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Abstract

The combination of brain organoid and single cell omic technologies holds transformative potential to
dissect human neurobiology at high resolution and with mechanistic precision. Delivering this
promise in the context of human neurodiversity, physiological and pathological alike, requires
however a major leap in scalability, given the need for experimental designs that include multiple
individuals and, prospectively, population cohorts. To lay the foundation for this, we implemented and
benchmarked complementary strategies to multiplex brain organoids. Following an extended
longitudinal design with a uniquely informative set of timepoints, we pooled cells from different
induced pluripotent stem cell lines either during organoids generation (upstream multiplexing in
mosaic models) or before single cell-RNAseq library preparation (downstream multiplexing). We
developed a new method, SCanSNP, and an aggregated call to deconvolve organoids cell identities,
overcoming current criticalities in doublets prediction and low quality cells identification and
improving accuracy over state of the art algorithms. Integrating single cell transcriptomes and
analysing cell types across neurodevelopmental stages and multiplexing modalities, we validated the
feasibility of both multiplexing methods in charting neurodevelopmental trajectories at high
resolution, linking their specificity to genetic variation between individual lines. Together, this
multiplexing suite of experimental and computational methods provides an enabling resource for
disease modelling at scale and paves the way towards an in vitro epidemiology paradigm.



Introduction

The polygenic underpinnings of human neurodiversity, in its physiological and pathological unfolding
alike, have been eloquently referred to as terra incognita, calling for new maps to trace that unfolding
in the authenticity of human genetic backgrounds and thereby render it mechanistically actionable.
Developmental stochasticity and environmental triggers add to such complexity, and the increasingly
broader range of exposome that is becoming measurable promises to make gene environment
interactions finally tractable at meaningful scales '™

Towards these overarching goals, brain organoid and single cell multi-omic technologies have
afforded major strides in the mechanistic dissection of human neurodevelopment, enabling
transformative insights from the study of genetic and environmental causes of neuropsychiatric
disorders, a community-wide effort to which we and several others have been contributing *>'*.
Importantly, our recent benchmark of cortical brain organoids (CBO) compared to the human fetal
cortex confirmed the preservation in CBO of transcriptional programs pinpointed as relevant for
disease modelling .

Despite these advances, the characterization of brain organoids at single cell resolution from entire
cohorts, and in perspective at population-scale, remains however an unmet challenge, though an
obviously required one if we are to capture how individual genomes and developmental trajectories
shape variability in vulnerability and resilience across the spectrum of neurodiversity '*'®. Scaling up
human brain organoids modelling and molecular profiling by single cell omics would allow to
understand how the molecular causes of neurodevelopmental disorders (NDDs) trigger deviations
from physiological trajectories '°, in line with the expanding set of population-level single cell studies
2021 This is however still an experimental and analytical challenge due to high cost and workload, and
to the inherent batch-to-batch variability of the complex experimental designs required.

To overcome some of these problems, progress has been made in single cell multiplexing strategies,
including methods based on samples barcoding ¢
genetic variants 7 3°, These approaches have indeed proven to be instrumental for population genetics
and disease modelling studies, including through co-culture of cell lines derived from multiple donors
in a single dish 37,

and methods leveraging the detection of natural

However, multiplexing has not yet been systematically applied to organoids, a challenge that is
particularly relevant for the brain given the long term longitudinal unfolding of highly heterogeneous
combinations of cell types, and the field still lacks studies able to establish the experimental and
computational viability of applying multiplexing strategies to complex 3D experimental systems.

We thus implemented and benchmarked complementary strategies to multiplex human brain
organoidogenesis in vitro, pooling induced pluripotent stem cells (iPSCs) coming from different
individuals either during organoids generation, termed mosaic model according to standardised

guidelines for brain organoids nomenclature we recently contributed to *°

, or before single
cell-RNAseq library preparation. To improve genetic-based cell identification when dealing with brain
organoid single cell transcriptomes, we developed a in silico deconvolution method (SCanSNP),
which we benchmarked against existing deconvolution tools, producing a consensus pipeline for
robust genotype identification across datasets of different quality. Finally, we evaluated the two
multiplexing paradigms through a deep reconstruction of neurodevelopmental trajectories and
providing proof of principle of their suitability for linking genetic variation to neurodevelopmental
trajectory phenotypes. This provides the community with an enabling resource for scaling up brain

organoid modelling to the challenges of human neurodiversity.
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Results

Multiplexing strategies for longitudinal single cell transcriptomics profiling of cortical brain
organoids from different individuals

To test the feasibility of multiplexed brain organoid modelling over extended developmental time
courses, we developed an experimental design comparing two approaches with distinctive features in
terms of scaling, standardisation potential and experimental challenges: i) pooling iPSC lines from
multiple donors to generate mosaic cortical brain organoids (mCBO, also referred to as upstream
multiplexing); and ii) generating CBO individually and pooling them only prior to single cell droplet
encapsulation (hereafter referred to as downstream multiplexing, see methods for details about
specific library preparation used for each sample) (Fig. 1A). For the first strategy, we pooled iPSC
lines (5000 cells/line) prior to organoids generation and longitudinally profiled the resulting mCBO
through single cell-RNAseq at 50, 100 and 300 days of differentiation, following the same protocol
previously used and benchmarked in our laboratory *'"'*. For downstream multiplexing, CBOs were
generated individually from the iPSC lines and profiled at the same time points, pooling equal
amounts of cells per line after organoid dissociation for single cell library preparation. For both
approaches, individual cell identity was demultiplexed through genetic variation (Fig. 1B).
Experimental assessment of mosaic cortical brain organoids

We first characterised mCBOs by immunofluorescence for canonical markers of neurodevelopment

1 5,39,40’ and

previously defined for organoid differentiated with the same protocol by us and others
confirmed their expected expression patterns (Fig. 2 A,B). Next, to estimate the stability of the
presence of the different iPSC lines within mCBO throughout development, we used a two-pronged
approach. First, we assessed longitudinally the proliferation rate of organoids derived from individual
lines in two differentiation replicates through flow cytometry-based cell cycle analysis. This showed
similar proliferative trends across lines, with the expected decrease of proliferation along
differentiation, and no significant variations in the proliferative rate of the different lines over time
points (Fig. 2C,D Supplementary Table 1). Next, we probed the extent to which individual lines,
despite homogeneous proliferation rates in isolation, could still yield skewed distributions when
grown as mosaics. In line with in vivo evidence of high asymmetric clonality during human brain
development *', the quantification of genotypes from single cell transcriptomics confirmed a variable
degree of balance between individual lines during mCBO differentiation (Fig. S1E).

Benchmarking of demultiplexing algorithms

The single cell transcriptomics datasets generated from both upstream and downstream-multiplexed
organoids at early, mid and late stages of differentiation (Fig. 1B) were demultiplexed using three
different state of the art algorithms available for genetic demultiplexing (Demuxlet ?/, Souporcell %,
Vireo **). We observed an unexpectedly high number of predicted doublets, with a puzzling count
distribution between singlets and doublets (Fig. S1 A,B). This was associated with a variable degree
of unassigned cells and agreement among tools (Fig. S1 C,D). We thus set out to develop a new
method, SCanSNP (Fig. 3A), to overcome the observed limitations by: 1) dividing the classification
challenge into two steps, one for identity assignment and one for doublets detection, and ii) measuring
genetic purity of each droplet to identify low-quality droplets, and separate them from authentic
doublets. Finally, to consolidate deconvolution accuracy, we set a consensus call framework
considering strength and weaknesses of each algorithm, including non-genetic based tools for
doublets and low quality cell detection “**, merging their outcomes into one combined call (Fig. 3B).
Next we performed again the demultiplexing step using all the above approaches. We found that all
three so far available tools tend to overestimate doublets, if compared to the theoretically expected
rate, SCanSNP or the consensus call (Fig. 4A). In particular, SCanSNP and the consensus call were
the only ones for which the average log-counts distribution of UMIs on predicted doublets resulted, as
expected, higher than singlets (Fig. 4C). The reason is likely due to the fact that existing algorithms
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exhibit a bias in doublets detection that includes low quality droplets, that SCanSNP is instead able to
identify (Fig. S1C). Accordingly, the evaluation of agreement rate in the assignment of individual
identity across algorithms highlighted a high overall agreement for singlets’ calls, with cases of lower
agreement coinciding with datasets that had higher genotype imbalance (Fig. S1D). On the other
hand, we observed that doublets detection agreement was consistently lower (Fig. S1D). Thus, we
also assessed the demultiplexing performance of the different algorithms using 5 in silico multiplexed
single cell datasets to benchmark them against a ground-truth reference spanning datasets with
varying degrees of balance between genotypes. As shown in Fig. 4B, all demultiplexing algorithms
performed better in balanced cases and SCanSNP resulted to be the most accurate in both balanced
and imbalanced settings.

