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Abstract

Objective: To evaluate the relevance and necessity to ac-
count for the effects of population substructure on associa-
tion studies under a case-control design in central Europe,
we analysed three samples drawn from different geograph-
ic areas of Germany. Two of the three samples, POPGEN (n =
720) and SHIP (n = 709), are from north and north-east Ger-
many, respectively, and one sample, KORA (n = 730), is from
southern Germany. Methods: Population genetic differen-
tiation was measured by classical F-statistics for different
marker sets, either consisting of genome-wide selected cod-
ing SNPs located in functional genes, or consisting of selec-
tively neutral SNPs from ‘genomic deserts’. Quantitative es-

timates of the degree of stratification were performed
comparing the genomic control approach [Devlin B, Roeder
K: Biometrics 1999;55:997-1004], structured association
[Pritchard JK, Stephens M, Donnelly P: Genetics 2000;155:945-
959] and sophisticated methods like random forests [Brei-
man L: Machine Learning 2001;45:5-32]. Results: F-statistics
showed that there exists a low genetic differentiation
between the samples along a north-south gradient within
Germany (Fs7(KORA/POPGEN): 1.7 + 1074 Fs(KORA/SHIP):
5.4+ 107% Fsr(POPGEN/SHIP): -1.3 - 107°). Conclusion: Al-
though the Fsr-values are very small, indicating a minor de-
gree of population structure, and are too low to be detect-
able from methods without using prior information of
subpopulation membership, such as STRUCTURE [Pritchard
JK, Stephens M, Donnelly P: Genetics 2000;155:945-959],
they may be a possible source for confounding due to popu-
lation stratification. Copyright © 2006 S. Karger AG, Basel
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Introduction

Undetected or disregarded population structure may
appear to mask, change, reverse or mimic genetic effects
of genes underlying complex traits [1], and may lower sta-
tistical power in linkage analysis [2]. In particular, ge-
netic epidemiological case-control studies are susceptible
to confounding effects of differential allele frequencies at
disease and marker loci associated with local populations
of different demographic history or ethnic background.
This problem is well known since the early days of genet-
ics [6], but, nonetheless, has been largely ignored in ge-
netic epidemiological research. The revived interest in
the case-control study design using genetic markers has
stirred a recent debate about the relevance of confound-
ing by population substructure and admixture [7-10]
with lack of empirical evidence, especially when authors
chose models with unrealistically differential prevalenc-
es leading to large effects [11, 12].

Generally, one can distinguish between two concepts
to handle the problem of unknown population stratifica-
tion in epidemiological studies, genomic control and
structured association. In a series of papers [3, 13, 14],
Devlin, Roeder and co-workers elaborated the concept of
genomic control. The method uses a collection of supple-
mentary non-candidate loci to estimate any inflation, X,
in the distribution of the association test statistics be-
tween unlinked genetic variants of cases and controls
generated e.g. by population structure, and then corrects
the association test statistics at the candidate loci by the
inflation factor A.

The second concept, structured association, was de-
veloped by Pritchard et al. [4]. It is based on a latent class
model and stratifies the analysis according to the optimal
number of subpopulation classes. Subsequent tests for as-
sociation are performed within each subpopulation by
treating the number of subpopulations and the subpopu-
lation membership or admixture proportions for each in-
dividual as known quantities. In doing so, the null hy-
pothesis is that the allele frequencies depend only on the
subpopulation and not on the phenotype.

Even though both concepts have been published more
than five years ago, there has been no human based,
large-scale association study conducted in central Europe
applying these concepts, particularly none with especial-
ly selected neutral markers of the human genome. This is
remarkable in light of the findings of Helgason et al. [15],
who found that the Icelandic population, previously
thought to be a prime example of a homogeneous popula-
tion, turned out to be stratified with the potential for a
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notable impact on association studies. One reason may be
the unproven conjecture, that population differentiation
is too small within the European population to cause sub-
stantial effect in association studies. However, Campbell
et al. [16] recently demonstrated that population stratifi-
cation can, indeed, lead to false positive associations in a
sample of European Americans confounded by their Eu-
ropean ancestry. To date, most studies inferring popula-
tion structure using genomic controls or structured as-
sociation analysis have been limited to human samples of
predefined ethnic or geographic origin, or animal and
plants involving strains or local races [17-24].

