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  Functional ribosome biogenesis is a prerequisite 
for p53 destabilization: impact of chemotherapy 
on nucleolar functions and RNA metabolism    
  Abstract:   The production and processing of ribosomal 

RNA is a complex and well-coordinated nucleolar process 

for ribosome biogenesis. Progress in understanding nucle-

olar structure and function has lead to the unexpected 

discovery of the nucleolus as a highly sensitive sensor of 

cellular stress and an important regulator of the tumor 

suppressor p53. Inhibition of ribosomal RNA metabolism 

has been shown to activate a signaling pathway for p53 

induction. This review elucidates the potential of classical 

and recently developed chemotherapeutic drugs to stabi-

lize p53 by inhibiting nucleolar functions.  
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   Ribosome biogenesis takes place 
in the nucleolus 
 Ribosomes in eukaryotes are synthesized and assembled 

in a specialized nuclear organelle, the nucleolus (Brown 

and Gurdon , 1964 ; Miller and Beatty , 1969 ). In human 

cells, nucleoli form around nucleolar organiser regions 

(NORs) on acrocentric chromosomes 13, 14, 15, 21, and 22 

as membrane-free sub-cellular structures. In total, NORs 

contain about 400 tandemly repeated ribosomal (r)DNA 

genes coding for ribosomal (r)RNA (Perry , 1962 ; Ritossa and 

Spiegelman , 1965 ). Ribosome biogenesis emerged as one 

of the most complex and controlled cellular processes that 

consumes up to 80% of the cellular energy in proliferating 

cells (Thomas , 2000 ; Prieto and McStay , 2008 ).  Mammalian 

nucleoli display a tripartite  structure (Figure   1  ) consisting 

of the fibrillar centre (FC), the dense fibrillar component 

(DFC), and the granular component (GC). Distinct steps in 

ribosome biogenesis can be allocated to one of the three 

components of the tripartite  structure. Transcription of the 

primary 47S rRNA by RNA polymerase (RNAP) I takes place 

at the interface of FC and DFC and requires several essential 

transcription factors: transcription initiation factor 1A (TIF-

1A), the selectivity factor 1 (SL1) complex, upstream binding 

factor (UBF), and transcription termination factor 1 (TTF-1). 

These factors regulate start site selection, recruitment of 

RNAPI to and escape from the promoter (Schneider , 2012 ). 

The first processing steps of the 47S rRNA precursor occur 

in the pre-90S ribosome and involve a cleavage cascade and 

stepwise production of intermediate forms of rRNAs, which 

finally mature to 18S, 5.8S, and 28S rRNA (Hadjiolova et al. , 

1993 ) (Figure  2  ). Processing of rRNA is orchestrated by the 

interplay of   >  200 factors, which catalyse snoRNA-mediated 

rRNA modification, and cleavage and trimming of rRNA by 

endo- and exonucleases, respectively. Finally, 40S and 60S 

ribosomal subunits are exported to the cytoplasm to trans-

late messenger (m)RNA. The ribosome maturation process 

is described in more detail in Figure 2. Recent findings 

suggest that ribosomes are more than just machines that 

translate mRNA. Protein composition of ribosomes and/or 

mutations in ribosomal proteins can alter gene regulation 

and tissue development. For example, a mutation in ribo-

somal protein Rpl38 reduces the translational efficacy for 

Hox factors in a tissue-specific manner (Kondrashov et al. , 

2011 ). Great heterogeneity in ribosomal protein expression 

suggests the existence of ribosomes, which are specialized 

for translation of mRNAs in a tissue-specific manner (Xue 

and Barna , 2012 ).  

