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Abstract 

Gene expression is a multi-step process that con v erts DNA-encoded inf ormation into proteins, in v olving RNA transcription, maturation, degra- 
dation, and translation. While transcriptional control is a major regulator of protein le v els, the role of post-transcriptional processes such as RNA 

processing and degradation is less well understood due to the challenge of measuring their contributions individually. To address this challenge, 
w e in v estigated the control of gene e xpression in Trypanosoma brucei , a unicellular parasite assumed to lack transcriptional control. Instead, 
mRNA le v els in T. brucei are controlled by post-transcriptional processes, which enabled us to disentangle the contribution of both processes to 
total mRNA le v els. In this study, w e de v eloped an efficient met abolic RNA labeling approach and combined ultra-short met abolic labeling with 
transient transcriptome sequencing (TT-seq) to confirm the long-standing assumption that RNA polymerase II transcription is unregulated in T. 
brucei . In addition, we established thiol (SH)-linked alkylation for metabolic sequencing of RNA (SLAM-seq) to globally quantify RNA processing 
rates and half-lives. Our data, combined with scRNA-seq data, indicate that RNA processing and stability independently affect total mRNA le v els 
and contribute to the variability seen between individual cells in African trypanosomes. 
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Introduction 

Gene expression is a multi-step process ( 1 ) that converts the
information encoded by a gene into messenger RNA (mRNA)
and subsequently into proteins. Eukaryotic genomes encode
thousands of proteins, each of which is required at different
levels in the cell. While some proteins, such as chromatin-
modifying enzymes, are present at low levels of ∼100 copies
per cell, others, such as ribosomal subunits, are present at
1000-fold higher levels ( 2 ). To achieve appropriate levels of
each protein, regulation can occur at each step of the gene ex-
pression cascade: (i) the rate of transcription determines how
often a gene is transcribed into pre-RNA ( 3 ,4 ). (ii) The effi-
ciency of co-transcriptional mRNA processing by splicing and
polyadenylation determines what fraction of pre-RNA is con-
verted into mature mRNA and what fraction is prematurely
degraded ( 5–7 ). (iii) The stability of mature mRNAs then de-
termines how rapidly mRNAs are degraded ( 8 ,9 ). Together,
transcription, RNA processing and RNA stability control the
pool of RNAs in a cell. In addition, control of gene expression
also occurs during protein synthesis: (iv) Translation efficiency
refers to the rate at which an mRNA is translated into pro-
tein and varies widely among mRNAs ( 10 ,11 ). (v) The rate of
protein processing, such as post-translational modifications or
proteolytic processes, can control the amount of functionally
active protein in a cell ( 12 ,13 ). ( 6 ) Finally, protein stability de-
termines the rate at which a given protein is degraded ( 14 ,15 ).

A common strategy for assessing gene expression is to
measure total mRNA levels, typically using high-throughput
RNA-sequencing (RNA-seq) ( 16 ). While RNA-seq is a pow-
erful approach to accurately determine total mRNA levels on
a genome-wide scale, it does not provide information on how
transcription, RNA processing, and stability contribute to the
measured RNA levels. However, in the physiological context
of a cell, the step at which the expression of a transcript is con-
trolled makes a difference. Control at the transcriptional level
might be energy efficient, but volatile and slow ( 17 ). In most
eukaryotes, transcription of individual genes is controlled by
a gene-specific promoter sequence that recruits transcription
factors and can be further fine-tuned by cis- regulatory en-
hancer sequences ( 18 ). In contrast, controlling gene expres-
sion at the level of RNA stability allows the cell to confer ro-
bustness to the expression of a gene. A long mRNA half-life
can buffer the intrinsic noise of other sub-steps in the gene
expression cascade, while a short mRNA half-life allows a
cell to quickly adapt to environmental changes. The stabil-
ity of mature mRNA is controlled in several ways, including
by RNA-binding proteins that bind sequence motifs in the un-
translated regions (UTRs) of mRNAs, thereby affecting RNA
transport, localization, and storage ( 19–21 ). In addition to se-
quence motifs in the UTRs, codon usage in the protein coding
sequence (CDS) of an mRNA influences its stability by con-
trolling translation efficiency and ribosome occupancy of a
transcript ( 22–24 ). 

While the control of gene expression at the level of tran-
scription and RNA stability has long been appreciated and
is well understood in different organisms, it is less well un-
derstood how gene-specific RNA processing rates control to-
tal mRNA levels. Only recently, differences in processing ef-
ficiency have been systematically measured in mammalian
cells and were suggested as an additional layer of control
( 7 ). However, it has remained unclear how the two post-
transcriptional processes, RNA processing and RNA stabil-
ity, ‘interact’ and whether they cooperate or antagonize to
regulate total mRNA levels for different transcripts. Assum- 
ing regulatory independence per transcript, there should be 
two sets of transcripts with intermediate total levels: one set 
of transcripts processed at high rates, but with low RNA 

stability, and another set of transcripts with low processing 
rates and high stability . Importantly , each set of transcripts 
should be able to play different functional roles. Genes with 

high RNA stability are robustly expressed in all cells, while 
genes with high RNA processing rates and low RNA stabil- 
ity could enable the cell to rapidly adapt to environmental 
changes. 

To investigate the combined impact of RNA processing 
rates and RNA stability on total mRNA levels, we used Try- 
panosoma brucei as a eukaryotic model in which transcrip- 
tional control is thought to be absent. T. brucei is a unicellular 
parasite responsible for sleeping sickness in humans and na- 
gana in cattle in sub-Saharan Africa. Unusually for a eukary- 
ote, its ∼9000 genes transcribed by RNA polymerase II are 
organized into ∼200 polycistronic transcription units (PTUs) 
( 25 ,26 ), and PTU transcription is thought to occur without 
gene-specific regulation in an unregulated, constitutive man- 
ner ( 4 ). Furthermore, since introns have only been reported for 
two genes ( 27 ), there are no complex cis- splicing patterns in 

T . brucei . Instead, pre-mRNA processing in T . brucei involves 
polyadenylation and a trans -splicing step that adds a common 

spliced leader sequence to each pre-mRNA ( 6 ,28 ). Taking ad- 
vantage of the apparent lack of transcriptional control and a 
less complex RNA processing mechanism, we used T. brucei 
to disentangle the effects of RNA processing rates and RNA 

stability on total mRNA levels. 
In this study, we have established an efficient approach for 

the metabolic labeling of newly synthesized RNA in blood- 
stream form trypanosomes. Efficient labeling is achieved by 
genetic manipulation of the endogenous pyrimidine synthesis 
pathway. By integrating ultra-short metabolic labeling with 

transient transcriptome sequencing (TT-seq) ( 29 ,30 ), we were 
able to corroborate the long-standing assumption that RNA 

polymerase II transcription is a rather unregulated process 
in T. brucei . Furthermore, we established thiol(SH)-linked 

alkylation for the metabolic sequencing of RNA (SLAM- 
seq) ( 31 ,32 ) to assess RNA processing rates and RNA half- 
lives on a genome-wide scale. Our results indicate that post- 
transcriptional processes operate in an independent manner 
and play an important role in cell-to-cell variability in African 

trypanosomes. 