Single cell analysis of neurodevelopmental cell types in cortical brain organoids

After deconvolving the identity of each droplet of our dataset by the consensus call, we discarded
doublets and low-quality cells, and proceeded with cells coming from the iPSC lines across
multiplexing modalities (Fig. S1E, Supplementary Table 6). We thus analysed the single cell
transcriptomic dataset entailing 4 iPSC lines, 3 time points and 2 multiplexing modalities (Fig. 1B).
We pre-processed each sample individually, integrated them and carried out multi-tier filtering.
Force-directed graph, a dimensionality reduction technique that highlights the most differentiated cell
populations (the pointed extremities of the graph) while preserving local differences, was used to
visualise and analyse the integrated dataset (Fig. 5A).

We systematically annotated the identity of each cell population by analysing the expression
distribution of relevant markers, defining the gene signatures driving each cluster, and projecting the
cells onto a reference single cell human fetal brain dataset (Fig. 5A, S2B, S2C, Supplementary Table
2) ®. Consistent with our previous benchmarking ', and in line with evidence from recent studies
characterising brain organoids at single cell resolution ***, CBOs recapitulated most of the relevant
neurodevelopmental cell populations of human corticogenesis. We observed a well-defined group of
cells expressing the proliferative markers CDC20, MKI167, TOP2A, that were labelled as proliferating
progenitor cells. Those cells are in continuity with a bigger cluster of cells expressing PAX6, VIM,
SOX2 and NES annotated as radial glia. This cluster undergoes a bifurcation, extending either
towards cells expressing outer radial glia (oRG) / astrocytes markers HOPX, AQP4, S100B, or
neuronal ones STMN2, DCX, GAP43, which we annotated accordingly. We then further divided the
neuronal branch into intermediate progenitors, expressing EOMES, two clusters of excitatory neurons
expressing NEUROD2, TBR1, SATB2, SLC17A6, SLC17A7, SLA, GRIA2, two interneuron clusters,
expressing DLX2, DLXS5, DLX6-AS1, GAD1 and GAD2, one cluster of migrating neurons,
expressing FOXP1, CA8 and LHX1, and one cluster expressing RELN, PAX6 and CBLNI1, annotated
as Cajal Retzius cells (Fig. 5 A,B, Fig. S2B).

We then compared the different timepoints of our longitudinal dataset observing, as expected,
differences in cell type abundance. While radial glia progenitors, proliferating progenitors and
maturing neurons were evenly distributed across timepoints, we observed that migrating neurons,
early excitatory neurons, and Cajal Retzius cells were more abundant in the early and middle
timepoints, whereas oRG/astrocytes, late excitatory neurons and interneurons were more abundant in
the late timepoint (Fig. S2D). Instead, the abundance of cell type proportion between upstream and
downstream multiplexed samples was comparable (Fig. S2D). We thus tested for statistical
significance in differential abundance, leveraging MILO *, which models the differences in the
abundance of cell states among experimental conditions using graph neighbourhoods and thus
overcomes the pitfalls of using discrete clusters. This analysis confirmed our observations
highlighting significant differences only across timepoints (Fig. 5C,D) and showing no significant
difference between upstream and downstream multiplexing paradigms.
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Finally, to further probe the transcriptional regulation of specific cell types in the CBOs vis a vis the
in vivo counterparts, we took advantage of our multi-genotype dataset to detect loci with
allelic-specific expression (ASE, *°) since the likelihood of observing heterozygous loci is higher. As
expected, the number of detected ASE correlates with the total amount of reads (Fig. S2E). Moreover,
exploring the correlation of proportion of reads in each allele across cell types, we observed that also
in CBOs the patterns of ASE are cell type specific, in line with external evidence from human brain '
(Fig. S2F).

Multiplexed Cortical Brain Organoids recapitulate key neurodevelopmental trajectories

One of the most powerful innovations enabled by single cell analysis of experimental models
featuring extensive cellular heterogeneity, such as CBOs, is the possibility to analyse developmental
trajectories through pseudotime analysis ***°. To deeply explore this aspect in our dataset we
leveraged Partition-based graph abstraction (PAGA, Fig. S3A) ** and isolated all biologically relevant
lineages recapitulated in CBOs (progenitors -> excitatory neurons; progenitors -> interneurons;
progenitors -> astrocytes; progenitors -> Cajal-Retzius cells; progenitors -> migrating neurons). We
could thus analyse through diffusion pseudotime (DPT) ** how the single cells from the different
timepoints and multiplexing modalities were distributed along those neurodevelopmental trajectories
(Fig. 6A,B). Moreover, we harnessed the power of trajectory-based differential expression based on
generalised additive models (tradeSeq *°) and identified the key genes driving each lineage of
differentiation (Fig. S3B, Supplementary Table 3). Noteworthy, for the excitatory lineage, trajectory
analysis allowed us to identify two temporally divergent paths of neurogenesis that reconcile towards
the end into the excitatory neurons clusters, where EOMES was one of the key drivers of the
difference (Fig. 6A). To our knowledge this is the first empirical demonstration of the ability of CBOs
to recapitulate the developmental stages of the two different patterns of human cortical neurogenesis,
represented by the asymmetric divisions during early stages that generate 'self-renewing' radial glia
alongside daughter cells that go on to become neurons, and a second mechanism that involves the
production of intermediate progenitor cells, that in vivo migrate to the embryonic subventricular zone
where they produce neurons through symmetric divisions °"°.

Linking genetic variation to the cellular processes underpinning human neurodevelopment
Genome-wide association studies (GWASs) have uncovered hundreds of thousands of genetic variants
associated with human traits . Mechanistically linking such variants to phenotypes of interest by
molecular quantitative trait locus (molQTL) mapping has been instrumental to understand functional
effects of genetic variation °'. In particular, single cell expression quantitative trait locus (eQTL)
modelling allows to identify the impact of single nucleotide polymorphisms (SNPs) on
cell-type-specific molecular mechanisms, as we pioneered in , pushing forward previous work by the
GTEx Consortium to characterise variation in gene expression across individuals and diverse tissues
of the human body *. Moreover, since single cell analysis can quantify longitudinal trajectories, it is
possible to assess the effects of SNPs on traits that vary dynamically along a continuous axis ***, The
power of these approaches however is yet to be exploited for developmental variation as a trait per se
that is now amenable to longitudinal quantitation in the form of single cell resolved trajectories. We
thus set it out to leverage our in vitro cohort and probe as proof-of-principle how genetic variants
could be linked to the neurodevelopmental traits quantified in CBOs. First, we empirically tested in
our dataset the statistical power to perform single cell eQTL analysis through our previously
developed tool, scPower % and identified the number of lines needed to perform single cell de novo
eQTL discovery, given the CBO-specific variance we had determined in terms of gene expression
across neurodevelopmental cell types (Fig. S3C). Next, we followed a supervised approach to
investigate the genetic basis of the differences we observed in neurodevelopmental trajectories
between individuals during CBOs differentiation.
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In particular, we focused on the trajectory of migrating neurons since it displayed the greater
genotypes’ diversity in the distribution of cells along pseudotime (Fig. 6C, S3D). Upon downsampling
cells per genotype to ensure balance within each timepoint, we found differences between 2 subgroups
(of 2 individuals each) (Fig. 6C, Supplementary Table 4). We identified the genetic variants that
distinguish the 2 subgroups and found that 11 of these genetic variants (Fig. 6D, Supplementary Table
5) have been previously identified as single cell eQTL in a population-scale single-cell RNA-seq
profiling of iPSC derived neurons (see Jerber et al. 2021 * Table 7), with two of them marked as
cis-acting eQTLs for SRCINI, one of the trajectory-specific highly variable genes we had identified
(Fig. 6E), that encodes for a protein previously shown to be a regulator of disease relevant alterations
in cell migration % and hence potentially representing the genetic underpinning of the
neurodevelopmental difference in the migrating neurons trajectory observed here between the CBOs
from different individuals.

