (see below) was 
the same for all three analyzed methods, which allowed 
direct comparison of results of models developed with 
different algorithms.

Validation protocols
The authors Meng et  al. [10] used random and scaffold 
partitioning [0.8,0.1,0.1] for training, testing and evalua-
tion, which was repeated five times. We decided to ana-
lyze results obtained with random partitioning, since the 

Table 3  Comparison of RMSE for analyzed original (“Org”) datasets

a Smaller RMSE errors for pairwise comparison of values obtained with the same method in this and the previous study (e.g., calculated AttFP RMSE for AQUA set 
was smaller, i.e. 0.60 vs 0.62, in this study) are highlighted in bold. b149 records for metals or metallo-complexes failed with both ChemProp and AttFP, therefore they 
were excluded from the set. *Star indicates that Transformer CNN had lower RMSE compared to both ChemProp and AttFP models developed using exactly the same 
protocol in openOCHEM. **Two stars indicate cases for which Transformer CNN yielded a significantly lower error (p < 0.05, according to t-test) compared to both 
ChemProp and AttFP models developed using openOCHEM. All values were rounded to one significant digit, which is the default setting in the OCHEM

Dataset Published results [10] (following 
hyperparameters optimisation)

Results from this study (using default hyperparameters of methods)

RMSE, validation by molecule

ChemPropc AttFP ChemProp AttFP Transformer CNN

AQUA 0.58 ± 0.04 0.62 ± 0.03 0.58 ± 0.02 0.60 ± 0.02 0.56 ± 0.02*

PHYSP 0.55 ± 0.03a 0.65 ± 0.02 0.57 ± 0.01 0.59 ± 0.01 0.56 ± 0.01*

ESOL 0.60 ± 0.08 0.64 ± 0.02 0.61 ± 0.01 0.59 ± 0.02 0.58 ± 0.02*

OCHEM 0.55 ± 0.02 0.60 ± 0.01 0.63 ± 0.01 0.65 ± 0.01 0.59 ± 0.01**

AQSOLb 1.02 ± 0.04 0.83 ± 0.03 1. ± 0.02 1.01 ± 0.02 0.99 ± 0.01*

CHEMBL 0.92 ± 0.02 n/a 0.88 ± 0.01 0.93 ± 0.01 0.86 ± 0.01**

KINECT 0.401 ± 0.001 n/a 0.434 ± 0.002 0.465 ± 0.001 0.41 ± 0.002**
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issues we encountered are also relevant to partitioning 
based on scaffold splitting. The protocol employed by 
the authors was very similar to tenfold cross-validation 
(tenfold CV), which was used in this study for all results 
reported in openOCHEM. Indeed, in both protocols, 
10% of data were excluded from model training and these 
data were predicted once hyperparameter optimiza-
tion was finished. OCHEM tenfold CV provides predic-
tion for all the data, as in any CV approach. The internal 
procedure in OCHEM splits data into internal training 
(81%), early stopping (9%) and evaluation sets (10%) cor-
responding to [0.81,0.09,0.1] split, which is practically the 
same as the [0.8,0.1,0.1] split used by the authors.

The authors, however, did not run tenfold CV to obtain 
predictions for all data, opting instead for five random 
data splits. Because of the random split, less than 50% of 
the data was used to calculate the reported model per-
formance in the evaluation set. This procedure should 
provide very similar results to the tenfold CV. Also, the 
authors generated an ensemble of eight models for each 
split and took their average to improve their results. 
The apparent disadvantage of the authors’ procedure, 
besides the fact that it does not predict all data, is that 
it is more computationally expensive, i.e. 5 × 8 = 40 mod-
els were developed, while just 10 models were required 
in OCHEM. The eight models that were used to calcu-
late confidence intervals which, in our opinion, come at 
too high a computational price compared to simple boot-
strap procedure used in OCHEM [27]. OCHEM splits 
data using the non-stereochemical part of the InChi hash 
key (to ignore stereochemistry) rather than with canoni-
cal SMILES, which was used by the authors of Meng et al. 
[10]. The OCHEM bootstrap procedure is more reliable 
since its splits are insensitive to possible errors related to 
the stereochemistry of the analyzed molecules.

However, the validation procedures used in Meng et al. 
[10] and this study are very similar and, importantly, both 
use 90% of data to develop models to predict the respec-
tive validation sets used to estimate model performance. 
This allows for a direct comparison between the results 
of this and the prior study.