Materials and methods 

Cell culture 

Trypanosoma brucei cells derived from the Lister 427 blood- 
stream form strain MiTat 1.2 (clone 221a) were cultured 

in HMI-11 medium (HMI-9 medium ( 33 ) without serum- 
plus) at 37 

◦C and 5% CO 2 . The following drug con- 
centrations were used when appropriate: 2 μg ml −1 G418 

(neomycin), 5 μg ml −1 hygromycin, 0.1 μg ml −1 puromycin,
5 μg ml −1 blasticidin, 2.5 μg ml −1 phleomycin and 1 μg ml −1 

doxycycline (DOX). 

Cell line generation 

Transfections were performed using a Nucleofector device 
(Amaxa) and following a protocol established for T. bru- 
cei ( 34 ). The UMPS KO cell line was generated from ‘single 
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arker’ (SM) cells, expressing T7 polymerase and a Tet re-
ressor ( 35 ), by replacing both UMPS alleles with resistance
arkers. Two previously published plasmids ( 34 ) were used

or UMPS replacement: pyrFEKO-HYG and pyrFEKO-PUR.
ubsequently, the resistance markers were removed by tran-
ient Cre recombinase expression ( 34 ). 

The FCU overexpression ( 36 ) construct was transfected
nto the ‘2T1 T7’ strain, which expresses a Tet repressor,
7 polymerase, and contains a tagged ribosomal spacer as
 landing pad for the transfection construct ( 37 ), and into
he UMPS KO cell line. For FCU expression, the plasmids
VLFCU (targeting the 2T1 T7 landing pad; no 3xHA-tag)
nd pVL_FCU_2 (targeting a random rDNA spacer; 3x HA-
ag) were generated, using the previously published plasmids
RPCas9 and pT7sgRNA as parental plasmids, respectively
 38 ). pRPCas9 was digested with HindIII and XhoI, and
T7sgRNA was digested with NheI and XbaI. The FCU cod-
ng sequence (CDS) was ordered as gBlock GB37_FCU_CDS
rom IDT and inserted into the digested pRPCas9 plasmid by
nfusion cloning. For insertion into the digested pT7sgRNA
lasmid, the FCU CDS was amplified from the pVLFCU
lasmid using the FCU_for and FUR1_CDS_rev primers.
n addition, a fragment carrying the 5´UTR was ampli-
ed from pVLFCU using the primers FUR1_UTR_for and
UR1_UTR_rev. Both PCR products, carrying the FCU CDS
nd the 5 

′ UTR, were joined to the digested pT7sgRNA back-
one by infusion cloning, as well as a short fragment to add
n N-terminal 3 × HA-tag. For details see Supplementary 
able S1 . 

estern blot 

xpression of the 3 × HA-tagged FCU protein was induced
y doxycyclin for 24 h and verified by western blot analysis
n three independent clones. T. brucei cells were harvested by
entrifugation for 5 min at 1000 × g and lysed in RIPA buffer
50 mM Tris–HCl pH 8.0, 150 mM NaCl, 1% NP-40, 0.25%
odium-deoxycholate, 0.1% SDS) supplemented 1:3 with 4 ×
aemmli buffer (40% glycerol 0.02% bromphenol blue, 8%
DS, 250 mM Tris pH 6.5). Extracts equivalent to 2 × 10 

6

ells were separated on 10% SDS-polyacrylamide gels and
ransferred to a nitrocellulose membrane (Amersham 10 600
01) by wet transfer. Total protein was visualized with Ami-
oblack 10b staining solution to ensure even loading and pro-
ein transfer. The blots were blocked in 3% BSA in PBS-T and
ashed three times in PBS-T (0.05% Tween). Next, the blots
ere cut in two, and the upper part (above 25 kDa according

o the pre-stained protein ladder, Thermo Fisher 26 619) was
robed with 1 / 1 000 α-HA primary antibody (Sigma H6908)
o detect 3xHA_FCU, and 1 / 10 000 α-rabbit secondary HRP
ntibody (Thermo Fisher, NA934V). As a loading control, the
ottom part (below 25 kDa according to the pre-stained pro-
ein ladder) was incubated with 1 / 1000 α-H2A.Z ( 39 ) and
 / 10 000 α-rabbit secondary HRP antibody (Thermo Fisher,
A934V). 

etermination of transcript length 

ranscript start and end coordinates were determined by an-
otating 5 

′ and 3 

′ UTR using the software UTRme (version 2)
 40 ) with previously published RNA-seq data from T. brucei
ister 427 bloodstream form cells ( 11 ) as input. 
Metabolic RNA labeling and ultra-fast RNA harvest 

Prior to metabolic labeling of newly synthesized RNA, blood-
stream form cells were grown to a density of 0.6–0.8 mil-
lion cells / ml in standard HMI-11 medium, in order to ensure
an exponential growth rate during the labeling period. For
metabolic labeling with 4-TU (4-thiouracil, Sigma Aldrich,
440 736), the cell suspension was transferred to 50 ml Fal-
cons for labeling in a water bath at 37 

◦C. If cells were la-
beled in a pyrimidine-reduced version of the HMI-11 medium
(without thymidine and with dialyzed FCS ( 41 )), a centrifuga-
tion step was added at this point for 5 minutes at 1000 × g.
After pelleting the cells, the standard medium was discarded
and replaced with 50 ml of pre-warmed pyrimidine-reduced
medium. The required amount of a 200 mM 4-TU stock solu-
tion in DMSO was added to the cell suspension in the Falcon
and mixed by inversion. The Falcon was placed in the water
bath and labeling was performed at 37 

◦C for the intended la-
beling time. At the end of the labeling period, the cell suspen-
sion was immediately passed through a 0.8 μm hydrophilic
membrane (MF-Millipore, AAWP04700) mounted on a Pyrex
suction filter (PORO3 5810 / 3 40 / 38, 5809 / 2, 40 / 38 5810 / 4)
connected to vacuum. The membrane was then quickly trans-
ferred to a fresh 50 ml Falcon and placed in liquid nitrogen,
to ensure ultra-short harvest times. Membranes were trans-
ferred to –80 

◦C until further processing. For RNA harvest,
the membranes were removed from -80 

◦C and thawed for 1
minute at RT. Two ml Trizol reagent (Thermo Fisher 15596-
026) was added per membrane and cell lysis was completed
by incubation on a tube roller for 10 min. Cell lysates in Tri-
zol were transferred to 2 ml Eppendorf tubes and a standard
isopropanol extraction of RNA was performed. 

Dot blot 

For dot blot analysis, 3 μg of total mRNA was biotinylated
per sample and three rounds of chloroform washes were per-
formed to remove free biotin, as previously described ( 42 ).
1200 and 300 ng of RNA were spotted onto a Hybond N +
Amersham membrane (RPN203B) and UV cross-linked at 120
mJ. The membrane was incubated in blocking buffer (phos-
phate buffered saline (1 × PBS), pH 7.5, 10% SDS, 1 mM
EDTA) for 20 min. After blocking, a 1:1000 dilution of 1
mg / ml streptavidin-HRP antibody (Abcam 7403) was added
to the blocking buffer for 15 min. Six washes were then per-
formed: 2 × with 10% SDS in PBS, 2 × with 1% SDS in PBS
and 2 × with 0.1% SDS in PBS. 