Discussion

In this work we tackle the multiplexing need to leverage brain organoids modelling for the systematic
study of human neurodiversity. Pooling strategies already proved transforming for iPSC-based disease
modelling ***, however their application to the inherently complex setting of brain organoids, which
generate a highly heterogeneous composition of cell types over very extended times, had not yet been
undertaken.

We showed that different iPSC lines follow similar trends of cell proliferation rates along CBOs
differentiation and can be multiplexed in mosaic CBOs that recapitulate the expected cytoarchitectural
organisation, including ventricular-like structures and the gradual emergence of relevant
neurodevelopmental markers of standard CBOs, with an expectedly variable degree of balance
between the individual lines was observed.

The guidelines emerging from this work thus indicate to opt for the downstream multiplexing strategy
when the biological question at hand requires strict balance among individuals, with the mosaic model
that is instead more suited for unbiased large scale studies, in the same way as developmental
neuroscientists can leverage pooled CRISPR screening systems for screening the impact of genetic
variants, in combination with validations of single mutations 7.

Furthermore, it will be useful for the field to further characterise the spatial distribution of lines in
mosaic CBOs, as well as to study the developmental features of mosaic CBOs using higher number of
iPSC lines and/or iPSC lines reprogrammed from patients and neurodiverse individuals.

The unique opportunity to deconvolute individual identity from single cell transcriptomics data
leveraging genetic variability, allowed us to use mosaic CBOs to study molecular processes of human
neurodevelopment at high-resolution and at increased scale. Here we benchmarked and improved the
demultiplexing steps leveraging and aggregating the pros of different publicly available state of the art
algorithms. Moreover we developed SCanSNP, a new deconvolution method that more accurately
identifies doublets and low quality cells, and is flexible in case of imbalanced genotypes.

We next deeply characterised the neurodevelopmental cell types and trajectories recapitulated by
CBOs across timepoints and multiplexing modalities. Noteworthy, the unicity of our longitudinal
design allowed us to capture a very interesting and relevant neurodevelopmental process represented
by the transient emergence of Cajal Retzius cells, a population that was also recapitulated in a
different brain organoids model *’. In our dataset, Cajal Retzius neurons are enriched at middle stages
and then depleted at advanced stages, in both downstream and mosaic CBOs (Fig. 4 and Fig. S4)
consistently with in vivo evidence that they are fated to elimination as neuronal networks mature .
This design also allowed us to identify, for the first time at the level of single cell analysis of cortical
brain organoids, the developmental divergence of direct and indirect neurogenesis, highlighting
EOMES as the key driver guiding the different paths of early versus late glutamatergic neurons
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differentiation in the organoids, thus confirming the ability of this experimental model to recapitulate
the physiological processes of a unique aspect of human neocortical development, represented by the
spatiotemporal regulation of neural intermediate progenitor cells that serve as a basis for interpreting
human brain development, evolution, and disease *’. At the current resolution afforded by the single
cell transcriptomic interrogation of CBOs, this domain of indirect neurogenesis is likely capturing the
heterogeneous populations of iNPC recently described from in vivo datasets, whose further partition
remains an important challenge for further improving organoids capture of in vivo trajectories "%,
Moreover, the results from human samples suggest that EOMES might be capable of promoting
inhibitory neuronal identity as well *’. In our cortical brain organoids, even if patterned for the dorsal
forebrain , we observed the differentiation of GABAergic neurons at late stages, confirming the
evidence that human cortical progenitors are also capable of producing GABAergic neurons with the
transcriptional characteristics and morphologies of cortical interneurons ™ (in contrast to previous
developmental studies in rodents that had led to a prevailing model in which cortical interneurons are
born from a separate population of progenitors located outside the developing cortex in the ganglionic
eminences) and the suggestion that inhibitory neurons in humans may arise from intermediate
progenitors in the cortex at late stages of neurogenesis ¥/.

Through the analysis of developmental trajectories, we showed how brain organoid multiplexing can
be used to link genetic variants to specific and dynamic neurodevelopmental phenotypes, captured in
particular along the transcriptional regulation of migrating neurons. This paves the way for molQTL
discovery once multiplexing approaches will be applied to CBOs differentiated from large scale
cohorts of iPSC lines.

Indeed we showed that the number of lines needed for de novo eQTL discovery (which we propose to
term eDTL from expressed Developmental Trait Loci) should be in the range of hundreds of
individuals (Fig. S3C), which indicates that an automation-based leap in throughput is needed before
that longitudinal organoid series from actual population-scale cohorts can be mined for that.

Finally, the mosaic model represents a transforming tool to study gene—environment (GxE)
"or drugs to be studied on multiple genetic
backgrounds 7, thereby pushing forward precision neurotoxicology and pharmacology.

interactions by allowing environmental chemicals
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Methods

Culture of hiPSCs

hiPSC lines were cultured under feeder-free conditions on matrigel coated plates at 37 °C, 5 % CO2
and 3 % O2. To coat culture dishes, matrigel solution was prepared by diluting matrigel (Corning,
#354277) 1:40 in ice-cold DMEM/F12 (Gibco, #11330057) and stored at 4 °C until use. Before
plating cells, 6cm dishes were coated with 1 mL of matrigel solution and incubated for 30 minutes at
37 °C. hiPSCs were maintained in TeSR/E8 medium (Stemcell Technologies, #05990) supplemented
with 100 U/mL penicillin and 100 ug/mL streptomycin (ThermoFisher, #15140122) with daily media
changes and passaged 1:8 to 1:10 when confluency reached around 70%. To detach cells, plates were
rinsed with 2-3 ml of PBS (Gibco, #10010023) and treated with 0,5 mL ReLeSR (Stemcell
technologies, #05872) for 5 minutes at 37 °C. When single cell dissociation was needed, Accutase
(Sigma-Aldrich, #A6964) was used instead of ReLeSR, and 5uM ROCK inhibitor Y-27632 (Tocris,
#1254) was added to the medium to enhance cell survival in the first 24 hours. All subjects signed an
informed consent and the use of hiPSCs was approved by the ethical committee of the University of
Milan. All hiPSC lines were reprogrammed by at least 15 passages and verified to be mycoplasma
free by routine PCR testing.

Multiplexing strategies

In the experimental design we adopted two distinct multiplexing strategies, namely upstream and
downstream, that differ for the moment in which the different cell lines are mixed.

In the upstream multiplexing approach, cortical brain organoids were generated by mixing equal
amounts of PSCs derived from each cell line to obtain mosaic brain organoids. Briefly, hiPSC lines
were dissociated in parallel at the single cell level, cells were counted separately and then mixed in
equal proportions, (namely 25% from each line) to obtain a mosaic cellular suspension. After diluting
the cell suspension to the desired concentration of 2x10"5 cells/ml, organoids were generated as
explained in the dedicated chapter.

In the downstream approach, cortical brain organoids were independently generated from each
individual hiPSC line and grown separately. When reaching the desired analytical timepoint,
organoids from each cell line were dissociated in parallel, cells were counted and mixed in equal
amounts to obtain a pooled cell suspension.

For the comparison of neurodevelopmental cell types and trajectories between upstream and
downstream multiplexed CBOs the design included 4 hiPSC lines (CTLOSA, CTLO1, CTLO2A,
CTLO4E) across replicates in both multiplexing modalities. Details about the hiPSC lines can be
found in the Supplementary Table 6.

