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Dissecting human neurobiology at high resolution and with mechanistic
precision requires a major leap in scalability, given the need for
experimental designs that include multiple individuals and, prospectively,
population cohorts. To lay the foundation for this, we have developed and
benchmarked complementary strategies to multiplex brain organoids by
pooling cells from different pluripotent stem cell (PSC) lines either during

organoid generation (mosaic models) or before single-cell RNA sequencing
(scRNA-seq) library preparation (downstream multiplexing). We have also
developed anew computational method, SCanSNP, and a consensus call to
deconvolve cell identities, overcoming current criticalities in doublets and

low-quality cell identification. We validated both multiplexing methods

for charting neurodevelopmental trajectories at high resolution, thus
linking specificindividuals’ trajectories to genetic variation. Finally, we
modeled their scalability across different multiplexing combinations

and showed that mosaic organoids represent an enabling method for
high-throughput settings. Together, this multiplexing suite of experimental
and computational methods provides a highly scalable resource for brain
disease and neurodiversity modeling.

The polygenic underpinnings of human neurodiversity, in its physi-
ological and pathological unfolding alike, have been eloquently
referred to as terra incognita, calling for new maps to trace that
unfolding in the authenticity of human genetic backgrounds and
thereby render it mechanistically actionable. Developmental sto-
chasticity and environmental triggers add to such complexity, and the
increasingly broader range of exposome that is becoming measurable
promises to make gene-environment interactions finally tractable
at meaningful scales'™.

Toward these overarching goals, brain organoid and single-cell
multiomic technologies have afforded major strides in the mechanis-
tic dissection of human neurodevelopment, enabling transformative
insights from the study of genetic and environmental causes of neu-
ropsychiatric disorders, a community-wide effort to which we and
several others have been contributing>*. Importantly, our recent
benchmark of cortical brain organoids (CBOs) compared to the human
fetal cortex confirmed the preservation in CBOs of transcriptional
programs pinpointed as relevant for disease modeling®.

A full list of affiliations appears at the end of the paper.
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Despite these advances, the characterization of brain organoids
at single-cell resolution from entire cohorts and, in perspective, at
population scale remains however an unmet challenge, although an
obviously required one if we are to capture how individual genomes
and developmental trajectories shape variability in vulnerability and
resilience across the spectrum of neurodiversity' . Scaling up human
brain organoid modeling and molecular profiling by single-cell omics
would allow us to understand how the molecular causes of neurodevel-
opmental disorders trigger deviations from physiological trajectories',
inline with the expanding set of population-level single-cell studies**”.
This is however still an experimental and analytical challenge due to
high cost and workload and to the inherent batch-to-batch variability
of the complex experimental designs required.

To overcome some of these problems, progress has been made
in single-cell multiplexing strategies, including methods based on
sample barcoding®2® and methods leveraging the detection of natu-
ral genetic variants”’ . These approaches have indeed proven to be
instrumental for population genetics and disease-modeling studies,
including through co-culture of cell lines derived from multiple donors
inasingle dish® .

However, multiplexing has not yet been systematically applied
to organoids, a challenge that is particularly relevant for the brain
given the long-termlongitudinal unfolding of highly heterogeneous
combinations of cell types, and the field still lacks studies able to
establish the experimental and computational viability of applying
multiplexing strategies to complex three-dimensional experimental
systems.

We thus implemented and benchmarked complementary strate-
giesto multiplex human brain organoidogenesisin vitro, pooling PSCs
coming from differentindividuals either during organoid generation,
termed the mosaic model according to standardized guidelines for
brain organoid nomenclature we recently contributed to*’, or before
scRNA-seq library preparation. To improve genetic-based cell identi-
fication when dealing withbrain organoid single-cell transcriptomes,
we developed an in silico deconvolution method (SCanSNP), which
we benchmarked against existing deconvolution tools, producing a
consensus pipeline for robust genotype identification across data-
sets of different quality. Finally, we evaluated the two multiplexing
paradigms through a deep reconstruction of neurodevelopmental
trajectories, provided proof of principle of their suitability for linking
genetic variation to neurodevelopmental trajectory phenotypes and
modeled the scalability of the system, analyzing different multiplexing
combinations with an increasing number of lines. This provides the
community with an enabling resource for scaling up brain organoid
modeling to the challenges of human neurodiversity.

Results

Single-cell analysis of multiplexed CBOs

To test the feasibility of multiplexed brain organoid modeling over
extended developmental time courses, we developed an experimental
design comparing two approaches with distinctive features in terms
of scaling, standardization potential and experimental challenges:
(1) pooling PSC lines from multiple donors to generate mosaic CBOs
(mCBOs) and (2) generating CBOs individually and pooling them only
before single-cell droplet encapsulation (hereafter referred to as down-
stream multiplexing) (Fig. 1a and the Methods). For the first strategy,
we pooled PSClines (5,000 cells per line) before organoid generation
and longitudinally profiled the resulting mCBOs through scRNA-seq at
50,100 and 300 d of differentiation, following the same protocol previ-
ously used and benchmarked in our laboratory>", For downstream
multiplexing, CBOs were generated individually from the PSClines and
profiled at the same time points, pooling equal amounts of cells per
line after organoid dissociation for single-cell library preparation. For
both approaches, individual cell identity was demultiplexed through
genetic variation (Fig. 1b).

Experimental assessment of mCBOs

We first characterized mCBOs by immunofluorescence for canoni-
cal markers of neurodevelopment previously defined for organoids
differentiated with the same protocol by us and others"*** and con-
firmed their expected expression patterns (Fig. 2a,b and Extended
Data Fig. 1a-c). Next, to estimate the stability of the presence of the
different PSClines within mCBOs throughout development, we used a
two-pronged approach. First, we longitudinally assessed the prolifera-
tionrate of organoids derived fromindividual lines in two differentia-
tionreplicates through flow cytometry-based cell cycle analysis. This
showed similar proliferative trends across lines, with the expected
decreasein proliferation along differentiation and no substantial vari-
ations in the proliferative rate of the different lines over time points
(Fig. 2c,d and Supplementary Data 1). Next, we probed the extent to
which individual lines, despite homogeneous proliferation rates in
isolation, could still yield skewed distributions when grown as mosaics.
Inline withinvivo evidence of high asymmetric clonality during human
brain development*, the quantification of genotypes fromsingle-cell
transcriptomics confirmed a variable degree of balance between indi-
vidual lines during mCBO differentiation (Extended Data Fig. 2).

Benchmarking of demultiplexing algorithms

The ssingle-cell transcriptomics datasets generated from both mosaic
and downstream multiplexed organoids at early, mid and late stages
of differentiation (Fig. 1b) were demultiplexed using three differ-
ent state-of-the-art algorithms available for genetic demultiplexing
(demuxlet”, souporcell®, Vireo*’). We observed a high number of pre-
dicted doublets with an unexpected read count distribution skewed
toward low values when compared to singlets (Extended Data Fig. 3a,b).
Thiswas associated with a variable degree of unassigned cells and iden-
tity call agreement among tools (Extended Data Fig. 3¢,d). We thus
set out to develop anew method, SCanSNP (Fig. 3a), to overcome the
observed limitations by (1) dividing the classification challenge into two
steps, one for identity assignment and one for doublet detection and
(2) measuring the genetic purity of each droplet to identify low-quality
droplets and separate them from authentic doublets. Finally, to con-
solidate deconvolution accuracy, we set a consensus call framework
considering the strengths and weaknesses of each algorithm, including
non-genetic-based tools for doublets and low-quality cell detection****,
merging their outcomes into one combined output (Fig. 3b).

Next, we performed demultiplexing again using all the above
methods. We found that all three thus far available tools tended to
overestimate doublets, if compared to the theoretically expected rate,
SCanSNP or the consensus call (Fig. 3¢). Notably, doublets identified
by SCanSNP and the consensus call were the only ones for which the
average log count distribution of unique molecular identifiers was, as
expected, higher than that for singlets (Fig. 3e). This suggests a bias
of existing algorithms in doublet detection that includes low-quality
droplets that SCanSNP is instead able to identify (Extended Data
Fig. 3¢c). Accordingly, the evaluation of agreement rate in the assign-
ment of individualidentity across algorithms highlighted a high overall
agreement for singlet calls, with cases of lower agreement coinciding
with datasets that had higher genotype imbalance (Extended Data
Fig.3d).Onthe other hand, we observed that doublet detection agree-
ment was consistently lower (Extended Data Fig. 3d). To additionally
assess the demultiplexing performance of the different algorithms,
we benchmarked them with ground truth priors using (1) five in silico
multiplexed datasets with varying degree of balance among genotypes
and (2) two ad hoc experiments in which the different genotypes were
barcode tagged before pooling. As shown in Fig. 3d, in the simulated
datasets, all demultiplexing algorithms performed better in balanced
cases, and SCanSNP was the most accurate inboth balanced and imbal-
anced settings. The superior performance (comparison against cell-
ranger multi; Methods) delivered by SCanSNP was confirmed in the
barcode-tagged datasets (Extended Data Fig. 4).
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Fig.1|Schematic representation of multiplexing paradigms and experimental
design. a, Representation of the two explored multiplexing paradigms. Left,
downstream multiplexed organoids grown fromindividual lines and pooled
inequal amounts after dissociation at the single-cell level. Right, mosaic
organoids generated by pooling equal amounts of multiple PSC lines during
organoid seeding. After single-cell dissociation, both paradigms undergo

library preparation, sequencing and demultiplexing. PSCs, human pluripotent
stem cells. b, Representation of experimental design and the demultiplexing
approach. The CBO differentiation time points, the number of replicates for each
time point and their division between the two multiplexing paradigms and the
PSClines (genotypes) used for each experiment are shown. Figure created with
BioRender.com.

Analysis of neurodevelopmental cell types

After deconvolving the identity of each droplet in our dataset by
the consensus call, we discarded doublets and low-quality cells and
proceeded with cells coming from the PSC lines across multiplexing
modalities (Extended DataFig. 2and Supplementary Table 1). We thus
analyzed the single-cell transcriptomic dataset entailing four PSClines,
their time points and two multiplexing modalities (Fig. 1b). We pre-
processed each sample individually, integrated them and carried out
multi-tier filtering. A force-directed graph was used to visualize the
integrated dataset (Fig. 4a).

We systematically annotated the identity of each cell population
by analyzing the expression distribution of relevant markers, defining
the gene signatures driving each cluster and projecting the cellsontoa
reference single-cell human fetal brain dataset (Fig. 4a, Extended Data
Fig. 5a—c and Supplementary Data 2)*. Consistent with our previous

benchmarking”and inlinewith evidence fromrecentstudies character-
izing brain organoids at single-cell resolution**™*8, CBOs recapitulated
most of the relevant neurodevelopmental cell populations of human
corticogenesis. We observed a well-defined group of cells expressing
the proliferative markers CDC20, MKI67 and TOP2A that were labeled
as proliferating progenitor cells. Those cells are in continuity with a
bigger cluster of cells expressing PAX6, VIM, SOX2 and NES and anno-
tated as radial glia. This cluster undergoes a bifurcation, extending
either toward cells expressing outer radial glial and/or astrocyte mark-
ers HOPX, AQP4 and SIOO0B or the neuronal markers STMN2, DCX and
GAP43, whichwe annotated accordingly. We then further divided the
neuronal branch into intermediate progenitors expressing EOMES,
two clusters of excitatory neurons expressing NEUROD2, TBR1, SATB2,
SLC17A6,SLCI7A7,SLA and GRIA2, two interneurons clusters express-
ing DLX2, DLX5, DLX6-AS1, GADI and GAD2, one cluster of migrating
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Fig. 2| Experimental assessment of mCBOs. a,b, Inmunofluorescence-based
benchmarking of neurodevelopmental markers in mCBOs. At differentiation
day 50 (a), mCBOs show consistent presence of ventricular-like structures
positive for the neural stem cell marker nestin and are surrounded by a layer of
cells expressing the outer radial glial marker HOPX. The presence of newborn
deep-layer, Coup-TFlinteracting protein 2 (CTIP2)* (BCL11B) cortical neurons
canbe appreciated next to HOPX" cells. On the outer surface, nCBOs reveal the
presence of reelin” cells. At differentiation day 100 (b), mCBOs display more

mature ventricular structures characterized by the presence of HOPX* outer
radial glial cells, SATB homeobox 2 (SATB2)" intermediate layer neurons and
SRY-box transcription factor 2 (SOX2)" neural precursors. DAPI, 4,6-diamidino-
2-phenylindole; PAX6, paired box 6. ¢,d, Fraction of cycling cellsin pure lines
and mosaic organoids detected by flow cytometry (Methods) performed on two
differentiation replicates at relevant time points, from day -2 (organoid seeding)
up todays 25 (c) and 50 (d).

neurons expressing FOXP1, CA8 and LHX1 and one cluster expressing
RELN, PAX6 and CBLN1, annotated as Cajal-Retzius-like cells (Fig. 4a,b
and Extended DataFig. 5b).