SLAM-seq: chemical conversion and library 

preparation 

SLAM-seq analysis was performed to quantify the efficiency
of the different labeling strategies tested in Figure 1 . Forty mil-
lion cells were used per sample and labeling was performed for
three hours to reach saturation, in either standard HMI-11
medium or a pyrimidine-reduced version ( 41 ) (no thymidine
added and dialyzed FCS). Further, SLAM-seq analysis was per-
formed to determine RNA half-lives and RNA synthesis rates
in bloodstream parasites, using the following conditions: 40
million cells were used per replicate and three biological repli-
cates were prepared for each time point. Labeling with 4-TU
was performed for 0, 7.5, 15 and 60 min in standard HMI-11
medium, in order to capture the full range of RNA half-lives
estimated from a previous experiment ( 9 ). Metabolic labeling
and RNA harvest were performed as described above. 
r 2024
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Figure 1. Genetic manipulation of the pyrimidine metabolism in T. brucei enables efficient metabolic RNA labeling. ( A ) Schematic illustration of the two 
main pathw a y s of p yrimidine synthesis in T. brucei : salv age of e xternal precursors and de no v o biosynthesis. ( B ) Dot blot analy sis to detect 4-TU 

incorporation into T. brucei RNA was performed in wild-type cells (WT), after enhancement of the salvage pathway by FCU overexpression (OE) and after 
blocking de no v o biosynthesis by UMPS knockout (KO). Incubation time 3 h. 1200 and 300 ng of total RNA were blotted for analysis. ( C ) SLAM-seq 
analy sis w as perf ormed to quantify 4-TU incorporation efficiency b y measuring T-to-C con v ersion frequencies in WT, FCU OE and UMPS KO cells. 
Incubation time 3 h. ( D ) SLAM-seq analysis to evaluate the effect of the combination of FCU OE and UMPS KO on pyrimidine incorporation. Panels (C) 
and (D) show independent experiments. ( E ) Growth curves of WT, UMPS KO, UMPS KO cells expressing FCU. Growth curves were performed in 
triplicate and error bars indicate the standard deviation at each time point. FCU expression was induced by doxycycline (Dox) for 24 h prior to growth rate 
analyses. 
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Chemical conversion was performed according to Herzog
et al . ( 32 ), with minor modifications: the conversion reaction
was performed for 30 min instead of 15 min, in order to ob-
tain uniform conversion rates. rRNA depletion was performed
according to an RNA-seq protocol previously established for
T. brucei by the Siegel group ( 43 ). Library preparation was
performed using the NEBNext® Ultra II Directional RNA Li-
brary Prep Kit for Illumina (NEB #E7760S / L). The workflow
was adapted to generate longer library fragments by reducing 
the fragmentation time (see manual, Appendix A, section 6.1) 
to increase the accuracy of SNP detection. Thirty million reads 
were sequenced per replicate at 150 bp paired end. 

Data analysis to determine RNA half-lives and synthesis 
rates was performed using the GRAND-SLAM ( 44 ) and 

grandR ( 45 ). In brief: reads were mapped to the T. brucei Lis- 
ter 427 2018 genome assembly (release 36, downloaded from 
er 2024
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ritrypDB) using STAR ( 46 ) (version 2.5.3a) using parameters
–outFilterMismatchNmax 40–outFilterScoreMinOverLread
.2–outFilterMatchNminOverLread 0.2–alignEndsType
xtend5pOfReads12–outSAMattributes nM MD NH’. Bam
les were merged and converted into a CIT file using the
EDI toolkit ( 47 ) and then processed using GRAND-SLAM
.0.7 ( 44 ) to generate read counts and NTR values on the
ene level. The grandR ( 45 ) tool was used to estimate RNA
alf-lives (minutes) and synthesis rates (TPM / hour) using
he non-linear least squares approach. Assuming unregu-
ated transcription in trypanosomes, the synthesis rate was
sed to describe mRNA processing rates. The synthesis rate
as initially calculated in TPM / hour, and converted into
olecules / hour assuming 33 300 transcripts per cell. This
umber was calculated by using the estimate from Fadda
t al.( 9 ) of 20 000 mRNA molecules per cell and correcting
or the fact that in the SLAM-seq experiment only 60%
f transcripts were mRNA. Further, the GO-term analysis
or the four gene groups resulting from RNA half-life and
rocessing regulation was performed with TritrypDB ( 48 )
nd visualization was performed using the GO-figure tool
 49 ). 

T-seq: biotinylation, enrichment and library 

reparation 

or TT-seq analysis, 700 million cells per replicate were used
nd the experiment was performed in duplicate. Ultra-short
abeling with 4-TU was performed for 0, 30, 60 and 120 s,
n order to capture newly synthesized RNA ( 50 ). Labeling
as performed in a pyrimidine-reduced version of the HMI-
1 medium as described above. Subsequent biotinylation and
nrichment using streptavidin beads were performed as pre-
iously described ( 51 ). rRNA depletion was performed on in-
ut samples, but not on IP samples due to the low amount
f material in nascent RNA samples. Library preparation was
erformed using the NEBNext® Ultra II Directional RNA Li-
rary Prep Kit for Illumina (NEB #E7760S / L) as described for
tandard RNA-seq ( 43 ). Thirty million reads were sequenced
er replicate at 60 bp paired end. 
After quality control with FastQC, reads were mapped to

he T. brucei Lister 427 2018 genome assembly (release 36,
ownloaded from TritrypDB) using BWA-mem ( 52 ). The re-
ulting sam files were converted to bam format and sorted and
ndexed using SAMtools 1.8 ( 53 ). Additionally, unmapped,
CR or optical duplicates, non-primary aligned and supple-
entary aligned reads were filtered out from the alignment
les (SAM flag: 3332). For visualization, bigwig, bedgraph and
etaplot files were generated from the sorted bam files using
eepTools 3.5.0 ( 54 ). Reads mapped to the genome were plot-
ed using PyGenome-track ( 55 ). Read count tables were gen-
rated using Subread 1.6.2 ( 56 ) and PCA analysis was per-
ormed using the Bioconductor package DESeq2 ( 57 ). 

NA-seq 

NA-seq analysis was performed as previously described for
. brucei , using specific biotinylated oligos for rRNA removal
 43 ). Ten million reads were sequenced per replicate at 60
p paired end. After quality control with FastQC, reads were
apped to the T. brucei Lister 427 2018 genome assembly

release 36, downloaded from TritrypDB) using BWA-mem
 52 ). The resulting sam files were converted to bam format and
orted and indexed using SAMtools 1.8 ( 53 ). In addition, un-
mapped, PCR or optical duplicate, non-primary aligned and
supplementary aligned reads were filtered out of the alignment
files (SAM flag: 3332). Read count tables were generated using
Subread 1.6.2 ( 56 ). PCA and differential expression analysis
were performed using the Bioconductor package DESeq2 ( 57 ).