Cortical Brain Organoids

Pure lines-derived and mosaic brain organoids were generated using an adaptation of the previously
described protocol 7%, which allows to obtain dorsal telencephalon cortical organoids, introducing
orbital shaking on day 12 of differentiation as previously published by us in >'"'*, hiPSCs were grown
on matrigel-coated plates to approximately 60% to 70% confluency, dissociated with accutase (Sigma,
#A6964) and resuspended in TeSR/E8 medium supplemented with SuM ROCK inhibitor Y-27632
(Tocris, #1254) to reach a final concentration of 2 x 10”5 cells/ml. 100uL/well of cell suspension were
seeded in ultra-low attachment, U-bottom 96 well plates (SystemBio, #MS9096UZ) and then
centrifuged for 3 minutes at 150 RCF to promote formation of embryoid bodies. Plates were incubated
at 37 °C, 5% CO2, 3% O2 for 2 days and then first media change was performed, substituting
TeSR/E8 with neural induction medium containing 80% DMEM/F12 medium (Gibco, #11330057),
20% Knockout serum (Gibco, #10828028), Non-essential amino acids 1:100 (Sigma, #M7145), 0.1
mM cell culture grade 2-mercaptoethanol solution (Gibco, #31350010), GlutaMax 1:100 (Gibco,
#35050061), penicillin 100 U/mL and streptomycin 100 pg/mL (ThermoFisher, #15140122), 7 uM
Dorsomorphin (Sigma, #P5499) and 10 uM TGFp inhibitor SB431542 (MedChem express,


https://paperpile.com/c/cqeWYZ/ARBF
https://paperpile.com/c/cqeWYZ/9GNh+2CmR+b3v6

#HY-10431). Since that moment, defined as day 1, cultures were grown in normal oxygen conditions
(5% 02). Media changes were performed daily for the subsequent 4 days and, on the fifth, neural
induction medium was substituted with complete neurobasal medium, composed of neurobasal
medium (Gibco, #12348017), B-27 supplement w/o vitamin A 1:50 (Gibco, #12587001), GlutaMax
1:100 (Gibco, #35050061), penicillin 100 U/mL and streptomycin 100 pg/mL (ThermoFisher,
#15140122) and 0,1 mM cell culture-grade 2-mercaptoethanol solution (Gibco, #31350010)
supplemented with 20 ng/mL FGF2 (Peprotech, #100-18B) and 20 ng/mL EGF (Peprotech,
#AF-100-15). On day 12, organoids were transferred by pipetting with cut-end pipette tips from
96-wells to 9 cm ultra-low attachment dishes (Systembio, #MS-90900Z) and placed on a standard
orbital shaker (VWR Standard Orbital Shaker, Model 1000). From day 12 onwards media change was
performed every other day. On day 23, FGF and EGF were replaced with 20 ng/mL BDNF
(Peprotech, #450-02) and 20 ng/mL neurotrophin-3 (Peprotech, #450-03) to promote differentiation of
neural progenitors. From day 42 onwards, complete neurobasal medium without BDNF and NT3 was
used, performing media changes every other day.

Cell cycle analysis

Pure lines-derived organoids were subjected to cell cycle analysis at multiple timepoints after their
generation along with cell suspensions employed in their generation. Organoids were collected at
differentiation day 0, 5, 12, 25, 50 and 75, dissociated at 37 oC for 5° or 30’ with Trypsin-EDTA
(Euroclone, #ECB3042) or Papain (Stemcell Technologies, #07466) respectively according to the
analytical timepoint, being papain more efficient for the dissociation of mature organoids.

As for the first analytical replicate(Fig. 2C), cells were fixed with cold EtOH and stored at +4 C.
Upon completing the longitudinal cohort, cell suspensions were rinsed with PBS, stained overnight
with 3uM propidium iodide solution (Thermofisher, #P1304MP) in the presence of 25ug/ml RNAse |
(Thermofischer, #EN0601) and analysed with FACSCelesta (BD biosciences) to measure DNA
content. Analyses were performed with FlowJo v10 software (BD biosciences).

In the second analytical replicate, to avoid the deterioration of early timepoints samples, 1 million
cells per sample were resuspended in PBS supplemented with 0.1% BSA (Sigma, A9418), stained for
20 at 37 oC with 2ug/ml Hoecst33342 (Sigma, #B2261) in the presence of SuM Verapamil (Sigma,
#V4629) and analysed with Cytoflex (Beckman Coulter life sciences) to measure DNA content.
Analyses were performed with FlowJo (Replicate 1, BD Biosciences) or FCS-Express 7 software
(Replicate 2, DeNovo software). Raw data are shown in Supplementary Table 1.

Histological analysis

Organoids were collected on differentiation days 50 and 100 washed in PBS and fixed overnight at 4
°C in 4% paraformaldehyde/PBS solution (SantaCruz, #sc-261692). After rinsing with PBS twice,
samples were embedded in 2% low melting agarose, put in 70% v/v ethanol and immediately given to
the facility for paraffin encasing, sectioning and routine haematoxylin/eosin staining.
Deparaffinization and rehydration was achieved by consecutive passages of 5 minutes each in the
following solutions: 2x histolemon (Carlo Erba, #454912), 100% ethanol, 95% ethanol, 80% ethanol
and 2x ddH20. Sections were then incubated for 45 min at 95 °C with 10mM Sodium citrate buffer
(WVR chemicals, #27833.294P) + 0,05% Tween 20 (Sigma, #P1379) for simultaneous antigen
retrieval and permeabilization; then equilibrated at RT for at least 2 hours. After 30 minutes blocking
with 5% normal donkey serum (Jackson ImmunoResearch, #017-000-121) in PBS, incubation with
primary antibodies in PBS + 5% normal donkey serum was performed. The following primary
antibodies were used: Pax6 (Rabbit, 1:200, Biolegend), Tujl (Mouse, 1:1000, Biolegend), Nestin
(Mouse, 1:500, Millipore), Reelin (Mouse, 1:400, Millipore), CTIP2 (Rat, 1:400, Abcam), SATB2
(Mouse, 1:400, Abcam), HOPX (Rabbit, 1:500, Sigma), SOX2 (Goat, 1:1000, R&D System). The day
after, secondary antibodies conjugated with AlexaFluor 488, 594 or 647 were diluted 1:300 in PBS
and applied to the sections for 1 hour, followed by 5 minutes incubation with 1ug/ml DAPI solution.



After each incubation 3 x 5 minutes washing steps with TBS buffer were performed. After a final
rinse in deionized water, slides were dried and mounted using Mowiol mounting solution. Images at
20X, 40X and 63X magnification were acquired using a DM6 B MultiFluo (Leica) equipped with
Andor Zyla VSC-04470 sCMOS camera and then processed with F1JI software.

Cortical Brain Organoids processing for single cell transcriptomic analysis

Organoids were collected at day 50, 100, 250 and 300 differentiation days (+/- 3 days). 3-5 organoids
per condition were dissociated by incubation with a solution of 0,5 mg/ml Collagenase/Dispase
(Sigma) + 0,22 mg/ml EDTA (Euroclone) with 10 ul of DNasel 1000 U/ml (Zymo Research) for 30 —
45 min according to organoid size. Digested suspensions were filtered through 0.4 uM FlowmiTM
cell strainers, resuspended in PBS and counted using a TC20 Automated Cell Counter (Biorad). For
the sample D100 Down, the single cell suspension was further centrifuged at 500g for 3 min and
resuspend in 200 ul of cold PBS-0,04% BSA. 800 ul of pre-chilled 100% Methanol was added
dropwise, for a final 80% concentration. Cells were fixed for 30 min and stored at -80 degrees for 6
months. For recovery of single cell suspension, fixed cells were thawed at 4°C (all steps at 4°C),
centrifuged at 1000g for 5 min, Supernatant was completely removed and the pre-chilled SSC cocktail
(3X SSC / 0.04% BSA / 1% SUPERase-In / 40mM DTT) added. Cells were counted and resuspended
to a concentration 1000 cells/ul. Droplet-based single-cell partitioning and single-cell RNA-Seq
libraries were generated using the Chromium Single-Cell 3’ Reagent v2 Kit (10x Genomics,
Pleasanton, CA) following manufacturer’s instructions (Zheng et al., 2017). Briefly, a small volume (6
— 8 ul) of single-cell suspension at a density of 1000 cells/ul was mixed with RT-PCR master mix and
immediately loaded together with Single-Cell 3’ gel beads and partitioning oil into a single-cell 3’
Chip. The gel beads were coated with unique primers bearing 10x cell barcodes, unique molecular
identifiers (UMI) and poly(dT) sequences. The chip was then loaded onto a Chromium instrument
(10x Genomics) for single-cell GEM generation and barcoding. RNA transcripts from single cells
were reverse-transcribed within droplets to generate barcoded full-length cDNA. After emulsion
disruption, cDNA molecules from each sample were pooled and pre-amplified. Finally, amplified
cDNAs were fragmented, and adapter and sample indices were incorporated into finished libraries
which were compatible with Illumina sequencing. The final libraries were quantified by real -time
quantitative PCR and calibrated with an in-house control sequencing library. The size profiles of the
pre-amplified cDNA and sequencing libraries were examined by Agilent Bioanalyzer 2100 using a
High Sensitivity DNA chip (Agilent). Two indexed libraries were equimolarly pooled and sequenced
on Illumina NOVAseq 6000 platform using the v2 Kit (Illumina, San Diego, CA) with a customised
paired end, dual indexing (26/8/0/98-bp) format according to the recommendation by 10x Genomics.
Using proper cluster density, a coverage of around 250 M reads per sample (2000-5000 cells) was
obtained corresponding to at least 50,000 reads/cell.

