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Multiplexing cortical brain organoids for the 
longitudinal dissection of developmental 
traits at single-cell resolution
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Dissecting human neurobiology at high resolution and with mechanistic 
precision requires a major leap in scalability, given the need for 
experimental designs that include multiple individuals and, prospectively, 
population cohorts. To lay the foundation for this, we have developed and 
benchmarked complementary strategies to multiplex brain organoids by 
pooling cells from different pluripotent stem cell (PSC) lines either during 
organoid generation (mosaic models) or before single-cell RNA sequencing 
(scRNA-seq) library preparation (downstream multiplexing). We have also 
developed a new computational method, SCanSNP, and a consensus call to 
deconvolve cell identities, overcoming current criticalities in doublets and 
low-quality cell identification. We validated both multiplexing methods 
for charting neurodevelopmental trajectories at high resolution, thus 
linking specific individuals’ trajectories to genetic variation. Finally, we 
modeled their scalability across different multiplexing combinations 
and showed that mosaic organoids represent an enabling method for 
high-throughput settings. Together, this multiplexing suite of experimental 
and computational methods provides a highly scalable resource for brain 
disease and neurodiversity modeling.

The polygenic underpinnings of human neurodiversity, in its physi-
ological and pathological unfolding alike, have been eloquently 
referred to as terra incognita, calling for new maps to trace that 
unfolding in the authenticity of human genetic backgrounds and 
thereby render it mechanistically actionable. Developmental sto-
chasticity and environmental triggers add to such complexity, and the 
increasingly broader range of exposome that is becoming measurable 
promises to make gene–environment interactions finally tractable 
at meaningful scales1–4.

Toward these overarching goals, brain organoid and single-cell 
multiomic technologies have afforded major strides in the mechanis-
tic dissection of human neurodevelopment, enabling transformative 
insights from the study of genetic and environmental causes of neu-
ropsychiatric disorders, a community-wide effort to which we and 
several others have been contributing2,5–14. Importantly, our recent 
benchmark of cortical brain organoids (CBOs) compared to the human 
fetal cortex confirmed the preservation in CBOs of transcriptional 
programs pinpointed as relevant for disease modeling15.
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Experimental assessment of mCBOs
We first characterized mCBOs by immunofluorescence for canoni-
cal markers of neurodevelopment previously defined for organoids 
differentiated with the same protocol by us and others15,40,41 and con-
firmed their expected expression patterns (Fig. 2a,b and Extended 
Data Fig. 1a–c). Next, to estimate the stability of the presence of the 
different PSC lines within mCBOs throughout development, we used a 
two-pronged approach. First, we longitudinally assessed the prolifera-
tion rate of organoids derived from individual lines in two differentia-
tion replicates through flow cytometry-based cell cycle analysis. This 
showed similar proliferative trends across lines, with the expected 
decrease in proliferation along differentiation and no substantial vari-
ations in the proliferative rate of the different lines over time points 
(Fig. 2c,d and Supplementary Data 1). Next, we probed the extent to 
which individual lines, despite homogeneous proliferation rates in 
isolation, could still yield skewed distributions when grown as mosaics. 
In line with in vivo evidence of high asymmetric clonality during human 
brain development42, the quantification of genotypes from single-cell 
transcriptomics confirmed a variable degree of balance between indi-
vidual lines during mCBO differentiation (Extended Data Fig. 2).

Benchmarking of demultiplexing algorithms
The single-cell transcriptomics datasets generated from both mosaic 
and downstream multiplexed organoids at early, mid and late stages 
of differentiation (Fig. 1b) were demultiplexed using three differ-
ent state-of-the-art algorithms available for genetic demultiplexing 
(demuxlet27, souporcell28, Vireo29). We observed a high number of pre-
dicted doublets with an unexpected read count distribution skewed 
toward low values when compared to singlets (Extended Data Fig. 3a,b). 
This was associated with a variable degree of unassigned cells and iden-
tity call agreement among tools (Extended Data Fig. 3c,d). We thus 
set out to develop a new method, SCanSNP (Fig. 3a), to overcome the 
observed limitations by (1) dividing the classification challenge into two 
steps, one for identity assignment and one for doublet detection and 
(2) measuring the genetic purity of each droplet to identify low-quality 
droplets and separate them from authentic doublets. Finally, to con-
solidate deconvolution accuracy, we set a consensus call framework 
considering the strengths and weaknesses of each algorithm, including 
non-genetic-based tools for doublets and low-quality cell detection43,44, 
merging their outcomes into one combined output (Fig. 3b).

Next, we performed demultiplexing again using all the above 
methods. We found that all three thus far available tools tended to 
overestimate doublets, if compared to the theoretically expected rate, 
SCanSNP or the consensus call (Fig. 3c). Notably, doublets identified 
by SCanSNP and the consensus call were the only ones for which the 
average log count distribution of unique molecular identifiers was, as 
expected, higher than that for singlets (Fig. 3e). This suggests a bias 
of existing algorithms in doublet detection that includes low-quality 
droplets that SCanSNP is instead able to identify (Extended Data 
Fig. 3c). Accordingly, the evaluation of agreement rate in the assign-
ment of individual identity across algorithms highlighted a high overall 
agreement for singlet calls, with cases of lower agreement coinciding 
with datasets that had higher genotype imbalance (Extended Data 
Fig. 3d). On the other hand, we observed that doublet detection agree-
ment was consistently lower (Extended Data Fig. 3d). To additionally 
assess the demultiplexing performance of the different algorithms, 
we benchmarked them with ground truth priors using (1) five in silico 
multiplexed datasets with varying degree of balance among genotypes 
and (2) two ad hoc experiments in which the different genotypes were 
barcode tagged before pooling. As shown in Fig. 3d, in the simulated 
datasets, all demultiplexing algorithms performed better in balanced 
cases, and SCanSNP was the most accurate in both balanced and imbal-
anced settings. The superior performance (comparison against cell-
ranger multi; Methods) delivered by SCanSNP was confirmed in the 
barcode-tagged datasets (Extended Data Fig. 4).

Despite these advances, the characterization of brain organoids 
at single-cell resolution from entire cohorts and, in perspective, at 
population scale remains however an unmet challenge, although an 
obviously required one if we are to capture how individual genomes 
and developmental trajectories shape variability in vulnerability and 
resilience across the spectrum of neurodiversity16–18. Scaling up human 
brain organoid modeling and molecular profiling by single-cell omics 
would allow us to understand how the molecular causes of neurodevel-
opmental disorders trigger deviations from physiological trajectories19, 
in line with the expanding set of population-level single-cell studies20,21. 
This is however still an experimental and analytical challenge due to 
high cost and workload and to the inherent batch-to-batch variability 
of the complex experimental designs required.

To overcome some of these problems, progress has been made 
in single-cell multiplexing strategies, including methods based on 
sample barcoding22–26 and methods leveraging the detection of natu-
ral genetic variants27–30. These approaches have indeed proven to be 
instrumental for population genetics and disease-modeling studies, 
including through co-culture of cell lines derived from multiple donors 
in a single dish31–39.

However, multiplexing has not yet been systematically applied 
to organoids, a challenge that is particularly relevant for the brain  
given the long-term longitudinal unfolding of highly heterogeneous 
combinations of cell types, and the field still lacks studies able to 
establish the experimental and computational viability of applying 
multiplexing strategies to complex three-dimensional experimental 
systems.

We thus implemented and benchmarked complementary strate-
gies to multiplex human brain organoidogenesis in vitro, pooling PSCs 
coming from different individuals either during organoid generation, 
termed the mosaic model according to standardized guidelines for 
brain organoid nomenclature we recently contributed to40, or before 
scRNA-seq library preparation. To improve genetic-based cell identi-
fication when dealing with brain organoid single-cell transcriptomes, 
we developed an in silico deconvolution method (SCanSNP), which 
we benchmarked against existing deconvolution tools, producing a 
consensus pipeline for robust genotype identification across data-
sets of different quality. Finally, we evaluated the two multiplexing 
paradigms through a deep reconstruction of neurodevelopmental 
trajectories, provided proof of principle of their suitability for linking 
genetic variation to neurodevelopmental trajectory phenotypes and 
modeled the scalability of the system, analyzing different multiplexing 
combinations with an increasing number of lines. This provides the 
community with an enabling resource for scaling up brain organoid 
modeling to the challenges of human neurodiversity.

Results
Single-cell analysis of multiplexed CBOs
To test the feasibility of multiplexed brain organoid modeling over 
extended developmental time courses, we developed an experimental 
design comparing two approaches with distinctive features in terms 
of scaling, standardization potential and experimental challenges: 
(1) pooling PSC lines from multiple donors to generate mosaic CBOs 
(mCBOs) and (2) generating CBOs individually and pooling them only 
before single-cell droplet encapsulation (hereafter referred to as down-
stream multiplexing) (Fig. 1a and the Methods). For the first strategy, 
we pooled PSC lines (5,000 cells per line) before organoid generation 
and longitudinally profiled the resulting mCBOs through scRNA-seq at 
50, 100 and 300 d of differentiation, following the same protocol previ-
ously used and benchmarked in our laboratory5,11,15. For downstream 
multiplexing, CBOs were generated individually from the PSC lines and 
profiled at the same time points, pooling equal amounts of cells per 
line after organoid dissociation for single-cell library preparation. For 
both approaches, individual cell identity was demultiplexed through 
genetic variation (Fig. 1b).

http://www.nature.com/naturemethods
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Analysis of neurodevelopmental cell types
After deconvolving the identity of each droplet in our dataset by 
the consensus call, we discarded doublets and low-quality cells and 
proceeded with cells coming from the PSC lines across multiplexing 
modalities (Extended Data Fig. 2 and Supplementary Table 1). We thus 
analyzed the single-cell transcriptomic dataset entailing four PSC lines, 
their time points and two multiplexing modalities (Fig. 1b). We pre-
processed each sample individually, integrated them and carried out 
multi-tier filtering. A force-directed graph was used to visualize the 
integrated dataset (Fig. 4a).