Modeling analysis 

A computational model of gene expression in the bloodstream
form of T. brucei was adapted from Antwi et al. ( 58 ). The
model was built in Python (version 3.10.9) using the kinetic
modelling package PySCeS ( 59 ) (version 1.1.1). The model
was reduced to three reactions: an mRNA synthesis reaction
( v synth ), an mRNA degradation reaction ( v degr ) and growth-
rate dilution ( v dil ). v synth replaces the transcription and pro-
cessing reactions in the previous model and has a constant
value, while mRNA concentration-dependent mass-action ki-
netics is used for the other two reactions: 

v degr = k degr ∗ [ mRNA ] 

v dil = μ ∗ [ mRNA ] 

All rates pertain only to mRNA levels and have units of
mRNA molecules cell −1 min 

−1 , just as mRNA concentra-
tion has units of molecules / cell. The specific growth rate ( μ)
was set to 0.00173 min 

−1 based on the doubling time of
6.8 h found for the UMPS-K O , FCU OE, +DOX in this pa-
per. The default value for v synth was set to 0.1667 mRNA
molecules min 

−1 , which is the simulated mRNA production
flux in Antwi et al.’s ( 58 ) bloodstream form A model. The de-
fault k degr was 0.015 min 

−1 as calculated for PGKC mRNA
by Haanstra et al. ( 60 ). For the transcript-specific models, the
values for v synth and k degr were replaced by the relevant newly
measured values. For the conversion from molecules / cell to
TPM, we assumed 33 300 transcripts per cell. This number
was calculated by using the estimate from Fadda et al. ( 9 ) of 20
000 mRNA molecules per cell and correcting for the fact that
in the SLAM-seq experiment only 60% of transcripts were
mRNA. 

Single-cell RNA-seq analysis 

The single cell RNA-seq data from bloodstream form try-
panosomes was generated previously ( 61 ). For this study,
reads were mapped to an allele-specific, phased genome ver-
sion ( 25 ) using zUMIs ( 62 ) (version 2.9.7) with STAR ( 46 )
(version 2.7.10). Cells were filtered out when less than 150
genes were detected, and genes were filtered out when detected
in less than 10 cells, resulting in 369 cells and 7163 detected
genes for the scRNA-seq dataset. The resulting count matrix
was normalized by the total counts over all genes using Scanpy
( 62 ) normalize_total function. Of the 7163 genes detected by
scRNA-seq, the previous SLAM-seq experiment had revealed
RNA half-life and processing rate for 6176 genes, which were
used for further analysis. To estimate the variation of gene ex-
pression in individual cells, the mapped single cell RNA-seq
data was normalized to RPKM (reads per kilobase of tran-
script per million reads mapped) using Scanpy ( 63 ). Genes
were divided into four groups according to their RNA sta-
bility and RNA processing rates, as described above. Then,
the cell-to-cell expression variability was determined for each
gene by calculating the coefficient of variation across cells.
In addition, variability of each cell’s transcriptome was cal-
culated using the coefficient of variation of each cell across
 r 2024
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either all genes or gene subsets from the four groups previ-
ously mentioned. In both cases, the coefficient of variation
was calculated using scipy.stats.variation and is defined as the
standard deviation divided by the mean. Further, for all genes,
both, bi-allelic and allele-specific counts were generated, and a
generalized telegraph model (GTM) was run, first described by
Luo et al. ( 64 ). Using a python re-implementation of the GTM
( https:// doi.org/ 10.5281/ zenodo.14104488 ), we obtained bi-
allelic and mono-allelic transcript expression parameters. 

Results 

Genetic manipulation of pyrimidine metabolism 

enables efficient RNA labeling 

To gain insight into the gene expression process beyond that
provided by conventional RNA-seq assays, we first established
an approach for efficient metabolic labeling of newly synthe-
sized RNA in bloodstream form T. brucei , responsible for in-
fections in mammals . A sufficiently high incorporation rate
of nucleotide analogues during metabolic RNA labeling is re-
quired to reliably differentiate between new and old RNA and
to allow a detailed analysis of the different gene expression
steps. While the less versatile uridine analog 5-EU has been
incorporated at detectable rates in insect-stage trypanosomes
( 65 ), incorporation of uridine analogues to detectable levels
has not been possible in bloodstream form parasites ( 66 ). A
possible reason may be the less efficient uridine uptake in this
life cycle stage ( 41 ). We therefore chose the uracil analog 4-
TU for our experiments, rather than the uridine-based agents
4-SU or 5-EU, because uracil has been reported to be more ef-
ficiently taken up from the medium by bloodstream form cells
than uridine ( 41 ). 

Furthermore, we used a two-pronged genetic approach
to increase the incorporation of pyrimidine analogues into
nascent RNA (Figure 1 A): on the one hand, to enhance the
intracellular salvage pathway of pyrimidine precursors from
the medium, we exogenously expressed the yeast cytosine
deaminase-uracil phosphoribosyl transferase fusion enzyme
FCU ( Supplementary Figure S1 A). This enzyme converts 4-
thiouracil to 4-thioUMP and has been used, for example, in
Plasmodium parasites to increase the efficiency of metabolic
RNA labeling ( 36 ). On the other hand, to block de novo
biosynthesis of pyrimidines, we deleted both alleles of the
endogenous uridine monophosphate synthase (UMPS) gene
( Supplementary Figure S1 B). UMPS encodes an enzyme that is
critical for the de novo biosynthesis pathway, and the knock-
out results in a complete block of de novo biosynthesis. How-
ever, it does not interfere with the salvage pathway ( 41 ,67 ). 

Metabolic labeling was performed with 100 μM and 800
μM 4-TU in (a) wild-type bloodstream form cells, (b) cells
overexpressing the FCU enzyme (enhanced pyrimidine sal-
vage) and (c) UMPS knockout cells (blocked de novo pyrimi-
dine biosynthesis). Labeling was performed for three hours to
reach saturation, both in normal HMI-11 medium contain-
ing pyrimidine precursors and a pyrimidine-reduced version
of HMI-11 ( 41 ). Subsequently, total cellular RNA was ex-
tracted and treated with either (i) HPDP-biotin, which reacts
with the thiol moiety of RNA-incorporated 4-TU, resulting in
biotinylation that can be detected by dot blot analysis (Figure
1 B), or (ii) with iodoacetamide (IAA), which chemically mod-
ifies RNA-incorporated 4-TU, resulting in T-to-C mutations
that can be detected and quantified by Illumina sequencing
(Figure 1 C). Based on dot blot signal intensity, both strate- 
gies, enhancing pyrimidine salvage or blocking pyrimidine de 
novo biosynthesis, increased nascent RNA labeling compared 

to wild-type cells. Quantification by SLAM-seq showed that 
blocking pyrimidine de novo biosynthesis was more efficient 
than enhancing pyrimidine salvage (Figure 1 C). As expected,
labeling was more efficient in pyrimidine-reduced medium 

than in standard medium, and for most conditions, incorpo- 
ration rates were higher when labeling with 800 μM 4-TU 

compared to 100 μM 4-TU, except for one condition. When 

UMPS knockout cells were used for labeling in pyrimidine- 
reduced conditions, labeling with 800 μM 4-TU was less ef- 
ficient than expected, most likely due to high and therefore 
toxic incorporation rates of 4-TU under these conditions. 

