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timates of the degree of stratification were performed 
comparing the genomic control approach [Devlin B, Roeder 
K: Biometrics 1999;55:997–1004], structured association 
[Pritchard JK, Stephens M, Donnelly P: Genetics 2000;155:945–
959] and sophisticated methods like random forests [Brei-
man L: Machine Learning 2001;45:5–32].  Results:  F-statistics 
showed that there exists a low genetic differentiation 
 between the samples along a north-south gradient within 
Germany (F ST (KORA/POPGEN): 1.7 � 10 –4 ; F ST (KORA/SHIP): 
5.4 � 10 –4 ; F ST (POPGEN/SHIP): –1.3 � 10 –5 ).  Conclusion:  Al-
though the F ST    -values are very small, indicating a minor de-
gree of population structure, and are too low to be detect-
able from methods without using prior information of 
subpopulation membership, such as STRUCTURE [Pritchard 
JK, Stephens M, Donnelly P: Genetics 2000;155:945–959], 
they may be a possible source for confounding due to popu-
lation stratification.  Copyright © 2006 S. Karger AG, Basel 
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 Abstract 
  Objective:  To evaluate the relevance and necessity to ac-
count for the effects of population substructure on associa-
tion studies under a case-control design in central Europe, 
we analysed three samples drawn from different geograph-
ic areas of Germany. Two of the three samples, POPGEN (n = 
720) and SHIP (n = 709), are from north and north-east Ger-
many, respectively, and one sample, KORA (n = 730), is from 
southern Germany.  Methods:  Population genetic differen-
tiation was measured by classical F-statistics for different 
marker sets, either consisting of genome-wide selected cod-
ing SNPs located in functional genes, or consisting of selec-
tively neutral SNPs from ‘genomic deserts’. Quantitative es-
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 Introduction 

 Undetected or disregarded population structure may 
appear to mask, change, reverse or mimic genetic effects 
of genes underlying complex traits  [1] , and may lower sta-
tistical power in linkage analysis  [2] . In particular, ge-
netic epidemiological case-control studies are susceptible 
to confounding effects of differential allele frequencies at 
disease and marker loci associated with local populations 
of different demographic history or ethnic background. 
This problem is well known since the early days of genet-
ics  [6] , but, nonetheless, has been largely ignored in ge-
netic epidemiological research. The revived interest in 
the case-control study design using genetic markers has 
stirred a recent debate about the relevance of confound-
ing by population substructure and admixture  [7–10]  
with lack of empirical evidence, especially when authors 
chose models with unrealistically differential prevalenc-
es leading to large effects  [11, 12] .

  Generally, one can distinguish between two concepts 
to handle the problem of unknown population stratifica-
tion in epidemiological studies, genomic control and 
structured association. In a series of papers  [3, 13, 14] , 
Devlin, Roeder and co-workers elaborated the concept of 
genomic control. The method uses a collection of supple-
mentary non-candidate loci to estimate any inflation,  � , 
in the distribution of the association test statistics be-
tween unlinked genetic variants of cases and controls 
generated e.g. by population structure, and then corrects 
the association test statistics at the candidate loci by the 
inflation factor  � .

  The second concept, structured association, was de-
veloped by Pritchard et al.  [4] . It is based on a latent class 
model and stratifies the analysis according to the optimal 
number of subpopulation classes. Subsequent tests for as-
sociation are performed within each subpopulation by 
treating the number of subpopulations and the subpopu-
lation membership or admixture proportions for each in-
dividual as known quantities. In doing so, the null hy-
pothesis is that the allele frequencies depend only on the 
subpopulation and not on the phenotype.

  Even though both concepts have been published more 
than five years ago, there has been no human based, 
large-scale association study conducted in central Europe 
applying these concepts, particularly none with especial-
ly selected neutral markers of the human genome. This is 
remarkable in light of the findings of Helgason et al.  [15] , 
who found that the Icelandic population, previously 
thought to be a prime example of a homogeneous popula-
tion, turned out to be stratified with the potential for a 

notable impact on association studies. One reason may be 
the unproven conjecture, that population differentiation 
is too small within the European population to cause sub-
stantial effect in association studies. However, Campbell 
et al.  [16]  recently demonstrated that population stratifi-
cation can, indeed, lead to false positive associations in a 
sample of European Americans confounded by their Eu-
ropean ancestry. To date, most studies inferring popula-
tion structure using genomic controls or structured as-
sociation analysis have been limited to human samples of 
predefined ethnic or geographic origin, or animal and 
plants involving strains or local races  [17–24] .