The rapid progress of the high-throughput genotyping
technology with its preference for the case-control study
design makes it more and more important to assess in
advance the magnitude of genetic differences between
samples, which are scheduled to be joined in future med-
ical genetic research projects. Therefore, this study ad-
dresses the possible impact of population genetic effects
on case-control association studies within the three main
existent population cohorts in Germany.

Materials and Methods

Study Subjects

Population samples were recruited from three on-going cross-
sectional epidemiological surveys of regional German popula-
tions: (1) KORA (Co-operative Health Research in the Region of
Augsburg) from southern Germany [25, 26]; (2) POPGEN (Popu-
lation Genetic Cohort) from Schleswig-Holstein, northern Ger-
many [27], and (3) SHIP (Survey of Health in Pommerania) from
east and northeast Germany [28, 29]. No degree of kinship was
expected among the individuals, either between or within any
population sample, but individuals were not explicitly tested for
relationship a priori.

Sub-samples of more than 700 people for each sample (KORA:
730, POPGEN: 720, SHIP: 709) were genotyped at the same 212
SNP marker loci (fig. 1). The sub-samples were matched for age
(KORA, POPGEN, SHIP: 54 * 13 years) and proportions of males
(KORA, POPGEN, SHIP: 50%) and showed no specific disease
phenotype. Informed written consent was given by each person of
the three population samples prior to enrolment in the study.

Genotyping, Marker Selection and Quality Control

All persons were genotyped at the same 212 SNP marker loci,
which were subdivided into three marker sets of approximately 70
markers each. The marker sets, GCBerlin, GCKiel and GCMu-
nich, were named according to the location of the genotyping cen-
ters where the genotyping for each marker set took place (fig. 1).
Each center used a different genotyping technology, namely Berlin
(Pyrosequencing™ and Tagman®), Kiel (Tagman®) and Munich
(MALDI-TOF™; matrix assisted laser desorption/ionization).

The marker loci in this study were of two types: (i) One set of
coding SNPs (GCKiel), which are located in exons of functional
genes, causing an amino acid exchange in the resulting protein,
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(non-coding SNPs)
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— __
——
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Marker Sets

Fig. 1. Study design. Each population was genotyped by each of
the three marker sets. The numbers in brackets under the popula-
tions show the sample size after and before data revision. The
brackets to the right of the marker sets show the total number of
markers per set. The sets GCMunich and GCBerlin include three
overlapping markers.

Table 1. Characteristics of marker sets

GCMunich, GCBerlin:

* Intergenic SNPs from genomic deserts, e.g. null loci,
randomly chosen, uniformly spread across the genome

* validated by minor allele frequency between 10 and 50%
in Caucasian

* 500 Kbp intermarker distance

* >100 Kbp apart from any known gene region

e >1 Mbp apart from centromers and telomers

* 4 SNPs on each chromosome for each marker set

* 2 SNPs on each chromosome arm for each set

* 1 SNP for each interval of heterozygosity from 10 to 50%
in steps of 10% on each chromosome

* no markers selected from the Y-chromosome

GCKiel:

* Intragenic exonic SNPs, protein coding genes, associated
with an amino acid exchange or an effective promotor
alteration

and thus are potentially subject to selective forces. (ii) Two sets of
neutral SNPs (GCMunich, GCBerlin), which are located far from
known genes, and which are uniformly spaced throughout the
genome in putative ‘genomic deserts’. These loci are assumed to
fulfil the requirement of selective neutrality in the absence of spe-
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Table 2. Genotyping call rate broken down by marker set and
population

Population Genotyping center

Kiel Munich Berlin
SHIP 0.966 0.979 0.968
KORA 0.962 0.974 0.984
POPGEN 0.989 0.982 0.990

cific information, and are expected to depict the neutral process-
es of drift and migration in demographic history. These GC SNPs
were selected according to a set of rules envisaged by Devlin and
Roeder (1999) and which were formalized by the Bonn group
(table 1). The joined marker sets (GCBerlin + GCMunich) and
(GCBerlin + GCKiel + GCMunich) will be referred to as ‘GC2BM’
and ‘GC3BKM, respectively.

The data were subjected to an extensive quality process which
comprised:

Standardized reporting of variants. Genotyping on different
platforms resulted in non-uniform allele and genotyping designa-
tions, which were translated into dbSNP standards throughout.

Determination of the genotype call rate. The averaged call rate
over all population samples was 96.1%. Call rates per marker set
and sample are summarized in table 2.