Results
Analysis of performance of models for “Org” sets
In order to investigate the effect of hyperparameter opti-
mization and ensemble averaging used by the authors 
of Meng et  al. [10] we compared our results to their 
published results using tenfold CV for the “Org” sets 
(Table  3). The bootstrap procedure estimated the con-
fidence intervals for results reported in this study, as 
described elsewhere [27]. This procedure, in general, 
provided smaller confidence intervals, which could be 
attributed to the fact that it used data from the whole set 

compared to the analysis in Ref. [10] which used about 
50% of data. The additional variance in the results of 
Meng et  al. [10] could be due to hyperparameter selec-
tion. The confidence intervals for both analyses decreased 
with the dataset size.

The RMSE values calculated with models developed 
by the authors and recalculated in this article are gen-
erally similar. In five cases, the model developed with 
default parameters in this study provided lower RMSE 
than those following hyperparameter optimization and in 
six cases an opposite result was found. In only one case 
(AttFP model developed for AQSOL dataset), hyper-
parameter optimization provided a significantly lower 
RMSE than the value obtained in this study. The oppo-
site was seen during the analysis of the CHEMBL dataset 
with the ChemProp model, for which the Transformer 
CNN model yielded a significantly lower RMSE. Based 
on these observations, we propose that hyperparameter 
optimization possibly led to overfitting to the data, thus 
resulting in worse performance, particularly for smaller 
sets.

Therefore, one could question the need to perform 
extensive hyperparameter optimization. Indeed, only in 
one case did the use of hyperparameter optimization lead 
to improved model performance and this result required 
1.8 M hours of GPU cards and two weeks of calculations 
on an HPC cluster.

The Transformer CNN generally provided higher-
accuracy predictions than those provided by ChemProp 
and AttFP in 13 out of 14 comparisons performed in this 
study; in only one case did it give a lower performance 
when using the same data and validation folds.

Analysis of results for “Cln” dataset
The following analysis was performed to evaluate the 
effect of intra-set curation on the performance of devel-
oped models.

cuRMSE values were reported by the authors in their 
article for the “Cln” and “Cure” sets. As mentioned, this 
measure may not allow a faithful comparison of model 
performances across different sets. Since weights were 
available for both “Cln” and “Cure” sets, we used them to 
calculate cuRMSE values to allow us to compare models 
from this study with those previously published by the 
authors. To this end, we first developed models using 
the default tenfold CV procedure of openOCHEM (split 
by molecule) using “Cln” data. Then, values provided 
by the cross-validation procedure were used to calcu-
late cuRMSE using Eq.  (2). We excluded the KINECT 
set from this analysis since it had a different number of 
records after our curation, but still included its results 
using openOCHEM for model comparison.
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The cuRMSE was not significantly different from RMSE 
for all “Cln” sets, with the exception of OCHEM and 
CHEMBL, which had the largest numbers of molecules 
with several measurements in the dataset.

Performances of methods developed in this study 
without hyperparameter optimization provided lower 
cuRMSE in 7 of 12 pairwise analyses (Table  4). Only 
AQSOL results using AttFP calculated by Meng et al. [10] 
had a lower cuRMSE than the results of this study.

The use of Transformer CNN gave rise to the lowest 
RMSE for five out of seven analyzed sets while for the 
two other sets, the RMSE was more or less equal between 
Graph and NLP methods. Thus, our main finding when 
using cuRMSE is that the approach used by the authors 
(curation of records, use of hyperparameter optimization 
and ensembling) provided similar results compared to 
the training of models with pre-optimized hyperparam-
eters without any data weighting. This is an important 
result since pre-optimization of hyperparameters using 
small sets could dramatically decrease computational 
costs.

Analysis of results for “Cure” dataset
In the final analysis, we compared the effect of intraset 
data curation on model performance. For this analysis, 
we reused cross-validation results from the “Cln” set and 
re-calculated cuRMSE using weights and experimen-
tal values provided by the authors (predictions for the 
weighted set were taken from tenfold CV and molecules 
in both sets were matched using InChi).

Only the PHYSP set results calculated in this study had 
higher RMSE than those reported by Meng et  al. [10] 
(Table 5). However, as previously mentioned, the PHYSP 

set for “Cln” and “Cure” studies was exactly the same, so 
it could be that results reported for “Cure” are biased.

If we exclude e this set, results calculated in this study 
with default hyperparameters had lower cuRMSE in 6 
out of 9 cases compared to those reported by the authors. 
These results confirm our previous finding that models 
that have undergone hyperparameter optimization did 
not yield better results than models using a fixed set of 
pre-optimised hyperparameters, as investigated in this 
study.