  The rapid progress of the high-throughput genotyping 
technology with its preference for the case-control study 
design makes it more and more important to assess in 
advance the magnitude of genetic differences between 
samples, which are scheduled to be joined in future med-
ical genetic research projects. Therefore, this study ad-
dresses the possible impact of population genetic effects 
on case-control association studies within the three main 
existent population cohorts in Germany.

  Materials and Methods 

 Study Subjects 
 Population samples were recruited from three on-going cross-

sectional epidemiological surveys of regional German popula-
tions: (1) KORA (Co-operative Health Research in the Region of 
Augsburg) from southern Germany  [25, 26] ; (2) POPGEN (Popu-
lation Genetic Cohort) from Schleswig-Holstein, northern Ger-
many  [27] , and (3) SHIP (Survey of Health in Pommerania) from 
east and northeast Germany  [28, 29] . No degree of kinship was 
expected among the individuals, either between or within any 
population sample, but individuals were not explicitly tested for 
relationship a priori.

  Sub-samples of more than 700 people for each sample (KORA: 
730, POPGEN: 720, SHIP: 709) were genotyped at the same 212 
SNP marker loci ( fig. 1 ). The sub-samples were matched for age 
(KORA, POPGEN, SHIP: 54  8  13 years) and proportions of males 
(KORA, POPGEN, SHIP: 50%) and showed no specific disease 
phenotype. Informed written consent was given by each person of 
the three population samples prior to enrolment in the study.

  Genotyping, Marker Selection and Quality Control 
 All persons were genotyped at the same 212 SNP marker loci, 

which were subdivided into three marker sets of approximately 70 
markers each. The marker sets, GCBerlin, GCKiel and GCMu-
nich, were named according to the location of the genotyping cen-
ters where the genotyping for each marker set took place ( fig. 1 ). 
Each center used a different genotyping technology, namely Berlin 
(Pyrosequencing TM  and Taqman � ), Kiel (Taqman � ) and Munich 
(MALDI-TOF TM ; matrix assisted laser desorption/ionization).

  The marker loci in this study were of two types: (i) One set of 
coding SNPs (GCKiel), which are located in exons of functional 
genes, causing an amino acid exchange in the resulting protein, 
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and thus are potentially subject to selective forces. (ii) Two sets of 
neutral SNPs (GCMunich, GCBerlin), which are located far from 
known genes, and which are uniformly spaced throughout the 
genome in putative ‘genomic deserts’. These loci are assumed to 
fulfil the requirement of selective neutrality in the absence of spe-

cific information, and are expected to depict the neutral process-
es of drift and migration in demographic history. These GC SNPs 
were selected according to a set of rules envisaged by Devlin and 
Roeder (1999) and which were formalized by the Bonn group 
( table 1 ). The joined marker sets (GCBerlin + GCMunich) and 
(GCBerlin + GCKiel + GCMunich) will be referred to as ‘GC2BM’ 
and ‘GC3BKM’, respectively.

  The data were subjected to an extensive quality process which 
comprised:

   Standardized reporting of variants.  Genotyping on different 
platforms resulted in non-uniform allele and genotyping designa-
tions, which were translated into dbSNP standards throughout.

   Determination of the genotype call rate.  The averaged call rate 
over all population samples was 96.1%. Call rates per marker set 
and sample are summarized in  table 2 .

   Determination of DNA sample typing rate.  A typing rate below 
50% was regarded as indicative of impaired DNA quality, which 
may be dependent on genotyping methodology. In total 40 per-
sons were excluded from the marker sets (GCBerlin: 11, GCKiel: 
27, GCMunich: 2).

   Unlikely multilocus genotypes  were regarded as indicative of 
quality problems. One person with 80% of homozygous geno-
types was removed from the data set.

   Unintentional duplicates.  3 pairs of persons were found with a 
perfect genotype matching. For each pair, the person with the 
lower typing rate was removed.

   Cryptic relatedness.  By using ‘Graphical Representation of Re-
lationship Errors’ (GRR)  [30]  we found 3 pairs of persons display-
ing outlying high values of IBS  1 1,73. These pairs were resolved 
in the same way as described in the previous point.

   Hardy-Weinberg equilibrium (HWE)  in each sample. The dis-
tribution of p values of the HWE test for each marker was tested 
for non-uniformity. No significant deviation was observed, and 
in particular no excess of low p values.

   Pairwise linkage disequilibrium (LD) between markers  in each 
sample (D’ and r 2 ). LD values were randomly dispersed and did 
not show any inhomogeneity or irregularity.

