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Simulating the cellular context in synthetic
datasets for cryo-electron tomography
Antonio Martinez-Sanchez, Lorenz Lamm, Marion Jasnin and Harold Phelippeau

Abstract— Cryo-electron tomography (cryo-ET) allows to
visualize the cellular context at macromolecular level. To
date, the impossibility of obtaining a reliable ground truth
is limiting the application of deep learning-based image
processing algorithms in this field. As a consequence,
there is a growing demand of realistic synthetic datasets
for training deep learning algorithms. In addition, besides
assisting the acquisition and interpretation of experimental
data, synthetic tomograms are used as reference models
for cellular organization analysis from cellular tomograms.
Current simulators in cryo-ET focus on reproducing distor-
tions from image acquisition and tomogram reconstruction,
however, they can not generate many of the low order
features present in cellular tomograms.

Here we propose several geometric and organization
models to simulate low order cellular structures imaged
by cryo-ET. Specifically, clusters of any known cytosolic or
membrane bound macromolecules, membranes with differ-
ent geometries as well as different filamentous structures
such as microtubules or actin-like networks. Moreover, we
use parametrizable stochastic models to generate a high
diversity of geometries and organizations to simulate repre-
sentative and generalized datasets, including very crowded
environments like those observed in native cells.

These models have been implemented in a multiplatform
open-source Python package, including scripts to generate
cryo-tomograms with adjustable sizes and resolutions. In
addition, these scripts provide also distortion-free density
maps besides the ground truth in different file formats for
efficient access and advanced visualization. We show that
such a realistic synthetic dataset can be readily used to
train generalizable deep learning algorithms.

Index Terms— Cryo-Electron Tomography, Deep Learn-
ing, Image processing, Scientific Computation, Synthetic
data generation

I. INTRODUCTION

Cryo-electron tomography (cryo-ET) has emerged as a
unique technique to generate tridimensional (3D) represen-
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tations of the cellular context at sub-nanometric resolution
[1]. However, volumetric images obtained by cryo-ET, called
tomograms, suffer from high levels of noise and anisotropic
distortions, mainly due to the missing wedge [2], which greatly
complicate their analysis.

Due to its success in image processing and computer vision
in recent years, deep learning (DL) algorithms, and espe-
cially convolutional neuronal networks (CNNs) [3], are being
adapted to process cryo-ET tomograms at different steps of the
workflow: reconstruction [4], denoising [5], [6], segmentation
[7], [8] or macromolecular localization [9]. CNNs enable
efficient analysis of local features in images because they
take advantage of the inherent regular grid structure of digital
images. When the training set is representative and large
enough, CNN-based methods outperform classical approaches
like template matching (TM) [10]. Nevertheless, the major
bottleneck to apply DL in cryo-ET is the lack of ground truth.
In most cases it is not possible to generate a reliable labeled
dataset for a proper supervised training.

Regardless of the method used for segmenting cellular com-
partments and localizing macromolecules in cryo-tomograms,
the next step is usually a quantitative analysis. In cryo-ET,
statistical approaches are used to carry out macromolecular
censuses [11], [12], analyze the distance between two proteins
[13], study protein-membrane distance distribution [14] or
prove the co-localization between two macromolecules [15].
The second-order statistics are more sophisticated [16], as they
allow to analyze macromolecular organization on different
scales, as well as merge and compare information coming from
different tomograms. Second-order statistics have recently
been used in cryo-ET to evaluate the clustering organization
of some protein complexes under different functional states
[17], show nanodomains defined by the co-localization of
proteins bounded to two aligned membranes [18], describe
the liquid-like organization of densely packed proteins by
adjusting a statistical mechanics model [19]. In addition, ro-
tations of macromolecules are typically analyzed to determine
the rigidity of a bounding, e.g. between two macromolecules
[20] or proteins and membranes [21]. Additionally, ad-hoc
analysis can be defined to study filament networks [22] and
membranes organization [23], [24]. In general, these statistical
analyses require a synthetic null-model working as reference
[16], which also allows to provide statistical confidence.

Cryo-ET data acquisition is costly as it requires high-end
equipment and a lot of human expertise. Unfortunately, deter-
mining the applicability of a dataset for studying a specific
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structure is only possible after tomogram reconstruction, the
last step in the workflow. Synthetic data can be used to
streamline imaging parameters as well as to ensure sample
appropriateness for solving a specific biological question.
Simulations have already been used for particle picking and
subtomogram averaging assessment [25], [26]. Recently, a tool
specifically designed for membrane-embedded proteins has
been proposed [27], however, it is limited to a single spherical
membrane with uniformly distributed isolated proteins. Simu-
lated annealing and molecular dynamics are used afterward
to improve the packing and avoid volume overlapping by
approximating molecules to spheres [26].

As shown above, simulating synthetic data containing
lower-order structures present in the cellular environment will
contribute greatly to the successful application of DL, to an-
alyze quantitatively the organization of structures in cryo-ET,
and assist the acquisition and interpretation of experimental
data. There are already computational solutions for generating
artificial data in transmission electron microscopy (TEM),
but they focus on modelling the physics of image formation
from atomic representations of macromolecules [28]–[30].
Methods for simulating cellular environments represent either
isolated structures or a mixture of purely random distribution
of macromolecules with some spherical vesicles [26], [31],
[32]. In [33] some membrane-bound proteins are modelled
but just by simple blobs in 2D. A concurrent pre-print [34]
generates a more diverse scenario than previous approaches,
which includes vesicles and membrane-proteins but not curved
filaments. More importantly, this pre-print shows that coarse
synthetic data already allows to train usable CNN models.