Discussion
As we were impressed by the high performance of mod-
els reported by the authors [10], we sought to investi-
gate their proposed methodology in-depth and hoped 
to reproduce their results. However, since we did not 
have access to the same level of computational power as 

Table 4  Comparison of results for “Cln” dataset

a Smaller RMSE errors for the pairwise comparison of values obtained for the same method using the same measure, cuRMSE, are highlighted in bold (see also 
explanations in Table 3). *Star indicates sets for which Transformer CNN yielded a lower error compared to both ChemProp and AttFP models developed using 
openOCHEM. **Two stars indicate cases for which Transformer CNN yielded a significantly lower error (p < 0.05, according to t-test) compared to both ChemProp and 
AttFP models developed using openOCHEM. The values were rounded to one significant digit, which is the default setting in OCHEM

Dataset RMSE cuRMSE

Calculated in this article using fixed set of hyperparameters Same as in first two columns 
converted to cuRMSE

Two last columns are 
published results [10] 
(following hyperparameters 
optimisation)

ChemProp AttFP Transformer CNN ChemProp AttFP ChemProp AttFP

AQUA 0.56 ± 0.02 0.57 ± 0.02 0.56 ± 0.02 0.56 ± 0.02a 0.57 ± 0.02 0.58 ± 0.06 0.64 ± 0.01

PHYSP 0.57 ± 0.01 0.59 ± 0.01 0.56 ± 0.01* 0.57 ± 0.01 0.59 ± 0.01 0.60 ± 0.03 0.64 ± 0.01

ESOL 0.62 ± 0.02 0.62 ± 0.02 0.58 ± 0.02** 0.62 ± 0.02 0.62 ± 0.01 0.62 ± 0.04 0.64 ± 0.03

OCHEM 0.67 ± 0.01 0.69 ± 0.01 0.65 ± 0.01** 0.64 ± 0.01 0.65 ± 0.01 0.64 ± 0.04 0.65 ± 0.02

AQSOL 0.81 ± 0.01 0.82 ± 0.01 0.79 ± 0.01** 0.81 ± 0.01 0.82 ± 0.01 0.82 ± 0.04 0.76 ± 0.01
CHEMBL 0.84 ± 0.01 0.90 ± 0.01 0.83 ± 0.01* 0.72 ± 0.01 0.78 ± 0.01 0.81 ± 0.02 n/a

KINECT 0.408 ± 0.002 0.443 ± 0.002 0.410 ± 0.002

Table 5  Comparison of cuRMSE for “Cure” datasets

a Smaller RMSE errors for pairwise comparison of values obtained for the same 
method are highlighted in bold. *Results for the PHYSP set were excluded from 
the analysis due to possible errors in the data curation procedure and reported 
values

Published results from 
Ref. [10]

Results from Table 4 
re-calculated using 
cuRMSE

dataset ChemProp AttFP ChemProp AttFP

AQUA 0.54 ± 0.04 0.58 ± 0.02 0.50 ± 0.02a 0.52 ± 0.02
PHYSP* 0.52 ± 0.02 0.55 ± 0.01 0.57 ± 0.01 0.59 ± 0.01

ESOL 0.51 ± 0.05 0.59 ± 0.02 0.54 ± 0.02 0.54 ± 0.02
OCHEM 0.52 ± 0.02 0.60 ± 0.01 0.54 ± 0.01 0.55 ± 0.01
AQSOL 0.52 ± 0.01 0.59 ± 0.01 0.52 ± 0.01 0.53 ± 0.01
CHEMBL 0.50 ± 0.01 n.a 0.45 ± 0.01 0.48 ± 0.01
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the authors, we analyzed the results calculated without 
hyperparameter optimization.

First, our analysis of the original sets (“Org”) showed 
that the methods used in this study gave rise to similar 
RMSE values to those reported by the authors, despite 
their extensive hyperparameter optimization.

Moreover, another analysis of results from the “Cln” 
set (results for “Cure” were obtained from those for 
“Cln”) also showed that hyperparameter optimization 
did not provide consistent improvement compared to 
the use of a fixed set of pre-optimized hyperparam-
eters. While hyperparameter optimization is recom-
mended for some of algorithms used in this study, the 
availability of a cluster with hundreds of GPU cards is 
a luxury rather than a typical situation for researchers 
and the use of such clusters would go against the Green 
AI principles [28]. Indeed, all results performed in this 
study required > 10,000 times fewer computational 
resources used by Meng et  al. [10] and even provided 
better performance in 18 of 34 pairwise comparisons. 
The lower performance of models after hyperparam-
eter optimization could result from overfitting [29] by 
hyperparameter selection. This problem is frequently 
underestimated but should be carefully addressed, 
especially when using heavy hyperparameter selection 
for small sets.