We systematically annotated the identity of each cell population 
by analyzing the expression distribution of relevant markers, defining 
the gene signatures driving each cluster and projecting the cells onto a 
reference single-cell human fetal brain dataset (Fig. 4a, Extended Data 
Fig. 5a–c and Supplementary Data 2)45. Consistent with our previous 

benchmarking15 and in line with evidence from recent studies character-
izing brain organoids at single-cell resolution46–48, CBOs recapitulated 
most of the relevant neurodevelopmental cell populations of human 
corticogenesis. We observed a well-defined group of cells expressing 
the proliferative markers CDC20, MKI67 and TOP2A that were labeled 
as proliferating progenitor cells. Those cells are in continuity with a 
bigger cluster of cells expressing PAX6, VIM, SOX2 and NES and anno-
tated as radial glia. This cluster undergoes a bifurcation, extending 
either toward cells expressing outer radial glial and/or astrocyte mark-
ers HOPX, AQP4 and S100B or the neuronal markers STMN2, DCX and 
GAP43, which we annotated accordingly. We then further divided the 
neuronal branch into intermediate progenitors expressing EOMES, 
two clusters of excitatory neurons expressing NEUROD2, TBR1, SATB2, 
SLC17A6, SLC17A7, SLA and GRIA2, two interneurons clusters express-
ing DLX2, DLX5, DLX6-AS1, GAD1 and GAD2, one cluster of migrating 
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Fig. 1 | Schematic representation of multiplexing paradigms and experimental 
design. a, Representation of the two explored multiplexing paradigms. Left, 
downstream multiplexed organoids grown from individual lines and pooled 
in equal amounts after dissociation at the single-cell level. Right, mosaic 
organoids generated by pooling equal amounts of multiple PSC lines during 
organoid seeding. After single-cell dissociation, both paradigms undergo 

library preparation, sequencing and demultiplexing. PSCs, human pluripotent 
stem cells. b, Representation of experimental design and the demultiplexing 
approach. The CBO differentiation time points, the number of replicates for each 
time point and their division between the two multiplexing paradigms and the 
PSC lines (genotypes) used for each experiment are shown. Figure created with 
BioRender.com.
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neurons expressing FOXP1, CA8 and LHX1 and one cluster expressing 
RELN, PAX6 and CBLN1, annotated as Cajal–Retzius-like cells (Fig. 4a,b 
and Extended Data Fig. 5b).

We then compared the different time points of our longitudinal 
dataset, observing, as expected, differences in cell type abundance. 
While radial glial progenitors, proliferating progenitors and maturing 

neurons were evenly distributed across time points, we observed that 
migrating neurons, early excitatory neurons and Cajal–Retzius-like 
cells were more abundant at the early and middle time points, whereas 
outer radial glia and/or astrocytes, late excitatory neurons and 
interneurons were more abundant at the late time point (Extended 
Data Fig. 5d). Instead, cell type proportions between mosaic organoids 
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Fig. 2 | Experimental assessment of mCBOs. a,b, Immunofluorescence-based 
benchmarking of neurodevelopmental markers in mCBOs. At differentiation 
day 50 (a), mCBOs show consistent presence of ventricular-like structures 
positive for the neural stem cell marker nestin and are surrounded by a layer of 
cells expressing the outer radial glial marker HOPX. The presence of newborn 
deep-layer, Coup-TFI interacting protein 2 (CTIP2)+ (BCL11B) cortical neurons 
can be appreciated next to HOPX+ cells. On the outer surface, mCBOs reveal the 
presence of reelin+ cells. At differentiation day 100 (b), mCBOs display more 

mature ventricular structures characterized by the presence of HOPX+ outer 
radial glial cells, SATB homeobox 2 (SATB2)+ intermediate layer neurons and 
SRY-box transcription factor 2 (SOX2)+ neural precursors. DAPI, 4,6-diamidino-
2-phenylindole; PAX6, paired box 6. c,d, Fraction of cycling cells in pure lines 
and mosaic organoids detected by flow cytometry (Methods) performed on two 
differentiation replicates at relevant time points, from day −2 (organoid seeding) 
up to days 25 (c) and 50 (d).
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and downstream multiplexed samples were comparable (Extended 
Data Fig. 5d). We thus tested for statistical significance in differential 
abundance, leveraging Milo45, confirming significant differences across 
time points (Fig. 4c,d). Conversely, the same analysis done comparing 
mosaic and downstream multiplexed samples showed no significant 
difference between the two multiplexing paradigms.

To further investigate the molecular impact of mosaic culture, we 
compared the transcriptomes of the same genotypes between mosaic 
and downstream multiplexing and, as a reference for technical vari-
ability, we compared the same genotypes when grown in two different 
mosaic batches (Methods).

The analysis highlighted a low number of differentially expressed 
genes (DEGs) for both comparisons (69 DEGs between multiplexing 
modalities and four DEGs between two mosaic batches, false discovery 
rate (FDR) < 0.05, log (fold change (FC)) > 1.5) (Supplementary Fig. 1a 
and Supplementary Data 3).

Finally, to further probe the transcriptional regulation of specific 
cell types in the CBOs vis-à-vis the in vivo counterparts, we took advan-
tage of our multigenotype dataset to detect loci with allelic-specific 
expression (ASE)46, as the likelihood of observing heterozygous loci is 
higher. As expected, the number of detected loci with ASE correlated 
with the total amount of reads (Extended Data Fig. 5e). Moreover, 
exploring the correlation of the proportion of reads in each allele across 
cell types, we observed that, also in CBOs, the patterns of ASE are cell 
type specific, in line with external evidence from the human brain47 
(Extended Data Fig. 5f).

Multiplexed CBOs capture key neurodevelopmental 
trajectories
One of the most powerful innovations enabled by single-cell analysis 
of experimental models featuring extensive cellular heterogeneity, 
such as CBOs, is the possibility to analyze developmental trajecto-
ries through pseudotime analysis49,50. To deeply explore this aspect in 
our dataset, we leveraged partition-based graph abstraction (PAGA; 
Extended Data Fig. 6a)51 and isolated all biologically relevant lineages 
recapitulated in CBOs (progenitors → excitatory neurons, progeni-
tors → interneurons, progenitors → astrocytes, progenitors → Cajal–
Retzius-like cells, progenitors → migrating neurons). We could thus 
analyze through diffusion pseudotime (dpt)52 how the single cells from 
the different time points and multiplexing modalities were distributed 
along those neurodevelopmental trajectories (Fig. 5a,b). Moreover, 
we harnessed the power of trajectory-based differential expression 
based on generalized additive models (tradeSeq53) and identified the 
key genes driving each lineage of differentiation (Extended Data Fig. 6b 
and Supplementary Data 4). Of note, for the excitatory lineage, trajec-
tory analysis allowed us to identify two temporally divergent paths 
of neurogenesis that reconciled toward the end into the excitatory 
neuron clusters, where EOMES was one of the key drivers of the dif-
ference (Fig. 5a). This is in line with the recent empirical demonstra-
tion of the ability of CBOs to recapitulate in a physiologically relevant 
way the two different patterns (direct and indirect) of human cortical 
neurogenesis54–57.

Linking genetic variation to neurodevelopmental phenotypes
Genome-wide association studies have uncovered hundreds of thou-
sands of genetic variants associated with human traits48. Mechanis-
tically linking such variants to phenotypes of interest by molecular 
quantitative trait locus mapping has been instrumental to under-
stand functional effects of genetic variation58. In particular, single-cell 
expression quantitative trait locus (eQTL) modeling allows identifica-
tion of the impact of single-nucleotide polymorphisms (SNPs) on cell 
type-specific molecular mechanisms, as we pioneered in ref. 59, push-
ing forward previous work by the GTEx Consortium to characterize 
variation in gene expression across individuals and diverse tissues of 
the human body60. Moreover, because single-cell analysis can quantify 
longitudinal trajectories, it is possible to assess the effects of SNPs on 
traits that vary dynamically along a continuous axis20,49. The power of 
these approaches however has yet to be exploited for developmental 
variation as a trait per se that is now amenable to longitudinal quanti-
tation in the form of single-cell resolved trajectories. We thus set out 
to leverage our in vitro cohort and probe as proof of principle how 
genetic variants could be linked to the neurodevelopmental traits 
quantified in CBOs. First, we empirically tested in our dataset the 
statistical power to perform single-cell eQTL analysis through our 
previously developed tool, scPower50, and identified the number of 
lines needed to perform single-cell de novo eQTL discovery, given the 
CBO-specific variability we had determined in terms of gene expres-
sion across neurodevelopmental cell types (Extended Data Fig. 6c). 
Because, as expected with our dataset, we do not have the statistical 
power for de novo eQTL discovery, we followed a supervised approach 
to investigate the genetic basis of the differences we observed in 
neurodevelopmental trajectories between individuals during CBO 
differentiation.

In particular, we focused on the trajectory of migrating neurons 
because it displayed the greater and most reproducible genotype 
diversity in the distribution of cells along pseudotime (computed by 
dpt; Fig. 5c and Extended Data Fig. 6d). Indeed, along this trajectory, 
upon downsampling cells per genotype to ensure balance within 
each time point (50 random sampling iterations), we found differ-
ences between two subgroups (of two individuals each) (Fig. 5c). 
This was also confirmed by PCA performed on the downsampled 
dataset, where we observed the same genotypes’ separation along 
PC1 (Extended Data Fig. 7), which represents an alternative proxy 
of the differentiation trajectory of migrating neurons (Fig. 5b). We 
thus explored in more depth the genetic variants that distinguish 
the two subgroups. Of the total of 24,987 coding variants passing 
the quality filters, 1,035 presented a different allelic configuration 
between the two groups, and we found that 11 of these genetic vari-
ants (Fig. 5d and Supplementary Data 5) have been previously iden-
tified as single-cell eQTLs in population-scale scRNA-seq profiling 
of induced PSC (iPSC)-derived neurons (Table 7 from Jerber et al.35, 
total reported eVariants from the study, 10,972). Two of these vari-
ants are cis-acting eQTLs for SRCIN1, one of the trajectory-specific 
highly variable genes (HVGs) we had identified (Fig. 5e) that encodes 
a protein previously shown to be a regulator of disease-relevant 

Fig. 3 | SCanSNP and consensus call overview and benchmark. a, Main steps 
of SCanSNP: (1) best ID assignment, (2) doublet classification and (3) low-
quality droplet detection. Colors represent different individuals and droplet 
identity after best ID assignment; grayscale intensity in matrices represents 
the number of reads; cross-patterned cells represent droplets not included in 
the computations; colored curves represent fitted distributions. b, Schematic 
representation of the consensus call. Top, an example of consensus score 
with weights for each algorithm. Weights are the partial score attributed from 
different algorithms toward a specific genotype. Bottom, final aggregation 
rationale. DBL, doublets; LQ, low quality; SoC, souporcell. c, Percentage of 
doublets detected from each algorithm across datasets. x axis, datasets ordered 
by the number of retrieved cells; y axis, doublet rate. Lines are colored by 

algorithm. D, day. d, Benchmark of demultiplexing performance against ground 
truth in an in silico multiplexed dataset. x axis reports different algorithms; y axis 
reports the deconvolution accuracy as the rate of barcodes with predicted IDs 
that match ground truth versus total detected barcodes per dataset. Balanced 
datasets are colored light green; imbalanced datasets are colored orange. Plot is 
bound between 0.86 and 0.98 to magnify the differences among and within tools 
and jittered on the y axis for readability. e, Distribution of predicted singlets and 
doublets from the different algorithms for each of the seven datasets. Algorithms 
are shown on the x axis, and mean log counts are shown on the y axis. The shape of 
each symbol corresponds to a dataset. Markers are colored by singlet or doublet 
predicted labels.
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alterations in cell migration and hence potentially representing the 
genetic underpinning of the neurodevelopmental difference in the 
migrating neuron trajectory observed here between the CBOs from 
different individuals.