We then compared the different time points of our longitudinal
dataset, observing, as expected, differences in cell type abundance.
While radial glial progenitors, proliferating progenitors and maturing

neurons were evenly distributed across time points, we observed that
migrating neurons, early excitatory neurons and Cajal-Retzius-like
cells were more abundant at the early and middle time points, whereas
outer radial glia and/or astrocytes, late excitatory neurons and
interneurons were more abundant at the late time point (Extended
DataFig.5d). Instead, celltype proportions between mosaic organoids
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and downstream multiplexed samples were comparable (Extended
Data Fig. 5d). We thus tested for statistical significance in differential
abundance, leveraging Milo*, confirming significant differences across
time points (Fig. 4c,d). Conversely, the same analysis done comparing
mosaic and downstream multiplexed samples showed no significant
difference between the two multiplexing paradigms.

To further investigate the molecularimpact of mosaic culture, we
compared the transcriptomes of the same genotypes between mosaic
and downstream multiplexing and, as a reference for technical vari-
ability, we compared the same genotypes when grown in two different
mosaic batches (Methods).

The analysis highlighted alow number of differentially expressed
genes (DEGs) for both comparisons (69 DEGs between multiplexing
modalities and four DEGs between two mosaic batches, false discovery
rate (FDR) < 0.05, log (fold change (FC)) > 1.5) (Supplementary Fig. 1a
and Supplementary Data 3).

Finally, to further probe the transcriptional regulation of specific
celltypesinthe CBOs vis-a-vis thein vivo counterparts, we took advan-
tage of our multigenotype dataset to detect loci with allelic-specific
expression (ASE)*¢, as the likelihood of observing heterozygous lociis
higher. As expected, the number of detected loci with ASE correlated
with the total amount of reads (Extended Data Fig. 5e). Moreover,
exploringthe correlation of the proportion of readsin eachallele across
cell types, we observed that, also in CBOs, the patterns of ASE are cell
type specific, in line with external evidence from the human brain*’
(Extended Data Fig. 5f).

Multiplexed CBOs capture key neurodevelopmental
trajectories

One of the most powerful innovations enabled by single-cell analysis
of experimental models featuring extensive cellular heterogeneity,
such as CBOs, is the possibility to analyze developmental trajecto-
ries through pseudotime analysis***°. To deeply explore this aspectin
our dataset, we leveraged partition-based graph abstraction (PAGA;
Extended Data Fig. 6a)* and isolated all biologically relevant lineages
recapitulated in CBOs (progenitors - excitatory neurons, progeni-
tors > interneurons, progenitors - astrocytes, progenitors -> Cajal-
Retzius-like cells, progenitors > migrating neurons). We could thus
analyze through diffusion pseudotime (dpt)** how the single cells from
the different time points and multiplexing modalities were distributed
along those neurodevelopmental trajectories (Fig. 5a,b). Moreover,
we harnessed the power of trajectory-based differential expression
based on generalized additive models (tradeSeq*’) and identified the
key genes driving each lineage of differentiation (Extended DataFig. 6b
and Supplementary Data4). Of note, for the excitatory lineage, trajec-
tory analysis allowed us to identify two temporally divergent paths
of neurogenesis that reconciled toward the end into the excitatory
neuron clusters, where EOMES was one of the key drivers of the dif-
ference (Fig. 5a). This is in line with the recent empirical demonstra-
tion of the ability of CBOs to recapitulate in a physiologically relevant
way the two different patterns (direct and indirect) of human cortical
neurogenesis® .

Linking genetic variation to neurodevelopmental phenotypes
Genome-wide association studies have uncovered hundreds of thou-
sands of genetic variants associated with human traits*®. Mechanis-
tically linking such variants to phenotypes of interest by molecular
quantitative trait locus mapping has been instrumental to under-
stand functional effects of genetic variation®®, In particular, single-cell
expression quantitative trait locus (eQTL) modeling allows identifica-
tion of theimpact of single-nucleotide polymorphisms (SNPs) on cell
type-specific molecular mechanisms, as we pioneered in ref. 59, push-
ing forward previous work by the GTEx Consortium to characterize
variationin gene expression across individuals and diverse tissues of
the human body®’. Moreover, because single-cell analysis can quantify
longitudinal trajectories, it is possible to assess the effects of SNPs on
traits that vary dynamically along a continuous axis®>*’. The power of
these approaches however has yet to be exploited for developmental
variation as a trait per se thatis now amenable to longitudinal quanti-
tationinthe form of single-cell resolved trajectories. We thus set out
to leverage our in vitro cohort and probe as proof of principle how
genetic variants could be linked to the neurodevelopmental traits
quantified in CBOs. First, we empirically tested in our dataset the
statistical power to perform single-cell eQTL analysis through our
previously developed tool, scPower®, and identified the number of
lines needed to performssingle-cell de novo eQTL discovery, given the
CBO-specific variability we had determined in terms of gene expres-
sion across neurodevelopmental cell types (Extended Data Fig. 6¢).
Because, as expected with our dataset, we do not have the statistical
power for de novo eQTL discovery, we followed a supervised approach
to investigate the genetic basis of the differences we observed in
neurodevelopmental trajectories between individuals during CBO
differentiation.

In particular, we focused on the trajectory of migrating neurons
because it displayed the greater and most reproducible genotype
diversity in the distribution of cells along pseudotime (computed by
dpt; Fig. 5c and Extended DataFig. 6d). Indeed, along this trajectory,
upon downsampling cells per genotype to ensure balance within
each time point (50 random sampling iterations), we found differ-
ences between two subgroups (of two individuals each) (Fig. 5¢).
This was also confirmed by PCA performed on the downsampled
dataset, where we observed the same genotypes’ separation along
PC1 (Extended Data Fig. 7), which represents an alternative proxy
of the differentiation trajectory of migrating neurons (Fig. 5b). We
thus explored in more depth the genetic variants that distinguish
the two subgroups. Of the total of 24,987 coding variants passing
the quality filters, 1,035 presented a different allelic configuration
between the two groups, and we found that 11 of these genetic vari-
ants (Fig. 5d and Supplementary Data 5) have been previously iden-
tified as single-cell eQTLs in population-scale scRNA-seq profiling
of induced PSC (iPSC)-derived neurons (Table 7 from Jerber et al.>,
total reported eVariants from the study, 10,972). Two of these vari-
ants are cis-acting eQTLs for SRCIN1, one of the trajectory-specific
highly variable genes (HVGs) we had identified (Fig. 5e) thatencodes
a protein previously shown to be a regulator of disease-relevant

Fig. 3| SCanSNP and consensus call overview and benchmark. a, Main steps
of SCanSNP: (1) best ID assignment, (2) doublet classification and (3) low-
quality droplet detection. Colors represent different individuals and droplet
identity after best ID assignment; grayscale intensity in matrices represents
the number of reads; cross-patterned cells represent droplets not included in
the computations; colored curves represent fitted distributions. b, Schematic
representation of the consensus call. Top, an example of consensus score

with weights for each algorithm. Weights are the partial score attributed from
different algorithms toward a specific genotype. Bottom, final aggregation
rationale. DBL, doublets; LQ, low quality; SoC, souporcell. ¢, Percentage of
doublets detected from each algorithm across datasets. x axis, datasets ordered
by the number of retrieved cells; y axis, doublet rate. Lines are colored by

algorithm. D, day. d, Benchmark of demultiplexing performance against ground
truthinaninsilicomultiplexed dataset. x axis reports different algorithms; y axis
reports the deconvolution accuracy as the rate of barcodes with predicted IDs
that match ground truth versus total detected barcodes per dataset. Balanced
datasets are colored light green; imbalanced datasets are colored orange. Plot is
bound between 0.86 and 0.98 to magnify the differences among and within tools
andjittered on they axis for readability. e, Distribution of predicted singlets and
doublets from the different algorithms for each of the seven datasets. Algorithms
are shown on the x axis, and mean log counts are shown on the y axis. The shape of
each symbol corresponds to a dataset. Markers are colored by singlet or doublet
predicted labels.
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alterations in cell migration and hence potentially representing the
genetic underpinning of the neurodevelopmental difference in the

migrating neuron trajectory observed here between the C
differentindividuals.

(1) Best ID detection

I | *§§

o $

)
®O S

s-g (e g)]

i

o 3

Genotype signature

Genotype-specific
A B C ype-spectl

threshold

First ID

Droplet

O0000000O
0000000

Contribution matrix
(genotype counts/droplet)

b

Demuxlet = 1.5

SCanSNP =15
Weights:
Vireo =1

Souporcell =1 - 0
Genetic doublet if

LQ SCanSNP == DBL
or

Low quality if
Failed consensus and SCanSNP ==
or

and at least 1 more algorithm == DBL

BOs from

Scalability of multiplexed CBOs
Having shown that multiplexed CBOs enable the parallel assessment of
neurodevelopmental trajectories fromdifferent lines, we next sought

to determine the scalability of the system, given the variable balance

(2) Doublet detection
Fitting negative droplet distribution

®
®
@
@
@
°
|
[}
[}
!
OB |
A B C

Double-positive droplets

\/

Doublet

(3) Low-quality droplet detection

First ID Second ID

Singlets ®

@
e [

log (best ID counts/second-best ID counts)

Low quality — Good quality

Gaussian mixture model

ol

FirstID Second ID
Low cross-genotype difference

\/

Low quality

Droplet score for jth genotype
(pass if consensus score > 3)

Leftover low quality:
Failed consensus and not
belonging to previous

Failed consensus and dropkick == LQ  All algorithms but SCanSNP == DBL categories
Consensus call
c e 10.5 A
0.7 | » Consensus ® Balanced © Doublet
* Expected 0.96 | ® Imbalanced 100 | ® Singlet
0.6 | e Demuxlet 5}
h: = dat:
+ SCanSNP © ® Q9 o | Sape=dataset A
0.5 | « Souporcell 2 094 ' Q . @ : -
o)  Vireo o S A
T 04 £ 3 90
o 0. c (€93
= o 092 ;
2 03 2 S 85 r e ry
3 3 S # " ’ &
8 o2 g 090 $ 80 ° v ”
= v e ®
01 o 75 e o o
- 0.88 ’ a ®
o o) © & %
70 #, % % ®
= 8§ 9 9 9 @ o I 9 = o 8 ®
S 5 Q@ ¥ © v = = 8 3
g 2 @ 9 = & o % S 2 @ - =
© ©o o o o o = g ) c o} o = o @
- Q o @ £ [9] [} =4 =1
O n 9 E E @ g 5] 5 O x = o 7} @
0O o ® & &8 2 O o ) 1) 2 > I < ]
T 5 3 & 2 = @ € Q < @
S & 9 5 5 =2 o o) =) Q =
S 8 = 2 ¢ S a 3 7] <]
=z = s 3 3 %] ]
o o [=)
a o
Dataset Algorithm Algorithm

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-024-02555-5

. Expression
Fraction of cells .
a b in group (%) in group (scaled)
LT m =
| | | | | 0 05 1.0
20 40 60 80 100
Proliferating progenitors ® 1 © @ @QO O - « - cOec@0 - ° @ @ o
Radial glial progenitors 4. - @0@- -+ -0-@60 - (] 0 - Q-
Outer radial glial astrocytes - - - 900000 - O 0 - @] e® - O
Cajal-Retzius like @ - - - - @ « - - 00@® O+ - -0 o0 -00
Intermediate progenitors & 4 © - + @ ® o - el JoX e -0Q0°-@
Neurons @ - Qe - e @0 0O 0 e -@e0
Migrating neurons @ -| - - @ - O@e@® O e -O-0
Glutamatergic neurons, early @ - -« - @ =« -« Qo -0@:  -00--0
Glutamatergic neurons, late @ 4 - - - @ - o - O CRRY [ LY K
Interneurons, GAD2 @ - - [ ° o (SR eO--000
; Interneurons @ - - @0 o . o-0 . o@¢° -0 000
) 4
« T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
3 ONTSINTAXSZONNFTOTOST NN NX00ONT NG S
- = P4 Q < < = Q ()
y O NERUSEEs R UoR R R ERIGERLBELD
§E0 8 252BE3TR° 0050878255056
= & @ e 3
=4 Q

log (FC) log (FC)
(significant neighborhoods only) (significant neighborhoods only)
Early depleted [ M Early enriched Mid depleted | W Mid enriched
-4 0 4 5 0 5