Determination of DNA sample typing rate. A typing rate below
50% was regarded as indicative of impaired DNA quality, which
may be dependent on genotyping methodology. In total 40 per-
sons were excluded from the marker sets (GCBerlin: 11, GCKiel:
27, GCMunich: 2).

Unlikely multilocus genotypes were regarded as indicative of
quality problems. One person with 80% of homozygous geno-
types was removed from the data set.

Unintentional duplicates. 3 pairs of persons were found with a
perfect genotype matching. For each pair, the person with the
lower typing rate was removed.

Cryptic relatedness. By using ‘Graphical Representation of Re-
lationship Errors’ (GRR) [30] we found 3 pairs of persons display-
ing outlying high values of IBS >1,73. These pairs were resolved
in the same way as described in the previous point.

Hardy-Weinberg equilibrium (HWE) in each sample. The dis-
tribution of p values of the HWE test for each marker was tested
for non-uniformity. No significant deviation was observed, and
in particular no excess of low p values.

Pairwise linkage disequilibrium (LD) between markers in each
sample (D’ and r?). LD values were randomly dispersed and did
not show any inhomogeneity or irregularity.

Methods

Data analysis comprises classical population genetic statistics
based on prior information about the population structure (F-sta-
tistics, the lambda inflation factor, genetic distances), as well as
some more sophisticated methods (structured association analy-
sis, random forests, prediction rates), which estimate the number
of sub-populations in the sample from multi-locus marker data
and account for the uncertainty related to unknown population

Steffens et al.
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structure. In doing so, these methods rely on assumptions con-
cerning Hardy-Weinberg equilibrium and linkage equilibrium
within populations.

The fixation indices were introduced by S. Wright in 1921 [31,
32] and consist of three parameters, Fst Fi1, and Fig, which de-
scribe the allelic correlations in a hierarchically substructured
population [33]. The programs FSTAT (version 2.9.3.2) [34] and
PowerMarker (version 3.23) [35] were used to calculate the F-sta-
tistics. X-linked markers were excluded from this analysis to avoid
bias due to the effects of natural selection and lower recombina-
tion rates on the X-chromosome.

The inflation factor A was calculated by the median of the
Armitage’s trend test statistics divided by the expected 50%-
quantile (0.455) of the association test x-square distribution
(d.f. = 1) under the null hypothesis of no association between the
SNPs typed in cases and controls [3]. A bootstrapping procedure
was used to calculate the confidence interval for the N factors
[36]. To provide a better insight into the nature of the data we
report the N factors without being rounded up to unity according
to the definition of Devlin and Roeder [3] (A = max(l,
median(\)/0.455)).

To infer the relative individual admixture level within the three
population samples (KORA, POPGEN and SHIP) and among
each other, the unsupervised clustering algorithm implemented
in the program STRUCTURE (version 2.1) [4] was used. The anal-
ysis was conducted for several models with different populations
numbers ranging from K =1 to 5. For each model we run the pro-
gram several times, using a burn-in period of 10,000 replicates
and 100,000 iterations, resulting in stable model parameters and
consistent results. First, each population was analysed on its own
to detect any possible within population sub-structuring. Second,
we pooled populations pair-wise together to see whether STRUC-
TURE might be able to separate and recover the original ones,
and, third, we analysed all three populations simultaneously.

We derived the prediction rate as a measure of genetic struc-
ture in the style of a Naive Bayes classifier. The prediction rate
indicates to what extent it is possible to identify the predefined
populations from a given number of marker loci. It is defined as
the expected posterior probability of a randomly drawn new in-
dividual from one of these samples being correctly classified to its
predefined population. The prediction rate was estimated by
leave-one-out cross-validation as follows: The posterior probabil-
ity of each individual being classified to its predefined population
is calculated given its multi-locus genotype data and the popula-
tion genotype frequencies estimated by leaving that individual
out. To determine the posterior probability, Bayes’ formula is ap-
plied based on the assumption that all subpopulations are a prio-
ri equally likely. For each subpopulation the likelihood of the in-
dividual’s genotype data assuming that the individual originates
from that population has to be determined. This likelihood is cal-
culated by multiplying the probabilities of the individual’s geno-
types over the loci, either based on genotype or the allele frequen-
cies in the respective population. Finally, the prediction rate is
estimated by averaging the posterior probabilities over all indi-
viduals. Confidence intervals for the prediction rate were calcu-
lated via bootstrapping over all loci.