Finally, we combined both strategies, enhancing pyrimidine 
salvage and blocking de novo biosynthesis, in one cell line: a 
UMPS knockout line capable of FCU expression, which fur- 
ther enhanced 4-TU incorporation compared to either strat- 
egy alone (Figure 1 D). As previously reported, we found that 
UMPS knockout cells exhibited a growth defect compared to 

the parental cell line (Figure 1 E). However, the growth defect 
could be partially rescued by FCU expression, possibly be- 
cause FCU increases the supply of pyrimidines via the salvage 
pathway. RNA-seq analysis of wild-type and UMPS knock- 
out cells revealed a relatively minor effect on transcript lev- 
els following UMPS deletion ( Supplementary Figure S1 C) and 

FCU expression ( Supplementary Figure S1 D). Furthermore,
RNA polymerase II transcripts remained largely unchanged 

upon pyrimidine starvation in UMPS knockout cells, allow- 
ing analysis of their expression under pyrimidine-reduced con- 
ditions ( Supplementary Figure S1 E). In total, only 85 out of 
8852 genes located on chromosome cores showed deregula- 
tion either in UMPS knockout cells ( ± FCU expression) or un- 
der pyrimidine-reduced conditions. Interestingly, pyrimidine- 
reduced conditions led to a downregulation of RNA poly- 
merase I transcribed antigen-coding genes in UMPS knockout 
cells, which are located in the subtelomeric chromosome ends 
and were therefore not analyzed in this study. Based on the 
SLAM-seq and RNA-seq data, we decided to perform longer 
metabolic labeling experiments (7.5 to 60 min) in normal 
HMI-11 medium and to use the pyrimidine-reduced HMI-11 

medium only for very short labeling times ( � 2 min) to mini- 
mize secondary effects of pyrimidine starvation. 

In conclusion, by deleting UMPS and overexpressing FCU,
we have established a bloodstream form cell line that allows 
efficient metabolic RNA labeling. The weak effect of these ge- 
netic alterations on the transcriptome and cell growth makes 
the cell line well suited for precise gene expression studies in 

T. brucei . 

TT-seq suggests unregulated RNA polymerase II 
transcription in T. brucei 

To experimentally test the long-standing assumption that 
RNA polymerase II-mediated transcription is indeed not reg- 
ulated in T. brucei , we assessed the levels of newly transcribed 

RNA. At very early time points after transcription, before 
being affected by differences in processing rates, RNA tran- 
script levels reflect the rate of transcription. Thus, knowledge 
of newly transcribed RNA levels should shed light on whether 
or not different PTUs are transcribed at similar rates in T. bru- 
cei . To measure newly transcribed RNA, we established tran- 
sient transcriptome sequencing (TT-seq) in UMPS KO cells ex- 
r 2024
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ressing FCU and determined the population of newly tran-
cribed RNA after 0, 30, 60 and 120 s of labeling. TT-seq
nvolves the physical separation of newly synthesized RNA
rom pre-existing, ‘old’ RNA and is well suited to enrich even
mall amounts of newly synthesized RNA after short label-
ng times (Figure 2 A) ( 29 ,30 ). To achieve sufficient labeling
fficiency after ultra-short periods, labeling was performed in
yrimidine-reduced HMI-11 medium using high 4-TU con-
entrations (1600 μM). To ensure rapid cell harvest and avoid
rolonged labeling times, cell harvest was performed using
 vacuum-based filter system. With this setup, medium was
emoved and the cells were placed in liquid nitrogen within
pproximately 5 s. Total mRNA was then isolated from the
ells, the incorporated 4-TU was biotinylated, and the newly
ynthesized and labeled RNA was enriched using streptavidin
eads. Both, the enriched labeled RNA and the input RNA
ere sequenced for each replicate, with the input RNA repre-

enting total mRNA levels. 
Quality assessment of our TT-seq data by principal compo-

ent analysis (PCA) revealed marked differences between en-
iched and input RNA, indicating efficient labeling and spe-
ific precipitation of newly synthesized RNA (Figure 2 B). A
igh degree of similarity between the enriched and input sam-
les would have indicated inefficient labeling and unspecific
recipitation of the total transcriptome. Consistent with this,
he precipitation of unlabeled RNA (0 sec labeling) clustered
ith the input samples. To support the PCA analysis, we
apped and compared enriched and input transcript levels

cross the genome (Figure 2 C). As expected and previously
escribed ( 27 ) for total mRNA levels, we found input tran-
cript levels to vary widely among different genes. In compar-
son to total mRNA, levels of newly synthesized transcripts
ere remarkably even among genes (Figure 2 C). Taken to-

ether, these results indicate that our TT-seq assay had suc-
essfully separated newly transcribed RNA from pre-existing
NA, and that our data is well suited to assess nascent RNA

ranscript levels. 
Importantly, beyond serving as a quality control, the find-

ng that newly synthesized transcripts had nearly identical lev-
ls across different genes and different PTUs (Figure 2 C) pro-
ides direct evidence to support the long-standing hypothesis
f unregulated RNA polymerase II transcription in T. brucei .
urther, to determine whether transcription elongation was
onstant along PTUs, we performed metaplot analyses of the
ascent transcriptome along all PTUs (Figure 2 D). The meta-
lot analysis indicates that transcription elongation is rela-
ively even along PTUs with no drop in transcript levels to-
ards the end of a unit, as it has been described for RNA poly-
erase I transcribed subtelomeric PTUs in T. brucei ( 68 ,69 ).
aken together, our TT-seq data support the assumption that
NA polymerase II transcription is unregulated in T. brucei , in
ontrast to most other eukaryotes. Analyzing the nascent tran-
criptome indicated that RNA polymerase II transcribed PTUs
xhibit similar initiation and elongation, resulting in even lev-
ls of nascent transcript for each gene. 

NA stability ranges from several minutes to hours 

n bloodstream form T. brucei 

fter establishing an efficient metabolic RNA labeling strategy
nd confirming unregulated RNA polymerase II transcription
n T. brucei by TT-seq, we set out to measure RNA process-
ng rates and RNA half-lives using the SLAM-seq approach
( 31 ,32 ). SLAM-seq relies on the chemical conversion of 4-TU
labeled RNA rather than its physical separation used in TT-
seq. This allows for the detection of both newly synthesized
and pre-existing RNA transcripts within one sample (Figure
3 A). Metabolic labeling was performed for 0, 7.5, 15 and 60
min in standard HMI-11 medium. The time range was cho-
sen because previous RNA half-life measurements suggested a
median RNA half-life of 12 minutes in bloodstream form par-
asites ( 9 ). To detect a sufficiently high number of conversion
events per sequencing read, we used a high concentration of
4-TU (1600 μM for 0, 7.5 and 15 min and 800 μM for 60 min
labeling) and sequenced the libraries 150 bp from both ends.
As expected, unlabeled RNA decreased over time, while la-
beled RNA increased, reflecting that new RNA was produced
and replaced pre-existing transcripts that were degraded over
time (Figure 3 B). To obtain formal parameters of RNA ki-
netics, we used the grandR package ( 45 ), which implements
models and methods tailored to SLAM-seq data. GrandR was
used here to estimate both synthesis rates and RNA half-lives
for most RNA polymerase II transcribed genes by fitting a
standard kinetic model of RNA expression to the decrease in
unlabeled and increase in labeled RNA over the progressive
labeling time course. The standard model assumes that RNA
is synthesized at a constant rate (molecules per minute) and
degraded at a constant rate per molecule, given as percentage
of present molecules degraded per minute which is inversely
proportional to the RNA half-life. 