  Ribosome biogenesis in cancer cells 
 Ribosome biogenesis is intimately connected to cell 

growth and proliferation and up- or down-regulated 
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dependent on growth factor stimulation or nutrient avail-

ability. Changes in ribosome biogenesis rates also prob-

ably have major implications for tumor development 

(Ruggero and Pandolfi , 2003 ; White , 2005 ). Activation of 

proto-oncogenes and inactivation of tumor suppressor 

genes strongly up-regulate transcription and processing 

rates for rRNAs (Drygin et al. , 2010 ; Hannan et al. , 2011 ). 

For example, the proto-oncogene c-Myc, the casein kinase 

II (CK II), the extracellular signal- regulated kinase (ERK), 

or the PI3K (phosphatidylinositol-3-kinase)-AKT-mTOR 

(mammalian target of rapamycin) axis promote tran-

scription and/or processing of rRNA and are frequently 

activated in cancer cells (Boon et al. , 2001 ; Schuhmacher 

et  al. , 2001 ; Schlosser et  al. , 2003 ). However, it is still 

unclear, whether up-regulation of ribosome biogenesis 

in cancer cells reflects the cause of tumorigenesis or the 

consequence of elevated growth and proliferation. Recent 

findings support the first theory. 

 Mutations in genes encoding ribosomal proteins 

have been described for various hematologic disorders 

with cancer predisposition (Narla and Ebert , 2010 ; van 

Riggelen et  al. , 2010 ). Ribosomal genes RPL5 and RPL11 
are frequently mutated in T-cell lymphoblastic leuke-

mia (De Keersmaecker et  al. , 2013 ). RNAPI transcription 

factors UBF and TIF-1A are already increased in pre-malig-

nant cells, suggesting that up-regulation of ribosome 

Nucleolar tripartite structure 

FC: Fibrillar centre 

DFC: Dense fibrillar component 

GC: Granular component 

FC 

DFC 

GC 

 Figure 1      Scheme of nucleolar structures. Nucleoli comprise a 

tripartite structure including fibrillar centres (FC), dense fibrillar 

components (DFC), and granular components (GC). Analysis of 

protein and RNA compositions show that distinct steps of ribosome 

biogenesis can be allocated to distinct nucleolar components. rDNA 

transcription takes place at the interface between FC and DFC and 

produces large amounts of unprocessed rRNA precursors. Pro-

cessing and modification of rRNA mainly takes place in DFC. Most 

ribosomal proteins are present in GC, the major site of ribosome 

subunit assembly.    

biogenesis may drive tumor formation and is not simply a 

consequence of tumor progression (Ruggero , 2012 ).  

  The nucleolus as sensor and 
 integrator of cellular stress 

 Damage of DNA and interference with gene expression are 

key characteristics of mutagens such as viruses, irradiation, 

cytotoxic drugs, and other environmental hazards like heat 

shock or hypoxia. How can cells integrate such a variety 

of different stresses ?  Stabilization of the tumor suppressor 

p53 and its ability to induce cell cycle arrest, senescence, 

or apoptosis has been known for a long time to be central 

for the cellular stress response (Levine , 1997 ; Vousden and 

Prives , 2009 ). However, a comprehensive model of how 

to integrate various stresses and funnel them to p53 has 

been lacking. A hallmark study defined the nucleolus as 

universal stress integrator (Rubbi and Milner , 2003 ). Using 

micropore UV-irradiation, Rubbi and Milner could show 

that damaging of nucleolar, but not nucleoplasmatic DNA 

is necessary and sufficient to induce p53. Interestingly, 

cells can tolerate high amounts of nucleoplasmatic irra-

diation and DNA damage as long as lesions are excluded 

from rDNA. Further experiments showed that inhibition of 

the RNAPI transcription machinery by anti-UBF antibodies 

triggered p53 stabilization in the absence of DNA damage. 

The knockout of RNAPI transcription factor TIF-1A results 

in retarded development of embryos and increased rates of 

apoptosis (Yuan et al. , 2005 ). TIF-1A knockout destroys the 

integrity of nucleoli, stabilizes p53 and induces apoptosis. 