Sub-population membership was also predicted by random
forests according to Breiman [5]. In brief, random forests is an
ensemble method comprising a pre-specified number of classifi-
cation trees [36]. To allow for a better estimation of the classifica-
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tion error frequency, the total sample was randomly split into a
training data (approximately two thirds) and a test data set (ap-
proximately one third). Random forests were developed in the
training data with a missing value imputation based on estimated
proximities from the random forests. Specifically, 500 classifica-
tion trees were grown on bootstrap samples of all individuals in
the training data, and a random selection of approximately square
root of the available SNPs were used for each node within every
tree. The resulting random forests were applied to predict indi-
viduals in the test data set where missing values were imputed by
median values. Every individual in the test data set was finally
classified according to the majority vote across all trees in the for-
est. Random forests were used for prediction of pairwise popula-
tions KORA vs. POPGEN, KORA vs. SHIP, and POPGEN vs.
SHIP separately from all, only coding SNPs and from only non-
coding SNPs. Frequencies of the classification error were deter-
mined in training and test data together with 95% confidence
binomial intervals according to Clopper-Pearson [37].

Data Analysis

Analysis of population structure was performed using the five
marker sets (GCBerlin, GCKiel, GCMunich, GC2BM, GC3BKM)
and derived for all possible combinations of populations, joining
populations if statistics are intended only for pairwise compari-
sons. We simulated two different scenarios when analysing the
data set. In general, one might expect to see the biggest possible
population differential in prevalence when comparing popula-
tions from large geographic distances. Thus, analysing popula-
tion samples as they were collected in this study, from north
(POPGEN), north-east (SHIP) and south (KORA) Germany, can
be regarded as a ‘worst case’ scenario, where all the samples in the
first group were drawn from one population and all the samples
in the second group were from another. In contrast to this sce-
nario, we simulated random population samples (GCRandom]1,
GCRandom?2) to serve as representatives for a cross-section of the
German population. The random population samples were cre-
ated by bootstrapping using the pool of individuals of the original
population (KORA, POPGEN and SHIP) as re-sampling units.

Results

F-Statistics

Fgr is the estimator for the coancestry coefficient, the
correlation of alleles of different individuals in the same
population, which quantifies the amount of genetic vari-
ation due to differences among populations or geograph-
ical regions. In the majority of cases, Fgr estimates were
positive and quite low in our study (table 3a). Fgy esti-
mates ranged from -0.00017 to 0.00071 with a maximal
standard deviation of 0.00033. The highest Fgr estimates
were identified for the ‘KORA versus SHIP” comparison
regardless of which distinct marker set (GCBerlin,
GCKiel, GCMunich), or combined marker sets (GC2BM,
GC3BKM), was used. Fgr values were essentially zero if a
random sample was compared to any other sample.
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Table 3. F-statistics

GCKiel GCMunich GCBerlin GC2BM GC3BKM
a FST
KORA, POPGEN 0.00003 £0.00014  0.00008 £0.00014  0.00039+0.00017 0.00025%£0.00011 0.00017 £0.00009
KORA, SHIP 0.00032£0.00018 0.00071£0.00033  0.00066 =0.00022  0.00068 = 0.00020 0.00054 £0.00014
POPGEN, SHIP -0.00017 = 0.00009 0.00009 £0.00012  0.00008 =0.00015  0.00008 = 0.00010 -0.00001 % 0.00007
KORA, POPGEN, SHIP 0.00006 £0.00010 0.00030%£0.00016  0.00039=0.00013  0.00035 % 0.00010 0.00024 £ 0.00008
KORA, POPGEN 0.0061 +£0.0033 0.0054 +0.0041 0.0083 £ 0.0039 0.0069 +0.0028 0.0066 +0.0021
KORA, SHIP 0.0049 +0.0028 0.0092 +0.0044 0.0108 £0.0036 0.0100 +0.0028 0.0080 +0.0021
POPGEN, SHIP 0.0005 %+ 0.0031 0.0060 +0.0041 0.0067 = 0.0036 0.0064 +0.0027 0.0041 *+0.0020
KORA, POPGEN, SHIP 0.0038 +0.0024 0.0072 +£0.0034 0.0080+0.0033 0.0076 = 0.0024 0.0062 +0.0017
C FIS
KORA, POPGEN 0.0061 +0.0033 0.0053 +0.0041 0.0079 = 0.0039 0.0067 = 0.0028 0.0065 +0.0022
KORA, SHIP 0.0046 +0.0028 0.0084 +0.0044 0.0102 +0.0036 0.0093 +0.0028 0.0075%+0.0021
POPGEN, SHIP 0.0006 +0.0031 0.0060 *0.0040 0.0066 +0.0036 0.0063 +0.0027 0.0041 +0.0020
KORA, POPGEN, SHIP 0.0038 +0.0024 0.0069 £ 0.0034 0.0076 £0.0033 0.0073 +£0.0024 0.0059+0.0017
d Fyg
KORA 0.0096 +0.0046 0.0083 *+0.0056 0.0074 +0.0047 0.0078 = 0.0036 0.0084 +0.0028
POPGEN 0.0010 +0.0047 -0.0010%0.0056 0.0058 +0.0047 0.0028 +0.0036 0.0022 +0.0029
SHIP -0.0022 +£0.0043 0.0092 +0.0061 0.0108 £0.0045 0.0100 +0.0037 0.0058 +0.0029