Generation of bulk RNAseq-based variant calling file (VCF)

Reference genotypes for the deconvolution were obtained from bulk RNA-seq data of pure lines
derived organoids.

Total RNA was isolated from pure lines organoids with the RNneasy Micro Kit (Qiagen) according to
the manufacturer’s instructions. RNA quantification and integrity was assessed through Agilent 2100
Bioanalyzer electrophoretic analysis. TruSeq Stranded Total RNA LT Sample Prep Kit, [llumina was
used to run the library for each sample using 500 ng of total RNA as starting material. Sequencing
was performed with the Illumina NOVAseq 6000 platform, sequencing on average 35 million 50bp
paired-end reads per sample.

First, raw reads were aligned on GRCh38 v93 Ensembl reference genome using STAR 77 two-pass
mode to learn splicing junction from data, subsequently read group (RG) tags where made uniform
and optical and PCR duplicated reads were marked using GATK MarkDuplicates. The resulting BAM
file was recalibrated using BaseRecalibrator and ApplyBQSR with sorted 00-All.vcf.gz
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(b151 _GRCh38p7) file from dbSNP. Next, we performed the variant calling using GATK
HaplotypeCaller 7® with the option ‘dont-use-soft-clipped-bases’ meant to optimise the call from
spliced RNA  data, --standard-min-confidence-threshold-for-calling set to 30 and
--min-base-quality-score equal to 20. We relied on HaplotypeCaller ‘GVCF’ mode for the call, to
preserve also information of sites with homozygous reference alleles as long as the quality was
acceptable, in order to retrieve the maximum cohort-wise informative power. After different trials
iterations we decided to apply separated thresholds for MIN DP, DPand quality (GQ) of 10, 10 and 20
respectively. Finally we used CombineGVCFs and GenotypeGVCFs exclusively to merge together
GVCEF of genotypes mixed in the corresponding SC experiment, ignoring the aggregated INFO field.
Alignment and genotype demultiplexing

SC RNA-seq data were aligned using cellranger3.0.0 count and the matched reference provided from
10x. For subsequent demultiplexing and downstream analyses only droplets passing the cellranger
filter were considered. For the demultiplexing we applied Demuxlet, Souporcell, Vireo, and
SCanSNP. The final identities used are the result of Aggregated Call. With the exception of
Souporcell, all the tools were provided with bulk RNA-seq derived VCF and were embedded in a
collective singularity image. To optimise the deconvolution process to our samples we used Demuxlet
with default parameters and setting ‘--doublet-prior’ according to the number of retained droplets after
CellRanger filtering and V3 kit specs doublets expectation. CellSNP, the vireo companion tool for
SC-side variant calling was launched ‘with -p 10 --minMAF 0.1 --minCOUNT 20’ and subsequently
Vireo was launched on combined vcf file cleaned from loci containing missing calls. Souporcell was
launched using the available singularity image specifying only the number of genotypes in the mixture
(k). hiPSC lines included in this analysis are listed in the Supplementary Table 6.

Single cell data preparation

All downstream analyses were performed within scanpy single cell analysis framework .

Basic filtering was done right after importing count matrices from cellranger. We inspected the
number of genes, mitochondrial gene counts and ribosomal gene counts distributions and adopted
dataset-specific thresholds to remove droplets with likely technical issues. Next we removed droplets
called low-quality or doublets according to Aggregated call. After merging the 7 datasets, cell counts
were normalised, log transformed using sc.pp.normalize total and sc.pp.loglp scanpy functions.
Finally we regressed out the effect of total counts and percentage of mitochondrial transcripts via
sc.pp.regress_out and sc.pp.scale functions. All functions were run with default parameters.

Cells filtering and Annotation

We relied on multiple tiers of annotation, filtering and dimensionality reduction. First we removed
proteoglycan (WLS, ANXA2, TPBG, RSPO3, DCN, BGN, MYH3) expressing cells, considered non
relevant for our downstream analyses. We next iteratively partitioned cells and assessed top marker
via leiden and rank gene groups respectively to remove cells highly expressing adhesion (WLS,
TPBG) and stress (BNIP3, PGK1, MT-CO2 ) markers, while manually annotating cell types using
literature markers. Finally we used scanpy’s score genes function providing er stress, and hipoxia
signatures to remove clusters of cells scoring > 0 and > .3 respectively. Finally, we re-partitioned the
remaining cells with leiden resolution .6 and manually transferred the annotation on new clusters,
merging, if needed, different partitions into coherent cell types when key markers were overlapping.
Highly variable genes (HVGs) selection

For HGVs detection, we took advantage of having at least 2 datasets per timepoint and detected
HVGs by timepoint via sc.pp.highly variable genes scanpy function, providing each dataset as a
separate batch and min_mean=0.0125, max_mean=5, min_disp=0.5 as parameters. For each timepoint
we kept only genes found as HVGs in at least 2 datasets. After major filtering, and single trajectories
isolation, HVGs were recomputed on the cell subset in the same fashion. Moreover we included some
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relevant neurodevelopment genes from literature regardless if they were detected as HVGs
(Supplementary Table 2).

Dimensionality reduction and datasets’ integration

After final dataset cleaning we computed PCA in HVGs, the subsequent datasets’ integration was

8 with maximum 20 iterations, cells’

carried out via scanpy’s harmony implementation
neighbourhood graph was then computed on top 15 principal components (pcs), and specifying 100 as
neighbourhood size (n). Upon single trajectories isolation, PCA was recomputed on each cell subset
and branch-specific HVGs, harmony was run with 20 max iterations, lambda = 2, and theta = 1, cells’
neighbourhood graphs were computed with 10 pcs and 50 n, in the case of Excitatory neurons lineage
we used 9 pcs and 60 n given the greater differences between early and late branch compared to
within lineage continuous cells’ states of other cases.

Trajectories isolation

To analyse the cell’s with trajectory-wise magnification, we isolated the most relevant
neurodevelopmental trajectories. For this purpose we operated an higher level of cells partitioning
using Leiden algorithm with doubled resolution (1.2) with respect to the original one, and used it as
backbone for PAGA **, obtaining a partition-based graph abstraction. The PAGA graph was refined by
removing edges with weight < 0.05. After complementing the edges to 1 to obtain the equivalent
distance graph we computed the shortest path from r root to each endpoint e using networkx *' with
Bellman-Ford method. Where 7 is the partition of cells with highest counts of “TOP2A” gene, and e
are partitions with highest rate of the cell types considered one of the endpoints (Astrocytes, Cajal
Neurons, Exc neurons early, Exc neurons late, Interneurons and Migrating Neurons).