  Methods 
 Data analysis comprises classical population genetic statistics 

based on prior information about the population structure (F-sta-
tistics, the lambda inflation factor, genetic distances), as well as 
some more sophisticated methods (structured association analy-
sis, random forests, prediction rates), which estimate the number 
of sub-populations in the sample from multi-locus marker data 
and account for the uncertainty related to unknown population 

  Fig. 1.  Study design. Each population was genotyped by each of 
the three marker sets. The numbers in brackets under the popula-
tions show the sample size after and before data revision. The 
brackets to the right of the marker sets show the total number of 
markers per set. The sets GCMunich and GCBerlin include three 
overlapping markers. 

Table 1. Characteristics of marker sets

GCMunich, GCBerlin:
• Intergenic SNPs from genomic deserts, e.g. null loci, 

randomly chosen, uniformly spread across the genome
• validated by minor allele frequency between 10 and 50%

in Caucasian
• 500 Kbp intermarker distance
• >100 Kbp apart from any known gene region
• >1 Mbp apart from centromers and telomers
• 4 SNPs on each chromosome for each marker set
• 2 SNPs on each chromosome arm for each set
• 1 SNP for each interval of heterozygosity from 10 to 50%

in steps of 10% on each chromosome
• no markers selected from the Y-chromosome

GCKiel:
• Intragenic exonic SNPs, protein coding genes, associated 

with an amino acid exchange or an effective promotor 
alteration

Table 2. Genotyping call rate broken down by marker set and 
population

Population Genotyping center

Kiel Munich Berlin

SHIP 0.966 0.979 0.968
KORA 0.962 0.974 0.984
POPGEN 0.989 0.982 0.990
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structure. In doing so, these methods rely on assumptions con-
cerning Hardy-Weinberg equilibrium and linkage equilibrium 
within populations.

  The  fixation indices  were introduced by S. Wright in 1921  [31, 
32]  and consist of three parameters, F ST  F IT , and F IS , which de-
scribe the allelic correlations in a hierarchically substructured 
population  [33] . The programs FSTAT (version 2.9.3.2)  [34]  and 
PowerMarker (version 3.23)  [35]  were used to calculate the F-sta-
tistics. X-linked markers were excluded from this analysis to avoid 
bias due to the effects of natural selection and lower recombina-
tion rates on the X-chromosome.

  The  inflation factor   �  was calculated by the median of the 
Armitage’s trend test statistics divided by the expected 50%-
quantile (0.455) of the association test  � -square distribution 
(d.f. = 1) under the null hypothesis of no association between the 
SNPs typed in cases and controls  [3] . A bootstrapping procedure 
was used to calculate the confidence interval for the  �  factors 
 [36] . To provide a better insight into the nature of the data we 
 report the  �  factors without being rounded up to unity according 
to the definition of Devlin and Roeder  [3]  ( �   {  max(1, 
median( � )/0.455)).

  To infer the relative  individual admixture level  within the three 
population samples (KORA, POPGEN and SHIP) and among 
each other, the unsupervised clustering algorithm implemented 
in the program STRUCTURE (version 2.1)  [4]  was used. The anal-
ysis was conducted for several models with different populations 
numbers ranging from K = 1 to 5. For each model we run the pro-
gram several times, using a burn-in period of 10,000 replicates 
and 100,000 iterations, resulting in stable model parameters and 
consistent results. First, each population was analysed on its own 
to detect any possible within population sub-structuring. Second, 
we pooled populations pair-wise together to see whether STRUC-
TURE might be able to separate and recover the original ones, 
and, third, we analysed all three populations simultane ously.

  We derived the  prediction rate  as a measure of genetic struc-
ture in the style of a Naive Bayes classifier. The prediction rate 
indicates to what extent it is possible to identify the predefined 
populations from a given number of marker loci. It is defined as 
the expected posterior probability of a randomly drawn new in-
dividual from one of these samples being correctly classified to its 
predefined population. The prediction rate was estimated by 
leave-one-out cross-validation as follows: The posterior probabil-
ity of each individual being classified to its predefined population 
is calculated given its multi-locus genotype data and the popula-
tion genotype frequencies estimated by leaving that individual 
out. To determine the posterior probability, Bayes’ formula is ap-
plied based on the assumption that all subpopulations are a prio-
ri equally likely. For each subpopulation the likelihood of the in-
dividual’s genotype data assuming that the individual originates 
from that population has to be determined. This likelihood is cal-
culated by multiplying the probabilities of the individual’s geno-
types over the loci, either based on genotype or the allele frequen-
cies in the respective population. Finally, the prediction rate is 
estimated by averaging the posterior probabilities over all indi-
viduals. Confidence intervals for the prediction rate were calcu-
lated via bootstrapping over all loci.