Fig. 4| Sample multiplexing allows identification of stage-specific
neurodevelopmental cell populations. a, Cellembeddings in a force-directed
graphafter preprocessing and filtering. Each dotis a cell, colored by annotated
celltype. b, Dot plot of gene expression for some of the relevant markers used in
the annotation. Size of dots is proportional to the number of cells expressing a
marker, and color encodes the mean expression in the group (scaled log-normal
counts). ¢, Differential abundance graph of CBO data across time points.
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The basis for the visualization is the force-directed graph. Dots represent groups
of similar cells; color code indicates enrichment for the indicated categories
(only shown for significantly enriched neighborhoods, spatial FDR < 0.1).

d, Differential abundance graph of CBO data across multiplexing modalities. The
basis for the visualization is the force-directed graph. Dots represent groups of
similar cells; color code indicates enrichment for the indicated categories (only
shown for significantly enriched neighborhoods, spatial FDR < 0.1).

among lines during mosaic organoid differentiation (Extended Data
Fig.2) and recent evidence showing a high degree of clonal variability in
brain organoid development®*?in line with the physiological clonality
of human brain development*>. We thus increased the number of PSC
lines and multiplexing combinations as well as replicates across differ-
entorganoids of the same combinations to quantitatively measure the
variance in balance between different PSC lines in mosaic organoids
and derive empirically grounded guidelines for scaling up disease
modeling with this approach.

To thatend, we undertook anin-depth profiling of the growth rate
of12different PSClines by systematic and longitudinalimaging over dif-
ferent passages during pluripotency maintenance and at multiple time
points during CBO differentiation. By performing semi-automatedimage
preprocessing and segmentation®, we modeled the growth dynamics of
eachPSCline (bothinpluripotency and upon CBO differentiation) and
of seven different mosaic combinations (Extended Data Figs. 8 and 9).

In parallel, each mosaic combinationwas profiled by Census-seq***’
atfive different time pointsin triplicate to measure the PSCline balance

over the mCBO differentiation course. This showed that, starting from
abalanced mix of lines when generating mCBOs, the line balance was
already altered at early stages of differentiation, resulting, for some
of the lines, in very low numbers of cells at later time points (Fig. 6a
and Supplementary Data 6). We thus asked whether these imbalance
patterns could be predicted by individual lines’ growth rates. As shown
in Fig. 6a and Supplementary Data 6, for the contribution of each PSC
linein mosaics, we found both thatit was reproducible across replicates
ofthe same mix and that it reflected line-specific behaviors across dif-
ferent mixes (Fig. 6a), yet such regularity was not explained either by
PSC or CBO growth rates (Supplementary Data 6 and Extended Data
Fig.10a). Thisexcludes thatarapid assessment of PSCline growthrates,
either in pluripotency or upon differentiation, could be harnessed to
preselect optimal mixes (thatis, those most likely to preserve balance)
for a high-scalability setting.

We thus probed an alternative solution to the scalability problem,
integrating the longitudinal Census-seq with mCBO imaging data
to model mCBO clonal dynamics and thereby determine the upper
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colored by genotype. Faded color shows 1s.d. across random subsampling
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d, Schematics of SNPs classified as eQTLs from Jerber et al.** and their allelic
configuration (reference (Ref)/Ref, Ref/alternate (Alt), Alt/Alt) for the pairs of
genotypes exhibiting difference in pseudotime. chr, chromosome. e, Principal-
component analysis (PCA) (Harmony integrated) of the isolated migrating
neurons branch. Bottom, migrating neurons-specific HVGs. Genes are ordered
by their principal component (PC)1loading, with TOP2A (cycling progenitors
marker), LHXI (migrating neurons marker) and SRCINI (only eGene fromd also
present in HVGs) highlighted.

Fig. 5| Multiplexed CBOs recapitulate key neurodevelopmental trajectories.
a, Highlight of late and early excitatory neurons (N.) branches. Top, embeddings
inaforce-directed graph (FDG1and FDG2 dimensions). Middle, a magnification
ofisolated branches on the diffusion map (DC1and DC2 components).

Bottom, smoothed expression of EOMES for each of the two trajectories along
pseudotime. b, Highlight of main developmental lineages in a force-directed
graph. Next to each force-directed graph, density plots display the number of
cells along pseudotime by (1) differentiation time points and (2) multiplexing
paradigm. Faded color shows 1s.d. among dataset replicates; solid line

displays the mean value among dataset replicates. ¢, Density plot of cells along
pseudotime for the isolated migrating neurons lineage. Cells are divided and
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feasibility limit of the mosaic models as a function of their sensitivity
in exposing single-cell endophenotypes. Specifically, we derived the
‘mosaic growth rate’ of each PSC line by combining mosaic organoid
growth rate as measured by imaging and the percentage of specific PSC
lines as measured by Census-seq (Fig. 6b and Extended Data Fig.10b).
We then computed the empirical probability distribution of the derived
number of cells coming from each PSC line in mCBOs and used it as
the basis for a Monte Carlo simulation with two initial parameters: (1)
the starting number of PSC lines used to generate mCBOs and (2) the
minimum number of cells per line required for single-cell analysis of
the main cell types. We found that the number of effectively recovered
lines (thatis, lines detected at levels that enable single-cell analysis of
the main neurodevelopmental cell types) increased with the number of
lines that were mixed (despite the reductionin relative representation)
(Fig. 6¢c and Extended Data Fig.10c).

Given similar clonal dynamics across mCBOs generated by dif-
ferent numbers of PSC lines as well as by different combinations of
PSC lines, the scalability of the system is currently limited only by
the number of lines that can be accurately counted and multiplexed
when generating mCBOs. We could thus compute the impact of
the different multiplexing approaches (Fig. 6d and Extended Data
Fig.10d) onthe experimental timelines needed to performlarge-scale
disease-modeling studies. mCBOs emerged from this analysis as an
enabling method due to the radical acceleration afforded by paral-
lel processing of different rounds of differentiation experiments,
for example, compressing the profiling of 1,000 lines down from 10
to 3 years and hence marking the difference, in the current funding
and project management ecosystem of most academic institutions,
between alargely unrealistic setting and a routinely feasible design.

Discussion

In this work, we developed multiplexing strategies to tackle the chal-
lenges of brain organoid modeling for the systematic study of human
neurodiversity at scale. Pooling strategies already proved transform-
ing for iPSC-based disease modeling**~*%; however, their application
to the inherently complex setting of brain organoids, which generate
ahighly heterogeneous composition of cell types over very extended
times, has just started to be undertaken®*2, Here, we first benchmarked
andimproved the demultiplexing steps by leveraging and aggregating
the edges of different publicly available state-of-the-art algorithms
and developing SCanSNP, a new deconvolution method that more
accurately identifies doublets and low-quality cells and flexibly accom-
modates cases of imbalanced genotypes.

Next, we deeply characterized the neurodevelopmental cell
types and trajectories recapitulated by CBOs across time points
and multiplexing modalities. Of note, the unicity of our longitudi-
nal design allowed us to capture a very interesting and relevant neu-
rodevelopmental process represented by the transient emergence of
Cajal-Retzius-like cells, a population that was also recapitulated in a
different brain organoid model but so far not reported in CBOs**. In
our dataset, Cajal-Retzius-like neurons are enriched at middle stages
and then depleted at advanced stages in both downstream CBOs and
mCBOs, consistent with in vivo evidence that they are fated to elimi-
nation as neuronal networks mature®. Future studies will thus enable

benchmarking the ability of CBOs to recapitulate also the specific
molecular and cellular features of human Cajal-Retzius neuronsinvivo.

This design also allowed us to identify the developmental diver-
gence of direct and indirect neurogenesis, highlighting EOMES as the
key driver guiding the different paths of early-versus-late glutamatergic
neuron differentiationin organoids. This confirmed the ability of CBOs
torecapitulate the physiological processes of a unique aspect of human
neocortical development®*”, inline with recent work that investigated
thesebiological processesin early fetal tissue and cerebral organoids
through imaging®'.

Finally, we observed in our late-stage CBOs also the differentia-
tion of GABAergic neurons®, afinding that, given the dorsal forebrain
patterning, is in line with recent evidence that human dorsal cortical
progenitorsare also capable of producing GABAergic neurons with the
transcriptional characteristics of cortical interneurons®**,

Through the analysis of developmental trajectories, we also
showed that brain organoid multiplexing can be used to identify how
candidate genetic variants are linked to specific neurodevelopmental
phenotypes, captured here as proof of principle in the transcriptional
regulation of migrating neurons. This paves the way to molecular
quantitative trait locus discovery once multiplexing approaches will
be applied to CBOs differentiated from large-scale cohorts of PSC
lines. Indeed, we showed that the number of lines needed for de novo
discovery of eQTLslinked to neurodevelopmental trajectories in brain
organoids (which we propose to term eDTL, for expressed develop-
mental trait loci) should be in the range of hundreds of individuals.

Both molecular and imaging analyses showed that mCBOs reca-
pitulate the expected cytoarchitectural organization, including
ventricular-like structures and the gradual emergence of relevant
neurodevelopmental markers of standard CBOs. As expected, they
showed avariable degree of balance among individual PSC lines.

Differently from another multiplexing approach that was recently
proposed, which requires however dissociation and re-aggregation
of the organoids to keep the balance among individual lines*, here
we aimed to keep the mosaic model unperturbed and thus allow it to
recapitulate the physiological phenomenon of clonal asymmetry>"¢,
proceedingto anin-depthinvestigation of these dynamics across dif-
ferent numbers of PSClines, multiplexing combinations and replicates.

Interestingly, our longitudinal imaging profiling, characterizing
with quantitative parameters each PSCline upon passagingin pluripo-
tency and through CBO differentiation, did not explain the contribu-
tion of eachline in the mosaic models. However, we cannot exclude that
agrowthrate characterization withevenadditional time points and/or
replicates or ateven higher resolution could lead toidentification ofa
relationship between cell cycle and cell fate, as has been described in
adifferentin vitromodel®’.

In terms of clonal dynamics and scalability, while we cannot gen-
eralize our results for every PSC line, our results showed that:

1. As expected from recent studies®?, the line balance in mCBOs
is altered already at early stages of differentiation. This result,
coupled with the lack of correlation with PSC and CBO growth
rates, suggests that interindividual differences across PSC lines
inresponse to the patterning factors used in CBO differentiation

Fig. 6 | Scalability of mCBOs. a, Longitudinal representation of PSC lines in seven
mosaic organoids of different composition (MIX IDs, Source Data Fig. 6),

as quantified by Census-seq. Each dot represents the average value of
representation for asingle line at that time point across three different replicates,
exceptday -2, when only one replicate was available. Shading around the line
represents the 95% confidence interval around the mean, as depicted by the solid
line connecting the dots. b, Growth rate of different cell lines for different mosaic
mixtures in theinterval of day O to day 4. Different cell lines are divided along
thexaxis; each dotin abox represents the growth rate of the same cell linein a
different experimental mixture. Displayed by each box is the median (horizontal

solid line within the box), the interquartile range (upper and lower bound of the
boxes) and minimum and maximum values (extension of the whiskers) among
mixtures per line. ¢, Fitted power function of cell line recovery (Monte Carlo
simulation, Extended Data Fig.10c). The plot shows the number of mixed lines
(xaxis) and the number of recovered cell lines (y axis). d, Projection of the
number of profilable lines over time across multiplexing approaches. The plot
shows the number of profiled cell lines (y axis) and the experimental time in days
(xaxis). Vertical dashed lines represent the experimental time to reach 100 and
1,000 profiled celllinesin the left plot and the right plot, respectively. For the left
plot, the approximation strict line is displayed for each protocol.