Here, we focus on producing richer contextual information,
and directly generate synthetic 3D density maps, also known
as phantoms, containing membranes with different combina-
tions of local curvatures, clusters of macromolecules (either
cytosolic or membrane-bound), as well as polymers such as
microtubules or actin-like networks. Together with these clean
3D images, motif lists in different formats are provided as
ground truth, allowing the generation of micrographs using
any external TEM simulator to simulate the distortions in-
troduced by the microscope and 3D reconstruction methods.
Moreover, the introduction of generative neural networks holds
the promise to produce datasets with more realistic noise
and distortion [35], they can reproduce noise and distortions
directly from the synthetic micrographs [36], but this is outside
the scope of this study. In addition, techniques such as data
augmentation [37], knowledge transfer [38] or contrastive
learning [32] may allow to train DL-based algorithms without
having a perfect representation of the experimental data. For
statistical organization analysis, null-models do not require
simulating data noise and distortions.

The simulation of high-order cellular structures such as
organelles (mitochondrion, centriole, ...) or membranes as-
sociations (synapses, Golgi, ...) is beyond the scope of this
paper. Here we focus on low-order structural features present
in almost all cellular contexts. Low-order features are in-
dependent of each other and can thus be generated from
parametric mathematical models to control their geometry and
organization. In addition, we use parametrizable stochastic

models to generate a high diversity of different combinations
of geometries and organization to simulate representative and
generalized datasets.

The rest of this paper is organized as follows: First, the
developed methods are described, we detail how to model
the geometry of each structure and their organization, and we
explain how these models were implemented. Then, we show
examples of synthetic data generated for replicating the cellu-
lar context in cryo-ET and use these data to train a generalized
deep learning algorithm for semantic segmentation. We also
evaluate certain properties of the proposed algorithms. Finally,
the proposed methods and the obtained results are discussed.

II. METHODS

In this section, we first explain the mathematical models
used to parameterize the cellular structures. Second, we de-
scribe the algorithms used to generate the synthetic data.

A. Structural Models
The cellular context is represented by a density map D(x) :

V ⊂ R3 7→ R being x ∈ R3 a point and V the volume
of interest (VOI), typically a cuboid whose dimensions are
defined by the output tomogram, but in practice it can have
any arbitrary shape.

1) Membranes: Membranes are modelled as parametric
surfaces with double Gaussian profile along their local normal.
The purpose of this profile is to simulate the lipid bilayer,
which, in the TEM, looks like two parallel and very close
electron-dense sheets. Although all biological membranes
share the same structure, small visual differences may appear
due to their distinct molecular composition or dissimilar imag-
ing conditions. To account for these variations, the membrane
profile is controlled by two parameters: membrane thickness
or distance between both layers, t, and the layer variance,
σl, which controls the thickness of the layers. Below, we
describe the parametric surfaces used to model the membrane
geometries and how the double-layered profile is incorporated
into them.

Sphere: the outer, Lo, and inner, Li, layers are defined by

LS =
{
x ∈

[
BS(c) ≥ (lS − 1) ∧BS(c) ≤ (lS + 1)

]}
. (1)

Where BS(c) = ∥x− c∥, c = (cx, cy, cz) is the sphere center,
lSo = r + t and lSi = r − t are the values of l for each layer,
and r as the sphere radius.

Ellipsoid: As above, the ellipsoidal layers are defined as

LE =
{
x ∈

[
BE(a) ≥ 1 ∧BE(a) ≤ 1

]}
. (2)

Where BE(a) = x−cx
ax

+
y−cy
ay

+ z−cz
az

, with a = (ax, ay, az)
the ellipsoid semi-axis lengths, for each layer the actual values
for these lengths are ao = a + t and ai = a− t.

Torus: Given a point x = (x, y, z) ∈ R3 the two toroid
layers are defined by

LT =
{
x ∈

[
BT (d, e) ≥ 1 ∧BT (d, e) ≤ 1

]}
. (3)

Where BT (d, e) =
(
d−

√
(x− cx)2 + (y − cy)2

)2

+ (z −
cz)

2 − e, with d the major torus radius and e the minor torus

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2024.3398401

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



MARTINEZ-SANCHEZ et al.: SIMULATING THE CELLULAR CONTEXT IN SYNTHETIC DATASETS FOR CRYO-ELECTRON TOMOGRAPHY 3

radius, which have different values for each layer: eo = e+ t
and ei = e− t.

The layers L described above have a non-smooth profile
(hard edge). A 3D Gaussian filter G is thus applied to obtain
a smoothed version LG ∈ C2 using the layer thickness σl

defined above:
LG = G(L, σl) (4)

In addition to representing membranes as scalar fields,
which is useful to generate the output density map, it is
convenient to also represent them using 2-manifolds (surfaces)
as

L =
{
x ∈ R3 | x is a critical point and λ(x) > 0

}
. (5)

Being λ the largest eigenvalue of the Hessian Matrix of the
scalar field LG

i + LG
o at point x. Since L is the surface in the

middle of both the inner and outer layers of the membrane,
it can be used as the reference to localize membrane-bound
macromolecules and to measure certain geometric properties
of the membrane, such as areas or local curvatures.