  Sub-population membership was also predicted by  random 
forests  according to Breiman  [5] . In brief, random forests is an 
ensemble method comprising a pre-specified number of classifi-
cation trees  [36] . To allow for a better estimation of the classifica-

tion error frequency, the total sample was randomly split into a 
training data (approximately two thirds) and a test data set (ap-
proximately one third). Random forests were developed in the 
training data with a missing value imputation based on estimated 
proximities from the random forests. Specifically, 500 classifica-
tion trees were grown on bootstrap samples of all individuals in 
the training data, and a random selection of approximately square 
root of the available SNPs were used for each node within every 
tree. The resulting random forests were applied to predict indi-
viduals in the test data set where missing values were imputed by 
median values. Every individual in the test data set was finally 
classified according to the majority vote across all trees in the for-
est. Random forests were used for prediction of pairwise popula-
tions KORA vs. POPGEN, KORA vs. SHIP, and POPGEN vs. 
SHIP separately from all, only coding SNPs and from only non-
coding SNPs. Frequencies of the classification error were deter-
mined in training and test data together with 95% confidence 
binomial intervals according to Clopper-Pearson  [37] .

  Data Analysis 
 Analysis of population structure was performed using the five 

marker sets (GCBerlin, GCKiel, GCMunich, GC2BM, GC3BKM) 
and derived for all possible combinations of populations, joining 
populations if statistics are intended only for pairwise compari-
sons. We simulated two different scenarios when analysing the 
data set. In general, one might expect to see the biggest possible 
population differential in prevalence when comparing popula-
tions from large geographic distances. Thus, analysing popula-
tion samples as they were collected in this study, from north 
(POPGEN), north-east (SHIP) and south (KORA) Germany, can 
be regarded as a ‘worst case’ scenario, where all the samples in the 
first group were drawn from one population and all the samples 
in the second group were from another. In contrast to this sce-
nario, we simulated random population samples (GCRandom1, 
GCRandom2) to serve as representatives for a cross-section of the 
German population. The random population samples were cre-
ated by bootstrapping using the pool of individuals of the original 
population (KORA, POPGEN and SHIP) as re-sampling units.

  Results 

 F-Statistics 
 F ST  is the estimator for the coancestry coefficient, the 

correlation of alleles of different individuals in the same 
population, which quantifies the amount of genetic vari-
ation due to differences among populations or geograph-
ical regions. In the majority of cases, F ST  estimates were 
positive and quite low in our study ( table 3 a). F ST  esti-
mates ranged from –0.00017 to 0.00071 with a maximal 
standard deviation of 0.00033. The highest F ST  estimates 
were identified for the ‘KORA versus SHIP’ comparison 
regardless of which distinct marker set (GCBerlin, 
 GCKiel, GCMunich), or combined marker sets (GC2BM, 
GC3BKM), was used. F ST  values were essentially zero if a 
random sample was compared to any other sample.
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  F IT  and F IS  describe the correlation of alleles within 
individuals (e.g. due to inbreeding) over all populations 
and within one sub-population, respectively. In the hu-
man species these values are typically one order of mag-
nitude higher than F ST  values, confirming the well-known 
fact that most variability in human populations is ob-
served within populations and only a minor fraction of 
genetic variation is due to differences between popula-
tions. If evolutionary forces have been acting over suffi-
cient periods, F IT  values exceed F IS  values. Comparison 
of KORA from the south with the two northern popula-

tion samples POPGEN and SHIP coincided in this sense 
indicating a small, but still measurable genetic differen-
tiation between the southern and northern part of Ger-
many ( table 3 b and c). For example using the GC2BM 
marker set, the maximum F IT  value reached was 0.0100  8  
0.0028 compared to 0.0093  8  0.0028 for the F IS  value.

  Lambda Inflation Factor 
 Pairwise comparisons of population samples accord-

ing to the ‘worst case’ scenario showed  �  values ranging 
from 0.609 to 1.779 ( table 4 ). The marker sets GCKiel and 