Nature Methods


http://www.nature.com/naturemethods

Article https://doi.org/10.1038/s41592-024-02555-5

a MIX ID:1 MIX ID:2 MIX ID:3
1.0
0.7 0.8
0.6 j 0.8 4 A
0.5 o A 0.6 + P /
0.6 N
0.4
03] 04 04 S
%ﬁ 1 \\/ ¥ 024 027 4
0 : 01 0
T T T T T T T T T T T T T T T
-2 5 12 25 50 -2 5 12 25 50 -2 5 12 25 50
Time point (d) Time point (d) Time point (d)
B MIX ID:4 MIX ID:5 MIX ID:6
GC) 1.0 A
] 058 - 06
2 084
o 0.5
9 0.6
$ 0.6 0.4
£ 0.4 0.3
e 0.2 |
o 02+ : i
s .- 014 ¢
2 N — s
=] il i =
8 T T T o T T T T T 0 T T T T T
i 12 25 50 -2 5 12 25 50 -2 5 12 25 50
Time point (d) Time point (d) Time point (d)
MIX ID:7
1.0 .
PSC line
0.8 — UCSFi001-A — CTLO7C
06 CTLO1 — CTLO8A
] — CTLO2A CTLO9A
0.4 — CTLO4E — H1
/ — CTLO5A — H9
0.2 4 i\ CTLO6F — KTD8_2
o \: .
T T T T T
-2 5 12 25 50
Time point (d)
b Growth rate stability (days 0-4) Fitted power function of recovered PSC lines

L

Growth rate (days 0-4)

Number of recovered PSC lines @

o4 ——.— === == g — l
T T T T T T T T T T T T T T T T
S DA CHEIN Y 2 & F or & @ o 2 5 10 20
Q7 Qo O Q e S Qo (§) o O . .
[N GFONEIIO N SIS s & & Number of mixed PSC lines
RS
PSC line
d Number of profiled cell lines per protocol over time
200 — Mosaic 1,400 -
— Downstream
175 1,200 -

2 150 1,000 profiled
£ 1000 4 PSC lines
O ! .
& 125 . .
3 100 profiled 800 | : :
= PSC lines . .
5 100 _— ® X .
a | .
5 600 | . .
754 ! ! !
9] . . .
o . . .
g ! 400 - \ .
z %04 , i .

25 1 1 200 1

1168 1325 ' |
0 T T T T T T T T T T 1 0 T A T T T 108 1
0O 30 60 90 120 150 180 210 240 270 300 330 0 24 48 72 96 120
Experimental time (d) Experimental time (months)

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-024-02555-5

protocols (as also shown in ref. 68) may be a key determinant for
the clonal asymmetry. However, with our data, we cannot ex-
clude that the imbalance already originates during the first 2d
of the protocol, during which embryoid bodies are generated, a
phenomenon that was also shown to be relevant in ref. 51 where
the authors showed that clones were lost during the formation
of embryoid bodies using a cerebral organoid protocol.

. Mosaic models showed reproducibility in the relative abundance
among different individual lines across replicates of the same
multiplexing combinations and across different combinations.
This points to the genetic background as a key determinant of
clonal dynamics. Naturally, this does not per se rule out that also
the epigenetic state of each line at the time of mCBO generation
may exert a substantial impact, in line with results from a large
collection of PSC lines®. Indeed, the lines that were overrepre-
sented in the experiments in Fig. 6 were not overrepresented in
previous single-cell transcriptomic experiments over different
years and thus from different passages of the same iPSC lines.

. The comparison between mosaic and downstream multiplex-
ing modalities showed that non-cell-autonomous effects are not
evident in the mosaic model, as expected, considering that we
only used wild-type PSC lines to generate the single-cell dataset
and confirming independent works that found the same resultin
two-dimensional®® and three-dimensional® cultures. However,
considering the few genes that emerged from the differential
expression analysis between genotypes in the two multiplexing
modalities, it is possible that, by increasing the number of cells
and replicates and profiling mosaic models through spatial om-
ics, the molecular impact of cell-to-cell interactions between
different lines could come into relief even within the range of
genetically normotypical lines. Also, it will be relevant to investi-
gate deeper non-cell-autonomous effects using PSC lines carry-
ing disease-relevant genetic mutations, such as the ones that al-
ready showed evidence that non-cell-autonomous mechanisms
are relevant for the pathogenesis’®”.

. The variance in mCBO clonal dynamics across PSC lines was not
dependent on the specific mosaic combinations (where differ-
ent lines were used) nor on the number of lines at generation, in-
dicating high scalability of the system. Additional experiments
will clarify the impact of increasing to hundreds of lines in single
mCBOs on these clonal dynamics. However, considering the cur-
rent limitationsin laboratory settings for accurate cell counting,
which is needed to generate balanced mCBOs (excluding flow
cytometry setups for the logistics of generating mosaic mod-
els with many lines), we do not suggest going lower than about
1,000 cells per line during mCBO generation. Thus, our guide-
lines suggest using a maximum of about 20 lines in mosaic mod-
els (because 20,000 cells are needed to generate a mCBO with
our current protocol).

. Monte Carlo simulations incorporating the empirical growth
rates from our experiments allowed us to compute the probabil-
ity of recovering, from each PSC line, a sufficient number of cells
for single-cell omics analysis of neurodevelopmental cell types,
given the number of lines used at the generation. This in turn
enables a precise design of disease-modeling experiments with
mosaic models. With our protocol, the number of PSC lines that
can be properly analyzed in terms of single-cell transcriptomic
characterization of all major neurodevelopmental cell types
(considering proliferating progenitors, radial glial progenitors,
neurons, migrating neurons, excitatory neurons) from a mosaic
experiment is ~12 lines (empirical mean =12.89; 95% confidence
interval, 12.85 to 12.93) if starting from 20 lines and sequencing
~100,000 cells. This means that the ideal settings to apply mCBO
designs as a transformative tool are cohort-level screenings
for trait-relevant in vitro endophenotypes, drug screening and

gene-environment interaction studies’. Indeed, if it is not cru-
cial to recover all starting PSC lines, mCBOs allow studying the
impact of genetic makeup, environmental chemicals" or drugs
onthe gene expression of specific neurodevelopmental cell types
for very large cohorts of PSC lines, even without automated set-
ups, as the only bottleneck is the maintenance of the lines and the
generation of the organoids, thereby massively increasing the
feasibility of large-scale experiments. For example, by leverag-
ing large cohorts of banked PSC lines (with already thousands of
lines available in standardized repositories (Table 2 from ref. 73))
and generating batches of mCBOs with 20 lines, the experimen-
tal timeline for profiling at day 50 would be, respectively, halved
for 100 lines (about 6 months instead of more than 1year needed
fora downstream multiplexing approach), more than three times
lower for 1,000 lines (about 3 years instead of about 10 years with
downstream) and substantially lower also than the recently in-
troduced alternative approach based on post-re-aggregation
multiplexing®. This, in addition to the substantial reduction in
the workload (see specific calculations in the Methods), repre-
sents a transformative leap for the transcriptomic annotation of
polygenic risk scores along neurodevelopment and for precision
neurotoxicology and pharmacology.

To conclude, our findings indicate to opt for the downstream

multiplexing strategy when the biological question at hand requires
strict balance among individual lines, with the mosaic model ideally
suited instead, and in fact transformative, for unbiased large-scale
studies, in the same way as developmental neuroscientists can lever-
age pooled CRISPR perturbation strategies for screening the impact
of genetic variants as acomplementary approach to the validation of
single mutations’"".
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Methods

Culture of pluripotent stem cells

PSC lines were cultured under feeder-free conditions on Matrigel-
coated plates at 37 °C with 5% CO, and 3% O,. To coat culture dishes,
Matrigel solution was prepared by diluting Matrigel (Corning, 354277)
1:40 in ice-cold DMEM/F12 medium (Gibco, 11330057) and stored
at 4 °C until use. Before plating cells, 6-cm dishes were coated with
1 ml Matrigel solution and incubated for 30 min at 37 °C. PSCs were
maintained in TeSR/E8 medium (Stemcell Technologies, 05990) sup-
plemented with 100 U mI™ penicillin and 100 pg ml™ streptomycin
(Thermo Fisher, 15140122) with daily medium changes and passaged
1:8to1:10 when confluency reached around 70%. To detach cells, plates
wererinsed with 2-3 mIPBS (Gibco,10010023) and treated with 0.5 ml
ReLeSRreagent (Stemcell Technologies, 05872) for 5 minat37 °C. When
single-cell dissociation was needed, Accutase (Sigma-Aldrich, A6964)
was used instead of ReLeSR, and 5 puM ROCK inhibitor Y-27632 (Tocris,
1254) wasadded to the medium to enhance cell survival in the first 24 h.
All participants signed aninformed consent form, and the use of PSCs
was approved by the ethical committee of the University of Milan. All
iPSC lines were reprogrammed by at least 15 passages. All PSCs have
beenroutinely verified to be Mycoplasma free by routine PCR testing,
and their identity was confirmed by short tandem repeat profiling.
Details about the PSClines can be found in Supplementary Table 1.

Multiplexing strategies

Inthe experimental design, we adopted two distinct multiplexing strat-
egies, namely, mosaic and downstream, that differed in the moment
at which the different cell lines were mixed.

In the former multiplexing approach, CBOs were generated by
mixing equal amounts of PSCs derived from each cell line to obtain
mosaic brain organoids. Briefly, PSClines were dissociated in parallel at
thessingle-celllevel, and cells were counted separately and then mixed
inequal proportions to obtain amosaic cellular suspension. After dilut-
ing the cell suspension to the desired concentration of 2 x 10° cells per
ml, organoids were generated as explained in the following chapter
entitled 'Cortical brain organoids'.

Inthe downstream approach, CBOs wereindependently generated
from each individual PSC line and grown separately. When reaching
the desired analytical time point, organoids from each cell line were
dissociated in parallel, and cells were counted and mixed in equal
proportions to obtain a pooled cell suspension.

For the comparison of neurodevelopmental cell types and trajec-
tories between mosaic and downstream multiplexed CBOs, the design
included four iPSC lines (CTLO8A, CTLO1, CTLO2A, CTLO4E) across
replicates in both multiplexing modalities. For Census-seq-based
assessment of mosaic organoid scalability, mCBOs were generated
with different combinations of PSC lines as shown in Fig. 6a.

Cortical brain organoids

Pure line-derived and mosaic brain organoids were generated using
an adaptation of the previously described protocol’®, which allows
one to obtain dorsal telencephalon cortical organoids, introducing
orbital shaking on day 12 of differentiation as previously published
by us in refs. 5,11,15. PSCs were grown on Matrigel-coated plates to
a confluency of approximately 60-70%, dissociated with Accutase
(Sigma, A6964) and resuspended in TeSR/E8 medium supplemented
with 5 uM ROCK inhibitor Y-27632 (Tocris, 1254) to reach a final con-
centration of 2 x 10° cells per ml. The cell suspension (100 pl per well)
was seeded inultra-low-attachment, U-bottom 96-well plates (System
Biosciences, MS9096UZ) and then centrifuged for 3 min at 150 rcf
to promote formation of embryoid bodies. Plates were incubated at
37 °Cwith5% CO,and 3% O, for 2 d, and then the first medium change
was performed, substituting TeSR/E8 with neural induction medium
containing 80% DMEM/F12 medium (Gibco, 11330057), 20% knockout
serum (Gibco, 10828028), non-essential amino acids (1:100, Sigma,

M7145), 0.1 mM cell culture-grade 2-mercaptoethanol solution (Gibco,
31350010), GlutaMAX (1:100, Gibco, 35050061), penicillinat 100 U mi™
and streptomycinat 100 pg ml™ (Thermo Fisher, 15140122), 7 uM dor-
somorphin (Sigma, P5499) and 10 uM TGF- inhibitor SB431542 (Med-
ChemExpress, HY-10431). Since that moment, defined as day 1, cultures
were grown in normal oxygen conditions (21% O,). Medium changes
were performed daily for the subsequent 4 d, and, on the fifth day,
neural induction medium was substituted with complete neurobasal
medium, composed of neurobasal medium (Gibco, 12348017), B-27
supplement without vitamin A (1:50, Gibco, 12587001), GlutaMAX
(1:100, Gibco, 35050061), penicillinat 100 U mi™ and streptomycin at
100 pg ml™ (Thermo Fisher, 15140122) and 0.1 mM cell culture-grade
2-mercaptoethanol solution (Gibco, 31350010) supplemented with
20 ng mI' FGF2 (PeproTech,100-18B) and 20 ng mI™ EGF (PeproTech,
AF-100-15). On day 12, organoids were transferred by pipetting with
cut-end pipette tips from 96-well to 9-cm ultra-low-attachment dishes
(System Biosciences, MS-90900Z7) and placed on a standard orbital
shaker (VWR Standard Orbital Shaker, Model 1000). From day 12
onward, medium changes were performed every other day. On day
23, FGF and EGF were replaced with 20 ng mI BDNF (PeproTech, 450-
02) and 20 ng mI™ neurotrophin 3 (PeproTech, 450-03) to promote
differentiation of neural progenitors. From day 42 onward, complete
neurobasal medium without BDNF and NT3 was used, performing
medium changes every other day.