Similar results were obtained after depletion of rRNA pro-

cessing factors Utp18, Bop1, Pes1, WDR12 or Nucleostemin 

(Pestov et al. , 2001 ; Holzel et al. , 2005 ; Romanova et al. , 

2009 ; Holzel et al. , 2010b ). In agreement with these obser-

vations, p53 levels show cell cycle-specific changes. The 

levels of p53 are low during interphase, but enhanced in 

mitosis and early G1-phase as long as the nucleoli are dis-

assembled (David -Pfeuty, 1999 ). Taken together, several 

lines of evidence indicate that the integrity of the nucleo-

lus is a prerequisite for low levels of p53. The high liability 

of the nucleolus to stress elevates p53 levels. 

 But how does the nucleolus respond to stress mecha-

nistically ?  The E3-ubiquitin ligase Hdm2 is the key enzyme 

that regulates p53 levels. Hdm2 continuously binds and 

ubiquitinates p53, thereby targeting p53 for proteasomal 

degradation (Stommel et al. , 1999 ; Ljungman , 2000 ; Xirodi-

mas et al. , 2001 ). For its ubiquitination and degradation, p53 

requires the transit through a functionally intact nucleolus 
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 Figure 2      Mammalian ribosome biogenesis. 

 (A) Ribosome biogenesis consists of rRNA synthesis, rRNA processing and ribosome maturation. RNAPI transcribes a 14 kb-long, poly-

cistronic 47S rRNA precursor that contains 18S, 5.8S, and 28S rRNAs. The fraction of rRNA within the transcriptome can be up to 90%, 

implying that transcriptional active rDNA genes are heavily transcribed (Rabani et al. , 2011 ). RNAPII transcription facilitates the synthe-

sis of 79 ribosomal L- and S-proteins, a large cohort of small nucleolar (sno)RNAs, and   >  200 mRNAs encoding non-ribosomal nucleolar 

factors, including kinases, helicases, nucleases, and GTPases. In addition, 5S rRNA is produced by RNAPIII. The orchestrated activity 

of all three RNA polymerases ensures the correct transcription, processing, and modification of rRNA and its assembly into 40S and 

60S ribosomal subunits that compose functional 80S ribosomes in the cytoplasm (Eichler and Craig , 1994 ; Boisvert et al. , 2007 ).  (B) 

Mammalian rRNA processing. After synthesis the 47S primary transcript is processed in mature 18S, 5.8S, and 28S rRNAs. Endo- and 

exonucleases cleave and trim external (ETS) and internal transcribed spacers (ITS) of 47S rRNA. Five critical snoRNAs are required for 

initial cleavages of the 47S rRNA precursor at the 5 ’  end (snoRNAs U3, U14, U17, and U22) or 3 ’  end (snoRNA U8), respectively. In addi-

tion, distinct sites of the 47S rRNA precursor are methylated at the 2 ’  oxygen of the ribose (Me) and a subset of uridines is converted to 

pseudouridines ( ψ ). In total, several hundreds of modifications are introduced in rRNA, assisted by small nucleolar ribonucleoproteins 

(snoRNPs). Each snoRNP contains one modifying enzyme (fibrillarin methyltransferase for Me, dyskerin pseudouridine synthase for 

 ψ ), one snoRNA, and additional stabilizing proteins (Kiss , 2002 ). Mutations in the pseudouridine synthase dyskerin impair the correct 

formation of  ψ  modification patterns and reduce translational fidelity of ribosomes (Ruggero et al. , 2003 ). Extensive rRNA modifica-

tion occurs at catalytical active rRNA regions within the decoding and peptidyl transferase centers of the ribosome (Bakin et al. , 1994 ). 