Scalability of multiplexed CBOs
Having shown that multiplexed CBOs enable the parallel assessment of 
neurodevelopmental trajectories from different lines, we next sought 
to determine the scalability of the system, given the variable balance 
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among lines during mosaic organoid differentiation (Extended Data 
Fig. 2) and recent evidence showing a high degree of clonal variability in 
brain organoid development51,52 in line with the physiological clonality 
of human brain development42. We thus increased the number of PSC 
lines and multiplexing combinations as well as replicates across differ-
ent organoids of the same combinations to quantitatively measure the 
variance in balance between different PSC lines in mosaic organoids 
and derive empirically grounded guidelines for scaling up disease 
modeling with this approach.

To that end, we undertook an in-depth profiling of the growth rate 
of 12 different PSC lines by systematic and longitudinal imaging over dif-
ferent passages during pluripotency maintenance and at multiple time 
points during CBO differentiation. By performing semi-automated image 
preprocessing and segmentation53, we modeled the growth dynamics of 
each PSC line (both in pluripotency and upon CBO differentiation) and 
of seven different mosaic combinations (Extended Data Figs. 8 and 9).

In parallel, each mosaic combination was profiled by Census-seq36,37 
at five different time points in triplicate to measure the PSC line balance 

over the mCBO differentiation course. This showed that, starting from 
a balanced mix of lines when generating mCBOs, the line balance was 
already altered at early stages of differentiation, resulting, for some 
of the lines, in very low numbers of cells at later time points (Fig. 6a 
and Supplementary Data 6). We thus asked whether these imbalance 
patterns could be predicted by individual lines’ growth rates. As shown 
in Fig. 6a and Supplementary Data 6, for the contribution of each PSC 
line in mosaics, we found both that it was reproducible across replicates 
of the same mix and that it reflected line-specific behaviors across dif-
ferent mixes (Fig. 6a), yet such regularity was not explained either by 
PSC or CBO growth rates (Supplementary Data 6 and Extended Data 
Fig. 10a). This excludes that a rapid assessment of PSC line growth rates, 
either in pluripotency or upon differentiation, could be harnessed to 
preselect optimal mixes (that is, those most likely to preserve balance) 
for a high-scalability setting.

We thus probed an alternative solution to the scalability problem, 
integrating the longitudinal Census-seq with mCBO imaging data 
to model mCBO clonal dynamics and thereby determine the upper 
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feasibility limit of the mosaic models as a function of their sensitivity 
in exposing single-cell endophenotypes. Specifically, we derived the 
‘mosaic growth rate’ of each PSC line by combining mosaic organoid 
growth rate as measured by imaging and the percentage of specific PSC 
lines as measured by Census-seq (Fig. 6b and Extended Data Fig. 10b). 
We then computed the empirical probability distribution of the derived 
number of cells coming from each PSC line in mCBOs and used it as 
the basis for a Monte Carlo simulation with two initial parameters: (1) 
the starting number of PSC lines used to generate mCBOs and (2) the 
minimum number of cells per line required for single-cell analysis of 
the main cell types. We found that the number of effectively recovered 
lines (that is, lines detected at levels that enable single-cell analysis of 
the main neurodevelopmental cell types) increased with the number of 
lines that were mixed (despite the reduction in relative representation) 
(Fig. 6c and Extended Data Fig. 10c).

Given similar clonal dynamics across mCBOs generated by dif-
ferent numbers of PSC lines as well as by different combinations of 
PSC lines, the scalability of the system is currently limited only by 
the number of lines that can be accurately counted and multiplexed 
when generating mCBOs. We could thus compute the impact of 
the different multiplexing approaches (Fig. 6d and Extended Data 
Fig. 10d) on the experimental timelines needed to perform large-scale 
disease-modeling studies. mCBOs emerged from this analysis as an 
enabling method due to the radical acceleration afforded by paral-
lel processing of different rounds of differentiation experiments, 
for example, compressing the profiling of 1,000 lines down from 10 
to 3 years and hence marking the difference, in the current funding 
and project management ecosystem of most academic institutions, 
between a largely unrealistic setting and a routinely feasible design.

Discussion
In this work, we developed multiplexing strategies to tackle the chal-
lenges of brain organoid modeling for the systematic study of human 
neurodiversity at scale. Pooling strategies already proved transform-
ing for iPSC-based disease modeling34–38; however, their application 
to the inherently complex setting of brain organoids, which generate 
a highly heterogeneous composition of cell types over very extended 
times, has just started to be undertaken51,52. Here, we first benchmarked 
and improved the demultiplexing steps by leveraging and aggregating 
the edges of different publicly available state-of-the-art algorithms 
and developing SCanSNP, a new deconvolution method that more 
accurately identifies doublets and low-quality cells and flexibly accom-
modates cases of imbalanced genotypes.

Next, we deeply characterized the neurodevelopmental cell 
types and trajectories recapitulated by CBOs across time points 
and multiplexing modalities. Of note, the unicity of our longitudi-
nal design allowed us to capture a very interesting and relevant neu-
rodevelopmental process represented by the transient emergence of 
Cajal–Retzius-like cells, a population that was also recapitulated in a 
different brain organoid model but so far not reported in CBOs54. In 
our dataset, Cajal–Retzius-like neurons are enriched at middle stages 
and then depleted at advanced stages in both downstream CBOs and 
mCBOs, consistent with in vivo evidence that they are fated to elimi-
nation as neuronal networks mature55. Future studies will thus enable 

benchmarking the ability of CBOs to recapitulate also the specific 
molecular and cellular features of human Cajal–Retzius neurons in vivo.

This design also allowed us to identify the developmental diver-
gence of direct and indirect neurogenesis, highlighting EOMES as the 
key driver guiding the different paths of early-versus-late glutamatergic 
neuron differentiation in organoids. This confirmed the ability of CBOs 
to recapitulate the physiological processes of a unique aspect of human 
neocortical development56,57, in line with recent work that investigated 
these biological processes in early fetal tissue and cerebral organoids 
through imaging61.

Finally, we observed in our late-stage CBOs also the differentia-
tion of GABAergic neurons62, a finding that, given the dorsal forebrain 
patterning, is in line with recent evidence that human dorsal cortical 
progenitors are also capable of producing GABAergic neurons with the 
transcriptional characteristics of cortical interneurons63,64.

Through the analysis of developmental trajectories, we also 
showed that brain organoid multiplexing can be used to identify how 
candidate genetic variants are linked to specific neurodevelopmental 
phenotypes, captured here as proof of principle in the transcriptional 
regulation of migrating neurons. This paves the way to molecular 
quantitative trait locus discovery once multiplexing approaches will 
be applied to CBOs differentiated from large-scale cohorts of PSC 
lines. Indeed, we showed that the number of lines needed for de novo 
discovery of eQTLs linked to neurodevelopmental trajectories in brain 
organoids (which we propose to term eDTL, for expressed develop-
mental trait loci) should be in the range of hundreds of individuals.

Both molecular and imaging analyses showed that mCBOs reca-
pitulate the expected cytoarchitectural organization, including 
ventricular-like structures and the gradual emergence of relevant 
neurodevelopmental markers of standard CBOs. As expected, they 
showed a variable degree of balance among individual PSC lines.

Differently from another multiplexing approach that was recently 
proposed, which requires however dissociation and re-aggregation 
of the organoids to keep the balance among individual lines52, here 
we aimed to keep the mosaic model unperturbed and thus allow it to 
recapitulate the physiological phenomenon of clonal asymmetry51,65,66, 
proceeding to an in-depth investigation of these dynamics across dif-
ferent numbers of PSC lines, multiplexing combinations and replicates.

Interestingly, our longitudinal imaging profiling, characterizing 
with quantitative parameters each PSC line upon passaging in pluripo-
tency and through CBO differentiation, did not explain the contribu-
tion of each line in the mosaic models. However, we cannot exclude that 
a growth rate characterization with even additional time points and/or 
replicates or at even higher resolution could lead to identification of a 
relationship between cell cycle and cell fate, as has been described in 
a different in vitro model67.

In terms of clonal dynamics and scalability, while we cannot gen-
eralize our results for every PSC line, our results showed that:

	1.	 As expected from recent studies51,52, the line balance in mCBOs 
is altered already at early stages of differentiation. This result, 
coupled with the lack of correlation with PSC and CBO growth 
rates, suggests that interindividual differences across PSC lines 
in response to the patterning factors used in CBO differentiation 

Fig. 6 | Scalability of mCBOs. a, Longitudinal representation of PSC lines in seven 
mosaic organoids of different composition (MIX IDs, Source Data Fig. 6),  
as quantified by Census-seq. Each dot represents the average value of 
representation for a single line at that time point across three different replicates, 
except day −2, when only one replicate was available. Shading around the line 
represents the 95% confidence interval around the mean, as depicted by the solid 
line connecting the dots. b, Growth rate of different cell lines for different mosaic 
mixtures in the interval of day 0 to day 4. Different cell lines are divided along 
the x axis; each dot in a box represents the growth rate of the same cell line in a 
different experimental mixture. Displayed by each box is the median (horizontal 

solid line within the box), the interquartile range (upper and lower bound of the 
boxes) and minimum and maximum values (extension of the whiskers) among 
mixtures per line. c, Fitted power function of cell line recovery (Monte Carlo 
simulation, Extended Data Fig. 10c). The plot shows the number of mixed lines  
(x axis) and the number of recovered cell lines (y axis). d, Projection of the 
number of profilable lines over time across multiplexing approaches. The plot 
shows the number of profiled cell lines (y axis) and the experimental time in days 
(x axis). Vertical dashed lines represent the experimental time to reach 100 and 
1,000 profiled cell lines in the left plot and the right plot, respectively. For the left 
plot, the approximation strict line is displayed for each protocol.
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protocols (as also shown in ref. 68) may be a key determinant for 
the clonal asymmetry. However, with our data, we cannot ex-
clude that the imbalance already originates during the first 2 d 
of the protocol, during which embryoid bodies are generated, a 
phenomenon that was also shown to be relevant in ref. 51 where 
the authors showed that clones were lost during the formation 
of embryoid bodies using a cerebral organoid protocol.