Differential abundance analysis

We adopted Milo * for differential abundance analysis. We tested for differential abundance between
mosaic organoids dataset and non mosaic datasets via direct comparison. Subsequently tested for
differential abundance between each timepoint and the other two simultaneously, therefore we
provided as model.contrast CT,, = T, - (T,+7,)/2 for each of the n assessed time points, where x and y
are the other two timepoints. Plots were generated displaying enriched / depleted cells’ neighbours for
each timepoint with spatial FDR < 0.1.

Developmental trajectories analysis

We aimed at assessing the distribution of cells along pseudotime by different covariates for Migrating
Neurons, Astrocytes, Cajal neurons and Interneurons trajectories after their isolation. We wanted to
assess whether 1) timepoints differences mirror the asynchronous development of specific cell types in
our in vitro system, i) Multiplexing paradigm impact on the developmental timing of such
populations and iii) If we had the resolution to spot differences among control genotypes. For each
trajectory individually, we computed diffusion map ¥ and diffusion pseudotime (dpt) *°. Next, for
timepoints and multiplexing paradigms covariates we computed kernel density on each dataset (using
sklearn.neighbors.KernelDensity, with ) and plotted mean and +- 1 standard deviation among datasets’
densities. For genotypes’ comparison, we kept most relevant timepoints for each trajectory (early+mid
for migrating neurons and Cajal neurons, early + mid + late for the other trajectories), and genotypes
for which at least 50 cells were retrieved at each retained timepoint. Finally the genotypes were
balanced via random sampling to have the same amount of cells across timepoints. Mean and standard
deviations were computed on kernel densities of 50 sampling iterations to assess the stability.
Subsequently, we used tradeSeq * (fitGAM function was run with nknots = 8 after trimming cells in
1** and 99% dpt percentiles to increase stability at lowly sampled extremes) and detected
pseudotime-driven transcriptional difference within each lineage for all but excitatory neurons
trajectories, whereas for Excitatory neurons we used tradeSeq to find key transcriptional differences
between early/mid and late neuronal trajectories.
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Within lineage differences: to extract key driver genes along pseudotime we isolated highly variable
genes between lineage extremes (tradeseq startVsEndTest(), pVal <= 0.001 and logFC >= 2).

Early vs Late excitatory neurons differences: to detect key differences between the two lineages we
considered both the greatest divergently expressed genes at the terminal states (tradeseq diffEndTest(),
pVal <= 0.001 and logFC >= 2), and the transiently varying genes, defined as simultaneously low
ranked from tradeSeq:diffEndTest and high ranked from tradeSeq:patternTest(pVal <= 0.001)
functions.

Allele specific expression analysis

We leveraged our multi genotype design to carry out allele specific expression (ASE) analysis for
each cell type annotated. We first produced the reads pileup at genomic (biallelic-only) loci displaying
variability within our cohort using SCanSNP, which provided an anndata "
dimensionality and two layers: “Refreads” and “Altreads”, with the count of reads presenting or not

with nCells x nLoci

the variant respectively. To perform the analysis, we summed-up reads mapping to variant sites (at
least one heterozygous genotype) of the same cell type. If multiple genotypes were heterozygous at
the given location, reads were included in the sum regardless of the original genotype. Since it is not
granted that among different individuals - if present - the dominant allele is the same, we first checked
that for loci with detected ASE the dominant allele was coherent prior to merging coverages from
different individuals. We observed minimal discrepancy, i.e., at a given locus, the dominant allele was
the vastly the same (always Ref or Alt) across genotypes. (Notebook 04 ASE/13.1 SanityCheck). For
each cluster, we kept only loci with at least 20 reads, computed bValue(Alt reads / (Alt reads + Ref
reads)), and performed binomial test and fdr correction (¢ < 0.05) provided by scipy * and statsmodel
implementations respectively. To calculate the correlation among cell types, we used bValues of loci
with detected ASE in at least one celltype and covered with at least 20 reads in all cell types.
Correlation was computed in pandas with “spearman” metrics.

SCanSNP

In our benchmark, the presence of low quality droplets and doublets were observed to be an open
challenge also for well-established methods when assigning genotypes (IDs) to droplets in the genetic
demultiplexing. With those challenges in mind we developed SCanSNP (available at
https://github.com/GiuseppeTestaLab/SCanSNP), by breaking down demultiplexing and filtering in
3(+1) steps:

1) Best ID detection per droplet: here, as for other approaches, we leveraged the accessibility of bulk
RNA-seq data to generate a function that maximises the score difference of each ID to the sequenced
droplets (equation 1) .

n
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where Sg is the score for ID g in a given droplet, i are the loci for which allelic information is
accessible from bulk RNA-seq, 4 and R are respectively the number of reads supporting Alternative
and Reference alleles, a and r are the number of alternative and reference alleles in g, ¢ and T are total
alternative and reference alleles in the cohort at locus i

2) Second best ID determination: we started by creating an m by g contribution matrix, where m are
the droplets and g are the multiplexed IDs, containing the number of reads supporting private alleles.
These are alleles for which, at a given locus it is possible to trace a non-ambiguous allele-to-donor
link. We used this matrix to iteratively train a multinomial logistic regression model (implemented via
sklearn package), to predict which is the most likely ID after the first one, assuming ambient
contamination consistent across droplets. We split the contribution matrix into groups of droplets
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sharing the best ID according to step 1, for each group we trained the model on counts and labels from
other groups to predict the second best ID of barcodes in the current group.

3) Doublets detection: to allow doublets detection to be specific and flexible, while accommodating
genetic contributions ranging from balanced doublets to presence of cell and debris in the same drop,
we implemented a method similar to the one adopted in % Starting from previous m by g contribution
matrix, for every genotype g we define as negative droplets the ones that do not contain that genotype
as best ID according to first step and fit a negative binomial distribution via fitdistrplus * R function
on counts supporting private g alleles. We so used the 99% quantile of the fitted distribution as
positivity threshold. Droplets positive to more than one ID are considered multiplets.

4) We finally took advantage of the mixed genotypes design to structure an added layer of a low
quality droplets detection, to be used during consensus call aggregation .

We applied a Gaussian mixture model expectation maximisation algorithm (implemented through R
MixTools * package) to separate droplets with ‘low’ and ‘high’ signal-to-noise by computing logFC
between first and second best predicted IDs. We started by preparing a new contribution matrix
similar to the one in passage 2, but considering only non-ambiguous loci between each possible pair
of best and second best IDs in the dataset. Additionally, prior to logFC calculation we add
pseudocounts, which mimics average ambient RNA contamination coming from each ID, calculated
as average rate of reads deriving from other genotype’s private reads when they are not labelled as
first nor second ID across all droplets (according to the contribution matrix again), similarly to the
approach proposed in hashedDrops function from package MarioniLab/DropletUtils %% this steps
ensures that logFC is always defined for all droplets. Given the nature of the model, the resulting
classification assumes the presence of two distinct populations that can be separated based on the
proportion of the two IDs and given that it is computed after the doublets detection it will likely to
detect those droplets that embed enough ambient RNA to pass cellranger emptyDrops filter, while it
should not be used if any sort of prior filtering of low quality droplets has already been done.
Aggregated call set up

Rationale and Tools. Given the widely diverse technical landscape deriving from samples’
multiplexing, particularly, but not-only bound to our specific in vitro system , we combined the output
of multiple tools to retrieve the most accurate identity call and ensure maximum robustness across
diverse technical conditions that could be challenging for the single tools. For this Consensus call, we
combined 4 genetic demultiplexing tools: SCanSNP, Vireo, Souporcell and Demuxlet. Moreover we
included scDblFinder * for non genetic doublets detection, and Dropkick *, for low quality droplets
detection. Software were embedded in a Snakamake pipeline *, subsequently the results were
aggregated into a weighted scoring system. All software provide a flexible output that allowed us to
independently extract informations about overall assignment: i) overall assignment: droplet type
(singlet , doublet, ambiguous, not assigned ) plus best identity if the droplet was correctly assigned as
singlet, i1) droplet type only, and iii) best guess of ID assuming singlet.