Specific processing factors have been characterized in mammals. For example, the DEAD box helicase Ddx51 is crucial for processing 

of 47S rRNA 3 ’  sequences (Srivastava et al. , 2010 ). Ddx51 catalyses the removal of snoRNA U8 from the unprocessed 3 ’  end, thereby 

facilitating exosomal degradation of the 3 ’ ETS sequence. The rRNA processing factors Pes1, Bop1, and WDR12 form a trimeric complex 

(PeBoW) and are required for 32S rRNA processing and large 60S subunit formation (Lapik et al. , 2004 ; Holzel et al. , 2005 ; Grimm 

et al. , 2006 ; Holzel et al. , 2007 ; Rohrmoser et al. , 2007 ). Human (h)Rio kinase family members hRio1, hRio2, and hRio3 are required 

for the cytoplasmatic processing of 21S rRNA to mature 18S rRNA and 40S subunit maturation (Zemp et al. , 2009 ; Baumas et al. , 2012 ; 

Widmann et al. , 2012 ).   
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(Boyd et  al. , 2011 ). Inhibition of rRNA transcription and 

processing triggers the translocation of various nucleolar 

proteins into the nucleoplasm, most prominently of the 

ribosomal proteins Rpl5, Rpl11, and Rpl23, which bind and 

inactivate Hdm2 and thereby stabilize p53 (Lohrum et al. , 

2003 ; Bhat et al. , 2004 ; Dai and Lu , 2004 ; Dai et al. , 2004 ; 

Hernandez -Verdun et al., 2010 ). It has recently been shown 

that Rpl5 and Rpl11 mutually stabilize each other and are 

continuously imported into nucleoli to colocalize with 

Hdm2 even after nucleolar disruption, suggesting that the 

main source of Rpl5 and Rpl11 that binds to Hdm2 is newly 

synthesized rather than pre-existing (Bursac et  al. , 2012 ). 

Interestingly, recent work identified Pict1 as a tethering 

factor for ribosomal proteins and as an important regula-

tor of p53. In unstressed cells, Pict1 binds and tethers Rpl11 

and other ribosomal proteins in the nucleolus, thereby sus-

taining Hdm2 activity. Pict1 levels decrease upon nucleolar 

stress. This results in the translocation of Rpl11 into the 

nucleoplasm and p53 stabilization (Sasaki et al. , 2011 ). The 

nucleolar protein MYBBP1A is another important regulator 

of p53 levels. MYBBP1A is tethered to the nucleolus through 

nucleolar RNA. Upon nucleolar stress, MYBBP1A trans-

locates to the nucleoplasm and facilitates p53 acetylation 

and stabilization by p300 acetyl transferase (Kuroda et al. , 

2011 ). Taken together, functional ribosome biogenesis 

requires an intact nucleolar structure and is a prerequisite 

for maintenance of low levels of p53.  

  The p53 response comes 
in different flavours 
 p53 is regarded as the guardian of the genome, which 

senses DNA damage by induction of G1-arrest or apoptosis 

(Carson and Lois , 1995 ; Levine , 1997 ; Vousden and Prives , 

2009 ). The induction of p53 is a major aim in chemother-

apy to trigger cell cycle arrest and/or apoptosis in tumor 

cells. Indeed, a strong nuclear accumulation of p53 can be 

detected upon treatment of cells with various DNA-damag-

ing cancer therapy drugs (Fritsche et al. , 1993 ). For a long 

time, DNA was regarded as the most important functional 

target of many classical, genotoxic drugs. For example, 

alkylating or DNA-intercalating drugs trigger a damage 

response involving kinases such as ataxia telangiectasia 

mutated kinase (ATM) or checkpoint kinase 1 (CHK1), which 

modify p53 at various positions. Activated p53 induces cell 

cycle inhibitors such as p21 Cip  and p27 Cip , which negatively 

regulate Cdk2 activity and arrest cells in G1-phase of the cell 

cycle (Lane , 1992 ; Harper et al. , 1995 ; Sakaguchi et al. , 1998 ; 

Ljungman , 2000 ; Vogelstein et al. , 2000 ). 