Table 3. F-statistics

GCKiel GCMunich GCBerlin GC2BM GC3BKM

a FST
KORA, POPGEN 0.0000380.00014 0.0000880.00014 0.0003980.00017 0.0002580.00011 0.0001780.00009
KORA, SHIP 0.0003280.00018 0.0007180.00033 0.0006680.00022 0.0006880.00020 0.0005480.00014
POPGEN, SHIP –0.0001780.00009 0.0000980.00012 0.0000880.00015 0.0000880.00010 –0.0000180.00007
KORA, POPGEN, SHIP 0.0000680.00010 0.0003080.00016 0.0003980.00013 0.0003580.00010 0.0002480.00008

b FIT
KORA, POPGEN 0.006180.0033 0.005480.0041 0.008380.0039 0.006980.0028 0.006680.0021
KORA, SHIP 0.004980.0028 0.009280.0044 0.010880.0036 0.010080.0028 0.008080.0021
POPGEN, SHIP 0.000580.0031 0.006080.0041 0.006780.0036 0.006480.0027 0.004180.0020
KORA, POPGEN, SHIP 0.003880.0024 0.007280.0034 0.008080.0033 0.007680.0024 0.006280.0017

c FIS
KORA, POPGEN 0.006180.0033 0.005380.0041 0.007980.0039 0.006780.0028 0.006580.0022
KORA, SHIP 0.004680.0028 0.008480.0044 0.010280.0036 0.009380.0028 0.007580.0021
POPGEN, SHIP 0.000680.0031 0.006080.0040 0.006680.0036 0.006380.0027 0.004180.0020
KORA, POPGEN, SHIP 0.003880.0024 0.006980.0034 0.007680.0033 0.007380.0024 0.005980.0017

d FIS
KORA 0.009680.0046 0.008380.0056 0.007480.0047 0.007880.0036 0.008480.0028
POPGEN 0.001080.0047 –0.001080.0056 0.005880.0047 0.002880.0036 0.002280.0029
SHIP –0.002280.0043 0.009280.0061 0.010880.0045 0.010080.0037 0.005880.0029

Mean estimator of the F-statistics with standard error calculated by jackknifing.
FST = Correlation of alleles of different individuals in the same population (coancestry); FIT = correlation of alleles within individuals 
over all populations (inbreeding); FIS = correlation of alleles within individuals within populations.

Table 4. Inflation factor �

 GCKiel GCMunich GCBerlin GC2BM GC3BKM

KORA vs. POPGEN 0.948 (0.359, 1.888) 1.541 (0.973, 2.203) 1.707 (0.691, 2.768) 1.360 (0.911, 2.052) 1.138 (0.874, 1.806)
KORA vs. SHIP 1.496 (0.668, 2.386) 1.071 (0.567, 1.916) 1.779 (1.266, 3.180) 1.455 (0.975, 1.935) 1.455 (1.010, 1.867)
POPGEN vs. SHIP 0.609 (0.356, 1.464) 1.210 (0.681, 2.341) 1.246 (0.703, 1.737) 1.282 (0.897, 1.722) 0.977 (0.681, 1.472)

Random1 vs. Random2 1.030 (0.557, 1.666) 1.029 (0.531, 1.715) 1.031 (0.563, 1.652) 1.015 (0.656, 1.461) 1.013 (0.714, 1.372)
KORA vs. Random 0.970 (0.540, 1.537) 0.982 (0.517, 1.606) 1.125 (0.634, 1.742) 1.041 (0.690, 1.476) 1.008 (0.7211, 1.359)
POPGEN vs. Random 0.769 (0.414, 1.237) 0.816 (0.416, 1.351) 0.890 (0.494, 1.403) 0.845 (0.554, 1.200) 0.810 (0.574, 1.094)
SHIP vs. Random 0.920 (0.506, 1.470) 1.037 (0.552, 1.678) 1.046 (0.565, 1.683) 1.030 (0.669, 1.473) 0.980 (0.695, 1.317)

Inflation factor with 95% confidence interval for pairwise comparison of populations.
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GCBerlin yielded the highest factors for the comparison 
‘KORA versus SHIP’ and the lowest values for ‘POPGEN 
versus SHIP’. Likewise, the marker set GCMunich identi-
fied higher factors for the comparison ‘KORA versus 
POPGEN’ than for ‘POPGEN versus SHIP’, but showed 
an outstanding low value for the comparison ‘KORA ver-
sus SHIP’.

  Marker set GCKiel resulted in smaller and GCBerlin 
in the higher absolute values than the other sets. Despite 
the apparent differences between the marker sets, the es-
timated inflation factor of each set was inside the 95%-
confidence intervals of the inflation factor of the other 
sets. Unity was not included in the 95%-confidence inter-
val only for the marker sets GCBerlin and GC3BKM 
comparing ‘KORA versus SHIP’.

  Lambda factors for comparisons of randomly created 
samples were close to unity and showed noticeable small-
er confidence intervals than the comparisons between 
the original population samples. The upper limit of the 
95% confidence interval of the inflation factor for the 
GC3BKM marker set comparing two randomly simulat-
ed samples was 1.372.