2) Filaments: Filaments are modelled as flexible helical
polymers. We consider a polymer as a chain of structural
units. A structural unit is defined as a density function in 3D
M(x) : R3 7→ R.

The normalized tangent vector, τ⃗i, at position xi in the
filament is used to determine the position of the next structural
unit in the chain as

xi+1 = dM · τ⃗i + xi. (6)

With dM the distance between two consecutive structural units.
Filament centerlines are modelled as helical curves aligned
along the Z-axis so the tangent at a point is computed as

τ⃗(s) = q [g,−f sin (sq), f cos (sq)] . (7)

Where s is the length of the curve from its origin to the
position of the point and q = (f2 + g2)−1. The parameters
of the helix curve are the radius f and the slope f/g. These
parameters can be assigned from a given persistence length p,
the physical parameter used to characterize polymer rigidity
[39], using the following expressions

κ = arccos e−dM/p

dM
, f = 1

κ , g = hz · f. (8)

Where κ is the curve curvature in the XY-plane and hz ∈ [0, 1]
determines the curve elevation along the Z-axis as a fraction
of the curvature, thus giving the curve also a torsion.

After being placed on the filament curve, each structural unit
can be additionally rotated around the tangent of the curve by
an angle of

α = α0 + i
2πhI

l

dM
. (9)

With α0 an arbitrary starting angle to allow randomization, i
the position of the structural unit on the filament, and hI

l the
length on the curve required to complete a turn. Consequently,
we have two helices, the curve, or centerline, where the
structural units are placed to give curvature and torsion,
and the helix formed by the angle between two consecutive
structural units, which model a possible helical inner structure
of the filament as for actin.

After defining the curve used to model the filament center-
line from a given persistence length, the different structural
units are inserted on the centerline. Below we present the
models for the structural units for the two types of filaments
used so far:

• Microtubules (MT): the structural unit is modelled as a
set of spheres with a radius of 40Å. Structural units are
composed of 13 smooth-edged 3D solid spheres placed
in a circle of radius 125Å on the XY-plane every 2π/13
radians, thus forming a complete circle as described in
[40]. The distance between two consecutive structural
units is set to 60Å, which is 1.2 times the unit length in
the Z-axis (sphere diameter). MTs do not have a helical
inner structure so the turn angle is α = 0.

• Actin-like: the structural unit is modelled as a pair of
spheres with a radius of 25Å aligned with the X-axis and
separated by 50Å. The distance between two consecutive
units is set to dM = 60Å, which is 1.2 times the
sphere diameter. The turn angle is α = 2π/12.5 because
hI
l = 750Å. This model approximates and averaged actin

filament as described in [41].
3) Macromolecules: Cellular macromolecules can float in

the cytoplasmic matrix or be bound to membranes. They can
also be associated with filaments, but this case is not yet
considered here. In addition, macromolecules can be randomly
distributed or aggregated, creating clusters. Here we use the
self-avoiding worm-like chain (SAWLC) model for polymers
[42] to create these clusters. The SAWLC model also allows
for random distribution of macromolecules if the polymer
size is equal to that of a single macromolecule. Unlike the
filamentous polymers described above, we assume here that
the polymers have no rigidity and thus the clusters have no
specific shape.

Cytosolic: in the SAWLC model each structural unit (or
macromolecule), Mi, is placed at a random point of the next
set

Ci = S(xi−1, di) ∩ V. (10)

Where di is a variable distance from the previous macro-
molecule Mi−i in the sequence, and S a sphere centered at
position, xi−1, and radius di.

Membrane-bound: in the SAWLC model each macro-
molecule, Mi, is placed at a random point of the next in the
next set

Mi = S(xi−1, di) ∩ V ∩ L. (11)

In comparison with cytosolic macromolecules, membrane-
bound proteins must also be embedded in a membrane set
(see Section II-A.1 Equation 5) L.

Heterogeneous clusters: a SAWLC cluster, either cytosolic
or membrane-bound, can contain J different types of macro-
molecules, M j , with j ∈ [1, J ] ⊂ N.

B. Stochastic Transformation Models
Each new inserted structural unit has a specific rotation, R,

with respect to the reference structural model and a specific
translation, T , to its final position in D. Depending on the
structure type, the rigid transformations R and T are generated
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according to different stochastic models (transformation gener-
ators GT ), thus generating a representative variety of structures
with different positions and rotations. Similarly, the geometric
parameters for membranes and filaments are also generated
using stochastic models (structural generators GS).

1) Membranes: Translations and rotations are generated in
the same way for all membrane varieties. Translations are
expressed with a coordinates vector generated according to
the complete spatial randomness (CSR) model [43], [44].
Rotations are expressed as unit quaternions and are generated
using the algorithm described in [45] to approximate a uniform
random distribution.

The membrane thickness t and layer thickness σl parameters
are obtained from a random uniform distribution in a specified
range. To ensure that all generated thicknesses are always
within a valid physical range [46], [47], the distribution limits
must lie within [2.5, 4.5] nm.

Sphere: the radius r is generated from a random uni-
form distribution within the following range: the minimum
corresponds approximately to the smallest vesicles in cells
(typically 75Å) and the maximum with the diameter of V .