Cell cycle analysis

Pure line-derived organoids were subjected to cell cycle analysis at
multiple time points after their generation along with cell suspensions
employed in their generation. Organoids were collected at differen-
tiation days 0, 5,12, 25, 50 and 75, dissociated at 37 °C for 5 min with
trypsin-EDTA (Euroclone, ECB3042) (differentiation days 0, 5 and 12)
or for 30 min with papain (Stemcell Technologies, 07466) (differentia-
tiondays 25,50 and 75); papain was more efficient for the dissociation
of mature organoids.

As for the first analytical replicate (Fig. 2c), cells were fixed with
cold ethanol and stored at +4 °C. Upon completing the longitudinal
cohort, cell suspensions were rinsed with PBS, stained overnight with
3 uM propidium iodide solution (Thermo Fisher, P1304MP) in the
presence of 25 pg ml™ RNase I (Thermo Fisher, ENO601) and analyzed
withaFACSCelestainstrument (BD Biosciences) to measure DNA con-
tent. Analyses were performed with FlowJo version 10 software (BD
Biosciences).

Inthe second analytical replicate (Fig.2d), to avoid the deteriora-
tion of early time point samples, 1 million cells per sample were resus-
pended in PBS supplemented with 0.1% BSA (Sigma, A9418), stained
for 20 min at37 °C with 2 pug ml™ Hoecst 33342 (Sigma-Aldrich, B2261)
in the presence of 5 uM verapamil (Sigma, V4629) and analyzed with
a CytoFLEX instrument (Beckman Coulter Life Sciences) to measure
DNA content.

Analyses were performed with FlowJo (replicate 1, BD Biosciences)
or FCS Express 7 software (replicate 2, De Novo Software). Raw counts
are shown in Supplementary Data 1, and the gating strategy is shown
inSupplementary Fig. 2.

Histological analysis
Organoids were collected on differentiation days 50 and 100, washed
with PBS and fixed overnight at 4 °C in 4% paraformaldehyde-PBS
solution (Santa Cruz, sc-281692). After rinsing with PBS twice, samples
were embedded in 2% low melting agarose, placed in 70% (vol/vol)
ethanol andimmediately given to the Tissue Processing Unit for paraf-
finembedding, sectioning and routine hematoxylin-eosin staining.
Deparaffinization and rehydration were achieved by consecu-
tive passages of 5 mineachin the following solutions: 2x histolemon
(Carlo Erba, 454912),100% ethanol, 95% ethanol, 80% ethanol and
2x ddH,0. Sections were thenincubated for 45 minat 95 °C with10 mM
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sodium citrate buffer (VWR Chemicals, 27833) with 0.05% Tween-20
(Sigma, P1379) for simultaneous antigen retrieval and permeabiliza-
tionandthen equilibrated at room temperature for at least 2 h. After
30 min of blocking with 5% normal donkey serum (Jackson Immu-
noResearch, 017-000-121) in PBS, incubation with primary antibodies
in PBS with 5% normal donkey serum was performed. The following
primary antibodies were used: anti-PAX6 (rabbit, 1:200, BioLegend),
anti-TUJ1 (mouse, 1:1,000, BioLegend), anti-nestin (mouse, 1:500,
Millipore), anti-reelin (mouse, 1:400, Millipore), anti-CTIP2 (rat,
1:400, Abcam), anti-SATB2 (mouse, 1:400, Abcam), anti-HOPX (rabbit,
1:500, Sigma), anti-SOX2 (goat, 1:1,000, R&D Systems), anti-MAP2
(guinea pig, 1:200, Synaptic Systems), anti-NeuN (mouse, 1:200,
Abcam), anti-Ki-67 (rabbit, 1:250, Abcam). The day after, secondary
antibodies conjugated with Alexa Fluor 488, 594 or 647 (donkey,
1:400, Thermo Fisher) were diluted in PBS and applied to the sections
for1h, followed by a 5-min incubation with 1 ug mI™ DAPI solution.
After each incubation, three 5-min washing steps with TBS buffer
were performed. After a final rinse with deionized water, slides were
dried and mounted using Mowiol mounting solution. Images at x20,
x40 and x63 magnification were acquired using a DM6 B MultiFluo
microscope (Leica) equipped with an Andor Zyla VSC-04470 sCMOS
camera (Fig. 2) or with an ECLIPSE Ti2 Crest microscope (Nikon)
coupled with a Photometrics Prime 95B camera at x20 magnifica-
tion (Extended Data Fig.1) and then processed with Fiji software. For
Extended Data Fig. 1, maximum intensity projection was performed,
choosing the ‘maximum intensity’ option, and a gamma correction
of 0.7 was applied to the AF488 channel.

Cortical brain organoid processing for single-cell
transcriptomic analysis

Organoids were collected on differentiation days 50, 100, 250 and
300 (+3 d). Three to five organoids per condition were dissociated by
incubation with asolution of 0.5 mg ml™ Collagenase/Dispase (Sigma)
with 0.22 mg mI™" EDTA (Euroclone) and 10 pl DNaselat1,000 U mi™*
(Zymo Research) for 30-45 min according to organoid size. Digested
suspensions were filtered through 70-um-pore Flowmi Cell Strainers
(Sigma, BAH136800040), resuspended in PBS and counted using a
TC20 Automated Cell Counter (Bio-Rad). For the day 100 downstream
sample, the single-cell suspension was further centrifuged at 500 rcf
for3 minandresuspendedin 200 pl cold PBS-0.04% BSA. Pre-chilled
(800 ul) 100% methanol was added dropwise for afinal concentration
of 80%. Cells were fixed for 30 minand stored at -80 °C for 6 month:s.
For recovery of a single-cell suspension, fixed cells were thawed
at 4 °C (all steps at 4 °C) and centrifuged at 1,000 rcf for 5 min, the
supernatant was completely removed, and pre-chilled SSC cocktail
(3% SSC, 0.04% BSA, 1% SUPERase-In, 40 mM DTT) was added. Cells
were counted and resuspended at a concentration 1,000 cells per
pl. Droplet-based single-cell partitioning and scRNA-seq libraries
were generated using the Chromium Single Cell 3" Reagent v2 Kit
(10x Genomics) following the manufacturer’sinstructions’. Briefly,
asmallvolume (6-8 pl) of single-cell suspension at adensity of 1,000
cells per pl was mixed with RT-PCR master mix and immediately
loaded together with Single Cell 3’ gel beads and partitioning oil into
aSingle Cell 3’ Chip. The gel beads were coated with unique primers
bearing 10x cell barcodes, unique molecular identifiers and poly(dT)
sequences. The chip was then loaded onto a Chromium instrument
(10x Genomics) for single-cell GEM generation and barcoding. RNA
transcripts fromsingle cells were reverse transcribed within droplets
to generate barcoded full-length cDNA. After emulsion disruption,
c¢DNA molecules from each sample were pooled and pre-amplified.
Finally, amplified cDNA was fragmented, and adaptor and sample
indices were incorporated into finished libraries that were compat-
ible with lllumina sequencing. The final libraries were quantified by
real-time quantitative PCR and calibrated with an in-house control
sequencing library. The size profiles of the pre-amplified cDNA and

sequencing libraries were examined on the Agilent Bioanalyzer 2100
using aHigh Sensitivity DNA chip (Agilent). Two indexed libraries were
pooled equimolarly and sequenced on the Illumina NovaSeq 6000
platform using the v2 Kit (Illumina) with a customized paired-end,
dual-indexing (26/8/0/98-bp) format according to the recommen-
dation of 10x Genomics. Using proper cluster density, a coverage
of around 250 million reads per sample (2,000-5,000 cells) was
obtained, corresponding to at least 50,000 reads per cell.

Generation of CellPlex libraries

Two independent downstream multiplexed datasets were generated
for external validation of the SCanSNP pipeline, labeling each geno-
type with a specific barcode from the 3’ CellPlex Kit (10x Genomics,
PN-1000261). Briefly, organoids were collected on day 50 and dis-
sociated with an HBSS-based solution containing 30 U ml™ papain
(Stemcell, 07466) and 125 U mI™ DNase I (Zymo Research) for 30-45 min
according to organoid size. After filtering through 70-um-pore Flowmi
Cell Strainers, cells were counted, and 1 million live cells per sample
were taken and labeled with a unique barcode from the 3’ CellPlex Kit
Set A according to the manufacturer’s instructions. Once the wash-
ing steps were completed, 1 x 10° live cells per sample were pooled
together, and the concentration was adjusted to be within1.2-1.6 x 10°
cells per ml for droplet-based single-cell partitioning. Libraries were
generated using the Chromium Next GEM Single Cell 3’ v3.1 Kit (10x
Genomics) similarly as described previously. Target coverage for gene
expressionwas set at 50,000 reads per cell, whereas, for CellPlex mul-
tiplexing oligonucleotides, asequencing depth of 5,000 reads per cell
was chosen as recommended.

Generation of bulk RNA-seq-based variant-calling file (VCF)
Reference genotypes for the deconvolution were obtained from bulk
RNA-seq data of pure line-derived organoids.

Total RNA was isolated from pure line organoids with the RNeasy
MicroKit (Qiagen) according to the manufacturer’sinstructions. RNA
quantification and integrity was assessed by electrophoretic analysis
with the Agilent 2100 Bioanalyzer. The TruSeq Stranded Total RNA LT
Sample Prep Kit (Illumina) was used to run the library for each sam-
ple using 500 ng total RNA as the starting material. Sequencing was
performed with the [llumina NovaSeq 6000 platform, sequencing on
average 35 million 50-bp paired-end reads per sample.

First, raw reads were aligned to the GRCh38 version 93 Ensembl
reference genome using STAR®® in two-pass mode to learn splicing
junctions fromdata, subsequently, read group tags were made uniform,
and optical and PCR-duplicated reads were marked using GATK Mark-
Duplicates. Theresulting BAM file (in silico multiplexed BAM creation
is described in the Supplementary Methods) was recalibrated using
BaseRecalibrator and ApplyBQSR with the sorted 00-All.vcf.gz (b151_
GRCh38p7) file from dbSNP. Next, we performed variant calling using
GATK HaplotypeCaller® with the option ‘dont-use-soft-clipped-bases’-
standard-min-confidence-threshold-for-calling set to 30 and -
min-base-quality-score equal to 20. We applied thresholds for MIN_DP,
DP and quality (GQ) of 10, 10 and 20, respectively. Finally, we used
CombineGVCFs and GenotypeGVCFs exclusively to merge together
GVCFs of genotypes mixed in the corresponding single-cell experiment,
ignoring the aggregated INFO field.

Alignment and genotype demultiplexing

scRNA-seq data were aligned using Cell Ranger 3.0.0 count and the
matched reference provided from10x. For subsequent demultiplexing
and downstream analyses, only droplets passing the Cell Ranger filter
were considered. For demultiplexing, we applied demuxlet, soupor-
cell, Vireo and SCanSNP. The final identities used are the result of the
consensus call (consensus call setup is described in the Supplementary
Methods). Withthe exception of souporcell, all the tools were provided
with bulk RNA-seq-derived VCFs and were embedded in a collective
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singularity image. To optimize the deconvolution process for our
samples, we used demuxlet with default parameters and the setting
‘~doublet-prior’ according to the number of retained droplets after
Cell Ranger filtering and V3 kit specs doublet expectation. CellSNP,
the Vireo companion tool for single-cell variant calling, was launched
‘with -p 10-minMAF 0.1-minCOUNT 20’, and subsequently Vireo was
launched onthe combined VCF file cleaned from loci containing miss-
ing calls. Souporcell waslaunched using the available singularity image
specifying only the number of genotypes in the mixture (k). hiPSClines
included in this analysis are listed in Supplementary Table 1.