Mean estimator of the F-statistics with standard error calculated by jackknifing.

Fgr = Correlation of alleles of different individuals in the same population (coancestry); Fir = correlation of alleles within individuals

over all populations (inbreeding); Fis = correlation of alleles within individuals within populations.

Table 4. Inflation factor \

GCKiel

GCMunich

GCBerlin

GC2BM

GC3BKM

KORA vs. POPGEN

KORA vs. SHIP
POPGEN vs. SHIP

0.948 (0.359, 1.888)
1.496 (0.668, 2.386)
0.609 (0.356, 1.464)

1.541 (0.973, 2.203)
1.071 (0.567, 1.916)
1.210 (0.681, 2.341)

1.707 (0.691, 2.768)
1.779 (1.266, 3.180)
1.246 (0.703, 1.737)

1.360 (0.911, 2.052
1.455 (0.975, 1.935
1.282 (0.897, 1.722

1.138 (0.874, 1.806)
1.455 (1.010, 1.867)
0.977 (0.681, 1.472)

Random1 vs. Random2

KORA vs. Random

1.030 (0.557, 1.666)
0.970 (0.540, 1.537)

1.029 (0.531, 1.715)
0.982 (0.517, 1.606)

1.125 (0.634, 1.742)

1.041 (0.690, 1.476

1.013 (0.714, 1.372)
1.008 (0.7211, 1.359)

POPGEN vs. Random
SHIP vs. Random

0.769 (0.414, 1.237)
0.920 (0.506, 1.470)

0.816 (0.416, 1.351)
1.037 (0.552, 1.678)

0.890 (0.494, 1.403)
1.046 (0.565, 1.683)

0.845 (0.554, 1.200
1.030 (0.669, 1.473

0.810 (0.574, 1.094)

)
)
)
1.015 (0.656, 1.461)
)
)
) 0.980 (0.695, 1.317)

(
(
(
1.031 (0.563, 1.652)
(
(
(

Inflation factor with 95% confidence interval for pairwise comparison of populations.

Frr and Fig describe the correlation of alleles within
individuals (e.g. due to inbreeding) over all populations
and within one sub-population, respectively. In the hu-
man species these values are typically one order of mag-
nitudehigher than Fgyvalues, confirming the well-known
fact that most variability in human populations is ob-
served within populations and only a minor fraction of
genetic variation is due to differences between popula-
tions. If evolutionary forces have been acting over suffi-
cient periods, Fir values exceed Fig values. Comparison
of KORA from the south with the two northern popula-

24 Hum Hered 2006;62:20-29

tion samples POPGEN and SHIP coincided in this sense
indicating a small, but still measurable genetic differen-
tiation between the southern and northern part of Ger-
many (table 3b and c). For example using the GC2BM
marker set, the maximum Frp value reached was 0.0100 *+
0.0028 compared to 0.0093 £ 0.0028 for the Fig value.