 However, more recent data suggest that different qual-

ities of p53 response exist depending on the type of stress. 

Efeyan and colleagues found that oncogenic signaling, 

such as induction of the tumor suppressor p14 ARF , contrib-

utes to the bulk of tumor protective p53 function, whereas 

DNA damage by classical chemotherapy is less important 

for p53 function (Efeyan et  al. , 2006 ). In fact, the pres-

ence of p14 ARF  has been found to be critical for the survival 

of mice treated with DNA-damaging agents, and tumors 

are associated more frequently with mutations in p14 ARF  

than mutations in kinases of the DNA-damaging pathway 

(Bartek and Lukas , 2003 ; Sharpless , 2005 ). p14 ARF  inhib-

its Hdm2 and can induce p53 in analogy to the nucleolar 

stress response (Tao and Levine , 1999 ; Sherr and Weber , 

2000 ). p53 serine-15 phosphorylation, a hallmark of DNA-

damaging agents, is absent after inhibition of rRNA pro-

cessing (Holzel et  al. , 2010a ), and p14 ARF  is not required 

for p53 stabilization after knockdown of rRNA process-

ing factors (Holzel et  al. , 2005 ). This suggests an Hdm2-

dependent, but DNA damage and p14 ARF  independent 

pathway for p53 stabilization after inhibition of rRNA pro-

cessing. It has also been shown that p53 levels are crucial 

for its activity, while p53 modifications rather fine-tune its 

activity (Blattner et al. , 1999 ). Taken together, the quality 

of p53 induction by nucleolar stress differs significantly 

from p53 induction upon classical DNA-damaging chemo-

therapy. For cancer therapy, the nucleolar stress-mediated 

p53 response may be superior, because it induces p53 

without damaging DNA. But which chemotherapeutic 

drugs inhibit ribosome biogenesis ?   

  Genotoxic inhibitors of ribosome 
biogenesis 
 The increased size of nucleoli is a diagnostic marker for 

the proliferative state of cancer cells (Derenzini et  al. , 

1998, 2000 ). Early studies utilized changes in nucleolar 

morphology as a marker to measure the responsiveness 

of tumor cells to classical chemotherapeutic drugs. For 

example, antibiotics such as doxorubicin, daunorubicin, 

mitomycin C or actinomycin D cause nucleolar segrega-

tion and translocation of the nucleolar protein nucleo-

phosmin (NPM1) to the nucleoplasm (Merski et al. , 1976 ; 

Daskal et al. , 1978 ; Wassermann et al. , 1986 ; Chan et al. , 

1987, 1988 ). Upon stress relief NPM1 relocates to the 

nucleo lus (Chan et al. , 1996 ). Nucleolar disruption usually 

is a consequence of inhibition of ribosome biogenesis. 

Various drugs inhibit ribosome biogenesis at the level 

of rRNA transcription albeit by different mechanisms. 
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Treatment with the anti-metabolite and dihydrofolate 

reductase inhibitor methotrexate disrupts nucleolar 

integrity and inhibits RNAPI transcription (Safa and 

Tseng , 1984 ; Greenhalgh and Parish , 1990 ; Thiry et  al. , 

1997 ). Actinomycin D intercalates in GC-rich regions of 

rDNA, thereby specifically inhibiting rRNA elongation at 

low concentrations (Fetherston et al. , 1984 ). The alkylat-

ing agent cyclophosphamide inhibits rRNA synthesis, 

reduces nucleoli in number and size, and causes nucle-

olar segregation in patients (Matejokova and Smetana , 

1975 ; Kacerovska et  al. , 1981 ; Likovsky et  al. , 1993 ). 