Single-cell data preparation
Alldownstream analyses were performed withinthe SCANPY single-cell
analysis framework®.

Basic filtering was done right after importing count matrices
from Cell Ranger. We inspected the number of genes, mitochondrial
gene counts and ribosomal gene count distributions and adopted
dataset-specific thresholds to remove droplets with likely techni-
cal issues. Next, we removed droplets called for low quality or
doublets according to the consensus call. After merging the seven
datasets, cell counts were normalized and log transformed using the
‘sc.pp.normalize_total’ and ‘sc.pp.loglp’ SCANPY functions. Finally, we
regressed out the effect of total counts and the percentage of mitochon-
drial transcripts with the ‘sc.pp.regress_out’and ‘sc.pp.scale’ functions.
All functions were run with default parameters.

Cellfiltering and annotation

We relied on multiple tiers of annotation, filtering and dimensional-
ity reduction. First, we removed proteoglycan (WLS, ANXA2, TPBG,
RSPO3, DCN, BGN, MYH3)-expressing cells, considered non-relevant
for our downstream analyses. We next iteratively partitioned cells and
assessed the top marker viaLeiden and rank_gene_groups, respectively,
to remove cells highly expressing adhesion (WLS, TPBG) and stress
(BNIP3, PGK1, MT-CO2) markers while manually annotating cell types
usingliterature markers. Finally, we used SCANPY’s score_genes func-
tion providing ER stress and hypoxia signatures to remove clusters of
cells scoring >0 and >0.3, respectively. Finally, we repartitioned the
remaining cellswith a Leidenresolution of 0.6 and manually transferred
the annotation to new clusters, merging, if needed, different partitions
into coherent cell types when key markers were overlapping.

Highly variable gene selection

For HGV detection, we took advantage of having at least two datasets
per time pointand detected HVGs by time point with the ‘sc.pp.highly_
variable_genes’ SCANPY function, providing each dataset as a separate
batch and min_mean = 0.0125, max_mean =5 and min_disp= 0.5 as
parameters. For each time point, we kept only genes found as HVGsin
atleast two datasets. After major filtering and single-trajectory isola-
tion, HVGs were recomputed on the cell subset in the same fashion.
Moreover, we included some relevant neurodevelopmental genes
fromtheliterature regardless of whether they were detected as HVGs
(Supplementary Data 2).

Dimensionality reduction and dataset integration

After filtering, PCA was computed on defined HVGs, and the seven
datasets were integrated via SCANPY’s Harmony implementation®
with a maximum of 20 iterations; the cells’ neighborhood graph was
then computed ontop 15 PCs, specifying 100 as the neighborhood size
(n). Uponsingle-trajectoryisolation, PCA was recomputed oneach cell
subset and branch-specific HVGs, Harmony was run with amaximum of
20iterations, lambda =2 and theta =1, and cell neighborhood graphs
were computed with ten PCs and 50 n; in the case of the excitatory neu-
ron lineage, we used nine PCs and 60 n, given the greater differences
between early and late branches than those within lineage-continuous
cell states of other cases.

Trajectory isolation

To analyze the cell state transitions with trajectory-wise magnifica-
tion, weisolated the most relevant neurodevelopmental trajectories.
For this purpose, we first partitioned cells with the Leiden algorithm
with double resolution (1.2) with respect to the previous partitioning
and used it as the basis for PAGA®*, obtaining a PAGA graph. The PAGA
graph was refined by removing edges with weight <0.05. After com-
plementing the edges to 1to obtain the equivalent distance graph,
we computed the shortest path from root r to each endpoint e using
NetworkX® with the Bellman-Ford method, where r is the partition
of cells with highest counts for the ‘TOP2A’ gene and e are partitions
with the highest rate of the cell types considered one of the endpoints
(astrocytes, Cajal-Retzius-like neurons, early excitatory neurons, late
excitatory neurons, interneurons and migrating neurons).

Differential abundance analysis

We adopted Milo® for differential abundance analysis. We tested for
differential abundance between the mosaic organoid dataset and
non-mosaic datasets via direct comparison following the Milo stand-
ard workflow. The differential abundance test was between each time
point and the other two simultaneously; therefore, we provided as
model contrast CT,=T, - (T, + T,)/2 for each of the n assessed time
points, where xand y are the other two time points, Tis the timepoint
and CT, is the model contrast for timepoint n. Plots were generated
displaying enriched/depleted cells’ neighbors for each time point
with spatial FDR < 0.1.

Differential expression analysis

To compare the molecularimpact of mosaic co-culture, we performed
direct differential expression analysis between the same genotypes
either grown individually (downstream multiplexing) or in mosaics.
Given the impact of methanol fixation on the day 100 downstream
dataset, (Supplementary Fig.1b), werelied on day 50 datasets (Supple-
mentary Fig.1c). To provide areference of the expected batch-to-batch
variability, we also compared the same genotypes when grown in two
different mosaic batches (Supplementary Fig. 1d). For both compari-
sons, we kept the two most abundant genotypes (Supplementary
Fig.1c,d, left) and the three most abundant cell types (that s, proliferat-
ing progenitors, radial glial progenitors and neurons; Supplementary
Fig.1c,d, right) present inboth experiments. For each genotype and cell
type combination, single-cell counts were aggregated to obtain two
pseudoreplicates. Gene filtering and normalization were carried out
within edgeR®® using the functions filterByExpr() and calcNormFac-
tors(), respectively; the latter was performed to account for different
numbers of cells aggregated into the various pseudoreplicate combina-
tions. Finally, count fitting (glmQLFit edgeR function) and the DE test
(glmQLFTest edgeR function) were repeated individually for each cell
type comparing the condition (multiplexing paradigm or replicate)
while providing the genotype as the blocking variable.

Developmental trajectory analysis

We aimed to assess the distribution of cells along pseudotime by dif-
ferent covariates for migrating neuron, astrocyte, Cajal-Retzius-like
neuron and interneuron trajectories after their isolation. We wished
to assess whether (1) time point differences mirror the asynchronous
development of specific cell typesin our in vitro system, (2) the multi-
plexing paradigmimpact on the developmental timing of such popula-
tions and (3) whether we had the resolution to capture developmental
differences among control genotypes. For each trajectory individually,
we computed diffusion map® and dpt®. Next, for the different time
points and the multiplexing paradigm, we computed the kernel density
of each dataset (sklearn.neighbors.KernelDensity, kernel = ‘gaussian’,
bandwidth corresponding to 5% of the whole pseudotime window)
and plotted mean and *1s.d. among dataset densities. For genotype
comparison, we kept the most relevant time points for each trajectory
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(early and mid for migrating neurons and Cajal-Retzius-like neurons;
early, mid and late for the other trajectories) and genotypes for which
at least 50 cells were retrieved at each retained time point. Finally,
the genotypes were balanced via random sampling to have the same
amount of cells across time points. Mean and standard deviations were
computed on kernel densities of 50 sampling iterations to assess the
stability.

For the isolated migrating neuron trajectory, we confirmed the
dpt-based genotype grouping (Fig. 5c) by assessing their behavior along
PC1. We started by confirming that PC1 was mainly driven by differentia-
tion, and thus could be used as an alternative of pseudotime measure.
Todo so, we quantified the PClvariance (adjusted R?) explained by the
annotated Leiden covariate using the ordinary least-square implemen-
tation of the statsmodels Python library (Extended Data Fig. 7a, left).
Similarly, we thenassessed the PClvariance explained by the genotype
(Extended Data Fig. 7a, right) and genotype distributions along PC1
(Extended DataFig. 7b).

Subsequently, we used tradeSeq® (fitGAM function was run
with nknots = 8 after trimming cells in the first and 99th dpt percen-
tiles to increase stability at lowly sampled extremes) and detected
pseudotime-driven transcriptional difference within each lineage for
allbut excitatory neurontrajectories, whereas, for excitatory neurons,
we used tradeSeq to find key transcriptional differences between
early-mid and late neuronal trajectories.

Withinlineage differences, to extract key driver genes along pseu-
dotime, we isolated HVGs between lineage extremes (tradeSeq start-
VsEndTest(), pval < 0.001and log (FC) > 2).

For early-versus-late excitatory neuron differences, to detect
key differences between the two lineages, we considered both the
greatest divergently expressed genes at the terminal states (tradeseq
diffEndTest(), pVal < 0.001 and log (FC) > 2) and the transiently
varying genes, defined as simultaneously low ranked from the
tradeSeq:diffEndTest function and high ranked from the tradeSeq:p
atternTest(pVal < 0.001) function.

Allele-specific expression analysis

We leveraged our multigenotype design to carry out ASE analysis for
each celltype annotated. We first produced the read pileup at genomic
(biallelic-only) loci displaying variability within our cohort using
SCanSNP pileup mode, which provided an anndata® with nCells x nLoci
dimensionality and two layers: ‘Refreads’ and ‘Altreads’, with the count
of reads presenting or not presenting the variant, respectively. To
perform the analysis, we summed the reads mapping to variant sites
(atleast one heterozygous genotype) of the same cell type. If multiple
genotypes were heterozygous at the givenlocation, reads wereincluded
inthe sumregardless of the original genotype. Asitisnot granted that,
amongdifferentindividuals, if present, the dominant allele is the same,
we first checked that, for loci with detected ASE, the dominant allele
was coherent before merging coverages from different individuals.
We observed minimal discrepancy, that is, at a given locus, the domi-
nant allele was vastly the same (always Ref or Alt) across genotypes
(information availablein the Github repository of the paper, Notebook
04_ASE/13.1_SanityCheck). For each cluster, we kept only loci with at
least 20 reads, computed the Svalue (Alt reads/(Alt reads + Ref reads))
and performed binomial test and FDR correction (g < 0.05) provided by
theSciPy®® and statsmodels implementations, respectively. To calculate
the correlationamong cell types, we used Svalues of loci with detected
ASEinatleastonecelltype and covered withatleast 20 readsin all cell
types. Correlation was computed in pandas with ‘spearman’ metrics.

SCanSNP

In our benchmark, the presence of low-quality droplets and doublets
was observed tobe anopen challenge also for well-established methods
when assigning genotypes (IDs) to dropletsin the genetic demultiplex-
ing. With those challenges in mind, we developed SCanSNP (available

at https://github.com/GiuseppeTestaLab/SCanSNP) by dividing the
demultiplexing and filtering in 3(+1) steps:

1. BestID detection per droplet: here, as for other approaches, we
leveraged the accessibility of bulk RNA-seq data to generate a
function that maximizes the score difference of each ID to the
sequenced droplets:

n A,‘Xa,‘g R,*Xl’ig
Sg_é(( G +( T; )))

where S, is the score for IDgineach droplet, iare the loci for which
allelic information is accessible from bulk RNA-seq, A and R are,
respectively, the number of reads supporting alternative and ref-
erencealleles,aand rare the number of alternative and reference
allelesingand ¢tand T aretotal alternative and reference allelesin
the cohortatlocusi.

2. Second-best ID determination: given an m-by-g contribution
matrix, where m are the droplets and g are the multiplexed IDs
containing the number of reads supporting genotype-specific
alleles. We used this matrix to iteratively train a multinomial
logistic regression model to predict which is the most likely ID
after the first one, assuming ambient contamination consistent
across droplets. We split the contribution matrix into groups of
droplets sharing the best ID according to step 1; for each group,
we trained the model on counts and labels from other groups to
predict the second-best ID of barcodes in the current group.

3. Doublet detection: to allow doublet detection to be specific
and flexible while accommodating genetic contributions
ranging from balanced doublets to the presence of a cell and
debris in the same drop, we implemented a method similar to
the one adopted in ref. 22. Starting from the previous m-by-g
contribution matrix, for every genotype g, we define as nega-
tive droplets the ones that do not contain that genotype as the
best ID according to the first step and fit a negative binomial
distribution via the fitdistrplus® R function on counts support-
ing private g alleles. We therefore used the 99% quantile of the
fitted distribution as the positivity threshold. Droplets positive
for more than one ID are considered multiplets.

4. Wefinally took advantage of the mixed-genotype design to
structure an added layer of a low-quality droplet detection to be
used during consensus call aggregation.