Ellipsoid: the lengths of the semi-axis a = (ax, ay, az)
are taken from random uniform distributions within the same
range as the spheres. In addition, the eccentricities are defined
as

ϵxz =

√
1−

(
az

ax

)2

, ϵyz =

√
1−

(
az

ay

)2

, (12)

and must be smaller than a given value.
Toroid: the two radii are obtained using a uniform random

distributions similarly to sphere radius, then the greater value
is assigned to the major radius d and the lower to the minor
radius e.

2) Filaments: Unlike membranes, which are independent
structures, filaments consist of a sequence of several structural
units. Consequently, the rigid transformations for the structural
unit, Mi, depend on those applied to the previous unit, Mi−1.
Therefore a random generator for rigid transformations is
only required for the first structural unit, M0, using the same
distributions used for membranes.

For the filament geometry expressed as a helical curve,
the only free parameters are the persistence length p, which
controls the circular radius (and curvature) in the XY-plane,
and the elevation in the Z-axis as a fraction of the circular
radius hz , which controls the torsion. The values of p are
derived from a random exponential unit distribution added
to a minimum value of persistence length, this value sets a
maximum to the filaments’ flexibility. The values of hz are
obtained from a random uniform distribution between a given
value (≤ 1) and 1.

In the case of actin-like filaments, it is possible to create
a branched network, instead of generating isolated filaments.
In a branched network, each new filament may start from any
location in the VOI, like regular filaments thus starting a new
network, but with a certain probability, Pb ∈ [0, 1], it starts
from a random point of an already inserted filament, creating
a branch within an already existing network. These parameters
thus control the average number of networks to be generated

for a given maximum occupancy and the branching density
(number of branches per network length).

C. Algorithms
This section contains the description of the different algo-

rithms used to insert the structures into the VOI, V . First,
the order chosen to process each structural type seen above is
listed. Then, the algorithms for inserting each specific structure
are described.

1) Structure type selection: Algorithm 1 details the proce-
dure for processing the structural models. Only after all the
structures of one type have been inserted, then we move to the
next type. In each type, the order of each entity, e.g. membrane
geometry (spherical, ellipsoidal or toroidal), is an input that
can be controlled by the user. The criterion used to establish
the order specified in Algorithm 1 is to place potentially larger
and more rigid structures first. We assume that a cluster of
small macromolecules following the flexible SAWLC model
will be inserted more easily than a membrane or a filament in
a highly fragmented volume.

Algorithm 1 Order of insertion for the different types of
structures.
Require: VOI; lists of structural models (one per type)
Ensure: Density map; list of inserted structures; output VOI

(empty space after inserting of all structures)
Insert membranes using Algorithm 2
Insert filaments using Algorithm 3
Insert cytosolic macromolecules using Algorithm 3
Insert membrane-bound macromolecules using Algorithm 3

2) Structure insertion: The procedure for inserting mem-
branes is described in Algorithm 2, for filaments and macro-
molecules this procedure is identical and explained in Al-
gorithm 3. Both algorithms are based on the trial-and-error
principle: one tries to insert a new instance of a structure
according to some geometrical constraints defined by the struc-
tural generator GS into a space defined by the transformations
generator GT , if this is not possible due to overlap with already
inserted structures or because a fraction of the structure is
outside of the VOI, then the algorithms try again by generating
new geometric and transformation parameters. An additional
stopping criterion is added to ensure the end of the process
after a certain number of failed tries. Information about each
structure is entered in the form of an input list Q including: the
structural unit M , the target occupancy O and the statistical
models for generating the structural parameters GS and the
rigid transformations GT . Occupancy is the percentage of a
volume occupied by one or more structures.

In Algorithm 2, for each membrane model i in the list
Q, an instance M with parameters generated by GS is
inserted into the updated VOI, Vo, according to the rigid
body transformations R and T generated by the transformation
generator GT . The insertion loop for a membrane model i
ends when the target occupancy Oi is reached, and then the
algorithm proceeds to the next membrane model in the list i+1
until all models have been processed. The input V is updated

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2024.3398401

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



MARTINEZ-SANCHEZ et al.: SIMULATING THE CELLULAR CONTEXT IN SYNTHETIC DATASETS FOR CRYO-ELECTRON TOMOGRAPHY 5

for each inserted membrane to exclude the already occupied
volume. Therefore, Vo will define the final empty space and
corresponds to the VOI input for the next algorithm, which
will process the next structure type.

Algorithm 2 Insertion of membranes in the VOI.
Require: VOI, V; list of membrane models, QM , each entry
i is a tuple (Oi, G

S
i , G

T
i ); Nt, maximum number of trials

for the insertion of a membrane instance.
Ensure: D, density map; Qo, list of inserted structures; Vo,

output VOI.
Vo ← V
for i← 1 to length(QM ) do ▷ Loop for membrane models

nf ← 0
(Oi, G

S
i , G

T
i )← QM

i

O = 0
while (O < Oi) ∧ (nf < Nt) do ▷ Add membranes

with model GS
i until Oi is reached

Generate membrane M from GS
i

Get T and R from GT
i

M ′ ←M(R(x) + T ) ▷ Rigid transformation
if Vo ∩ M̌ ′ = M̌ ′ then ▷ M̌ is the volume

occupied by M . This ensures volume exclusion
Vo ← Vo ∪ M̌ ′

O ← O + 100 · (volume(M)/volume(Vo))
Add M ′ to D
Add M ′ to Qo

nf ← 0
else

nf ← nf + 1 ▷ Update the number of
consecutive fails

end if
end while

end for

Regardless of overlapping, membrane instances are indepen-
dent of each other. However, for filaments and macromolecules
the insertion of the next structural unit depends on the previous
one, except for the first one. Algorithm 3 is an extension of
Algorithm 2 to handle this type of situation. It thus includes
three nested loops. The first one iterates over all the introduced
structural models. The second one attempts to reach the
requested occupancy by inserting structural instances of a
filament or cluster. The third one grows the filament or cluster
by adding structural units.