Although the hyperparameter optimization method is 
appealing, its usefulness may be limited depending on the 
application. In particular, for many important biological 
(e.g., blood–brain barrier, toxicity, ready biodegradabil-
ity) or physico-chemical properties (e.g., odor threshold), 
chemical datasets tend to be composed of a few hundred 
to at most 1000 data points. For such small datasets, 
we typically observe strong performance fluctuations 
between data splits. Thus, relying on one particular split 
can result in the selection of hyperparameters that are 
optimal for a specific split but not in general. To more 
fairly compare results of hyperparameter optimization, 
a full n-fold would need to be computed, which further 
increases the computational cost of hyperparameter opti-
mization. This should be done ideally with a repetition of 
n-fold splits to get statistically significant results. From 
these repeated experiments one may actually observe that 
there is no single best solution, but rather a set of condi-
tions defining the set of best available options. These sets 
of conditions may then be used to design an ensemble 
model to obtain the greatest possible generalizability. 
For larger datasets, the split fluctuations are frequently 
within statistical error and typically representative of any 
other split (see Table 3 c: standard deviation decreasing 
with dataset size increasing), but this is where the cost of 
hyperparameter optimization explodes and makes this 
approach computationally expensive. More generally, we 

observed only a few marginal impacts of hyperparameter 
optimization on the RMSE performance.

Typically, once methods like hyperparameter optimi-
zation become a standard feature in various commer-
cial and open-source toolkits [30], they tend to be used 
blindly. We encourage the research community to bench-
mark their models via robust, automated protocols such 
as OCHEM to receive an unbiased assessment about 
their performances with smaller sets before starting to 
use them for more expensive experiments as described in 
Meng et al. [10]. We have shown that data augmentation 
can provide a performance boost to models developed 
with limited data, like Transformer CNN models. Other 
alternatives, such as Gaussian Process and Normaliz-
ing Flows models could be evaluated in future studies 
[31–33].

Of course, hyperparameter optimization is an impor-
tant part of model development. However, the readers 
should be aware that selection of hyperparameters can 
contribute to overfitting and that the result of hyper-
parameters selection should not be tested on the same 
set used for hyperparameters selection. The procedure 
proposed in our previous study [34] is fully applicable 
to prevent overfitting by hyperparameter optimization. 
We suggested splitting the model development process 
(which can include variable selection, hyperparameter 
optimisation, etc.) into two steps:

1)	 “Model development. Develop your model using 
your favored method(s) and all available data. Once 
this step is completed, estimate the accuracy of your 
final model as follows.

2)	 Model validation.

a)	 Divide your initial set into n-subsets (e.g., n = 5 
was used in this study, larger n or LOO can be 
recommended for small data sets).

b)	 Select one subset as the validation set.
c)	 Use the remaining n − 1 sets to develop a model 

using exactly the same approach as in step 1.
d)	 Apply the model to the validation set and store 

the predictions.
e)	 Return to step b) and repeat the analysis until all 

subsets are used as the validation sets.
f )	 Estimate the performance of your model using 

values calculated from step d).” [34]

This procedure is part of the OCHEM workflow.
Overfitting is a process in which a model starts to learn 

noise in the data and, as result, predicts new data, which 
were not used for model development, with a lower accu-
racy than a correctly trained model would. It should 
be mentioned that, in general, overfitting is difficult to 
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prove. Indeed, in addition to overfitting there is also a 
closely related applicability domain issue. Thus, if data 
comes from a different distribution and lies outside of 
the applicability domain, the model performance will 
also deteriorate. Overfitting happens when data in the 
test set all come from exactly the same distribution. Very 
importantly, these data should not be used for model 
development, since the researchers would obtain overfit-
ted results and proof of overfitting would be difficult to 
identify. In this respect, we should clearly state that the 
cross-validation procedure used by Meng et al. [10] was 
performed correctly: the authors did not use data from 
the respective test folds to tune their model hyperparam-
eters. Therefore, by comparing their tenfold CV results 
to our own, we can demonstrate that their procedure 
resulted in overfitting. Had they reported overfitted 
results, one would need to use external sets to prove the 
effect of overfitting.