Similarly, mitomycin C treatment inhibits RNAPI trans-

cription by alkylating guanosines and inducing inter-

strand cross-links in rDNA (Rey et al. , 1993 ). Irinotecan/

topotecan inhibits RNAPI transcription by trapping topo-

isomerase I to rDNA, which causes DNA strand breaks 

(Pondarre et al. , 1997 ). The impact of the platin analog cis-

diamminedichloroplatinum(II) (cisplatin) on ribosome 

biogenesis has been studied in detail (Berry et al. , 1983 ; 

Leibbrandt et  al. , 1995 ). Cisplatin induces intrastrand 

DNA cross-links, inhibits RNAPI transcription, and causes 

a redistribution of nucleolar transcription factors. At low 

concentrations cisplatin specifically inhibits RNAPI, but 

not RNAPII transcription (Treiber et al. , 1994 ; Jordan and 

Carmo -Fonseca, 1998 ). Cisplatin also triggers nucleo-

lar accumulation of the small nuclear (sn)RNA biogen-

esis factor coilin. Cisplatin interacts with coilin and UBF, 

thereby inhibiting RNAPI initiation (Gilder et  al. , 2011 ). 

Finally, a comprehensive study of the inhibitory effect 

of 36 cytostatic drugs on rRNA synthesis and nucleolar 

integrity confirmed previous results and revealed that 

about one-third of the drugs inhibit ribosome biogenesis 

either at the level of rRNA transcription or rRNA process-

ing (Burger et al. , 2010 ). Interestingly, inhibition of rRNA 

transcription and early, but not late, rRNA processing is 

accompanied by nucleolar disruption.  

  Non-genotoxic inhibitors 
of ribosome biogenesis 
 Classical DNA-damaging chemotherapy can cause second-

ary tumors, especially in survivors of childhood cancer. 

Therefore, alternative drugs are of particular interest. If 

ribosome biogenesis is a critical target of chemotherapy 

and p53 control, drugs are desirable for inhibition of rRNA 

synthesis without genotoxic side effects. In this context, 

the antimetabolit 5-fluorouracil (5-FU), but not its analog 

5-fluorocytosine, was identified as potent inhibitor of RNA 

metabolism in various studies. In an analogy to nucleolar 
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 Figure 3      Cdk9-inhibitor flavopiridol blocks 47S rRNA processing. 

 Efficient processing of the 47S rRNA primary transcript is depend-

ent on Cdk9 activity. An autoradiograph of a [ 32 P]-ortho-phosphate 

in vivo metabolic labelling experiment in the presence of 0.1% 

DMSO (ctrl.) or 800 n m  flavopiridol (FL) for 6 h. Treatment with 

the Cdk9-inhibitor FL strongly reduces pre-rRNA processing and 

stabilizes an unprocessed 47S rRNA precursor. Similar results were 

obtained after treatment with Cdk-inhibitors roscovitine, olomouic-

ine, or 5,6-dichlorobenzimidazole 1- β -D-ribofuranoside (DRB) (Sirri 

et al. , 2002 ; Schlosser et al. , 2003 ; Burger et al. , 2010 ). Ethidium 

bromide-stained 28S rRNA is used as loading control.    

stress, 5-FU cytotoxicity is p53-dependent and relies on 

Hdm2 activity (Berger , 1977 ; Greenhalgh and Parish , 1990 ; 

Ghoshal and Jacob , 1994 ; Bunz et al. , 1999 ). Interestingly, 

5-FU was found to form stable adducts with dyskerin pseu-

douridine synthase. Depletion of dyskerin reduced 5-FU 

cytotoxicity (Hoskins and Butler , 2008 ). 5-FU probably 

confers cytotoxicity by the reduction of pseudouridylation 

of rRNA, which is a requirement for correct rRNA process-

ing. In addition, incorporation of 5-FU into small nuclear 

(sn)RNA U2 prevents pseudouridylation and formation of 

functional snRNPs for pre-mRNA splicing (Zhao and Yu , 

2007 ). These data suggest that 5-FU treatment strongly 

inhibits the metabolism of RNAs rather than interfering 

with the DNA metabolism. 