Lambda Inflation Factor

Pairwise comparisons of population samples accord-
ing to the ‘worst case’ scenario showed \ values ranging
from 0.609 to 1.779 (table 4). The marker sets GCKiel and
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Table 5. Prediction rate

GCKiel

GCMunich

GCBerlin

GC2BM

GC3BKM

a KORA, POPGEN
KORA, SHIP
POPGEN, SHIP

KORA, POPGEN, SHIP

0.5005
(0.4926, 0.5084)
0.5101

(0.5007, 0.5196)
0.4952

(0.4898, 0.5007)
0.3351

(0.3300, 0.3401)

0.5027
(0.4961, 0.5094)
0.5203

(0.5055, 0.5350)
0.5019

(0.4958, 0.5081)
0.3406

(0.3339, 0.3473)

0.5119
(0.5028, 0.5211)
0.5174
(0.5076, 0.5273)
0.5076
(0.4979, 0.5173)
0.3459
(0.3386, 0.3532)

0.5143
(0.5030, 0.5256)
0.5353
(0.5197, 0.5510)
0.5090
(0.4981, 0.5199)
0.3518
(0.3426, 0.3609)

0.5139
(0.5014, 0.5265)
0.5421
(0.5261, 0.5580)
0.5046
(0.4930, 0.5162)
0.3526
(0.3430, 0.3621)

b KORA, POPGEN
KORA, SHIP
POPGEN, SHIP

KORA, POPGEN, SHIP

0.5007
(0.4909, 0.5105)
0.5119
(0.4999, 0.5239)
0.4948
(0.4874, 0.5023)
0.3357
(0.3294, 0.3421)

0.5096
(0.5003, 0.5190)
0.5232
(0.5082, 0.5382)
0.5127
(0.5014, 0.5241)
0.3484
(0.3400, 0.3567)

0.5096
(0.4997, 0.5195)
0.5143
(0.5034, 0.5251)
0.5059
(0.4943, 0.5175)
0.3433
(0.3353, 0.3514)

0.5185
(0.5057, 0.5313)
0.5356
(0.5194, 0.5518)
0.5174
(0.5035, 0.5312)
0.3564
(0.3460, 0.3667)

0.5177
(0.5032, 0.5323)
0.5428
(0.5249, 0.5606)
0.5112
(0.4968, 0.5256)
0.3561
(0.3452, 0.3670)

Prediction rates with 95% confidence intervals based on allele frequencies (a) and genotype frequencies (b).

GCBerlin yielded the highest factors for the comparison
‘KORA versus SHIP” and the lowest values for POPGEN
versus SHIP’. Likewise, the marker set GCMunich identi-
fied higher factors for the comparison ‘KORA versus
POPGEN’ than for ‘POPGEN versus SHIP’, but showed
an outstanding low value for the comparison ‘KORA ver-
sus SHIP'.

Marker set GCKiel resulted in smaller and GCBerlin
in the higher absolute values than the other sets. Despite
the apparent differences between the marker sets, the es-
timated inflation factor of each set was inside the 95%-
confidence intervals of the inflation factor of the other
sets. Unity was not included in the 95%-confidence inter-
val only for the marker sets GCBerlin and GC3BKM
comparing ‘KORA versus SHIP”.

Lambda factors for comparisons of randomly created
samples were close to unity and showed noticeable small-
er confidence intervals than the comparisons between
the original population samples. The upper limit of the
95% confidence interval of the inflation factor for the
GC3BKM marker set comparing two randomly simulat-
ed samples was 1.372.

Structured Association

Regardless of the scenario, STRUCTURE failed to de-
tect any substructure within or between the three popu-
lations KORA, POPGEN and SHIP. The model with the

NGFN Genomic Control Study

highest posterior probability for the data was always the
one assuming the number of populations to be unity
(K=1), corresponding to a single population with no out-
liers. The estimate of the average individual admixture
rates within a sample was in all scenarios nearly perfect-
ly equal to the expected probability of random classifica-
tion.

Prediction Rate

In most pairwise comparisons the prediction rate was
close to 50%, with slight advantages for the marker sets
including neutral, non-coding loci (table 5). Comparing
‘KORA versus SHIP’ the prediction rate increased slight-
ly with an increasing number of marker loci up to 54% in
the whole data set GC3BKM. For ‘POPGEN versus SHIP’
the prediction rate was always around 50%. Indeed the
estimate was less than 50% using the GCKiel marker set.
This corresponds with the negative estimate for Fgr for
this comparison.