Metrics. Since the endpoint of the aggregation is meant to be an identity confidently usable for
downstream analyses we used as a general indicator for overall scoring the agreement between
softwares’ best guess assuming singlet (ignoring at this stage the singlet / doublet prediction), this
allowed us to maximise the sensitivity of tools while avoiding specific case/tools combinations that in
some cases drives away the overall assignment. First, we assigned different weights to the software
calls when computing the consensus score: +1 for Souporcell +1 for Vireo, +1.5 for Demuxlet +1.5
for SCanSNP. This choice was made to leverage the greater sensitivity of Demuxlet and SCanSNP
best guesses assuming singlets even in hardest conditions (i.e. low quality drops, high amount of
ambient-RNA (not shown). According to these weights the consensus score is computed for g
Genotypes and m droplets, by summing the weighted score for g across tools. Next we set an
“agreement threshold”, to be used downstream , as a measure of the stability of the assignment across
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tools. The “agreement” threshold for an ID was set to 3. E.g., same best ID predicted from SCanSNP
and Demuxlet, or , same best ID predicted from Souporcell + Vireo + SCanSNP.

Low quality and Doublets. To ensure specific call for singlets and efficiently label doublets and low
quality beads we proceeded through multi-tiered combined id assignment per barcode. At this stage
we accounted for agreement meeting and re-introduced droplet-type information. First step was low
quality droplet isolation: a droplet was labelled as “low quality” if a) it failed to reach agreement for
any ID, and SCanSNP predicted it as low quality, or b) it failed to reach agreement for any ID, and
dropkick predicted it as low quality. Subsequently we marked genetic doublets as droplets that a) were
labelled as doublets by SCanSNP and by at least one more software or b) were labelled as doublet
from all tools but SCanSNP and failed to meet agreement. Here we intentionally put SCanSNP on a
different level with respect to other tools for the parsimony in calling doublets also in presence of
challenging datasets with abundant ambient RNA. After the first two tiers the remaining cells
classified as doublets from scDblFinder were considered transcriptomic doublets. At this point
remaining barcodes meeting agreement were labelled as “safe singlets” and barcodes that did not were
merged with previous “low quality”.

In silico multiplexed bam creation

In order to explore the behaviour of the available demultiplexing tools we produced a set of in silico
multiplexed BAM files starting from five individual SC RNA-seq datasets containing 1311, 8358,
10270, 3216, 2366 barcodes (filtered cellranger output) in the following manner: 1) Starting from
filtered barcodes emitted by cellranger the overlapping ones across datasets were removed.

2A) Balanced in-silico datasets: maximum of 2000 barcodes per dataset were randomly selected
among the unique ones to produce an overall balanced Barcode-ID list with 1311 barcodes for the first
dataset and 2000 for the other ones sampling repeated 2 times). 2B) imbalanced datasets: only one of
the 5 datasets was randomly sampled for 2000 barcodes, for the other ones all the non-overlapping
barcodes were used, leading to the production of mostly imbalanced barcode-ID proportions (repeated
3 times changing the downsampled dataset). 3) At this point we obtained a sample-wise whitelist of
barcodes to be sampled so obtain each of the five simulated dataset. We used the whitelists to filter
each individual bam file and calculated the median reads, in case it exceeded the target median of
15000 it was subsampled accordingly using ‘samtools view -s . 4”) Datasets were merged together
using ‘gatk MergeSamFiles’. Starting from the 5 individual datasets we obtained 5 multiplexed (2
balanced and 3 imbalanced) BAM files. 5) In each multiplexed BAM, barcodes tag in aligned reads
were swapped to reach 10% doublets portion. After the preparation of the in silico multiplexed
datasets, we proceeded to the deconvolution using the available softwares. Since Souporcell does not
use external reference for the demultiplexing the labels of predicted clusters were assigned using best
matching ID from demuxlet. In the synthetic BAM we do not expect to see cross-genotypes ambient
RNA background, that is used from SCanSNP to force mixture model fitting in order to separate low
and high signal-to-noise containing droplets, therefore SCanSNP low quality detection was ignored.
Power estimation for single cell eQTLs

We estimated the eQTL power using our R package scPower (v1.0.2) © for sample sizes between 25
and 200 and for number of cells per sample between 250 and 1,500, keeping the read depth as in our
experiment. We fitted the required expression priors per cell type using the complete scRNA-seq
dataset, combining the different multiplexing strategies and time points, and took effects from a
previously published single cell eQTL study in IPS cells **, excluding eQTLs from ROT treated cells.
Genes were defined as expressed with at least 3 counts in at least 9.5% of the samples.

Data and code availability

Full code used for the analyses can be retrieved at

https:/github.com/GiuseppeTestal.ab/organoidMultiplexing_release. SCanSNP latest release and the
docker link are available at https://github.com/GiuseppeTestal.ab/SCanSNP.
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Figure legend

Fig. 1. Schematic representation of Multiplexing paradigms and experimental design

A) Representation of the two explored multiplexing paradigms. Left side: downstream multiplexed
organoids grown from individual lines and pooled in equal amounts after dissociation at the single cell
level; right side: upstream multiplexed (mosaic) organoids generated by pooling equal amounts of
multiple hiPSC lines during organoids seeding. After single cell dissociation both paradigms undergo
library preparation, sequencing and demultiplexing.

B) Representation of experimental design and demultiplexing approach. The panel shows the CBOs
differentiation timepoints, the number of replicates for each time point and their division between the
two multiplexing paradigms and the iPSC lines (genotypes) used for each experiment.

Fig. 2. Experimental assessment of mosaic cortical brain organoids

A). B). Immunofluorescence-based benchmarking of neurodevelopmental markers in mosaic CBOs.
At differentiation day 50 (A), mosaic CBOs show consistent presence of ventricular-like structures
positive for the neural stem cell marker Nestin and surrounded by a layer of cells expressing the outer
radial glial marker HOPX. The presence of newborn deep-layer, CTIP2+ (BCL11B) cortical neurons
can be appreciated next to HOPX+ cells. On the outer surface, mosaic CBOs reveal the presence of
Reelin+ cells, consistent with the presence of Cajal-Retzius cells.

At differentiation day 100 (B), mosaic CBOs display more mature ventricular structures characterised
by the presence of HOPX+ outer radial glial cells, SATB2+ intermediate layers neurons and SOX2+
neural precursors. Weak Reelin signal is detected and is supposedly due to the secretion of the
chemotactic protein by more superficial regions of the organoids.

C) and D). Percentage of cycling cells in pure lines and mosaic organoids detected by FACS
(methods) performed on two differentiation replicates at relevant timepoints, from day -2 (organoids
seeding) to day 25 (C) and 50 (D).

Fig. 3. SCanSNP and consensus call overview

A). Main steps of SCanSNP: 1) Best ID assignment, 2) Doublet’s classification, 3) low quality
droplets detection. Colours represent different individuals and droplets identity after best ID
assignment, grey-scale intensity in matrices represents the number of reads, cross-patterned cells
represent droplets not included in the computations, coloured curves represent fitted distributions.

B) Schematic representation of consensus call. The top section illustrates an example of consensus
score with weights for each algorithm. Weights are the partial score attributed from different
algorithms towards a specific genotype. The bottom section shows how consensus, genetic and non
genetic software outputs are combined to define singlets, doublets and low quality cells. DBL and
SoC are abbreviations for doublets and Souporcell respectively.