	2.	 Mosaic models showed reproducibility in the relative abundance 
among different individual lines across replicates of the same 
multiplexing combinations and across different combinations. 
This points to the genetic background as a key determinant of 
clonal dynamics. Naturally, this does not per se rule out that also 
the epigenetic state of each line at the time of mCBO generation 
may exert a substantial impact, in line with results from a large 
collection of PSC lines69. Indeed, the lines that were overrepre-
sented in the experiments in Fig. 6 were not overrepresented in 
previous single-cell transcriptomic experiments over different 
years and thus from different passages of the same iPSC lines.

	3.	 The comparison between mosaic and downstream multiplex-
ing modalities showed that non-cell-autonomous effects are not 
evident in the mosaic model, as expected, considering that we 
only used wild-type PSC lines to generate the single-cell dataset 
and confirming independent works that found the same result in 
two-dimensional38 and three-dimensional52 cultures. However, 
considering the few genes that emerged from the differential 
expression analysis between genotypes in the two multiplexing 
modalities, it is possible that, by increasing the number of cells 
and replicates and profiling mosaic models through spatial om-
ics, the molecular impact of cell-to-cell interactions between 
different lines could come into relief even within the range of 
genetically normotypical lines. Also, it will be relevant to investi-
gate deeper non-cell-autonomous effects using PSC lines carry-
ing disease-relevant genetic mutations, such as the ones that al-
ready showed evidence that non-cell-autonomous mechanisms 
are relevant for the pathogenesis70,71.

	4.	 The variance in mCBO clonal dynamics across PSC lines was not 
dependent on the specific mosaic combinations (where differ-
ent lines were used) nor on the number of lines at generation, in-
dicating high scalability of the system. Additional experiments 
will clarify the impact of increasing to hundreds of lines in single 
mCBOs on these clonal dynamics. However, considering the cur-
rent limitations in laboratory settings for accurate cell counting, 
which is needed to generate balanced mCBOs (excluding flow 
cytometry setups for the logistics of generating mosaic mod-
els with many lines), we do not suggest going lower than about 
1,000 cells per line during mCBO generation. Thus, our guide-
lines suggest using a maximum of about 20 lines in mosaic mod-
els (because 20,000 cells are needed to generate a mCBO with 
our current protocol).

	5.	 Monte Carlo simulations incorporating the empirical growth 
rates from our experiments allowed us to compute the probabil-
ity of recovering, from each PSC line, a sufficient number of cells 
for single-cell omics analysis of neurodevelopmental cell types, 
given the number of lines used at the generation. This in turn 
enables a precise design of disease-modeling experiments with 
mosaic models. With our protocol, the number of PSC lines that 
can be properly analyzed in terms of single-cell transcriptomic 
characterization of all major neurodevelopmental cell types 
(considering proliferating progenitors, radial glial progenitors, 
neurons, migrating neurons, excitatory neurons) from a mosaic 
experiment is ~12 lines (empirical mean ≈ 12.89; 95% confidence 
interval, 12.85 to 12.93) if starting from 20 lines and sequencing 
~100,000 cells. This means that the ideal settings to apply mCBO 
designs as a transformative tool are cohort-level screenings 
for trait-relevant in vitro endophenotypes, drug screening and 

gene–environment interaction studies72. Indeed, if it is not cru-
cial to recover all starting PSC lines, mCBOs allow studying the 
impact of genetic makeup, environmental chemicals11 or drugs 
on the gene expression of specific neurodevelopmental cell types 
for very large cohorts of PSC lines, even without automated set-
ups, as the only bottleneck is the maintenance of the lines and the 
generation of the organoids, thereby massively increasing the 
feasibility of large-scale experiments. For example, by leverag-
ing large cohorts of banked PSC lines (with already thousands of 
lines available in standardized repositories (Table 2 from ref. 73)) 
and generating batches of mCBOs with 20 lines, the experimen-
tal timeline for profiling at day 50 would be, respectively, halved 
for 100 lines (about 6 months instead of more than 1 year needed 
for a downstream multiplexing approach), more than three times 
lower for 1,000 lines (about 3 years instead of about 10 years with 
downstream) and substantially lower also than the recently in-
troduced alternative approach based on post-re-aggregation 
multiplexing52. This, in addition to the substantial reduction in 
the workload (see specific calculations in the Methods), repre-
sents a transformative leap for the transcriptomic annotation of 
polygenic risk scores along neurodevelopment and for precision 
neurotoxicology and pharmacology.

To conclude, our findings indicate to opt for the downstream 
multiplexing strategy when the biological question at hand requires 
strict balance among individual lines, with the mosaic model ideally 
suited instead, and in fact transformative, for unbiased large-scale 
studies, in the same way as developmental neuroscientists can lever-
age pooled CRISPR perturbation strategies for screening the impact 
of genetic variants as a complementary approach to the validation of 
single mutations74–77.
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Methods
Culture of pluripotent stem cells
PSC lines were cultured under feeder-free conditions on Matrigel- 
coated plates at 37 °C with 5% CO2 and 3% O2. To coat culture dishes, 
Matrigel solution was prepared by diluting Matrigel (Corning, 354277) 
1:40 in ice-cold DMEM/F12 medium (Gibco, 11330057) and stored 
at 4 °C until use. Before plating cells, 6-cm dishes were coated with 
1 ml Matrigel solution and incubated for 30 min at 37 °C. PSCs were 
maintained in TeSR/E8 medium (Stemcell Technologies, 05990) sup-
plemented with 100 U ml−1 penicillin and 100 µg ml−1 streptomycin 
(Thermo Fisher, 15140122) with daily medium changes and passaged 
1:8 to 1:10 when confluency reached around 70%. To detach cells, plates 
were rinsed with 2–3 ml PBS (Gibco, 10010023) and treated with 0.5 ml 
ReLeSR reagent (Stemcell Technologies, 05872) for 5 min at 37 °C. When 
single-cell dissociation was needed, Accutase (Sigma-Aldrich, A6964) 
was used instead of ReLeSR, and 5 µM ROCK inhibitor Y-27632 (Tocris, 
1254) was added to the medium to enhance cell survival in the first 24 h. 
All participants signed an informed consent form, and the use of PSCs 
was approved by the ethical committee of the University of Milan. All 
iPSC lines were reprogrammed by at least 15 passages. All PSCs have 
been routinely verified to be Mycoplasma free by routine PCR testing, 
and their identity was confirmed by short tandem repeat profiling. 
Details about the PSC lines can be found in Supplementary Table 1.

Multiplexing strategies
In the experimental design, we adopted two distinct multiplexing strat-
egies, namely, mosaic and downstream, that differed in the moment 
at which the different cell lines were mixed.

In the former multiplexing approach, CBOs were generated by 
mixing equal amounts of PSCs derived from each cell line to obtain 
mosaic brain organoids. Briefly, PSC lines were dissociated in parallel at 
the single-cell level, and cells were counted separately and then mixed 
in equal proportions to obtain a mosaic cellular suspension. After dilut-
ing the cell suspension to the desired concentration of 2 × 105 cells per 
ml, organoids were generated as explained in the following chapter 
entitled 'Cortical brain organoids'.

In the downstream approach, CBOs were independently generated 
from each individual PSC line and grown separately. When reaching 
the desired analytical time point, organoids from each cell line were 
dissociated in parallel, and cells were counted and mixed in equal 
proportions to obtain a pooled cell suspension.

For the comparison of neurodevelopmental cell types and trajec-
tories between mosaic and downstream multiplexed CBOs, the design 
included four iPSC lines (CTL08A, CTL01, CTL02A, CTL04E) across 
replicates in both multiplexing modalities. For Census-seq-based 
assessment of mosaic organoid scalability, mCBOs were generated 
with different combinations of PSC lines as shown in Fig. 6a.

Cortical brain organoids
Pure line-derived and mosaic brain organoids were generated using 
an adaptation of the previously described protocol78, which allows 
one to obtain dorsal telencephalon cortical organoids, introducing 
orbital shaking on day 12 of differentiation as previously published 
by us in refs. 5,11,15. PSCs were grown on Matrigel-coated plates to 
a confluency of approximately 60–70%, dissociated with Accutase 
(Sigma, A6964) and resuspended in TeSR/E8 medium supplemented 
with 5 µM ROCK inhibitor Y-27632 (Tocris, 1254) to reach a final con-
centration of 2 × 105 cells per ml. The cell suspension (100 µl per well) 
was seeded in ultra-low-attachment, U-bottom 96-well plates (System 
Biosciences, MS9096UZ) and then centrifuged for 3 min at 150 rcf 
to promote formation of embryoid bodies. Plates were incubated at 
37 °C with 5% CO2 and 3% O2 for 2 d, and then the first medium change 
was performed, substituting TeSR/E8 with neural induction medium 
containing 80% DMEM/F12 medium (Gibco, 11330057), 20% knockout 
serum (Gibco, 10828028), non-essential amino acids (1:100, Sigma, 

M7145), 0.1 mM cell culture-grade 2-mercaptoethanol solution (Gibco, 
31350010), GlutaMAX (1:100, Gibco, 35050061), penicillin at 100 U ml−1 
and streptomycin at 100 μg ml−1 (Thermo Fisher, 15140122), 7 µM dor-
somorphin (Sigma, P5499) and 10 µM TGF-β inhibitor SB431542 (Med-
ChemExpress, HY-10431). Since that moment, defined as day 1, cultures 
were grown in normal oxygen conditions (21% O2). Medium changes 
were performed daily for the subsequent 4 d, and, on the fifth day, 
neural induction medium was substituted with complete neurobasal 
medium, composed of neurobasal medium (Gibco, 12348017), B-27 
supplement without vitamin A (1:50, Gibco, 12587001), GlutaMAX 
(1:100, Gibco, 35050061), penicillin at 100 U ml−1 and streptomycin at 
100 μg ml−1 (Thermo Fisher, 15140122) and 0.1 mM cell culture-grade 
2-mercaptoethanol solution (Gibco, 31350010) supplemented with 
20 ng ml−1 FGF2 (PeproTech, 100-18B) and 20 ng ml−1 EGF (PeproTech, 
AF-100-15). On day 12, organoids were transferred by pipetting with 
cut-end pipette tips from 96-well to 9-cm ultra-low-attachment dishes 
(System Biosciences, MS-90900Z) and placed on a standard orbital 
shaker (VWR Standard Orbital Shaker, Model 1000). From day 12 
onward, medium changes were performed every other day. On day 
23, FGF and EGF were replaced with 20 ng ml−1 BDNF (PeproTech, 450-
02) and 20 ng ml−1 neurotrophin 3 (PeproTech, 450-03) to promote 
differentiation of neural progenitors. From day 42 onward, complete 
neurobasal medium without BDNF and NT3 was used, performing 
medium changes every other day.