Random Forests

The results of predicting the pairwise population af-
filiation at a time is depicted in table 6. In the training
data the classification error frequencies using all SNPs or
merely the non-coding SNPs were always less then 50%,
a value which would be expected by random classifica-
tion. In contrast, upon use of the coding SNPs, even the
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Table 6. Random forests

Training data Test data
GC3BKM
KORA 0.4752 0.3306 0.5021 0.3320
(0.4300,0.5208)  (0.2888, 0.3745) (0.4372,0.5669)  (0.2728, 0.3953)
POPGEN 0.4472 0.3602 0.4153 0.3856
(0.4023, 0.4928) (0.3174, 0.4049) (0.3517, 0.4810) (0.3232, 0.4509)
SHIP 0.4328 0.5139 0.5381 0.6695
(0.3875,0.4790)  (0.4676, 0.5599) (0.4723,0.6030)  (0.6055,0.7292)
Total 0.4612 0.3809 0.4359 0.4591 0.4340 0.5275
(0.4294, 0.4932) (0.3500, 0.4126) (0.4041, 0.4681) (0.4137, 0.5050) (0.3890, 0.4798) (0.4814, 0.5733)
GC2BM
KORA 0.5103 0.4566 0.5975 0.4149
(0.4648,0.5557)  (0.4116, 0.5022) (0.5326,0.6600)  (0.3520, 0.4799)
POPGEN 0.4741 0.4431 0.4576 0.4322
(0.4288, 0.5197) (0.3982, 0.4886) (0.3928, 0.5235) (0.3681, 0.4980)
SHIP 0.5224 0.5522 0.5678 0.6271
(0.4761,0.5684) (05060, 0.5979) (0.5020, 0.6319)  (0.5620, 0.6890)
Total 0.4922 0.4890 0.4968 0.5283 0.4906 0.5297
(0.4603, 0.5243) (0.4568, 0.5212) (0.4646, 0.5291) (0.48240, 0.5739) (0.4448, 0.5364) (0.4835, 0.5754)
GCKiel
KORA 0.4339 0.3182 0.5809 0.3568
(0.3892,0.4794)  (0.2769, 0.3617) (0.5159,0.6439)  (0.2964, 0.4209)
POPGEN 0.4327 0.3602 0.4322 0.4153
(0.3880, 0.4782) (0.3174, 0.4049) (0.3681, 0.4980) (03517, 0.4810)
SHIP 0.4009 0.4691 0.5508 0.6059
(0.3562,0.4468)  (0.4232, 0.5154) (0.4850, 0.6154) (0.5405, 0.6687)
Total 0.4333 0.3589 0.4139 0.5073 0.4528 0.5106

(0.4018, 0.4652) (0.3284, 0.3902)

(0.3824, 0.4459)

(0.4615, 0.5531) (0.4075, 0.4987) (0.4645, 0.5566)

Classification error frequencies with 95% confidence intervals for prediction of pairwise populations.

training cases could not be predicted more accurately
than by chance. In the test sample, prediction of ‘'KORA
versus POPGEN’ or ‘POPGEN versus SHIP’ is not better
than the random classification frequency of 50%. How-
ever, the confidence interval of the error frequency in
predicting ‘KORA versus SHIP’ is below 50%, and there-
fore better than by chance for the marker sets GCKiel and
GC3BKM including the coding SNPs.

Discussion

For the first time three large samples drawn from geo-
graphically different regions within Germany were ana-
lysed to address population genetic issues relevant for fu-
ture case-control type epidemiological studies.

Summary statistics of population genetic differentia-
tion describing the distributions of heterozygosity and
Fgr values were consistent with the literature, in that only
a minor proportion of the total variance of genetic varia-
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tion is due to differences between populations, whereas
the major part is found within populations [2, 38, 39].
Average Fgr values accounted for far less than 5% of the
total variance in our sample. Known as Lewontin’s fal-
lacy, this does not justify the conclusion that populations
are not differentiable by genetic data, because Lewontin’s
conclusion is based solely on the assumption that infor-
mation arises only on a locus-by-locus analysis not in-
cluding correlations amongst the different loci [40]. In-
stead, we could show that Fgr values, despite being small,
were significant for the geographically most distant pop-
ulations KORA and SHIP. However, between KORA and
POPGEN the difference was small and not significant,
and finally between SHIP and POPGEN, the two popula-
tions from the northern part of Germany, there was no
clear-cut indication of relevant substructure. These ob-
servations are compatible with the results of Cavalli-Sfor-
za et al., who reported a slight degree of population dif-
ferentiation along a north-south gradient within Germa-
ny, using blood group data [41].
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Fgr values for the marker sets of putatively neutral
SNPs (GCBerlin and GCMunich) were in the range typi-
cal for European populations [42]