Randomization in Algorithms 2 and 3 is introduced through
the stochastic structural and transformation models GS and
GT . The addition of the counter, nf , in Algorithm 2 and
3, forces a restart of the structure insertion loop after Nt

failures. As shown in Section III-C that helps to achieve
high concentration of structures and avoids excessively long
running times.

D. Implementation details
Although this paper is dedicated to the simulation of cellu-

lar structures rather than the reproduction of the 3D image
acquisition process in TEM, the implementation presented

Algorithm 3 Insertion of filaments or macromolecules in the
VOI.
Require: VOI, V; list of models, QS , each entry i is a tuple

(Oi, G
S
i , G

T
i ); Nt, maximum number of trials.

Ensure: D, density map; Qo, list of inserted structures; Vo,
output VOI.
Vo ← V
for i← 1 to length(QM ) do ▷ Loop for models

nf ← 0
(Oi, G

S
i , G

T
i )← QS

i

O = 0
while (O < Oi) ∧ (nf < Nt) do ▷ Loop for filaments

or clusters
Si ← ∅ ▷ Empty filament or cluster
Generate seed structure unit S0

i from GS
i (∅)

j = 0
Get T and R from GT

i

(Sj
i )

′
← S0

i (R(x) + T )

while Vo ∩ (Šj
i )

′
= (Šj

i )
′

do ▷ Loop for structural
units, condition ensures volume exclusion

Vo ← Vo ∪ (Šj
i )

′

O ← O + 100 ·
(
volume(Sj)/volume(Vo)

)
Add (Sj

i )
′

to Si

Add (Sj
i )

′
to D

j ← j + 1 ▷ move to next structural unit
Generate next structure unit Sj

i from GS
i (S

j−1
i )

Ŝj
i ← Sj

i (R(x) + T )
end while
if Si = ∅ then

nf ← nf + 1
else

Add Si to Qo

nf ← 0
end if

end while
end for

here is capable of reconstructing 3D tomograms containing
some of the basic distortions inherent to cryo-ET such as
noise, micrograph misalignment and missing wedge. The
micrographs are generated as 2D projections at specified tilt
angles using IMOD [48]. The noise is modeled by a Gaussian
distribution, which is added to the micrographs, in order to
approximate the tomogram contrast for a certain signal-to-
noise ratio (SNR). Since the ground truth is known, noise level
is adjusted to achieve certain SNR. Target SNRs are randomly
generated from a uniform distribution within a specified range.
The misalignment of the micrographs is modeled by applying
random offsets on the X and Y axes of the micrographs in a
sinusoidal model to penalize high tilt angles. Finally, the 3D
tomogram is reconstructed from the micrographs using IMOD.

There are more accurate tools than IMOD for reconstructing
cryo-tomograms from synthetic data [27], [29]. They have
more complex models for noise, which also take into account
solvent contribution. Since simulating the TEM process is still
an active research field, here we generate enough output infor-
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Fig. 1. Simulation of the cellular context. (a) A 2D slice in the XY-plane of the generated density map, the blue box shows an example of how
the growth of a microtubule was stopped to avoid overlap with another structure. (b) Polygonal ground truth data, membranes in yellow, actin-like
network in blue, microtubules in green, macromolecules (included membrane-bound) in different shades of red.

Fig. 2. Reconstruction of tomograms. (a) A 2D slice in the XY-plane of a reconstructed tomogram corresponding to the density shown in Fig. 1.
Scale bar 200 nm. (b) Zoom of the XY-plane showing membrane-bound proteins in the upper left, the label map is in the upper right, the dashed
lines show the intersection with the YZ-plane slices shown in the bottom row. In the reconstructed YZ-slice (bottom-left) the membrane disappears
at the apex and the macromolecules are elongated in the Z-axis relative to the ground truth (bottom-right) due to the missing wedge distortion
introduced during reconstruction. The bilayer profile of the membrane can be appreciated in the magnified images. Scale bars 20 nm.

mation (shape, position and rotation for each structural unit) to
feed a TEM simulator. For example, very recently a software
based on generative neuronal networks has been published to
reconstruct tomograms from the synthetic micrographs [36]
having distortions with realistic appearance.

III. RESULTS

Here we present the code implementation and synthetic data
generated to show the potential of the proposed approach.
All data were generated using a workstation running Ubuntu
22.04 LTS with an IntelR CoreTM i7-11700 2.50GHz processor,
128GB RAM and a GeForce RTXTM 3090 Ti GPU.

A. Code

The software implementation of the models and algo-
rithms described here is in a Python 3 package called
’PolNet’ open-source available in the public repository

https://github.com/anmartinezs/polnet.git. The scripts and set-
tings for generating the next results are included in this
repository.