We were able to reliably infer RNA half-lives for most
RNA polymerase II transcribed genes in T. brucei bloodstream
forms (see Supplementary Table S2 ). In good agreement with
the previously published dataset ( 9 ), our RNA half-live mea-
surements ranged from a few minutes to several hours, with
most half-lives ranging from 3 to 20 min (Figure 3 C). The me-
dian half-life determined by the SLAM-seq experiment was
11 minutes, which is similar to the median of 12 minutes re-
ported by Fadda et al . in 2014 (Figure 3 D). Fadda et al. had
used a transcriptional inhibitor followed by standard RNA-
seq analyses to infer RNA half-lives. However, while the two
datasets compared well globally ( R = 0.68), the measured
rates differed substantially for some genes with very short or
very long RNA half-lives (Figure 3 E). Many genes with very
short half-lives in the previous experiment showed interme-
diate half-lives in our measurement, suggesting that the ex-
tremely short half-lives measured previously may have been a
technical artifact. Recently, it has been shown that global in-
hibition of essential cellular processes, such as transcription,
can greatly affect RNA half-lives and therefore interfere with
the measurement, ( 31 ,70 ), for example by accelerating their
degradation or stabilizing them by sequestration in biomolec-
ular condensates. Consistent with this, some of the genes that
showed a long half-life in the previous experiment showed av-
erage stability in our SLAM-seq measurement. In addition, we
were able to estimate the half-lives of several very stable mR-
NAs for which the half-lives have not been previously deter-
mined. In the previous study, genes with half-lives exceeding
the longest measurement time point of 120 min were simply
marked as ‘stable’ ( 9 ). Since the last time point in the SLAM-
seq measurement is 60 min, half-lives of > 120 min could be
estimated, although with less precision than shorter RNA half-
lives ( 44 ). 

Similar to Fadda et al ., we found that mRNAs encoding
functionally related proteins have similar RNA half-lives, sug-
gesting co-regulation. mRNAs encoding glycolytic enzymes
r 2024

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1203#supplementary-data
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Figure 2. TT-seq suggests that RNA polymerase II transcription is unregulated in T. brucei . ( A ) Schematic representation of the transient transcriptome 
sequencing (TT-seq) approach. TT-seq was performed in UMPS KO cells expressing FCU. Newly synthesized RNA was labeled for 30, 60 and 120 s in 
pyrimidine-reduced medium. The experiment was performed in duplicate. ( B ) PCA analysis of enriched (nascent transcriptome) and input (total 
transcriptome) samples. ( C ) Visualization of the nascent transcriptome (120 s labeled, enriched RNA) and the respective total transcriptome (120 s 
labeled, input RNA) for a representative core region on chromosome 10. Reads were normalized to reads per million reads mapped (RPM). Both 
replicates are shown individually. ( D ) Metaplot analysis of nascent transcriptome data along RNA polymerase II transcribed PTUs. 
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Figure 3. SLAM-seq analysis of RNA half-lives. ( A ) Schematic representation of the thiol (SH)-linked alkylation for metabolic RNA sequencing 
(SLAM-seq) approach. SLAM-seq was performed in UMPS KO cells expressing FCU using standard HMI-11 medium. Newly synthesized RNA was 
labeled for 0, 7.5, 15 and 60 min in triplicate. ( B ) Old and new RNA were determined by the grandR pipeline based on T-to-C conversion frequency ( 45 ). 
Old, new and total mRNA levels are plotted for three representative genes at different time points. ( C ) Distribution of RNA half-lives measured by 
SLAM-seq in bloodstream form parasites. ( D ) Violin plot showing RNA half-lives determined by SLAM-seq in this study with RNA half-lives previously 
determined using a transcription inhibitor and con v entional RNA-seq ( 9 ). ( E ) Correlation analysis between RNA half-lives determined in this study and 
RNA half-lives previously determined using a transcription inhibitor and conventional RNA-seq ( 9 ). 
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nd ribosomal proteins had exceptionally long half-lives com-
ared to other mRNAs ( Supplementary Figure S2 ). In sum-
ary, using SLAM-seq we were able to successfully measure
NA half-lives in bloodstream form T. brucei for 7442 genes.
ompared to a previous measurement ( 9 ), secondary effects of
lobal transcriptional inhibition were avoided, allowing for a
ore accurate measurement. 

NA processing and RNA stability control total 
RNA levels independently 

he newly generated SLAM-seq data have enabled us not
nly to precisely measure RNA half-lives, but also to assess
he RNA synthesis rate for each gene, which is influenced by
both transcription and RNA processing. Utilizing the grandR
pipeline and assuming 20 000 transcripts per cell ( 9 ), we es-
timated the mean RNA synthesis rate for a gene in a single
T. brucei cell to be approximately 6.1 transcripts per hour
(Figure 4 A). Theoretically, the RNA synthesis rate is a com-
bination of the transcription and processing rates. However,
given the unregulated transcription in T. brucei , which results
in even transcription levels for RNA polymerase II genes, vari-
ations in mRNA synthesis rates likely reflect the rate of RNA
processing, i.e. the rate at which pre-mRNA is converted into
mature mRNA through trans-splicing and polyadenylation. 

Interestingly, our analysis of the coefficient of variation
across all genes revealed that RNA processing rates and
RNA stability exhibit similar variation levels among indi-
 er 2024

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1203#supplementary-data
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Figure 4. RNA processing and RNA st abilit y can operate independently. ( A ) Distribution of RNA processing rates measured in bloodstream form cells by 
SLAM-seq. RNA processing rates were inferred from RNA synthesis rates determined by the grandR pipeline ( 45 ). ( B ) The coefficient of variation was 
calculated for transcription (TT-seq data), RNA processing (SLAM-seq data), RNA half-lives (SLAM-seq data) and RNA total le v els (SLAM-seq data). ( C ) 
Correlation analysis of RNA total levels and RNA half-lives, both measured by SLAM-seq. Each dot represents a gene. Dots are colored according to the 
respective RNA processing rate of the gene. ( D ) Correlation analysis of RNA total levels and RNA processing rates, both measured by SLAM-seq. Each 
dot represents a gene. Dots are colored according to the respective RNA half-life of the gene. ( E ) Correlation of predicted and measured total mRNA 

le v els. P rediction of total le v els w as perf ormed assuming const ant transcription and const ant RNA processing rate. Measured half-liv es w ere introduced 
in a gene-specific manner. ( F ) Correlation of predicted and measured total mRNA le v els. P rediction of total le v els w as perf ormed assuming constant 
transcription and constant RNA stability. Measured processing rates were introduced in a gene-specific manner. 
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vidual genes (Figure 4 B). In contrast, the variation in gene-
specific transcription rates, as determined by TT-seq, was
much lower. Since the degree of variation reflects the degree
to which a process can influence the output of gene expres-
sion, the observed data are consistent with the apparent lack
of transcriptional control and suggest that RNA processing
and RNA stability influence total mRNA levels to a similar
extent. However, correlating these factors with total mRNA
levels revealed a much stronger correlation for RNA half-
life ( R = 0.71) than for RNA processing rates ( R = 0.14) 
(Figure 4 C, D), indicating that differences in RNA half-life 
more significantly affect RNA levels. Moreover, no correlation 

was observed between RNA processing rates and RNA sta- 
bility, suggesting that both processes can occur independently 
( Supplementary Figure S3 A). 