 Previous work from the Hernandez-Verdun and our 

laboratory showed that cyclin-dependent kinases (Cdks) 

regulate the formation and maintenance of the nucleo-

lus. Specific Cdk-inhibitors like roscovitine, olomoucine, 

5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) 

or flavopiridol selectively prevent the processing, but not 

the synthesis of 47S rRNA (Sirri et  al. , 2002 ; Schlosser 

et  al. , 2003 ; Burger et  al. , 2010 ) (Figure  3  ). Inhibition of 

47S rRNA processing by DRB is accompanied by the forma-

tion of a perinucleolar necklace structure, which contains 

mislocated, unprocessed pre-rRNAs and rRNA processing 

factors, like fibrillarin that are disconnected from the rDNA 

transcription machinery (David -Pfeuty et al., 2001 ; Louvet 
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et al. , 2005 ). Similarly, the translocation of the Cajal body 

marker coilin into necklace structures has been observed 

upon treatment with  α -amanitin, a specific inhibitor of 

RNAPII transcription (Haaf and Ward , 1996 ). These data 

suggest that ongoing RNAPII transcription is crucial for 

the maintenance of nucleolar structure and function. Inhi-

bition of RNAPII transcription by Cdk-inhibitors may be a 

promising approach for interference with ribosome bio-

genesis, induction of p53, and inhibition of cellular growth 

and proliferation. Flavopiridol is currently tested in clini-

cal trials for therapy of relapsed chronic lymphocytic leu-

kemia (CLL). Patients with a genetically high-risk CLL have 

been reported to be highly responsive to flavopiridol (Byrd 

et al. , 2007 ; Lin et al. , 2009 ; Phelps et al. , 2009 ). 

 Given that all three RNA polymerases are required for 

ribosome biogenesis, inhibition of transcription is a feasi-

ble approach to trigger nucleolar stress. Recent work char-

acterized two new small molecule inhibitors for RNAPI, 

CX-3543 and CX-5461, which were initially developed and 

characterized by Cyclene Pharmaceuticals, Inc. in collab-

oration with the laboratory of Ross Hannan (Melbourne). 

CX-3543 disrupts the interaction of the nucleolar process-

ing factor nucleolin with rDNA G-quadruplex complexes 

in the nucleolus and induces apoptosis in cancer cells 

(Drygin et  al. , 2009 ). CX-5461 specifically blocks recruit-

ment of the SL1 complex for RNAPI initiation and induces 

senescence and autophagy, but not apoptosis, in solid 

tumor cell lines (Drygin et al. , 2011 ). Targeting of RNAPI 

transcription with CX-5461 selectively kills B-lymphoma 

cells and prolongs survival of tumor-bearing mice. The 

therapeutic efficacy could be correlated with nucleolar 

disruption and activation of p53-dependent apoptotic 

signaling (Bywater et al. , 2012 ). A group of specific RNAPI 

inhibitors with therapeutic potential has very recently 

been described with the family of ellipticines, which also 

target the SL1 complex (Andrews et al. , 2013 ). Thus, non-

genotoxic inhibition of RNAPI transcription could be an 

important therapeutic strategy for cancer specific activa-

tion of p53 in cancer cells. 