B. Cellular cryo-ET

The goal of this experiment is to simulate an exemplary to-
mograms with all currently available types of structures: mem-
branes (spherical, ellipsoidal and toroidal), cytoskeleton (actin-
like networks and microtubules), cytosolic and membrane-
bound macromolecules. The size of the generated tomograms
is 1000x1000x250 voxels, with a voxel size of 10Å, which is
the typical configuration used today for tomogram visualiza-
tion, molecular localization, and segmentation in cryo-ET.

Fig. 1.a shows an example of a generated clean density, free
of noise and missing wedge. A ground truth semantic seg-
mentation is also generated, the equivalent information is also
stored in VTK format (see Fig. 1.b), which is more suitable for
3D visualization. In addition, the skeletons of the structures
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are also stored in VTK format, with filaments represented by
their centerlines and clusters of macromolecules represented
by a sequence of points connected by lines, with single points
consequently corresponding to single macromolecules.

Fig. 2.a shows a 3D reconstructed tomogram from 2D
projected micrographs (±60◦) that were randomly misaligned
using a sinusoidal random model to penalize high tilt micro-
graphs, with a mean value of 1 and a maximum misalignment
of 1.5 pixels. As a result, the reconstructed tomogram suffers
from distortions due to angular sampling and missing wedge.
Gaussian noise was added to the micrographs to simulate the
low contrast of the cryo-ET data by setting a target SNR
randomly in the range [1, 2]. Fig. 2.b shows the missing wedge
effect by comparing the reconstructed tomogram with the
ground truth. The missing wedge effect is particularly visible
in the YZ-slice where the membrane disappears and the macro-
molecules are elongated on the Z-axis. The reconstructed and
ground truth tomograms can be used as input information to
train/test machine learning algorithms for image segmentation.

This example shows how Algorithm 1 can merge the dif-
ferent types of structures to generate a complex environment,
which resembles the low order structures present in the cellular
context.

C. Simulation of the crowded environments

The cell cytoplasm and membranes usually have a high con-
centration of structures. Since structure insertion is based on
a trial-and-error algorithm, the execution time increases with
the concentration or occupancy. To evaluate structural insertion
algorithms, here we run experiments to evaluate the insertion
of cytosolic macromolecules, membrane-bound proteins and
filaments separately. The membrane insertion algorithm is not
evaluated because the total membrane occupancy generally
does not exceed 1%. In these experiments, all tomograms had
a size of 500x500x200 voxels, with a voxel size 10Å.

Regardless of the type of structure, the input occupancy is
a target value. A trial-and-error algorithm cannot guarantee
convergence within a certain time, which is especially diffi-
cult when the occupancy is very high. For macromolecules,
Algorithm 3 terminates after failing Nt consecutive times to
initialize a new structure. Increasing Nt therefore allows to
obtain tomograms with higher densities at the cost of higher
running times due to a greater number of structure insertion
failures (see Fig. 3.a-c). An Nt = 100 achieves a target
occupancy of 25% for cytosolic macromolecules (see Fig. 3.d-
f), which already corresponds to a very crowded tomogram.
Increasing Nt = 1000 allows to reach nearly 30% at the cost
of approximately doubling the time.

In contrast to cytosolic macromolecules, for which occu-
pancy is calculated as the volume fraction (in percent) of
the occupied VOI, the target occupancy for membrane-bound
macromolecules represents the maximum area fraction (in
percent) of the membrane surface occupied, as membrane-
bound macromolecules can only be inserted on the membrane
surface. Therefore, the input occupancy does not match the
measured volume occupancy (see Fig. 4.a), although their
dependence is approximately linear. Nanodomains, or clusters,

of membrane-bound proteins are evident at low occupancies
(Fig. 4.b). It is also possible to generate membranes with a
high density of membrane-associated proteins, as in synaptic
vesicles, viruses or endoplasmic reticulum (see Fig. 4.c).

As for cytosolic macromolecules, the occupancy is com-
puted from the filament volume. Occupancy values greater
than 10% are not necessary because, in general, they do not
correspond to realistic conditions in the cell. Fig. 5.b shows an
occupancy of 7% which already results in a very dense actin-
like network. An important parameter to control the shape of
the filament networks is the branching probability for the fila-
ment Pb (see Fig. 5.a). The contrast between Fig. 5.b and 5.c
shows that a high Pb value generates a densely concentrated
filament network in specific regions, while conversely, a low
Pb value generates a more evenly distributed network along
the VOI.

D. Training a deep learning model
To assess the usability of our synthetic data for training

deep learning algorithms, we use a specific implementation
of the U-Net architecture known as nnU-Net [49]. This
framework is particularly known for its good performance
without the need of manual hyper parameter tuning in the field
of semantic segmentation for biomedical images. We trained
nnU-Net to segment cryo-electron tomograms into the classes
of membranes, microtubules, actin-like filaments, ribosomes,
membrane-bound proteins and background (i.e., non of the
other classes). To this end, we utilized the dataset presented
in Subsec. III-B, and used ten reconstructed tomograms (see
an example in Fig. 2.a) for training. For the model design,
we chose nnU-Net 3D full resolution option, and the option
fold all for training. We use the v2 of nnUNet software.
As depicted in Fig. 6, the resulting prediction from our
network validates our approach. Despite being trained solely
on synthetic data, the network was capable of coarsely, but
effectively, segmenting the main features of several in situ
tomograms from different samples.