We applied a Gaussian mixture model expectation-maximization
algorithm (implemented through the R mixtools’” package) to sepa-
rate droplets with ‘low’ and ‘high’ signal-to-noise ratios by computing
log (FC) between the first-and second-best predicted IDs. We started
by preparing anew contribution matrix similar to the one in passage 2
but considering only non-ambiguous loci between each possible
pair of best and second-best IDs in the dataset. Additionally, before
log (FC) calculation, we add pseudocounts, which mimics average
ambient RNA contamination coming from each ID, calculated as the
average rate of reads deriving from the other genotype’s unambigu-
ous reads when they are not labeled as first ID or second ID across
all droplets (according to the contribution matrix); similar to the
approach proposed in the hashedDrops function from the package
MarioniLab/DropletUtils®***, this step ensures that log (FC) is always
defined for all droplets. Given the nature of the model, the resulting
classification assumes the presence of two distinct populations that
can be separated based on the proportion of the two IDs, and, given
thatitis computed after doublet detection, it will likely detect those
droplets that embed enough ambient RNA to pass the Cell Ranger
emptyDropsfilter, while it should not be used if any sort of prior filter-
ing of low-quality droplets has already been done. Benchmarking of
SCanSNP and genetic demultiplexing in barcode-tagged samples are
described inthe Supplementary Methods.
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Power estimation for single-cell eQTLs

We estimated the eQTL power using our R package scPower (version
1.0.2)*° for sample sizes between 25 and 200 and for number of cells
per sample between 250 and 1,500, keeping the read depth as in our
experiment. Wefitted the required expression priors per cell type using
the complete scRNA-seq dataset, combining the different multiplexing
strategies and time points, and took effects froma previously published
single-cell eQTLstudy in IPS cells®, excluding eQTLs from ROT-treated
cells. Genes were defined as expressed with at least three countsin at
least 9.5% of the samples.

Modeling mCBO clonal dynamics

Weintegrated the longitudinal Census-seq data withmCBO imagingto
model mCBO clonal dynamics (modeling of PSC and CBO growth with
imaging; Census-seq and Census-seq ranking of iPSC lines in mosaic
organoids are described in the Supplementary Methods). First, we
used already published imaging of CBOs stained for nuclear markersto
estimate the density of cellsinside CBOs (0.000767495 per um?). Next,
for each replicate of each mosaic combination that we longitudinally
profiled withimaging, we multiplied the measured area of the mCBOs
(converting this to the equivalent sphere volume simply through the
sphere volume formula) by the density to estimate the number of cells
presentineachmCBO ateach time point. We computed the average of
this value for each mosaic combination across the replicates for each
time point. We then multiplied this value by the average contribution of
eachiPSClinein eachmosaic combination, as given by the correspond-
ing Census-seqdata (correlation across multimodal ranking is described
inthe Supplementary Methods). Thisrepresents the estimated number
of cellsforeach PSClineineach mCBO at the different time points. The
ratio between sequential time points was computed to estimate the
line-specific growth rates, and their stability across mosaic combina-
tions (Fig. 6b and Extended Data Fig. 10b) as defined by n, =r,.- n,and
g;=(ng.)/nywith n,as the totalnumber of cellsinthe organoid at time¢,
r,istheratio of cellsmeasured by Census-seq, n; is the number of cell per
genotypeattimet, g;isthe growth rate of the genotype i. The empirical
distribution is defined by expanding the distribution of g,¥ genotypes
ifromour measured data. We used the computed line-specific growth
rates to estimate an empirical distribution of possible growth rates. We
thengenerated the growthrates of the lines inside the mCBO randomly
(10,000 cycles of sampling) from the probability distribution calculated
over the domain. The process was repeated for sample sizes between
two and 20 theoretically multiplexed lines.

Because we had aconstant number of starting cells (20,000) when
generating mCBOs, we multiplied this by the Monte Carlo simulated
growthrates, thus modeling the expected number of cells per line for
allthe possible conditions (from two to 20 starting lines).

To translate this into useful guidelines for experimental
disease-modeling pipelines, we considered that at least 100 cells per
neurodevelopmental cell type should be recovered for each PSC line
grown in mCBOs and that 100,000 cells can be sequenced. On the
basis of these parameters, Supplementary Fig.10c shows the number
of PSC lines (y axis) retrieved with the highest empirical probability
given the number of PSC lines used to generate mCBOs (x axis). We
finally employed the curve_fit function from the SciPy pythonlibrary to
estimate the coefficients aand b of the power function N=al’ + clinking
the number of mixed cell lines/and the average number of recovered
lines N (Fig. 6¢). The scalability of mosaic experiments in terms of
experimental timeline is described in the Supplementary Methods.

Statistics and reproducibility
Statistical analyses were carried out using tests appropriate for each
assessed modality using SCANPY, tradeSeq and Milo for single-cell
transcriptomics analyses.

The threshold for statistical significance was spatial FDR < 0.1 for
differential abundance (Milo) and P < 0.05 for other statistical tests. All

details on sample size, number of replicates, statistical tests and signifi-
canceare providedintherelevant figure legends. CBOs were differenti-
atedinmultipleindependent batches, and the number of replicates was
chosen on the basis of previous published studies on brain organoids.
The experiments were not randomized. The investigators were not
blinded to allocation during experiments and outcome assignments.

Graphics and figures

Final figure panels were assembled using Adobe Illustrator version
27.0.1. For the organoids, cells and human shapes in Fig. 1, templates
were downloaded from BioRender and subsequently modified.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The scRNA-seq data generated in this study are accessible via Array-
Express (accession E-MTAB-14574). WGS and low-pass WGS sequencing
datahavebeendeposited at the European Genome-Phenome Archive
with the study identifier EGAD50000000978. Additional resources
include the reference genome Ensembl GRCh38 version 93, dbSNP
versionb151 GRCh38p7 (00-All.vcf) and single-celleQTLs from Jerber
etal.* (Table 7). Source data are provided with this paper.

Code availability

Fullcode used for the analyses can be retrieved at https://github.com/
GiuseppeTestalLab/organoidMultiplexing_release. The latest release
of SCanSNP and the docker image link are available at https://github.
com/GiuseppeTestalLab/SCanSNP.
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Extended Data Fig. 1| mCBO immunofluorescence characterization. canbe appreciated by the broad presence of NeuN positive nuclei as well as by
Immunofluorescence-based benchmarking of different mosaic CBOs the uniform presence of MAP2 positive cellular processes (b). At differentiation
combinations. At differentiation day 50 (a, b), mosaic CBOs mixes1, 6,and 7 day135(c), mosaic CBOs mix1 display more mature ventricular-like structures
show consistent expression of the neuronal lineage-specific tubulin TUBB3 as characterised by reduced luminal area and areduced and scattered expression
well as the presence of ventricular-like structures positive for the neural stem of both SOX2 and mKI67 positive cells, whereas both NeuN positive nucleiand
cellmarker SOX2 (a). Similarly to the in vivo counterpart, these structures the sharpness of TUBB3 and MAP2 signal appears increased with longer cellular
display high rates of proliferation as shown by the focal enrichment in mK167 processes being clearly detected by anti-MAP2 staining.

positive cells (b). Outside ventricular-like structures, the presence of neurons
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Extended Data Fig. 4| SCanSNP benchmarking. a) Boxplots of precision and
recall scores for evaluation of the classification of Demuxlet v2, Souporcell, Vireo
and SCanSNP against barcode-based identity demultiplexing performed by
cellranger multi. Displayed by each box is the median (horizontal solid line within
the box), interquartile range (upper and lower bound of the boxes), min and max
values (extension of the whiskers) for two independent datasets. On the right,
droplets classified as low quality and doublets by either algorithm were included,
onthe left they were not taken into account in the comparison. Change in the
y-axis scale reflects the higher performance of all algorithms against the

ground truth when only singlets and good quality barcodes are considered.

b) Natural logarithm of the total counts +1in each sample for two independent
datasets. Displayed by each box is the median (horizontal solid line within the
box), quartiles’ range (upper and lower bound of the boxes), min and max values
(extension of the whiskers). Outliers are computed as a function of the inter-
quartile range and shown as points outside the minimum and maximum range.
c) Barplot showing differences in doublets and unassigned droplets rates by
algorithm.
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Extended Data Fig. 5| See next page for caption.
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Extended DataFig. 5| Single cell datasets characterization. a) Embedding

of cells from all datasets of force-directed graph. From left to right cells are
coloured by genotype, multiplexing paradigm and stage. b) Force-directed
graph coloured by expression of relevant markers. Plotted markers are divided
by the cell type they are most relevant for. c¢) Force-directed graph coloured

by transferred label from Poliudakis et al. dataset. End: endothelial; ExDp1:
excitatory deep-layerl; ExDp2: excitatory deep-layer2; vRG: ventral radial
microglia; oRG: outer radial glia; EXN: newborn excitatory; ExXM: maturing
excitatory; ExM-U: excitatory upper-layer-enriched; IP: intermediate
progenitors; inCGE: interneurons caudal ganglionic eminence; inMGE:

interneurons medial ganglionic eminence; Mic: microglia; OPC: oligodendrocyte
precursors; Per: pericytes; PgG2M: G2M phase proliferating progenitors; PgGS:

S phase proliferating progenitors; d) Plot of fraction of cells for each cell type,
divided by timepoint (upper panel), and by multiplexing paradigm (lower
panel). e) The scatterplot shows the number of loci with detected allele specific
expression on the x axis and the total number of reads expressed in millions
onthey axis; each dot represents a cell type. f) Spearman correlation on reads
bringing alternative alleles / total reads (bValues) among the observed cell types.
Correlationis calculated on loci that displayed allelicimbalance (binomial test
fdr<0.05) in atleast one cell type and with at least 20 reads in each cell type.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Developmental trajectory analysis and power analysis.
a) On theleft: Partition-based graph abstraction (PAGA) plot. Each circle
represents a Paga cluster, circles are partitioned according to the fraction of cells
perannotated cell type (shown as reference on the right side), weighted edges
among PAGA clusters encode their transcriptional similarity. b) Plot of smoothed
gene expression - obtained via tradeseq - along pseudotime (Methods). For
eachlineage the three most relevant decreasing and increasing genes (sorted

by pVal and absolute logFC) are shown. Above each expression panel, bars
coloured by cell type indicate the occupancy of each cell type along pseudotime.

¢) SCPOWER: Estimation of single cell eQTL power per specific cell type,
depending on the sample size and numbers of cells per sample. d) Distribution
of genotypes along pseudotime for Interneurons, Outer radial glia / astrocytes
and Cajal Retzius-like lineages. Within each differentiation stage cells were
balanced to the same amount across genotypes for correct comparison. If too
few/no cells were retrieved at any differentiation stage, the whole genotype was
removed from the comparison. Faded colour shows 1standard deviation across
random subsampling iterations, solid line display the mean value across random
subsamplingiterations.
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Extended Data Fig. 7| Migrating neurons PC1 analysis. a) Boxplot of cells’
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line represents the mean, and faded colour shows 1standard deviation value,

upon 50 random subsampling iterations.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | PSC growth curves. a) Growth curves of each line mean area at that time point across the field of views, the shade shows the 95%
coloured according to the number of passage (that is split) post-thawing. On confidence interval. b) Cumulative mean area of each PSC line at each different
the x axis the time in hours after splitting the cells from one plate to anew one passage fitted as an exponential curve, as depicted by the solid line. The dots
(see Methods), the y axis the total area detected inmm?. The line depicts the represent the empirical values.
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Extended Data Fig. 9| CBO growth curves. a, b) Growth curves of pure-line
CBO (a) or mosaic CBO (b). The area detected at each time point was normalized
onthearea of the organoid at day 0. The lines depict the mean area across five
independent replicates for all the PSClines at all time points except CTLO9A

and MIX4 at day 10, when only 4 replicates were available. The shade around
the meanis representative of the 95% confidence interval. The coloured line is
representative of the subplot title PSC line while all the others are shown in
light grey.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | PSC growth dynamics inmCBO. a) Heatmap coloured
by Spearman’s correlation coefficients computed between the rate of cumulative
growth (hPSC growth rate), slopes of the linear fitting (CBO growth rate) and
Census-Seq weighted ranking normalized at each available time point. The
text on the heatmap shows the Spearman’s correlation coefficient b) Growth
rate of different cell lines for different mosaic mixtures (different dots) in the
interval day 4 to day 10. Different cell lines are divided along x axis, each dot of
aboxrepresent the growth rate of the same cell line in a different experimental
mixture. Displayed by each box is the median (horizontal solid line within the
box), interquartile range (upper and lower bound of the boxes), minimum and
maximum values (extension of the whiskers) among mixtures per line.