  Structured Association 
 Regardless of the scenario, STRUCTURE failed to de-

tect any substructure within or between the three popu-
lations KORA, POPGEN and SHIP. The model with the 

highest posterior probability for the data was always the 
one assuming the number of populations to be unity 
(K = 1), corresponding to a single population with no out-
liers. The estimate of the average individual admixture 
rates within a sample was in all scenarios nearly perfect-
ly equal to the expected probability of random classifica-
tion.

  Prediction Rate 
 In most pairwise comparisons the prediction rate was 

close to 50%, with slight advantages for the marker sets 
including neutral, non-coding loci ( table 5 ). Comparing 
‘KORA versus SHIP’ the prediction rate increased slight-
ly with an increasing number of marker loci up to 54% in 
the whole data set GC3BKM. For ‘POPGEN versus SHIP’ 
the prediction rate was always around 50%. Indeed the 
estimate was less than 50% using the GCKiel marker set. 
This corresponds with the negative estimate for F ST  for 
this comparison.

  Random Forests 
 The results of predicting the pairwise population af-

filiation at a time is depicted in  table 6 . In the training 
data the classification error frequencies using all SNPs or 
merely the non-coding SNPs were always less then 50%, 
a value which would be expected by random classifica-
tion. In contrast, upon use of the coding SNPs, even the 

Table 5. Prediction rate

GCKiel GCMunich GCBerlin GC2BM GC3BKM

a KORA, POPGEN 0.5005
(0.4926, 0.5084)

0.5027
(0.4961, 0.5094)

0.5119
(0.5028, 0.5211)

0.5143
(0.5030, 0.5256)

0.5139
(0.5014, 0.5265)

KORA, SHIP 0.5101
(0.5007, 0.5196)

0.5203
(0.5055, 0.5350)

0.5174
(0.5076, 0.5273)

0.5353
(0.5197, 0.5510)

0.5421
(0.5261, 0.5580)

POPGEN, SHIP 0.4952
(0.4898, 0.5007)

0.5019
(0.4958, 0.5081)

0.5076
(0.4979, 0.5173)

0.5090
(0.4981, 0.5199)

0.5046
(0.4930, 0.5162)

KORA, POPGEN, SHIP 0.3351
(0.3300, 0.3401)

0.3406
(0.3339, 0.3473)

0.3459
(0.3386, 0.3532)

0.3518
(0.3426, 0.3609)

0.3526
(0.3430, 0.3621)

b KORA, POPGEN 0.5007
(0.4909, 0.5105)

0.5096
(0.5003, 0.5190)

0.5096
(0.4997, 0.5195)

0.5185
(0.5057, 0.5313)

0.5177
(0.5032, 0.5323)

KORA, SHIP 0.5119
(0.4999, 0.5239)

0.5232
(0.5082, 0.5382)

0.5143
(0.5034, 0.5251)

0.5356
(0.5194, 0.5518)

0.5428
(0.5249, 0.5606)

POPGEN, SHIP 0.4948
(0.4874, 0.5023)

0.5127
(0.5014, 0.5241)

0.5059
(0.4943, 0.5175)

0.5174
(0.5035, 0.5312)

0.5112
(0.4968, 0.5256)

KORA, POPGEN, SHIP 0.3357
(0.3294, 0.3421)

0.3484
(0.3400, 0.3567)

0.3433
(0.3353, 0.3514)

0.3564
(0.3460, 0.3667)

0.3561
(0.3452, 0.3670)

Prediction rates with 95% confidence intervals based on allele frequencies (a) and genotype frequencies (b).
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training cases could not be predicted more accurately 
than by chance. In the test sample, prediction of ‘KORA 
versus POPGEN’ or ‘POPGEN versus SHIP’ is not better 
than the random classification frequency of 50%. How-
ever, the confidence interval of the error frequency in 
predicting ‘KORA versus SHIP’ is below 50%, and there-
fore better than by chance for the marker sets GCKiel and 
GC3BKM including the coding SNPs.

  Discussion 

 For the first time three large samples drawn from geo-
graphically different regions within Germany were ana-
lysed to address population genetic issues relevant for fu-
ture case-control type epidemiological studies.

  Summary statistics of population genetic differentia-
tion describing the distributions of heterozygosity and 
F ST  values were consistent with the literature, in that only 
a minor proportion of the total variance of genetic varia-

tion is due to differences between populations, whereas 
the major part is found within populations  [2, 38, 39] . 
Average F ST  values accounted for far less than 5% of the 
total variance in our sample. Known as Lewontin’s fal-
lacy, this does not justify the conclusion that populations 
are not differentiable by genetic data, because Lewontin’s 
conclusion is based solely on the assumption that infor-
mation arises only on a locus-by-locus analysis not in-
cluding correlations amongst the different loci  [40] . In-
stead, we could show that F ST  values, despite being small, 
were significant for the geographically most distant pop-
ulations KORA and SHIP. However, between KORA and 
POPGEN the difference was small and not significant, 
and finally between SHIP and POPGEN, the two popula-
tions from the northern part of Germany, there was no 
clear-cut indication of relevant substructure. These ob-
servations are compatible with the results of Cavalli-Sfor-
za et al., who reported a slight degree of population dif-
ferentiation along a north-south gradient within Germa-
ny, using blood group data  [41] .