E. Evaluation of the deep learning model
We have also processed tomograms providing as reference

a segmentation to quantitatively validate the model generated
in Subsection III-D. Specifically, we have taken publicly
available tomogram EMD-11992, which is accompanied with
segmentation for microtubules, actin filaments and ribosomes
[51], and EMD-13671, with segmentation provided by authors
[52] for intermediate filaments, actin filaments and mem-
branes.

The model output is a semantic segmentation of the tomo-
grams, therefore we should use Dice. However, as described
in [53], the accurate segmentation evaluation for tubular
structures such as filaments requires novel similarity metrics
to preserve topological features meanwhile arbitrary features
like thickness are neglected. Authors in [53] proposes clDice
(centerline Dice) for tube-like structures in 2D images, here we
extend this metric to 3D for processing filament like structures.
Analogously, we define and compute sDice (surface Dice,
described also in [54]) for membranes and pDice (point Dice)
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Fig. 3. Simulation of cytosolic macromolecules. (a-c) Macromolecule insertion performance for different target occupancies where two Nt values
are evaluated. (a) Occupancy measured as the fraction of voxels belonging to macromolecules relative to the VOI volume. (b) Execution times. (c)
Number of unsuccessful attempts to start a new macromolecule cluster. (d) 2D slice of a tomogram with 1% occupancy. (e) 2D slice of a tomogram
with a 25% occupancy. (f) 3D view of the tomogram with a 25% occupancy.

Fig. 4. Simulation of membrane-bound proteins. (a) Measured output volume occupancy compared to the input target occupancy on membrane
surfaces. (b) 3D visualization of a tomogram with a 7% target occupancy for membrane-bound proteins. (c) Target occupancy of 39%. (b-c)
Membrane surfaces in transparent yellow, membrane proteins in different levels of red.

for macromolecules. Consequently, clDice variant is computed
for microtubules, actin or any other filamentous structure,
pDice for ribosomes because these are macromolecules, and
sDice for membranes. These metrics are calculated from the
previous computation of the topology precision (TP), the
fraction of the predicted segmentation skeleton within the
ground truth, and the topology sensitivity (TS), the fraction of
the ground truth skeleton within the predicted segmentation.
In this paper, all Dice values shown are computed from pDice,
clDice or sDice depending on the processed structures as
described above.

Table I contains the quantitative evaluation results obtained
for the structures with reference segmentation in EMD-13671.
For membranes, the segmentation agrees very well the refer-

ence. However, it is important to consider in this case the
reference segmentation has been provided by a DL model,
MemBrain-v2 [54], specifically designed for segmenting only
membranes and trained with a large and diverse experimental
dataset. More importantly, the high sensitivity value shows
that our model segments almost everything predicted by
MemBrain-v2, but as shown in Figure 7 our model seems to
partially recover regions missed by missing wedge. Regarding
the results for actin filaments, Dice scores are very low, but
specificity values are very high. Additionally, Figure 8 shows
that besides actin filaments, intermediate filaments are also
segmented by our model. To further investigate the capacity
of our model to become a general detector for multiple types of
filament networks, we processed dataset EMD-13671 with two
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Fig. 5. Simulation of filament-like structures. Target occupancy of 10% for microtubules and 90% for the actin-like filament network. (a) Number
of actin-like filament branches for different occupancies and Pb. (b) 3D visualization of a tomogram with 7% occupancy and Pb = 0.1. (c) 7%
occupancy and Pb = 0.9. In (b-c) only the centerlines are shown for actin-like filaments to allow a better visualization of the generated crowded
network. Actin-like filaments in blue, actin-like filament branches as red spheres and microtubules in green.

Fig. 6. Training a deep learning model. (a) A 2D slice in the XY-plane of an in situ tomogram taken from EMD-10439. (b) Segmentation performed
by nnU-Net trained solely from the synthetic data, membranes are in yellow, microtubules in green, actin-like filaments in transparent blue and
ribosomes in red. (c-d) Similar to (a-b) but the tomogram was provided by [50] authors. It is remarkable the performance of our model to recover
membrane areas faded out by missing wedge when compared with segmentation provided in the Fig. 1 of [50]. Scale bars 200 nm.

models: one trained with all features as described in Section
III-D (left values in Table I), and a second without the model

for actin-like filament networks but including a high resolution
model (PDB-5MVY) of an straight actin filament fragment

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2024.3398401

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



10 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2023

Fig. 7. Membrane segmentation for EMD-13638. (a) Reference segmentation by MemBrain-v2 [54]. (b) Segmentation of our model, arrows depict
top-view membranes partially recovered despite missing wedge.

TABLE I
SEGMENTATION EVALUATION FOR EMD-13671

Dice TP TS
Actin 0.48 / 0.43 0.34 / 0.36 0.75 / 0.54
Inter. Filament 0.05 / 0.02 0.02 / 0.01 0.68 / 0.25
Membrane 0.71 0.60 0.87

TABLE II
SEGMENTATION EVALUATION FOR EMD-11992

Dice TP TS
Microtubule 0.95 0.97 0.93
Actin 0.19 0.10 0.89
Ribosome 0.51 0.82 0.37

(right values in Table I). The second model does not improve
significantly the precision but presents a worse sensitivity.
Moreover, it mostly fails to recover intermediate filaments (see
Figure 8.a-c). The comparison of these models reinforces the
necessity of the filament network model presented here to train
a general model for processing filaments with different inner
structures.