To further validate these observations, we employed a com- 
putational kinetic model for the T. brucei gene expression cas- 
cade that has been used in previous studies ( 9 , 58 , 60 ). This
 er 2024
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odel, based on ordinary differential equations, incorporates
rowth dilution effects, and is parameterized with experimen-
al data. It allows for the simulation of how variations in pa-
ameters influence total transcript levels. For this study, we
ssumed a constant transcription rate across all transcripts,
ncorporating either measured processing rates (as synthesis
ates) or mRNA half-lives, and simulated outcomes for all
enes. Consistent with the correlations described above, in
ur model RNA half-life proved to be a stronger predictor
f total mRNA levels than the RNA processing rates (Figure
 E, F). However, none of the two processes was sufficient to
ully predict RNA total levels on its own. Instead, both pro-
esses exert control, and it is the combination of them that de-
ermines RNA total levels. Interestingly, the majority of tran-
cripts that are not correctly predicted by the half-life are less
bundant than predicted. Such an overprediction was also ob-
erved in the study by Fadda et al. ( 9 ). That analysis suggested
hat 5 

′ -spliced precursors of longer mRNAs are subject to an
dditional source of degradation that is not captured by mea-
uring the stability of mature mRNAs alone. One possibility
s that longer transcripts remain in the nucleus longer and
re therefore more susceptible to nuclear degradation before
olyadenylation can occur. 
To evaluate the effect of transcript length on our ability to

redict total transcript levels from synthesis rate or half-life,
e repeated the modeling, grouping the transcripts based on

ranscript length. Similar to the results of Fadda et al. ( 9 ), we
bserved a slight length-dependent effect. In the group of very

ong transcripts ( > 10 kb), we find that synthesis rate is a more
mportant predictor of total transcript levels than for short
ranscripts ( Supplementary Figure S4 ). As nuclear degradation
ould reduce the rate at which mature mRNAs appear in the

ytosol, it would be subsumed under the synthesis rate rather
han the stability parameter. One might therefore interpret the
reater predictive capacity of the synthesis rate as represent-
ng the increased contribution of nuclear degradation to the
teady-state levels of mature mRNAs > 10 kb in length. 

Finally, we also explored potential spatial regulation of
he two post-transcriptional processes along the chromosome
ores, i.e. the possibility that genomic location affects a gene’s
rocessing or stability ( Supplementary Figure S3 B). However,
hen we plotted RNA half-lives and RNA processing rates on

he eleven megabase chromosomes of T. brucei , we found that
he rate of both processes, RNA stability and RNA process-
ng, varied uniformly along the chromosomes. Furthermore,
e detected similar median activity for both processes for the
ifferent chromosomes. This suggests a lack of spatial regula-
ion for these processes and is consistent with both processes
perating in an independent manner. 
The lack of correlation between RNA processing rates and

NA half-lives suggests that both processes can operate in-
ependently. Therefore, this finding raises the possibility that
NA processing and RNA half-lives may differentially con-

rol total mRNA levels for different transcripts. 

NA processing and RNA stability affect single cell 
iology 

o explore the biological significance of RNA processing and
NA stability occurring independently while both influencing

otal mRNA levels, we divided genes into four groups based
n their RNA processing rates and RNA half-lives relative to
he median (Figure 5 A). As expected, genes with high process-
ing rates and high RNA stability had the highest total mRNA
levels, whereas genes with low processing rates and low RNA
stability had the lowest total mRNA levels (Figure 5 B). This
indicates that RNA processing and RNA stability can syner-
gistically affect RNA levels to produce either very high or very
low total mRNA levels. In addition, genes with high process-
ing rates and low RNA stability and genes with low processing
rates and high stability showed very similar total mRNA lev-
els, highlighting the fact that there are two alternative path-
ways for a cell to obtain similar, intermediate total mRNA
levels. 

To understand the ‘benefit’ to a cell of choosing one ‘path-
way’ over the other to obtain intermediate transcript levels,
we speculated that one path might lead to more robust tran-
script levels in individual cells than the other, potentially influ-
encing the degree of cell-to-cell heterogeneity. The advent of
single-cell RNA-seq (scRNA-seq) has revealed an enormous
amount of transcriptional cell-to-cell heterogeneity in biolog-
ical systems ( 71 ,72 ). Such cell-to-cell heterogeneity can have
advantages and disadvantages for cells and is therefore tightly
regulated ( 71 ). Because long RNA half-lives increase the time
that a transcript is present in individual cells, and therefore in-
crease the chances of detecting a transcript in multiple cells si-
multaneously, we hypothesized that long half-lives could lead
to low cell-to-cell variability for a given transcript. On the
other hand, high processing could be an alternative path to
reach intermediate total mRNA levels, allowing for more cell-
to-cell variability of a given transcript. 

To test this hypothesis, we used scRNA-seq data recently
generated using a highly sensitive, trypanosome-adapted
Smart-seq3xpress protocol ( 61 ). The high sensitivity of the
approach allowed us to detect on average transcripts from
∼3 000 genes per cell. Based on these data, we analyzed tran-
script variability across 6176 genes in 369 cells (Figure 5 C),
for details see sections on Materials and methods and Code
Availability. Our findings confirmed that genes with high pro-
cessing and low stability (group 3) led to greater cell-to-cell
variability compared to those with opposite traits (group 2)
(Figure 5 D–F). 

When we performed GO term analyses in order to iden-
tify the biological processes enriched in the four different gene
groups, we found that genes in groups 1 and 2, which show
low cell-to-cell heterogeneity, were involved in core biolog-
ical processes such as gene expression and cellular transport
( Supplementary Figure S5 ). Genes coding for more specialized
cellular processes, such as cell-to-cell communication, were
enriched in groups 3 and 4. 

In summary, by analyzing cell-to-cell variability using
scRNA-seq, we found that RNA stability plays an important
role in regulating cell-to-cell variability in T. brucei . Further-
more, our results suggest that T. brucei may leverage high
RNA processing rates and lower RNA stability as an alterna-
tive strategy to achieve balanced total mRNA levels, allowing
for greater variability among individual cells. 