Cell cycle analysis
Pure line-derived organoids were subjected to cell cycle analysis at 
multiple time points after their generation along with cell suspensions 
employed in their generation. Organoids were collected at differen-
tiation days 0, 5, 12, 25, 50 and 75, dissociated at 37 °C for 5 min with 
trypsin-EDTA (Euroclone, ECB3042) (differentiation days 0, 5 and 12) 
or for 30 min with papain (Stemcell Technologies, 07466) (differentia-
tion days 25, 50 and 75); papain was more efficient for the dissociation 
of mature organoids.

As for the first analytical replicate (Fig. 2c), cells were fixed with 
cold ethanol and stored at +4 °C. Upon completing the longitudinal 
cohort, cell suspensions were rinsed with PBS, stained overnight with 
3 µM propidium iodide solution (Thermo Fisher, P1304MP) in the 
presence of 25 µg ml−1 RNase I (Thermo Fisher, EN0601) and analyzed 
with a FACSCelesta instrument (BD Biosciences) to measure DNA con-
tent. Analyses were performed with FlowJo version 10 software (BD 
Biosciences).

In the second analytical replicate (Fig. 2d), to avoid the deteriora-
tion of early time point samples, 1 million cells per sample were resus-
pended in PBS supplemented with 0.1% BSA (Sigma, A9418), stained 
for 20 min at 37 °C with 2 µg ml−1 Hoecst 33342 (Sigma-Aldrich, B2261) 
in the presence of 5 µM verapamil (Sigma, V4629) and analyzed with 
a CytoFLEX instrument (Beckman Coulter Life Sciences) to measure 
DNA content.

Analyses were performed with FlowJo (replicate 1, BD Biosciences) 
or FCS Express 7 software (replicate 2, De Novo Software). Raw counts 
are shown in Supplementary Data 1, and the gating strategy is shown 
in Supplementary Fig. 2.

Histological analysis
Organoids were collected on differentiation days 50 and 100, washed 
with PBS and fixed overnight at 4 °C in 4% paraformaldehyde–PBS 
solution (Santa Cruz, sc-281692). After rinsing with PBS twice, samples 
were embedded in 2% low melting agarose, placed in 70% (vol/vol) 
ethanol and immediately given to the Tissue Processing Unit for paraf-
fin embedding, sectioning and routine hematoxylin–eosin staining.

Deparaffinization and rehydration were achieved by consecu-
tive passages of 5 min each in the following solutions: 2× histolemon 
(Carlo Erba, 454912), 100% ethanol, 95% ethanol, 80% ethanol and  
2× ddH2O. Sections were then incubated for 45 min at 95 °C with 10 mM 
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sodium citrate buffer (VWR Chemicals, 27833) with 0.05% Tween-20 
(Sigma, P1379) for simultaneous antigen retrieval and permeabiliza-
tion and then equilibrated at room temperature for at least 2 h. After 
30 min of blocking with 5% normal donkey serum ( Jackson Immu-
noResearch, 017-000-121) in PBS, incubation with primary antibodies 
in PBS with 5% normal donkey serum was performed. The following 
primary antibodies were used: anti-PAX6 (rabbit, 1:200, BioLegend), 
anti-TUJ1 (mouse, 1:1,000, BioLegend), anti-nestin (mouse, 1:500, 
Millipore), anti-reelin (mouse, 1:400, Millipore), anti-CTIP2 (rat, 
1:400, Abcam), anti-SATB2 (mouse, 1:400, Abcam), anti-HOPX (rabbit,  
1:500, Sigma), anti-SOX2 (goat, 1:1,000, R&D Systems), anti-MAP2 
(guinea pig, 1:200, Synaptic Systems), anti-NeuN (mouse, 1:200, 
Abcam), anti-Ki-67 (rabbit, 1:250, Abcam). The day after, secondary 
antibodies conjugated with Alexa Fluor 488, 594 or 647 (donkey, 
1:400, Thermo Fisher) were diluted in PBS and applied to the sections 
for 1 h, followed by a 5-min incubation with 1 µg ml−1 DAPI solution. 
After each incubation, three 5-min washing steps with TBS buffer 
were performed. After a final rinse with deionized water, slides were 
dried and mounted using Mowiol mounting solution. Images at ×20, 
×40 and ×63 magnification were acquired using a DM6 B MultiFluo 
microscope (Leica) equipped with an Andor Zyla VSC-04470 sCMOS 
camera (Fig. 2) or with an ECLIPSE Ti2 Crest microscope (Nikon) 
coupled with a Photometrics Prime 95B camera at ×20 magnifica-
tion (Extended Data Fig. 1) and then processed with Fiji software. For 
Extended Data Fig. 1, maximum intensity projection was performed, 
choosing the ‘maximum intensity’ option, and a gamma correction 
of 0.7 was applied to the AF488 channel.

Cortical brain organoid processing for single-cell 
transcriptomic analysis
Organoids were collected on differentiation days 50, 100, 250 and 
300 (±3 d). Three to five organoids per condition were dissociated by 
incubation with a solution of 0.5 mg ml−1 Collagenase/Dispase (Sigma) 
with 0.22 mg ml−1 EDTA (Euroclone) and 10 µl DNase I at 1,000 U ml−1 
(Zymo Research) for 30–45 min according to organoid size. Digested 
suspensions were filtered through 70-µm-pore Flowmi Cell Strainers 
(Sigma, BAH136800040), resuspended in PBS and counted using a 
TC20 Automated Cell Counter (Bio-Rad). For the day 100 downstream 
sample, the single-cell suspension was further centrifuged at 500 rcf 
for 3 min and resuspended in 200 µl cold PBS–0.04% BSA. Pre-chilled 
(800 µl) 100% methanol was added dropwise for a final concentration 
of 80%. Cells were fixed for 30 min and stored at −80 °C for 6 months. 
For recovery of a single-cell suspension, fixed cells were thawed 
at 4 °C (all steps at 4 °C) and centrifuged at 1,000 rcf for 5 min, the 
supernatant was completely removed, and pre-chilled SSC cocktail 
(3× SSC, 0.04% BSA, 1% SUPERase-In, 40 mM DTT) was added. Cells 
were counted and resuspended at a concentration 1,000 cells per 
µl. Droplet-based single-cell partitioning and scRNA-seq libraries 
were generated using the Chromium Single Cell 3′ Reagent v2 Kit 
(10x Genomics) following the manufacturer’s instructions79. Briefly, 
a small volume (6–8 μl) of single-cell suspension at a density of 1,000 
cells per μl was mixed with RT–PCR master mix and immediately 
loaded together with Single Cell 3′ gel beads and partitioning oil into 
a Single Cell 3′ Chip. The gel beads were coated with unique primers 
bearing 10x cell barcodes, unique molecular identifiers and poly(dT) 
sequences. The chip was then loaded onto a Chromium instrument 
(10x Genomics) for single-cell GEM generation and barcoding. RNA 
transcripts from single cells were reverse transcribed within droplets 
to generate barcoded full-length cDNA. After emulsion disruption, 
cDNA molecules from each sample were pooled and pre-amplified. 
Finally, amplified cDNA was fragmented, and adaptor and sample 
indices were incorporated into finished libraries that were compat-
ible with Illumina sequencing. The final libraries were quantified by 
real-time quantitative PCR and calibrated with an in-house control 
sequencing library. The size profiles of the pre-amplified cDNA and 

sequencing libraries were examined on the Agilent Bioanalyzer 2100 
using a High Sensitivity DNA chip (Agilent). Two indexed libraries were 
pooled equimolarly and sequenced on the Illumina NovaSeq 6000 
platform using the v2 Kit (Illumina) with a customized paired-end, 
dual-indexing (26/8/0/98-bp) format according to the recommen-
dation of 10x Genomics. Using proper cluster density, a coverage 
of around 250 million reads per sample (2,000–5,000 cells) was 
obtained, corresponding to at least 50,000 reads per cell.

Generation of CellPlex libraries
Two independent downstream multiplexed datasets were generated 
for external validation of the SCanSNP pipeline, labeling each geno-
type with a specific barcode from the 3′ CellPlex Kit (10x Genomics, 
PN-1000261). Briefly, organoids were collected on day 50 and dis-
sociated with an HBSS-based solution containing 30 U ml−1 papain 
(Stemcell, 07466) and 125 U ml−1 DNase I (Zymo Research) for 30–45 min 
according to organoid size. After filtering through 70-µm-pore Flowmi 
Cell Strainers, cells were counted, and 1 million live cells per sample 
were taken and labeled with a unique barcode from the 3′ CellPlex Kit 
Set A according to the manufacturer’s instructions. Once the wash-
ing steps were completed, 1 × 105 live cells per sample were pooled 
together, and the concentration was adjusted to be within 1.2–1.6 × 106 
cells per ml for droplet-based single-cell partitioning. Libraries were 
generated using the Chromium Next GEM Single Cell 3′ v3.1 Kit (10x 
Genomics) similarly as described previously. Target coverage for gene 
expression was set at 50,000 reads per cell, whereas, for CellPlex mul-
tiplexing oligonucleotides, a sequencing depth of 5,000 reads per cell 
was chosen as recommended.