 In addition to RNA polymerases, other enzymes and 

signaling pathways have been reported to be critical for 

rRNA metabolism. The deregulation of the PI3K-AKT-

mTOR signaling pathway and/or the hyperactivation of 

c-Myc are frequently observed in human cancer. Together, 

PI3K-AKT-mTOR and c-Myc form a signaling network that 

up-regulates ribosome biogenesis at the level of rRNA 

transcription and processing, but also enhances transla-

tion initiation and protein synthesis. The allosteric AKT 

inhibitor MK-2206 was shown to antagonize RNAPI tran-

scription in E μ -Myc induced B-cell lymphoma. MK-2206 

treatment is associated with a rapid reduction of tumor 

weight and delayed disease progression (Chan et  al. , 

2011 ; Hannan et al. , 2011 ). The inhibition of the mTORC1 

complex, a downstream target of AKT kinase, by rapa-

mycin or analogs thereof inhibits rRNA processing and 

induces degradation of unprocessed pre-rRNA. Rapamy-

cin does not affect the overall nucleolar morphology, but 

induces the loss of the mTORC1 complex from nucleoli 

(Iadevaia et  al. , 2012 ). Together, these findings suggest 

that the PI3K/AKT/mTOR/c-Myc growth control network 

could be a therapeutic target in tumor cells with unre-

straint ribosome biogenesis. Inhibitors of AKT activity and 

mTOR signaling are currently used in clinical trials (Engel-

man , 2009 ). For example, 35% of patients with relapsed/

refractory Waldenstr ö m ’ s macroglobulinemia (lympho-

plasmatic lymphoma) are responsive to the AKT inhibitor 

perifosine (Ghobrial et al. , 2010 ). 

 NPM1 is a multifunctional nucleolar protein with 

endoribonuclease activity that promotes rRNA process-

ing during ribosome biogenesis. Deconjugation of SUMO2 

modification from NPM1 by SENP3 protease is required 

for NPM1 function. Depletion of NPM1 or SENP3 pro-

tease blocks processing of the 32S rRNA intermediate into 

mature 28S rRNA and induces cell death (Itahana et  al. , 

2003 ; Haindl et al. , 2008 ; Lindstrom , 2011 ). NPM1 expres-

sion is frequently altered in tumors and drives leukemia 

initiation (Grisendi et  al. , 2006 ; Vassiliou et  al. , 2011 ). A 

mutant version of NPM1 in acute myeloid leukemia (AML), 

NPM1c, is found in   >  30% of AML patients and character-

ized by the gain of a nuclear export signal and localization 

to the cytoplasm. Interestingly, AML patients with NPM1c 

mutations are hypersensitive to chemotherapeutic drugs 

and show prolonged survival (Falini et  al. , 2009 ). Given 

that the nucleolus is a highly sensitive stress sensor, it is 

tempting to speculate that the hypersensitivity of AML 

cells with NPM1c mutation is caused by dysfunctional ribo-

some biogenesis. Two small molecule inhibitors have been 

described for NPM1. The compound NSC348884 binds to a 

hydrophobic pocket of NPM1 and inhibits its oligomeriza-

tion. NSC348884 inhibits cell proliferation at an IC 
50

  of 1.7 –

 4.0  μ  m , induces p53, and synergizes with the cytotoxicity 

of doxorubicin in distinct cancer cell lines (Qi et al. , 2008 ). 

The second compound avrainvillamide is an alkaloid and 

has been identified in an affinity screen with NPM1. Avrain-

villamide stabilizes p53 and induces apoptosis. A screen 

with NPM1 cysteine/alanine substitution mutants identi-

fied cysteine residue 275 in NPM1 as critical for binding of 

avrainvillamide (Wulff et al. , 2007 ). However, whether the 

growth inhibitory activity of NPM1-inhibitors is conferred 

by blocking of rRNA processing has not been studied yet. 

 The data discussed in this review suggest that the 

inhibition of ribosome biogenesis is a promising approach 
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for cancer therapy. Although the number of non-genotoxic 

drugs is currently limited, an increasing amount of small 

molecule inhibitors might help to broaden therapeutic 

options. In 2005, the nucleolar proteome with 692 proteins 

became available (Andersen et al. , 2005 ). Interestingly, a 

large panel of the nucleolar factors is associated with cell 

cycle control, including kinases and phosphatases with 

potential regulatory function in ribosome biogenesis. 

Further research is required to elucidate the function of 

nucleolar enzymes and to open doors for the development 

of novel therapeutic approaches.   
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