Model overfitting can be clearly observed when ana-
lyzing the results of challenges, in which the organizers 
explicitly reported that the data for leaderboard and test 
sets were randomly split. For example, the organizers 
of the EUOS/SLAS solubility challenge noticed that a 
“higher performance on the public leaderboard was most 
likely due to its exposure to multiple submissions by each 
team, leading to an overfitting” [35]. The same observa-
tion was also made during the ToxCast challenge [36, 
37] to predict Lowest Effect Level toxicity of chemicals, 
organized by the US Environmental Protection Agency. 
In this challenge, the leaderboard set scores calculated 
according to Eq. 3 (n = 80 compounds, reported as “final 
provisional score” in the referenced document) where 
all higher than the scores for blind set (n = 63, “system 
score”) [36].

where RMSE was given by Eq. (1).
We also observed a similar effect on the differences 

between the methods’ performances for the leaderboard 
and test set during the Tox24 challenge [38]. Moreo-
ver there was also a correlation (R = 0.36) between the 
model’s performance difference (∆RMSE = RMSE-
blind − RMSEleaderboard) and the number of model sub-
missions: participants that submitted a large number of 
models tended to obtain larger ∆RMSE values, thus their 
estimations of model performance on the leaderboard 
set became more overfitted and did not reflect the actual 
performance of the models for the blind set.

Thus, we can conclude that the problem of overfit-
ting by model optimization is an important issue which 
should be properly addressed by users.

It should be mentioned that the hyperparameters of 
ChemProp, AttFP, and TransformerCNN were optimized 

(3)Score = 1000000 ∗ (2− RMSE)

using ten datasets from our previous study [21]. This 
optimization was performed when these methods were 
added to OCHEM (in 2019 for Transformer CNN and 
in 2021 for the other two methods) and was not in any 
way related to this study. The selected hyperparameters 
were used as default hyperparameters within OCHEM in 
several publications, e.g., see [5, 39] including the SLAS 
challenge [7].

In addition to ChemProp and AttFP models, we 
reported results from a Transformer CNN model, which 
in 26 of 28 cases provided a lower RMSE compared to 
both graph-based methods using the same cross-valida-
tion procedure and the exact same data splits (Tables  3 
and 4). Moreover, in 18 of these cases, Transformer CNN 
provided significantly lower RMSEs (p < 0.05). The same 
approach provided the highest individual score among 
30 analyzed models in the Kaggle First EUOS/SLAS Joint 
Compound Solubility Challenge [7].

The use of curated procedures employed by authors 
Meng et al. [10] in most cases provided a similar or lower 
performance compared to the use of datasets without any 
weighting for inter- and intra-set data curation proce-
dures when using cross-validation. Thus additional stud-
ies may need to be provided to confirm the impact of the 
procedures proposed by the authors. Indeed, the authors 
provided a weighting according to the data source. How-
ever the records in each set were collected from multiple 
sources with different experimental accuracies. There-
fore, the data quality in the merged sets can be markedly 
varied, and assigning the same weight to all data points 
in the dataset may be insufficient. The procedure used by 
the authors could be interesting to compare with an auto-
matic weighted statistical average from multiple sources 
exhibiting experimental drift to reduce the data variance 
between sources proposed elsewhere [40], which may be 
more appropriate for these data.

We also warn that cuRMSE (which is also dependent 
on the weights of records) is generally not comparable to 
RMSE. In Meng et  al. [10], the comparison of cuRMSE 
and RMSE within the same tables gave the impression 
that data curation decreased errors, which was not the 
case when exactly the same measure, RMSE or cuRMSE 
using the same weighting, were used for comparison.

We have also identified that the data curation pro-
cedures from Refs. [15, 16], applied to the PubChem 
AID1996 assay [14] data resulted in 24,199 dupli-
cated records, which had either different structures or 
rounded values and thus could have been treated as new 
data by Meng et al. [10]. Similar data duplication issues 
could arise in any dataset, not just solubility datasets. 
Since duplicated data have the same activity values but 
only minor differences in structures (e.g., different tau-
tomeric forms), their presence could contribute to the 
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overfitting of models. We developed models using the 
“Cure” set of 81,935 records from the Meng et al. study 
[10], which contained > 21  k duplicated compounds. 
For cross-validation, the data were split by records and 
thus the same molecule could be part of training and 
validation set simultaneously. The presence of dupli-
cates significantly decreased the RMSE of all methods 
and strongly overfitted performances were obtained 
(Table 6).

Although the authors made all their scripts publicly 
available as open source, their re-use is challenging, as 
considerable time must be spent adapting them (e.g., 
scripts are linked to the directory structure of one of 
the authors; limited documentation etc.) as well as the 
extremely high computational costs associated with 
performing these analyses. Unfortunately, the authors 
did not deposit their optimized hyperparameters, 
developed models, and calculated values, making the 
reproduction of their results extremely difficult, if not 
impossible. Thus we recommend that in the future, 
intermediate logs of results should be reported in addi-
tion to scripts, particularly for calculations that require 
extensive computational power to reproduce final 
results. The latter aspect will become more critical with 
the increase of computational resources required to 
repeat calculations.
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