Generation of bulk RNA-seq-based variant-calling file (VCF)
Reference genotypes for the deconvolution were obtained from bulk 
RNA-seq data of pure line-derived organoids.

Total RNA was isolated from pure line organoids with the RNeasy 
Micro Kit (Qiagen) according to the manufacturer’s instructions. RNA 
quantification and integrity was assessed by electrophoretic analysis 
with the Agilent 2100 Bioanalyzer. The TruSeq Stranded Total RNA LT 
Sample Prep Kit (Illumina) was used to run the library for each sam-
ple using 500 ng total RNA as the starting material. Sequencing was 
performed with the Illumina NovaSeq 6000 platform, sequencing on 
average 35 million 50-bp paired-end reads per sample.

First, raw reads were aligned to the GRCh38 version 93 Ensembl 
reference genome using STAR80 in two-pass mode to learn splicing 
junctions from data, subsequently, read group tags were made uniform, 
and optical and PCR-duplicated reads were marked using GATK Mark-
Duplicates. The resulting BAM file (in silico multiplexed BAM creation 
is described in the Supplementary Methods) was recalibrated using 
BaseRecalibrator and ApplyBQSR with the sorted 00-All.vcf.gz (b151_
GRCh38p7) file from dbSNP. Next, we performed variant calling using 
GATK HaplotypeCaller81 with the option ‘dont-use-soft-clipped-bases’–
standard-min-confidence-threshold-for-calling set to 30 and –
min-base-quality-score equal to 20. We applied thresholds for MIN_DP, 
DP and quality (GQ) of 10, 10 and 20, respectively. Finally, we used 
CombineGVCFs and GenotypeGVCFs exclusively to merge together 
GVCFs of genotypes mixed in the corresponding single-cell experiment, 
ignoring the aggregated INFO field.

Alignment and genotype demultiplexing
scRNA-seq data were aligned using Cell Ranger 3.0.0 count and the 
matched reference provided from 10x. For subsequent demultiplexing 
and downstream analyses, only droplets passing the Cell Ranger filter 
were considered. For demultiplexing, we applied demuxlet, soupor-
cell, Vireo and SCanSNP. The final identities used are the result of the 
consensus call (consensus call setup is described in the Supplementary 
Methods). With the exception of souporcell, all the tools were provided 
with bulk RNA-seq-derived VCFs and were embedded in a collective 
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singularity image. To optimize the deconvolution process for our 
samples, we used demuxlet with default parameters and the setting 
‘–doublet-prior’ according to the number of retained droplets after 
Cell Ranger filtering and V3 kit specs doublet expectation. CellSNP, 
the Vireo companion tool for single-cell variant calling, was launched 
‘with -p 10–minMAF 0.1–minCOUNT 20’, and subsequently Vireo was 
launched on the combined VCF file cleaned from loci containing miss-
ing calls. Souporcell was launched using the available singularity image 
specifying only the number of genotypes in the mixture (k). hiPSC lines 
included in this analysis are listed in Supplementary Table 1.

Single-cell data preparation
All downstream analyses were performed within the SCANPY single-cell 
analysis framework82.

Basic filtering was done right after importing count matrices 
from Cell Ranger. We inspected the number of genes, mitochondrial 
gene counts and ribosomal gene count distributions and adopted 
dataset-specific thresholds to remove droplets with likely techni-
cal issues. Next, we removed droplets called for low quality or 
doublets according to the consensus call. After merging the seven 
datasets, cell counts were normalized and log transformed using the 
‘sc.pp.normalize_total’ and ‘sc.pp.log1p’ SCANPY functions. Finally, we 
regressed out the effect of total counts and the percentage of mitochon-
drial transcripts with the ‘sc.pp.regress_out’ and ‘sc.pp.scale’ functions. 
All functions were run with default parameters.

Cell filtering and annotation
We relied on multiple tiers of annotation, filtering and dimensional-
ity reduction. First, we removed proteoglycan (WLS, ANXA2, TPBG, 
RSPO3, DCN, BGN, MYH3)-expressing cells, considered non-relevant 
for our downstream analyses. We next iteratively partitioned cells and 
assessed the top marker via Leiden and rank_gene_groups, respectively, 
to remove cells highly expressing adhesion (WLS, TPBG) and stress 
(BNIP3, PGK1, MT-CO2) markers while manually annotating cell types 
using literature markers. Finally, we used SCANPY’s score_genes func-
tion providing ER stress and hypoxia signatures to remove clusters of 
cells scoring >0 and >0.3, respectively. Finally, we repartitioned the 
remaining cells with a Leiden resolution of 0.6 and manually transferred 
the annotation to new clusters, merging, if needed, different partitions 
into coherent cell types when key markers were overlapping.

Highly variable gene selection
For HGV detection, we took advantage of having at least two datasets 
per time point and detected HVGs by time point with the ‘sc.pp.highly_
variable_genes’ SCANPY function, providing each dataset as a separate 
batch and min_mean = 0.0125, max_mean = 5 and min_disp= 0.5 as 
parameters. For each time point, we kept only genes found as HVGs in 
at least two datasets. After major filtering and single-trajectory isola-
tion, HVGs were recomputed on the cell subset in the same fashion. 
Moreover, we included some relevant neurodevelopmental genes 
from the literature regardless of whether they were detected as HVGs 
(Supplementary Data 2).

Dimensionality reduction and dataset integration
After filtering, PCA was computed on defined HVGs, and the seven 
datasets were integrated via SCANPY’s Harmony implementation83 
with a maximum of 20 iterations; the cells’ neighborhood graph was 
then computed on top 15 PCs, specifying 100 as the neighborhood size 
(n). Upon single-trajectory isolation, PCA was recomputed on each cell 
subset and branch-specific HVGs, Harmony was run with a maximum of 
20 iterations, lambda = 2 and theta = 1, and cell neighborhood graphs 
were computed with ten PCs and 50 n; in the case of the excitatory neu-
ron lineage, we used nine PCs and 60 n, given the greater differences 
between early and late branches than those within lineage-continuous 
cell states of other cases.

Trajectory isolation
To analyze the cell state transitions with trajectory-wise magnifica-
tion, we isolated the most relevant neurodevelopmental trajectories. 
For this purpose, we first partitioned cells with the Leiden algorithm 
with double resolution (1.2) with respect to the previous partitioning 
and used it as the basis for PAGA84, obtaining a PAGA graph. The PAGA 
graph was refined by removing edges with weight <0.05. After com-
plementing the edges to 1 to obtain the equivalent distance graph, 
we computed the shortest path from root r to each endpoint e using 
NetworkX85 with the Bellman–Ford method, where r is the partition 
of cells with highest counts for the ‘TOP2A’ gene and e are partitions 
with the highest rate of the cell types considered one of the endpoints 
(astrocytes, Cajal–Retzius-like neurons, early excitatory neurons, late 
excitatory neurons, interneurons and migrating neurons).

Differential abundance analysis
We adopted Milo45 for differential abundance analysis. We tested for 
differential abundance between the mosaic organoid dataset and 
non-mosaic datasets via direct comparison following the Milo stand-
ard workflow. The differential abundance test was between each time 
point and the other two simultaneously; therefore, we provided as 
model contrast CTn = Tn − (Tx + Ty)/2 for each of the n assessed time 
points, where x and y are the other two time points, T is the timepoint 
and CTn is the model contrast for timepoint n. Plots were generated 
displaying enriched/depleted cells’ neighbors for each time point 
with spatial FDR < 0.1.

Differential expression analysis
To compare the molecular impact of mosaic co-culture, we performed 
direct differential expression analysis between the same genotypes 
either grown individually (downstream multiplexing) or in mosaics. 
Given the impact of methanol fixation on the day 100 downstream 
dataset, (Supplementary Fig. 1b), we relied on day 50 datasets (Supple-
mentary Fig. 1c). To provide a reference of the expected batch-to-batch 
variability, we also compared the same genotypes when grown in two 
different mosaic batches (Supplementary Fig. 1d). For both compari-
sons, we kept the two most abundant genotypes (Supplementary 
Fig. 1c,d, left) and the three most abundant cell types (that is, proliferat-
ing progenitors, radial glial progenitors and neurons; Supplementary 
Fig. 1c,d, right) present in both experiments. For each genotype and cell 
type combination, single-cell counts were aggregated to obtain two 
pseudoreplicates. Gene filtering and normalization were carried out 
within edgeR86 using the functions filterByExpr() and calcNormFac-
tors(), respectively; the latter was performed to account for different 
numbers of cells aggregated into the various pseudoreplicate combina-
tions. Finally, count fitting (glmQLFit edgeR function) and the DE test 
(glmQLFTest edgeR function) were repeated individually for each cell 
type comparing the condition (multiplexing paradigm or replicate) 
while providing the genotype as the blocking variable.

Developmental trajectory analysis
We aimed to assess the distribution of cells along pseudotime by dif-
ferent covariates for migrating neuron, astrocyte, Cajal–Retzius-like 
neuron and interneuron trajectories after their isolation. We wished 
to assess whether (1) time point differences mirror the asynchronous 
development of specific cell types in our in vitro system, (2) the multi-
plexing paradigm impact on the developmental timing of such popula-
tions and (3) whether we had the resolution to capture developmental 
differences among control genotypes. For each trajectory individually, 
we computed diffusion map87 and dpt88. Next, for the different time 
points and the multiplexing paradigm, we computed the kernel density 
of each dataset (sklearn.neighbors.KernelDensity, kernel = ‘gaussian’, 
bandwidth corresponding to 5% of the whole pseudotime window) 
and plotted mean and ±1 s.d. among dataset densities. For genotype 
comparison, we kept the most relevant time points for each trajectory 
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(early and mid for migrating neurons and Cajal–Retzius-like neurons; 
early, mid and late for the other trajectories) and genotypes for which 
at least 50 cells were retrieved at each retained time point. Finally, 
the genotypes were balanced via random sampling to have the same 
amount of cells across time points. Mean and standard deviations were 
computed on kernel densities of 50 sampling iterations to assess the 
stability.