¢) Monte Carlo simulation of cell lines recovery. The plot shows the number

oftheoretically mixed (x axis) and recovered cell lines (y axis). The yellow line
indicates the mean number of recovered cells and the faded blue indicates 1
standard deviation upon100°000 simulations for each value of x. d) Estimation
ofthe experimental workload and time required for large-scale experiments

(see “Scalability of mosaic experiments in terms of experimental timeline”) also
for the “chimeroid” approach. In this case NPC-chimeroids are dissociated and
reaggregated after 25 days of differentiation, thus the same considerations of the
downstream multiplexing design applies until that timepoint. The plot shows the
number of profiled cell lines (y axis) and the experimental days (x axis). Vertical
dashed lines represent the experimental time to reach 100 and 1000 profiled cell
linesin left plot and right plot respectively. For the left plot, the approximation
strict lineis displayed for each protocol.
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Python libraries: scikit-learn 1.3.2, scanpy 1.9.3, numpy 1.20.3, matplotlib 3.6.0, leidenalg 0.8.3, harmonypy 0.0.5, anndata 0.8.0, anndata2ri
1.0.6

R 4.05

R libraries: Milo 1.4.0, tradeSeq 1.4.0, scRNAseq 2.4.0, leiden 0.3.6, IRanges 2.24.1, GenomicRanges 1.42.0, GenomicFeatures 1.42.3, edgeR
3.32.1, DropletUtils 1.10.3, DESeqg2 1.30.1, org.Hs.eg.db 3.12.0
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All additional Python and R packages used and their versions are specified in the github repository

Additional Datasets/Databases/Resources

Reference genome: GRCh38 v93 Ensembl reference genome
dbSNP: v.b151_GRCh38p7 (00-All.vcf)

Jerber et. al 2021: sc-eQTLs Table 7

Some of the images were adapted from Biorender templates (Fully licensed - Human Technopole). Figures were assembled in Adobe
lllustrator v.27.0.1

Singularity 3.8.7 was used to create environments

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Full code used for the analyses can be retrieved at https://github.com/GiuseppeTestalLab/organoidMultiplexing_release. SCanSNP latest release and the docker link
are available at https://github.com/GiuseppeTestalLab/SCanSNP.
All omics data are being deposited into approved public repositories upon acceptance

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was determined according to the number of control PSC lines available for which sufficient characterization had been previously
carried out, and to meet the requirements of PSC and brain organoids based disease modeling.
Germain, P.-L. & Testa, G. Taming Human Genetic Variability: Transcriptomic Meta-Analysis Guides the Experimental Design and
Interpretation of iPSC-Based Disease Modeling. Stem Cell Reports 8, 1784—-1796 (2017).

Data exclusions  Statistical analyses were implemented according to the best practices of each specific technique. More in detail, for omics approaches, data
were subjected to bioinformatics pipelines for the pre-processing steps (e.g. sequencing alignment for genomics and transcriptomics) and a
quality control phase so to detect potential technical co-variables or sub-optimal samples. Standardized computational pipelines, including
filtering, normalization, batch correction, dimensionality reduction, clustering, differential expression analysis and other downstream analysis
were applied according to state of the art algorithms for each specific technique.

Cells from non-control genotypes were excluded after genetic demultiplexing, since they were included in the multiplexed 10x library
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preparation to lower the costs but their analyses are within the scope of different projects.

Replication Both mosaic- and pure lines-organoids were differentiated and analyzed in multiple replicates, as specified in figure legends.

Randomization  N/Aall the cell lines employed in the study were both multiplexed into mosaic CBOs and profiled through downstream multiplexing in parallel
as for the goal of the current study. Setup of mosaic mixtures for prediction of genotypes growth in mosaic models was based on the similarity

of the growth curves of the single PSC lines.

Blinding Experimenters were aware of the experimental conditions (mosaics or downstream multiplexed CBOs) during their differentiation and the
following analysis steps

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study

|Z Antibodies |Z |:| ChIP-seq

Eukaryotic cell lines |:| Flow cytometry

|:| Palaeontology and archaeology |:| MRI-based neuroimaging
|:| Animals and other organisms

|:| Clinical data

XX XX [][]

[ ] bual use research of concern

Antibodies

Antibodies used Pax6 (Rabbit): Biolegend Cat. No. #901301, Clone Poly19013, Lot No. #B354380, used 1:200;
Tujl or TUBB3 (Mouse): Biolegend Cat. No. #801202, Clone TUJ1, Lot No. #B354042 , used 1:1000;
Nestin (Mouse): Millipore Cat. No. #MAB5326, Clone 10C2, Lot No. ND, used 1:500;
Reelin (Mouse): Millipore Cat. No. #MAB5364, Clone G10, Lot No. #3927128, used 1:400;
CTIP2 (Rat): Abcam Cat. No. #ab18465, Clone 25B6, Lot No. #GR3427932-1, used 1:400;
SATB2 (Mouse): Abcam Cat. No. #ab51502, Clone SATBA4B10, Lot No. #GR3451030-1, used 1:400;
HOPX (Rabbit): Sigma-Aldrich Cat. No. #HPA030180, Polyclonal, Lot No. #000042633, used 1:500;
SOX2 (Goat): R&D Systems Cat. No. #AF2018, Polyclonal, Lot No. #KDY0521031, used 1:1000
MAP2 (Guinea Pig): Synaptic Systems Cat. No. #188004, Polyclonal, Lot. No. ND, used 1:200;
NeuN or Neuronal Nuclei (Mouse): Abcam, Cat. No. #ab104224, Monoclonal, Clone No 1B7, Lot. No. GR3408621-1, used 1:200;
mKI67 (Rabbit): Abcam .Cat. No. #ab15580, Polyclonal, Lot. No. ND, used 1:250

AlexaFluor Plus 488-conjugated donkey anti-mouse: ThermoFisher Cat. No. #A32766 , Lot No. ND, used 1:400
AlexaFluor Plus 555-conjugated donkey anti-rat: ThermoFisher Cat. No. #A48270, Lot No. ND, used 1:400
AlexaFluor Plus 555-conjugated donkey anti-mouse: ThermoFisher Cat. No. #A32773, Lot No. ND, used 1:400
AlexaFluor Plus 555-conjugated donkey anti-goat: ThermoFisher Cat. No. #A32816, Lot No. ND, used 1:400
AlexaFluor Plus 647-conjugated donkey anti-rabbit: ThermoFisher Cat. No. #A32795, Lot No. ND, used 1:400

Validation The antibodies used in this study have been selected from published literature and their use has been optimized in house. Human
reactivity for all of the antibodies used in the present study has been validated by the manufacturer and the antibodies were
validated in house on human cortical brain organoids. Proof of validation from the manufacturer includes:

Pax6 Biolegend Poly19013: Validated on human cell extract in WB (1:2000); validated on mouse FFPE sections through IHC (1:100)
Tujl or TUBB3 Biolegend TUJ1: Validated on human FFPE sections through IHC (1:1000)

Nestin Millipore 10C2: Validated in human for ICC, IHC and IF on FFPE sections (1:200)

Reelin Millipore G10: validated in WB on rat brain lysates, was used in IHC on human samples

CTIP2 Abcam 25B6: validated for IHC-P, Flow cytometry, WB and IF in human samples (1:500 in IF)

SATB2 Abcam SATBA4B10: Validated for ICC, IP and WB in human samples

HOPX Sigma HPA030180: Validated by the Human Protein Atlas project on an IHC tissue array of 44 nurmal human tissues.
SOX2 R&D AF2018: Validated for WB, CHIP, ICC, IHC in human samples

MAP2 Synaptic Systems 188004 validated for WB, IP, ICC and IHC on human samples (1:500 in IHC)

NeuN Abcam ab104224: Validated in IHC-P on human samples

mKI67 Abcam ab15580:: validated in IHC-P, ICC and IF on human samples

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) WTSIi018-B-1 (in house name: CTLO8A), hiPSC line, male, derived from healthy donor fibroblasts. Purchased from Wellcome
Trust Institute
UMILIO26-A (in house name: CTLO1), hiPSC line, female, derived from healthy donor fibroblasts. Reprogrammed in house
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Authentication

Mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

Flow Cytometry

UOSI001-A (in house name: CTLO2A), hiPSC line, male, derived from healthy donor fibroblasts. Reprogrammed in house
UMILI024-A (in house name: CTLO4E), hiPSC line, female, derived from healthy donor fibroblasts. Reprogrammed in house
UMILIO25-A (in house name: CTLO9A), hiPSC line, male, derived from healthy donor fibroblasts. Reprogrammed in house
UMILIO06-A (in house name: CTLO5C), hiPSC line, male, derived from healthy donor fibroblasts. Reprogrammed in house
UMILIOO7-A (in house name: CTLO6F), hiPSC line, female, derived from healthy donor fibroblasts. Reprogrammed in house
UMILIO08-A (in house name: CTLO7C), hiPSC line, female, derived from healthy donor fibroblasts. Reprogrammed in house
UMILIO12-A (in house name: WVS02A), hiPSC line, male, derived from Weaver syndrome donor fibroblasts. Reprogrammed in
house

UMILIO13-A (in house name: WVS01H), hiPSC line, female, derived from Weaver syndrome donor fibroblasts. Reprogrammed
in house

UMILiIO14-A (in house name: WVS04A), hiPSC line, male, derived from Weaver syndrome donor fibroblasts. Reprogrammed in
house

UMILIO15-A (in house name: WVS03B), hiPSC line, female, derived from Weaver syndrome donor fibroblasts. Reprogrammed
in house

UCSFi001-A hiPSC line, male, derived from healthy donor PBMCs. Purchased from Coriell Institute for Medical Research
WAe001-A (in house name: H1) ESC line, male. No disease diagnosed. Purchased from WiCell

WAe009-A (in house name: H9) ESC line, female. No disease diagnosed. Purchased from WiCell

KTD8.2 is a WTSIi018-B-1 isogenic jiPSC line carrying EZH2 point mutation of UMIL1012-A.

All cell lines except KTD8.2 have been registered at the Human Pluripotent Stem Cell Registry (https://hpscreg.eu/)

All the cell lines are routinely checked through STR analysis (GenePrint 10 System, Promega).

We confirm that all cell lines are maintained mycoplasma free. Routine screening for mycoplasma contamination is
performed monthly on all the cell lines and their derivatives, including organoids.

No commonly misidentified cell line has been used in this study.

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group’ is an analysis of identical markers).

|Z| All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument
Software
Cell population abundance

Gating strategy

In replicate 1, organoids were dissociated, cells were filtered with 70um cell strainers to remove clumps and fixed in ice-cold
Ethanol. The day prior to the analysis, Cells were incubated overnight with 3 uM Propidium lodide in the presence of 25ug/ml
RNAse | and subsequently analyzed by flow cytometer. In replicate 2, organoids were dissociated and cells filtered with 70um
cell strainers to remove clumps. Cell suspensions were incubated for 30' at 37 C with Hoechst33342 2ug/ml and 5uM
Verapamil to minimize Hoechst efflux through pGP transporter. ToPro3 dye was added to the suspension right before flow
cytometer analysis to identify and exclude dead cells.

Raplicate 1 has been analyzed with FACS Celesta (BD Biosciences); Replicate 2 has been analyzed with Cytoflex LX flow
cytometer (Beckman Coulter)

Replicate 1 has been analyzed with FlowJo software (BD Biosciences) ; Replicate 2 data have been analyzed using FCS Express
7 software (DeNovo software)

In replicate 1, all the cells from each sample were profiled. The specifics for each sample can be found in Supplementary
table 1. In replicate 2, 15000 events of interest per sample were recorded as shown in Supplementary fig. 8B.

In replicate 1 we profile ethanol-fixed cells (all events) and therefore we subselected singlets from the entire population
according to their Propidium lodide (PI)- height vs area signal. Using Propidium lodide signal intensity, we discarded cellular
fragments (SubG1 population, fig. S7A) before proceeding with cell cycle analysis using the analytical software-embedded
algorithm. In replicate 2, we first selected cells (GATE: cells) from the general population (all events) according to their FSC-A/
SSC-A ratio, then we applied a Live Cells gate according to ToPro3 Live/dead stain intensity, keeping the ToPro3 negative
cells. Of those, we selected singlets according to the HOECST area vs height signal. 15000 events were acquired on this latter
hierarchical gate.

|X| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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