Table II contains the quantitative evaluation results obtained
for the structures with reference segmentation in EMD-11992.
The ribosome Dice score is around 0.5 with precision above
0.8. This is very interesting because the reference segmenta-
tion for ribosomes contains potential false positives depicted
in Figure 8.a. Microtubules are almost perfectly segmented.
Regarding actin, the situation is similar to EMD-13671, the
sensitivity is high but the precision is low because the model
segments many other filament-like structures besides actin
filaments. Although EMD-11992 does not include a proper
reference segmentation for membranes and membrane-bound
proteins, Figure 8.d-f shows that our model performs well and
is able to recover some top-view membranes and membrane-
bound proteins, which are normally elusive because the lipid
bilayer vanished due to the missing wedge.

IV. DISCUSSION

Although higher order structures such as organelles (mi-
tochondrion, centriole, ...) or the nucleolus would require
specific and very sophisticated models, the simulation of
low-order structures proposed here can already be used to
study many interesting cellular processes such as membrane
morphology [23], [24], filament interaction under pathological
conditions [22], macromolecule clusters [17], macromolecules
in the liquid-like state [19] and membrane-bound protein
nanodomains [18], [55]. In addition, local feature simulation
has been shown a path to overcome the current limitations
of DL approaches for processing (segmentation, macromolec-
ular localization, ...) cryo-tomograms [32], [34]. However,
validating tools analyzing experimental cryo-ET data is par-
ticularly challenging. For example, only few public datasets
come with a segmentation, typically done by using several
computer methods assisted by manual restoration. In practice,
subtomogram averaging is used to verify the quality of particle
positions: A resulting high-resolution structure indicates that
many positions are correct. However, that does not guarantee
a low number in false positives or false negatives. Therefore,
quantitative results require a detailed interpretation.

Interestingly, a DL model trained with synthetic data was
able to predict some membrane regions faded out by missing
wedge. This result opens a new approach to solve the missing
wedge problem in cryo-ET. If we are able to reproduce
enough contextual information in the synthetic data, then
a DL model may recover the missing information. For the
case of membranes, we plan to improve membrane models
with the intention of generating more complex membrane
arrangements. Additionally, our approach also allows to detect
top-views for membrane bound proteins, something that is
elusive to other specific methods [55].

Another interesting finding is that our model is not specific
for a single type of filaments like actin. This model does
not replicate specific actin features, but instead, is able to
generalize the generic shape of a filament, in addition to its
local geometry changes (curvature) and connections with other
filaments. As a consequence, we have empirically observed
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Fig. 8. Detailed segmentation evaluation. (a-b) Filamentous networks in a 2D slice of EMD-13671. (a) Manually supervised reference segmentation
provided by [52], light blue are actin-like filaments and dark blue intermediate filaments. (b) Segmentation by our DL model trained with synthetic
data including actin-like networks. (c) The synthetic training set includes instances of a rigid model for actin (PDB-5MVY), but not the actin-like
networks presented here. Dark blue arrows point to intermediate filaments missed, especially in areas of high curvature. (d-f) EMD-11992. (d) Blue
arrows point to filamentous structures not analyzed in (e), yellow arrows show membrane top-views where the membrane bilayer vanishes (see (f)),
red arrows show potential false positives for ribosomes in (e), and orange arrows point to some membrane proteins including top-views (see (f)). (e)
Reference segmentation provided in EMD-11992, red ribosomes, light blue actin filaments and microtubules in green. (f) Segmentation obtained
with our model, membranes in yellow and membrane bound proteins in orange. Scale bars 200 nm.

that it can be used to train DL algorithms for parsing generic
filament-like structures. In addition to actin, it detects many
other filamentous structures such as intermediate filaments,
as well as new structures not yet processed. We plan to
further investigate how to include higher resolution features in
filament structural models to obtain more specific detectors.

Reproducing the high concentration of macromolecules in
the cellular cytoplasm or bounded to membranes is a major
challenge. So far, only trial-and-error algorithm has been used
for that purpose. Considering that we insert macromolecules
in clusters (nanodomains), we have extended such approach
by adding counters to re-start the insertion and avoid to get
stuck in tomogram regions without enough empty space. This
solution has allowed to generate synthetic tomograms with a
very high concentrations of macromolecules, similarly to the
cellular context. Our plan is to investigate the parallelization

of the algorithms to speed up simulations.

We demonstrate that our synthetic data approximate well
many of the features present in experimental in situ tomo-
grams. Specifically, the information contained in the synthetic
data is sufficient to train a generalized DL model to segment
main features present in real cellular tomograms. Results show
that segmenting observable features such as membranes and
microtubules, as well as, large macromolecules like ribosomes
or some membrane bound complexes does not require sub-
nanometric information. Consequently, no external software
was required to simulate an accurate model for CTF modu-
lation, although PolNet is prepared to interact with external
TEM simulators. Nevertheless, as future work, we plan to
include accurate in-house CTF modulation for tomograms
to reproduce high resolution (sub-nanometric) features. We
foresee such information will become critical to reproduce ac-
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curately sub-nanometric features, and these may be necessary
to recognize small structures by DL.
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