For the isolated migrating neuron trajectory, we confirmed the 
dpt-based genotype grouping (Fig. 5c) by assessing their behavior along 
PC1. We started by confirming that PC1 was mainly driven by differentia-
tion, and thus could be used as an alternative of pseudotime measure. 
To do so, we quantified the PC1 variance (adjusted R2) explained by the 
annotated Leiden covariate using the ordinary least-square implemen-
tation of the statsmodels Python library (Extended Data Fig. 7a, left). 
Similarly, we then assessed the PC1 variance explained by the genotype 
(Extended Data Fig. 7a, right) and genotype distributions along PC1 
(Extended Data Fig. 7b).

Subsequently, we used tradeSeq89 (fitGAM function was run 
with nknots = 8 after trimming cells in the first and 99th dpt percen-
tiles to increase stability at lowly sampled extremes) and detected 
pseudotime-driven transcriptional difference within each lineage for 
all but excitatory neuron trajectories, whereas, for excitatory neurons, 
we used tradeSeq to find key transcriptional differences between 
early–mid and late neuronal trajectories.

Within lineage differences, to extract key driver genes along pseu-
dotime, we isolated HVGs between lineage extremes (tradeSeq start-
VsEndTest(), pVal ≤ 0.001 and log (FC) ≥ 2).

For early-versus-late excitatory neuron differences, to detect  
key differences between the two lineages, we considered both the 
greatest divergently expressed genes at the terminal states (tradeseq  
diffEndTest(), pVal ≤ 0.001 and log (FC) ≥ 2) and the transiently 
varying genes, defined as simultaneously low ranked from the 
tradeSeq:diffEndTest function and high ranked from the tradeSeq:p
atternTest(pVal ≤ 0.001) function.

Allele-specific expression analysis
We leveraged our multigenotype design to carry out ASE analysis for 
each cell type annotated. We first produced the read pileup at genomic 
(biallelic-only) loci displaying variability within our cohort using 
SCanSNP pileup mode, which provided an anndata82 with nCells × nLoci 
dimensionality and two layers: ‘Refreads’ and ‘Altreads’, with the count 
of reads presenting or not presenting the variant, respectively. To 
perform the analysis, we summed the reads mapping to variant sites 
(at least one heterozygous genotype) of the same cell type. If multiple 
genotypes were heterozygous at the given location, reads were included 
in the sum regardless of the original genotype. As it is not granted that, 
among different individuals, if present, the dominant allele is the same, 
we first checked that, for loci with detected ASE, the dominant allele 
was coherent before merging coverages from different individuals. 
We observed minimal discrepancy, that is, at a given locus, the domi-
nant allele was vastly the same (always Ref or Alt) across genotypes 
(information available in the Github repository of the paper, Notebook 
04_ASE/13.1_SanityCheck). For each cluster, we kept only loci with at 
least 20 reads, computed the β value (Alt reads/(Alt reads + Ref reads)) 
and performed binomial test and FDR correction (q < 0.05) provided by 
the SciPy90 and statsmodels implementations, respectively. To calculate 
the correlation among cell types, we used β values of loci with detected 
ASE in at least one cell type and covered with at least 20 reads in all cell 
types. Correlation was computed in pandas with ‘spearman’ metrics.

SCanSNP
In our benchmark, the presence of low-quality droplets and doublets 
was observed to be an open challenge also for well-established methods 
when assigning genotypes (IDs) to droplets in the genetic demultiplex-
ing. With those challenges in mind, we developed SCanSNP (available 

at https://github.com/GiuseppeTestaLab/SCanSNP) by dividing the 
demultiplexing and filtering in 3(+1) steps:

	1.	 Best ID detection per droplet: here, as for other approaches, we 
leveraged the accessibility of bulk RNA-seq data to generate a 
function that maximizes the score difference of each ID to the 
sequenced droplets:

Sg =
n
∑
i=1

((
Ai × aig

ti
+ (

Ri × rig
Ti

))) ,

where Sg is the score for ID g in each droplet, i are the loci for which 
allelic information is accessible from bulk RNA-seq, A and R are, 
respectively, the number of reads supporting alternative and ref-
erence alleles, a and r are the number of alternative and reference 
alleles in g and t and T are total alternative and reference alleles in 
the cohort at locus i.

	2.	 Second-best ID determination: given an m-by-g contribution 
matrix, where m are the droplets and g are the multiplexed IDs 
containing the number of reads supporting genotype-specific 
alleles. We used this matrix to iteratively train a multinomial 
logistic regression model to predict which is the most likely ID 
after the first one, assuming ambient contamination consistent 
across droplets. We split the contribution matrix into groups of 
droplets sharing the best ID according to step 1; for each group, 
we trained the model on counts and labels from other groups to 
predict the second-best ID of barcodes in the current group.

	3.	 Doublet detection: to allow doublet detection to be specific 
and flexible while accommodating genetic contributions 
ranging from balanced doublets to the presence of a cell and 
debris in the same drop, we implemented a method similar to 
the one adopted in ref. 22. Starting from the previous m-by-g 
contribution matrix, for every genotype g, we define as nega-
tive droplets the ones that do not contain that genotype as the 
best ID according to the first step and fit a negative binomial 
distribution via the fitdistrplus91 R function on counts support-
ing private g alleles. We therefore used the 99% quantile of the 
fitted distribution as the positivity threshold. Droplets positive 
for more than one ID are considered multiplets.

	4.	 We finally took advantage of the mixed-genotype design to 
structure an added layer of a low-quality droplet detection to be 
used during consensus call aggregation.

We applied a Gaussian mixture model expectation-maximization 
algorithm (implemented through the R mixtools92 package) to sepa-
rate droplets with ‘low’ and ‘high’ signal-to-noise ratios by computing 
log (FC) between the first- and second-best predicted IDs. We started 
by preparing a new contribution matrix similar to the one in passage 2  
but considering only non-ambiguous loci between each possible 
pair of best and second-best IDs in the dataset. Additionally, before 
log (FC) calculation, we add pseudocounts, which mimics average 
ambient RNA contamination coming from each ID, calculated as the 
average rate of reads deriving from the other genotype’s unambigu-
ous reads when they are not labeled as first ID or second ID across 
all droplets (according to the contribution matrix); similar to the 
approach proposed in the hashedDrops function from the package 
MarioniLab/DropletUtils93,94, this step ensures that log (FC) is always 
defined for all droplets. Given the nature of the model, the resulting 
classification assumes the presence of two distinct populations that 
can be separated based on the proportion of the two IDs, and, given 
that it is computed after doublet detection, it will likely detect those 
droplets that embed enough ambient RNA to pass the Cell Ranger 
emptyDrops filter, while it should not be used if any sort of prior filter-
ing of low-quality droplets has already been done. Benchmarking of 
SCanSNP and genetic demultiplexing in barcode-tagged samples are 
described in the Supplementary Methods.
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Power estimation for single-cell eQTLs
We estimated the eQTL power using our R package scPower (version 
1.0.2)50 for sample sizes between 25 and 200 and for number of cells 
per sample between 250 and 1,500, keeping the read depth as in our 
experiment. We fitted the required expression priors per cell type using 
the complete scRNA-seq dataset, combining the different multiplexing 
strategies and time points, and took effects from a previously published 
single-cell eQTL study in IPS cells35, excluding eQTLs from ROT-treated 
cells. Genes were defined as expressed with at least three counts in at 
least 9.5% of the samples.

Modeling mCBO clonal dynamics
We integrated the longitudinal Census-seq data with mCBO imaging to 
model mCBO clonal dynamics (modeling of PSC and CBO growth with 
imaging; Census-seq and Census-seq ranking of iPSC lines in mosaic 
organoids are described in the Supplementary Methods). First, we 
used already published imaging of CBOs stained for nuclear markers to 
estimate the density of cells inside CBOs (0.000767495 per µm3). Next, 
for each replicate of each mosaic combination that we longitudinally 
profiled with imaging, we multiplied the measured area of the mCBOs 
(converting this to the equivalent sphere volume simply through the 
sphere volume formula) by the density to estimate the number of cells 
present in each mCBO at each time point. We computed the average of 
this value for each mosaic combination across the replicates for each 
time point. We then multiplied this value by the average contribution of 
each iPSC line in each mosaic combination, as given by the correspond-
ing Census-seq data (correlation across multimodal ranking is described 
in the Supplementary Methods). This represents the estimated number 
of cells for each PSC line in each mCBO at the different time points. The 
ratio between sequential time points was computed to estimate the 
line-specific growth rates, and their stability across mosaic combina-
tions (Fig. 6b and Extended Data Fig. 10b) as defined by nit = rit · nt and  
gi = (nit+ 1)/nit with nt as the total number of cells in the organoid at time t, 
rit is the ratio of cells measured by Census-seq, nit is the number of cell per 
genotype at time t, gi is the growth rate of the genotype i. The empirical 
distribution is defined by expanding the distribution of gi∀ genotypes 
i from our measured data. We used the computed line-specific growth 
rates to estimate an empirical distribution of possible growth rates. We 
then generated the growth rates of the lines inside the mCBO randomly 
(10,000 cycles of sampling) from the probability distribution calculated 
over the domain. The process was repeated for sample sizes between 
two and 20 theoretically multiplexed lines.

Because we had a constant number of starting cells (20,000) when 
generating mCBOs, we multiplied this by the Monte Carlo simulated 
growth rates, thus modeling the expected number of cells per line for 
all the possible conditions (from two to 20 starting lines).

To translate this into useful guidelines for experimental 
disease-modeling pipelines, we considered that at least 100 cells per 
neurodevelopmental cell type should be recovered for each PSC line 
grown in mCBOs and that 100,000 cells can be sequenced. On the 
basis of these parameters, Supplementary Fig. 10c shows the number 
of PSC lines (y axis) retrieved with the highest empirical probability 
given the number of PSC lines used to generate mCBOs (x axis). We 
finally employed the curve_fit function from the SciPy python library to 
estimate the coefficients a and b of the power function N = aIb + c linking 
the number of mixed cell lines I and the average number of recovered 
lines N (Fig. 6c). The scalability of mosaic experiments in terms of 
experimental timeline is described in the Supplementary Methods.

Statistics and reproducibility
Statistical analyses were carried out using tests appropriate for each 
assessed modality using SCANPY, tradeSeq and Milo for single-cell 
transcriptomics analyses.