Table 6. Random forests

Training data Test data

GC3BKM
KORA 0.4752

(0.4300, 0.5208)
0.3306

(0.2888, 0.3745)
0.5021

(0.4372, 0.5669)
0.3320

(0.2728, 0.3953)
POPGEN 0.4472

(0.4023, 0.4928)
0.3602

(0.3174, 0.4049)
0.4153

(0.3517, 0.4810)
0.3856

(0.3232, 0.4509)
SHIP 0.4328

(0.3875, 0.4790)
0.5139

(0.4676, 0.5599)
0.5381

(0.4723, 0.6030)
0.6695

(0.6055, 0.7292)
Total 0.4612

(0.4294, 0.4932)
0.3809

(0.3500, 0.4126)
0.4359

(0.4041, 0.4681)
0.4591

(0.4137, 0.5050)
0.4340

(0.3890, 0.4798)
0.5275

(0.4814, 0.5733)

GC2BM
KORA 0.5103

(0.4648, 0.5557)
0.4566

(0.4116, 0.5022)
0.5975

(0.5326, 0.6600)
0.4149

(0.3520, 0.4799)
POPGEN 0.4741

(0.4288, 0.5197)
0.4431

(0.3982, 0.4886)
0.4576

(0.3928, 0.5235)
0.4322

(0.3681, 0.4980)
SHIP 0.5224

(0.4761, 0.5684)
0.5522

(0.5060, 0.5979)
0.5678

(0.5020, 0.6319)
0.6271

(0.5620, 0.6890)
Total 0.4922

(0.4603, 0.5243)
0.4890

(0.4568, 0.5212)
0.4968

(0.4646, 0.5291)
0.5283

(0.48240, 0.5739)
0.4906

(0.4448, 0.5364)
0.5297

(0.4835, 0.5754)

GCKiel
KORA 0.4339

(0.3892, 0.4794)
0.3182

(0.2769, 0.3617)
0.5809

(0.5159, 0.6439)
0.3568

(0.2964, 0.4209)
POPGEN 0.4327

(0.3880, 0.4782)
0.3602

(0.3174, 0.4049)
0.4322

(0.3681, 0.4980)
0.4153

(0.3517, 0.4810)
SHIP 0.4009

(0.3562, 0.4468)
0.4691

(0.4232, 0.5154)
0.5508

(0.4850, 0.6154)
0.6059

(0.5405, 0.6687)
Total 0.4333

(0.4018, 0.4652)
0.3589

(0.3284, 0.3902)
0.4139

(0.3824, 0.4459)
0.5073

(0.4615, 0.5531)
0.4528

(0.4075, 0.4987)
0.5106

(0.4645, 0.5566)

Classification error frequencies with 95% confidence intervals for prediction of pairwise populations.
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  F ST  values for the marker sets of putatively neutral 
SNPs (GCBerlin and GCMunich) were in the range typi-
cal for European populations  [42] , but, as expected, much 
lower than reported for non-white US populations  [43] . 
The estimated F ST  = 0.00054 between the most distant 
populations KORA and SHIP were 2–4 times lower than 
the F ST  value between Germans and other Germanic pop-
ulations (Dutch, Danish, English, Austrian, Swiss, Bel-
gians), which range from 0.0010 for Germans and Swiss 
to 0.0022 for Germans and English  [41] .

  Though population genetic differences were quanti-
fiable and detectable by all marker sets, they were too 
small to serve as a safe basis to predict population mem-
bership by current methodology. None of the tested 
classification or prediction methods was able to produce 
convincing classification results. The best prediction 
rate we achieved was only 54% for the pairwise com-
parison ‘KORA versus SHIP’, in which both populations 
showed an F ST  value of 0.00054. Low prediction rates in 
context with low F ST  values are not surprising. For in-
stance, Shriver et al.  [2]  used 8525 autosomal SNPs and 
achieved a clustering rate of only 57% when clustering 
Japanese and Chinese individuals with a pairwise F ST  
value of 0.045. Furthermore, restricting clustering to 
makers with the highest F ST  values (the upper 10%), 
which are believed to be subject to selection that has 
been more recent, or resulted from completely neutral 
evolutionary history, yielded only slightly better predic-
tion rates  [2] . We, too, did not achieve significant im-
provements of the prediction rates when restricting the 
analyses to markers with the highest F ST  values.