Discussion 

Through genetic re-engineering of the pyrimidine metabolism
in T. brucei , we have successfully established an efficient
metabolic RNA labeling approach, allowing high-resolution
analysis of gene expression. Our results provide strong sup-
port for the long-standing assumption that RNA polymerase
II transcription is unregulated in T. brucei . In addition, we
 r 2024
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Figure 5. scRNA-seq suggests that RNA processing and RNA st abilit y affect cell-to-cell variability. Genes were classified into four regulatory groups 
according to their RNA st abilit y and processing rates. Group 1: RNA st abilit y higher than median for all genes, RNA processing rate higher than median 
for all genes (number of genes = 1831). Group 2: RNA st abilit y higher than median for all genes, RNA processing rate lower than median for all genes 
(number of genes = 1310). Group 3: RNA st abilit y lo w er than median f or all genes, RNA processing rate higher than median f or all genes (number of 
genes = 1346). Group 4: RNA st abilit y lo w er than median for all genes, RNA processing rate lo w er than median for all genes (number of genes = 1689). 
( A ) Visualization of four gene groups. Total levels and RNA st abilit y was correlated for all genes. Each dot represents a gene and is colored according to 
the group it belongs to. ( B ) Total mRNA le v els f or eac h gene group are plot ted as bo x plots. T he bo x represents 25–75% of the data points, the bar 
represents the median for the underlying data, the whiskers represent 1.5 × interquartile range (IQR) and the rhombi represent outliers. The median 
total le v el f or each group is sho wn on top of the graph. ( C ) T he coefficient of v ariation w as calculated f or each gene in individual cells, using scRNA-seq 
data from > 300 bloodstream form cells ( 61 ). The distribution of variation is plotted. ( D ) The coefficients of variation between individual cells are shown 
as box plots. The box represents 25–75% of the data points, the bar represents the median for the underlying data, the whiskers represent 1.5 × IQR 

and the rhombi represent outliers. The coefficient of variation between individual cells was calculated based on all genes, as well as genes from groups 
1–4. ( E ) The average detection frequency and amplitude of a gene in individual cells is plotted. Each dot represents a gene and was colored according to 
coefficient of variation of the gene. The average detection frequency and amplitude of a gene in individual cells was calculated using a generalized 
telegraph model (GTM) ( 64 ). ( F ) The average detection frequency and amplitude of a gene in individual cells is plotted. Each dot represents a gene and 
was colored according to the regulatory group the gene belongs to. 
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be
ere able to quantify RNA stability and processing rates
cross the genome, providing an invaluable resource for ex-
loring gene expression in this parasite. The new data enabled
s to investigate the fundamental question of how these post-
ranscriptional processes collectively control total mRNA lev-
ls. Intriguingly, we observed two distinct paths leading to in-
ermediate total levels: one driven by high RNA stability and
he other by high RNA processing rates. 

To address the implications of this observation, we ana-
yzed previously generated high-resolution single-cell RNA-
eq data and found that genes with intermediate expression
evels behave differently at the single-cell level. Genes with
igh RNA stability and low processing rates showed low vari-
bility among cells, whereas genes with low RNA stability and
igh RNA processing rates showed higher cell-to-cell variabil-
ty. This suggests that efficient RNA processing may provide
n alternative means to achieve intermediate mRNA levels,
hile allowing for expression variability at the level of single

ells. Cell-to-cell variability is thought to be an adaptive fea-
ure regulated by cell populations ( 71 ,72 ) that plays a critical
ole across the tree of life. Examples of biological processes
hat depend on the regulation of cell-to-cell variability include
he division of labor in bacterial populations, cell differentia-
ion in multicellular organisms, and viral infection ( 71 ). 

In T. brucei, we found that genes associated with high RNA
tability and low cell-to-cell variation are involved in core cel-
ular functions such as translation and glucose metabolism. It
ay be beneficial for individual parasites that such essential
RNAs are present in most cells with low variability, ensuring

hat basic cellular functions are maintained. Conversely, genes
haracterized by short RNA half-lives and higher cell-to-cell
ariability are involved in DNA repair and cell signaling, sug-
esting a potential advantage for parasite populations to ex-
ibit variability in these processes. Interestingly, throughout
ts life cycle, T. brucei encounters phases in which it benefits
rom cell-to-cell variability, e.g. in the bloodstream of its mam-
alian host, where some cells continue to divide as long, slen-
er forms and others differentiate into non-replicative, stumpy
orms capable of surviving uptake by an insect vector ( 72 ). 

In general, transcriptional bursting of individually regu-
ated genes is considered to be the main source of cell-to-cell
ariability in eukaryotes ( 71 ,73 ). However, the organization
f genes in PTUs, combined with the unregulated transcrip-
ion of PTUs, limits transcriptional bursting as a source of
ell-to-cell variability in T. brucei . Our data now suggest that
ell-to-cell variation in gene expression may also be generated
t a post-transcriptional level. Furthermore, our data suggest
hat by shifting from high RNA processing to high RNA sta-
ility, T. brucei may be able to modulate the level of cell-to-
ell heterogeneity for distinct sets transcripts despite a lack of
ranscriptional control. 

In T. brucei , pre-RNA processing involves two distinct
teps, a polyadenylation and a trans -splicing reaction, which
ogether result in the separation of polycistronic transcripts
nto individual mRNAs. While the two reactions are thought
o be carried out by distinct protein complexes, it has been
hown that polyadenylation of one gene and trans -splicing of
he next gene downstream depend on a common DNA se-
uence motif, a poly(Y) tract, located between the two genes.
his raises the question of whether the processing rates of two
djacent genes can be regulated independently. It will be in-
eresting to determine whether specific sequence elements can
ncrease the efficiency of trans -splicing and decrease that of
polyadenylation, or vice versa. In addition, it may be possible
that the position within the nucleus can affect trans -splicing
efficiency without affecting the rate of polyadenylation. For
example, close proximity of the transcribed RNA to the site
of SL RNA transcription, the substrate for trans -splicing, may
increase trans -splicing efficiency, as we have previously pro-
posed ( 74 ). 

We believe that future studies combining metabolic RNA
labeling with single-cell RNA-seq ( 75 ) will provide an even
better understanding of gene expression dynamics in individ-
ual parasites. Such analyses will help to reveal temporal pat-
terns of gene expression and can be used to investigate the
role of cell-to-cell variability in parasite survival and disease
progression. 

Data availability 

High-throughput sequencing data (TT-seq and SLAM-seq)
generated for this study have been deposited in the European
Nucleotide Archive under the primary accession number PR-
JEB71063. Data from the SLAM-seq analysis, such as RNA
half-lives and synthesis rates in T. brucei bloodstream form
cells are available as an interactive resource and for down-
load under: http://einstein.virologie.uni-wuerzburg.de:3839/
9faa20e61e41ce24dde7a09ed0191527/

Code availability 

The code for the analysis of the single cell data is available
at: https:// doi.org/ 10.5281/ zenodo.14103604 . The annotated
model, notebook, and formatted data used for generating
the modelling figures are available at: https:// doi.org/ 10.5281/
zenodo.14229137 . 
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Supplementary Data are available at NAR Online. 
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