The threshold for statistical significance was spatial FDR < 0.1 for 
differential abundance (Milo) and P < 0.05 for other statistical tests. All 

details on sample size, number of replicates, statistical tests and signifi-
cance are provided in the relevant figure legends. CBOs were differenti-
ated in multiple independent batches, and the number of replicates was 
chosen on the basis of previous published studies on brain organoids.

The experiments were not randomized. The investigators were not 
blinded to allocation during experiments and outcome assignments.

Graphics and figures
Final figure panels were assembled using Adobe Illustrator version 
27.0.1. For the organoids, cells and human shapes in Fig. 1, templates 
were downloaded from BioRender and subsequently modified.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The scRNA-seq data generated in this study are accessible via Array
Express (accession E-MTAB-14574). WGS and low-pass WGS sequencing 
data have been deposited at the European Genome–Phenome Archive 
with the study identifier EGAD50000000978. Additional resources 
include the reference genome Ensembl GRCh38 version 93, dbSNP 
version b151 GRCh38p7 (00-All.vcf) and single-cell eQTLs from Jerber 
et al.35 (Table 7). Source data are provided with this paper.

Code availability
Full code used for the analyses can be retrieved at https://github.com/
GiuseppeTestaLab/organoidMultiplexing_release. The latest release 
of SCanSNP and the docker image link are available at https://github.
com/GiuseppeTestaLab/SCanSNP.
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Extended Data Fig. 1 | mCBO immunofluorescence characterization. 
Immunofluorescence-based benchmarking of different mosaic CBOs 
combinations. At differentiation day 50 (a, b), mosaic CBOs mixes 1, 6, and 7 
show consistent expression of the neuronal lineage-specific tubulin TUBB3 as 
well as the presence of ventricular-like structures positive for the neural stem 
cell marker SOX2 (a). Similarly to the in vivo counterpart, these structures 
display high rates of proliferation as shown by the focal enrichment in mKI67 
positive cells (b). Outside ventricular-like structures, the presence of neurons 

can be appreciated by the broad presence of NeuN positive nuclei as well as by 
the uniform presence of MAP2 positive cellular processes (b). At differentiation 
day 135 (c), mosaic CBOs mix1 display more mature ventricular-like structures 
characterised by reduced luminal area and a reduced and scattered expression 
of both SOX2 and mKI67 positive cells, whereas both NeuN positive nuclei and 
the sharpness of TUBB3 and MAP2 signal appears increased with longer cellular 
processes being clearly detected by anti-MAP2 staining.
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Extended Data Fig. 2 | Dataset composition by genotype. Barplot representing number of cells by genotype according to the consensus call prior to filtering. 
WVS01H, WVS02A, WVS03B, WVS04A, CTL09A were not included in downstream analysis since there were no replicates across multiplexing modalities.
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Extended Data Fig. 3 | Demultiplexing performance assessment. a) Doublet 
rate by dataset and algorithm. Lines are coloured by demultiplexing algorithm, 
datasets (x axis) are ordered by number of retrieved cells. b) Average log counts 
distribution by demultiplexing algorithm. Dots are coloured by predicted singlet 
or doublet identity by each algorithm; the shape of the dots encodes each of 

the 7 datasets. c) Alluvial plot displaying Singlets, Doublets, Unassigned and 
Low-quality classes mappings across demultiplexing algorithms. Cells (rows) are 
coloured according to SCanSNP assignment class. d) Pairwise agreement among 
software, divided by dataset. The agreement is expressed as a Jaccard similarity 
of each called identity between 2 software; x represent unassigned cells.
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Extended Data Fig. 4 | SCanSNP benchmarking. a) Boxplots of precision and 
recall scores for evaluation of the classification of Demuxlet v2, Souporcell, Vireo 
and SCanSNP against barcode-based identity demultiplexing performed by 
cellranger multi. Displayed by each box is the median (horizontal solid line within 
the box), interquartile range (upper and lower bound of the boxes), min and max 
values (extension of the whiskers) for two independent datasets. On the right, 
droplets classified as low quality and doublets by either algorithm were included, 
on the left they were not taken into account in the comparison. Change in the 
y-axis scale reflects the higher performance of all algorithms against the  

ground truth when only singlets and good quality barcodes are considered.  
b) Natural logarithm of the total counts + 1 in each sample for two independent 
datasets. Displayed by each box is the median (horizontal solid line within the 
box), quartiles’ range (upper and lower bound of the boxes), min and max values 
(extension of the whiskers). Outliers are computed as a function of the inter-
quartile range and shown as points outside the minimum and maximum range. 
c) Barplot showing differences in doublets and unassigned droplets rates by 
algorithm.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Single cell datasets characterization. a) Embedding  
of cells from all datasets of force-directed graph. From left to right cells are 
coloured by genotype, multiplexing paradigm and stage. b) Force-directed 
graph coloured by expression of relevant markers. Plotted markers are divided 
by the cell type they are most relevant for. c) Force-directed graph coloured 
by transferred label from Poliudakis et al. dataset. End: endothelial; ExDp1: 
excitatory deep-layer1; ExDp2: excitatory deep-layer2; vRG: ventral radial 
microglia; oRG: outer radial glia; ExN: newborn excitatory; ExM: maturing 
excitatory; ExM-U: excitatory upper-layer-enriched; IP: intermediate 
progenitors; inCGE: interneurons caudal ganglionic eminence; inMGE: 

interneurons medial ganglionic eminence; Mic: microglia; OPC: oligodendrocyte 
precursors; Per: pericytes; PgG2M: G2M phase proliferating progenitors; PgGS: 
S phase proliferating progenitors; d) Plot of fraction of cells for each cell type, 
divided by timepoint (upper panel), and by multiplexing paradigm (lower 
panel). e) The scatterplot shows the number of loci with detected allele specific 
expression on the x axis and the total number of reads expressed in millions 
on the y axis; each dot represents a cell type. f) Spearman correlation on reads 
bringing alternative alleles / total reads (bValues) among the observed cell types. 
Correlation is calculated on loci that displayed allelic imbalance (binomial test 
fdr < 0.05) in at least one cell type and with at least 20 reads in each cell type.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Developmental trajectory analysis and power analysis. 
a) On the left: Partition-based graph abstraction (PAGA) plot. Each circle 
represents a Paga cluster, circles are partitioned according to the fraction of cells 
per annotated cell type (shown as reference on the right side), weighted edges 
among PAGA clusters encode their transcriptional similarity. b) Plot of smoothed 
gene expression - obtained via tradeseq - along pseudotime (Methods). For 
each lineage the three most relevant decreasing and increasing genes (sorted 
by pVal and absolute logFC) are shown. Above each expression panel, bars 
coloured by cell type indicate the occupancy of each cell type along pseudotime. 

c) SCPOWER: Estimation of single cell eQTL power per specific cell type, 
depending on the sample size and numbers of cells per sample. d) Distribution 
of genotypes along pseudotime for Interneurons, Outer radial glia / astrocytes 
and Cajal Retzius-like lineages. Within each differentiation stage cells were 
balanced to the same amount across genotypes for correct comparison. If too 
few/no cells were retrieved at any differentiation stage, the whole genotype was 
removed from the comparison. Faded colour shows 1 standard deviation across 
random subsampling iterations, solid line display the mean value across random 
subsampling iterations.
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Extended Data Fig. 7 | Migrating neurons PC1 analysis. a) Boxplot of cells’ 
embedding on PC1 for migrating neurons trajectory, grouped by cell type and 
PSC line. Above the x axis residuals values are reported for each covariate. Each 
dot is the embedding of a cell in PC1, boxplot display median, interquartile range, 

minimum and maximum values among cells of each group. b) Distribution of 
different genotypes along PC1 after genotypes balancing per timepoint. Solid 
line represents the mean, and faded colour shows 1 standard deviation value, 
upon 50 random subsampling iterations.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | PSC growth curves. a) Growth curves of each line 
coloured according to the number of passage (that is split) post-thawing. On 
the x axis the time in hours after splitting the cells from one plate to a new one 
(see Methods), the y axis the total area detected in mm2. The line depicts the 

mean area at that time point across the field of views, the shade shows the 95% 
confidence interval. b) Cumulative mean area of each PSC line at each different 
passage fitted as an exponential curve, as depicted by the solid line. The dots 
represent the empirical values.
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Extended Data Fig. 9 | CBO growth curves. a, b) Growth curves of pure-line 
CBO (a) or mosaic CBO (b). The area detected at each time point was normalized 
on the area of the organoid at day 0. The lines depict the mean area across five 
independent replicates for all the PSC lines at all time points except CTL09A 

and MIX4 at day 10, when only 4 replicates were available. The shade around 
the mean is representative of the 95% confidence interval. The coloured line is 
representative of the subplot title PSC line while all the others are shown in  
light grey.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | PSC growth dynamics in mCBO. a) Heatmap coloured 
by Spearman’s correlation coefficients computed between the rate of cumulative 
growth (hPSC growth rate), slopes of the linear fitting (CBO growth rate) and 
Census-Seq weighted ranking normalized at each available time point. The 
text on the heatmap shows the Spearman’s correlation coefficient b) Growth 
rate of different cell lines for different mosaic mixtures (different dots) in the 
interval day 4 to day 10. Different cell lines are divided along x axis, each dot of 
a box represent the growth rate of the same cell line in a different experimental 
mixture. Displayed by each box is the median (horizontal solid line within the 
box), interquartile range (upper and lower bound of the boxes), minimum and 
maximum values (extension of the whiskers) among mixtures per line.  
c) Monte Carlo simulation of cell lines recovery. The plot shows the number 

of theoretically mixed (x axis) and recovered cell lines (y axis). The yellow line 
indicates the mean number of recovered cells and the faded blue indicates 1 
standard deviation upon 100’000 simulations for each value of x. d) Estimation 
of the experimental workload and time required for large-scale experiments 
(see “Scalability of mosaic experiments in terms of experimental timeline”) also 
for the “chimeroid” approach. In this case NPC-chimeroids are dissociated and 
reaggregated after 25 days of differentiation, thus the same considerations of the 
downstream multiplexing design applies until that timepoint. The plot shows the 
number of profiled cell lines (y axis) and the experimental days (x axis). Vertical 
dashed lines represent the experimental time to reach 100 and 1000 profiled cell 
lines in left plot and right plot respectively. For the left plot, the approximation 
strict line is displayed for each protocol.
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