  STRUCTURE failed to separate between KORA, POP-
GEN and SHIP. This is concordant with the results of Hao 
et al.  [21] , who could not detect any population stratifica-
tion, when combining two groups of Caucasian samples. 
Moreover, Köhler and Bickeböller  [44]  showed in simula-
tions that population stratification generally could be de-
tected for F ST   6  0.005 but not for F ST  = 0.0025 using a 
mixture model as a clustering method. Since the Bayesian 
model implemented in STRUCTURE is also a probability 
based clustering method, a similar performance is to be 
expected. Thus, below a threshold of population genetic 
differentiation, the methods designed to estimate popula-
tion structure from data without using prior information 
of population membership, do not perform well.

  In contrast, the genomic control method allows ad-
justing for confounding even in the presence of subtle 
population stratification. The same observation were 
made by Hao et al., who compared two Caucasian popu-
lations collected from different geographic regions  [21] . 

In addition, they demonstrated that bias in association 
tests can still be corrected and adjusted even if population 
stratification is not statistically significant. This is con-
cordant with our findings that low F ST  values can accom-
pany relevant inflation factors. For instance, under the 
assumption of population stratification due to a genetic 
differentiation equal in amount as evaluated between 
KORA and POPGEN with the marker set GC2BM (F ST  = 
0.00025), the  �  2  statistic is inflated by 1.36. Depending on 
the size of the test statistic, even this seemingly small lev-
el of population differentiation implies an important 
shift of p values, e.g.  �  2  = 9 (p = 0.0027) divided by 1.36 
gives  �  2  = 6.62 (p = 0.0101). 

  Another source of confounding, which can also result 
in elevated lambda values is cryptic relatedness, i.e. the 
kinship among cases or controls unknown to the investi-
gator. Cryptic relatedness can occur, whenever there has 
been rapid and recent population growth or extensive in-
breeding. As demonstrated by Voight and Pritchard  [45]  
for a wide range of possible disease parameters and gen-
erations of ancestry (number of meioses separating two 
relatives), the magnitude of inflation due to cryptic relat-
edness is in practice quite small, hardly ever exceeding 
1.07 in human populations. Thus, even if there were cryp-
tic relatedness in our sample, it could only partly explain 
the observed levels of the inflation factors.

  With larger sample sizes the power to detect con-
founding effects either due to population stratification or 
cryptic relatedness increases. Accordingly, under the ge-
nomic control approach, even small F ST  – values may re-
sult in sizeable inflation factors depending on sample size 
and mixture parameters. This can most obviously be seen 
by the approximation formula for the inflation factor  � : 
 �   ;  1 + F ST   �  N  �  P, whereby N is the sample size per case 
and control group drawn from the mixed population and 
P is a factor proportional to the fraction of each sub-
population within the case- and control group (P = (a1 – 
b1) 2  + (a2 – b2) 2 ; a1, a2 = fraction of population 1 and 2 
within cases; b1, b2 = fraction of population 1 and 2 with-
in controls), thus P varies from 0 (ideal situation) to 2 
(worst case scenario)  [3] .

  It is to be mentioned that in their recent paper Camp-
bell et al.  [16]  observed that STRUCTURE and the ge-
nomic control method did not detect significant stratifi-
cation, but they still obtained false positive association 
between lactase resistance and height among European 
Americans. However, they discarded a larger quantity of 
markers not passing the quality control or being out of 
Hardy-Weinberg equilibrium, which might have resulted 
in a biased, downward estimate of the inflation factor  � .
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  Conclusion 

 The observed low levels of population sub-structur-
ing gives a good indication that the German population 
is a suitable source for association studies in complex 
diseases as well as pharmaco-genetic studies. Neverthe-
less, even in populations with little heterogeneity it may 
be worthwhile to address population substructure by 
genomic controls or other methods. The quantitative 
 estimate of the degree of stratification, derived from the 
genomic control approach in this study, suggests that at 
least in some cases, there is a need to correct for infla-
tion to avoid false spurious association due to unobserv-
able population stratification. This reasoning is in con-
cordance with Freedman et al.  [46] , who emphasized 
the relevance of modest amounts of stratification even 
in well designed studies, and the findings of Campbell 
et al.  [16]  and Helgason et al.  [15] , who showed, that 
the level of population genetic differentiation found 
within the European population, has in reality the po-
tential to act as a notable confounding factor on asso-
ciation studies.
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