Fig. 4. SCanSNP and consensus call benchmark

A) Percentage of doublets detected from each algorithm across datasets. x-axis: datasets ordered by
the number of retrieved cells; y axis: doublet’s rate. Lines are coloured by algorithm. B) Benchmark
of demultiplexing performance against ground truth in in silico multiplexed dataset. X axis reports
different algorithms while y-axis reports the deconvolution accuracy as rate of barcodes with
predicted IDs that match ground truth vs total detected barcodes per dataset. The benchmark was
performed on 5 in -silico datasets generated from five independent single cell datasets already in
house (methods). The individual experiments were multiplexed in silico to have balanced (light green)
or imbalanced genotypes (orange). Plot is bounded between .86 and .98 to magnify the differences



among and within tools, and jittered on y axis for readability. C) Distribution of predicted singlets and
doublets from the different algorithms for each of the 7 datasets. Algorithms are shown in x axis, and
mean log counts on y axis. Shape of each symbol corresponds to a dataset. Markers are colored by
singlet or doublet predicted labels. SoC is abbreviation for Souporcell

Fig. 5. Sample multiplexing allow identification of stage specific neurodevelopmental cell
populations

A) Cells embeddings inforce-directed graph after pre-processing and filtering. Each dot is a cell,
coloured by annotated cell type. B) Dotplot of gene expression for some of the relevant markers used
in the annotation. Size of dots is proportional to the number of cells expressing a marker and colour
encodes the mean expression in group (lognorm counts). C) Differential abundance graph of CBOs
data across timepoints. The basis for the visualisation is the force directed graph. Dot represents
groups of similar cells, size encodes number of cells in each group, line size shows the number of
common cells among groups, colour code indicates enrichment for indicated categories (spatial FDR
< 0.1). D) Differential abundance graph of CBOs data across multiplexing modalities. The basis for
the visualisation is the force directed graph. Dot represents groups of similar cells, size encodes
number of cells in each group, line size shows the number of common cells among groups, colour
code indicates enrichment for indicated categories (spatial FDR < 0.1).

Fig. 6. Multiplexed Cortical Brain Organoids recapitulate key neurodevelopmental trajectories
A) Highlight of late and early Excitatory neurons 1 branches. Top panel shows embeddings in
force-directed graph, the middle one is a magnification of isolated branches on diffusion map, the
lower panel shows the smoothed expression of EOMES for each of the 2 trajectories along
pseudotime. B) Highlight of main developmental lineages on force-directed graph. Next to Each draw
graph density plots display the number of cells along pseudotime by i) differentiation timepoints, and
ii) multiplexing paradigm. Faded colour shows 1 standard deviation among dataset replicates C)
Density plot of cells along pseudotime for the isolated migrating neurons lineage. Cells are divided
and coloured by genotype. Faded colour shows 1 standard deviation across random subsampling
iterations D) Schematics of SNPs classified as eQTLs from jerber et al. 2021, and their allelic
configuration (Ref/Ref, Ref/Alt, Alt/Alt), for the pairs of genotypes exhibiting difference in
pseudotime. E) PCA (harmony integrated) of isolated migrating neurons branch The lower panel
displays migrating neurons-specific highly variable genes. Genes are ordered by their PC1 loading,
with TOP2A (Cycling progenitors marker), LHX1 (Migrating neurons marker), and SRCIN1 (only
eGene from D also present in highly variable genes) highlighted.

Fig. S1. Demultiplexing performance assessment

A) Dublet rate by dataset and algorithm. Lines are coloured by demultiplexing algorithm, datasets (x
axis) are ordered by number of retrieved cells. B) Average log counts distribution by demultiplexing
algorithm. Dots are coloured by predicted singlet or doublet identity by each algorithm; the shape of
the dots encodes each of the 7 datasets. C) Alluvial plot displaying Singlets, Doublets, Unassigned
and Low quality classes mappings across demultiplexing algorithms. Cells (rows) are coloured
according to SCanSNP assignment class. D) Pairwise agreement among software, divided by dataset.
The agreement is expressed as a Jaccard similarity of each called identity between 2 software. E)
Barplot representing number of cells by genotype according to the aggregated call prior to filtering.
WVS01, WVS02A, WVS03B, WVS04A, CTLO9A were not included in downstream analysis since
there were no replicates across multiplexing modalities.



Fig. S2. Single cell datasets characterization

A) Embedding of cells from all datasets of force-directed graph. From left to right cells are coloured
by genotype, multiplexing paradigm and stage. B) Force-directed graph coloured by expression of
relevant markers. Plotted markers are divided by the cell type they are most relevant for. C)
Force-directed graph coloured by transferred label from Poliudakis et al. dataset . End: endothelial;
ExDpl: soc excitatory deep-layerl; ExDp2: excitatory deep-layer2; vRG: ventral radial microglia;
oRG: outer radial glia; ExN: newborn excitatory; ExM: maturing excitatory; ExXM-U: e excitatory
upper-layer-enriched ; IP: intermediate progenitors; inCGE: interneurons caudal ganglionic eminence;
inMGE: interneurons medial ganglionic eminence; Mic: microglia; OPC: oligodendrocyte precursors;
Per: pericytes; PgG2M: G2M phase proliferating progenitors; PgGS: S phase proliferating
progenitors; D) Plot of fraction of cells for each cell type, divided by timepoint (upper panel), and by
multiplexing paradigm (lower panel). E) The scatterplot shows the number of loci with detected allele
specific expression on the x axis by the total number of reads expressed in millions on the y axis, each
dot represents a cell type. F) Spearman correlation on reads bringing alternative alleles / total reads
(bValues) among the observed cell types. Correlation is calculated on loci that displayed allelic
imbalance (binomial test fdr < 0.05) in at least one cell type and with at least 20 reads in each cell

type.

Fig. S3. Developmental trajectory analysis and power analysis

A) On the left: Partition-based graph abstraction (PAGA) plot. Each circle represents a Paga cluster,
circles are partitioned according to the fraction of cells per annotated celltype (shown as reference on
the right side ), weighted edges among Paga clusters encode their transcriptional similarity.

B) Plot of smoothed gene expression - obtained via tradeseq - along pseudotime (methods). For each
lineage the 3 most relevant decreasing and increasing genes (sorted by pVal and absolute logFC) are
shown. Above each expression panel, bars coloured by cell type indicate the occupancy of each cell
type along pseudotime.

C) SCPOWER: Estimation of single cell eQTL power per specific cell type, depending on the sample
size and numbers of cells per sample.

D) Distribution of genotypes along pseudotime for Interneurons, Outer radial glia / astrocytes and
Cajal R. lineages. Within each differentiation stage cells were balanced to the same amount across
genotypes for unbiased comparison. If too few/no cells were retrieved at any differentiation stage the
whole genotype was removed from the comparison. Faded colour shows 1 standard deviation across
random subsampling iterations

Fig. S4. Cell cycle analysis gating strategy

A) Replicate 1: gating strategy for longitudinal cell cycle analysis of ethanol fixed, Propidium lodide
stained dissociated organoids.

B) Replicate 2: gating strategy for longitudinal cell cycle analysis of freshly dissociated organoids
stained with Hoecst33342 (total DNA content) and ToPro dye (live/dead).

Table S1. Longitudinal cell cycle analysis of pure lines and mosaic organoids
Percentages of cells in each phase of the cell cycle (G0/G1, S, G2/M) at multiple differentiation
timepoints.

Table S2. Annotation markers an Cluster markers
Main markers used in the annotation phase. Top DEGs among annotated clusters (Wilcoxon rank sum
test - one vs all - benjamini-hochberg < 0.05 ). Additional HVGs to be considered in the PCA..



Table S3. Developmental trajectories transcriptional dynamics
Most relevant, dynamically-changing genes along pseudotime (methods). Each sheet reports a
developmental branch.

Table S4. Cells density per genotype along pseudotime
Cells density along pseudotime per genotype. Mean and standard deviations are reported for 50
downsampling iterations. Each sheet reports a developmental branch

Table S5. SCeQTLs in migrating neurons
List of SCeQTLs in Jerber et. al found in migrating neurons lineage between the two genotype groups
(CTLO1 & CTLO2A vs CTLO4E & CTLO8A)

Table S6. hiPSC lines employed

Nomenclature of the hiPSC lines employed and their corresponding nomenclature in the human
pluripotent stem cell registry (hPSCreg) *, origin and sex of the lines.

CTLO8A, CTLO1, CTLO2A, CTLO4E were included in the experimental design for the single cell
analysis of neurodevelopmental cell populations and trajectories. CTLO9A was originally included in
only one experiment to generate mosaic organoids but not retrieved at D100 profiling and was hence
not included in the single cell datasets analysed across replicates for all timepoints. WVSO1H,
WVS02A, WVS03B, WVS04A were not part of the study design aimed at evaluating upstream versus
downstream multiplexing for the detection of neurodevelopmental trajectories. They are listed here
only insofar as they were included, for maximising sequencing cost-effectiveness, in the preparation
of the downstream multiplexing libraries and hence harnessed as additional lines solely to benchmark
the demultiplexing pipelines.
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