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In addition to functioning as a transcriptional transactivator, Epstein-Barr virus EBNA2 interacts with
Nur77 to protect against Nur77-mediated apoptosis. Estrogen-regulated EBNA2 in EREB2-5 cells was replaced
by either EBNA2 or EBNA2 with a deletion of conserved region 4 (EBNA2ACR4). Both EBNA2-converted and
EBNA2ACR4-converted EREB2-5 cells grew in the absence of estrogen and expressed LMP1. Treatment with
tumor necrosis factor alpha did not induce apoptosis of EBNA2- or EBNA2ACR4-expressing cells, but
EBNA2ACR4 cells were susceptible to etoposide and 5-fluorouracil, Nur77-mediated inducers of apoptosis.
Thus, EBNA2 protects B cells against specific apoptotic agents against which LMP1 is not effective.

Epstein-Barr virus (EBV) infection of B cells in culture
leads to the outgrowth of immortalized lymphoblastoid cell
lines (LCLs) that express the EBV latency genes encoding
EBV nuclear antigen 1 (EBNAl), EBNA2, EBNA3A,
EBNA3B, and EBNA3C, EBNA leader protein, latent mem-
brane protein 2A (LMP2A) and LMP2B, the products of the
BamHI-A rightward transcripts, and the noncoding polymer-
ase III EBV-encoded RNAs (28, 48). EBNA2 is essential for
B-cell immortalization (7, 14). EBNA2 acts as a transcriptional
transactivator to regulate EBV latency gene expression in B
cells and to modify cellular gene expression with a resultant
stimulation of Gy-to-G; cell cycle progression (24, 27, 37). In
its transcriptional role, EBNA2 mimics the effects of activated
NotchIC (11, 19, 21, 39). Notch is an evolutionarily conserved
surface receptor that influences cell fate and developmental
decisions and is frequently activated in human cancers (33, 36).
EBNA2 and NotchIC both target responsive promoters
through the cellular DNA binding protein CBF1/CSL/RBP-Jk
(16). CBF1 functions as a transcriptional repressor through
interactions with an mSin3-histone deacetylase-containing
complex (20, 22, 25, 52). EBNA?2 and NotchIC activate expres-
sion by displacing the corepressor complex (20, 25, 50, 51) and
by contacting the basal transcriptional machinery (40, 42) and
recruiting coactivators, which in the case of EBNA2 include
pCAF, p300/CBP (43), p100 (41), the SWI/SNF complex (45),
survival motor neuron protein (1), and EBNA leader protein
(15, 34, 35, 47).

Comparison of the EBNA2 amino acid sequence with that
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encoded by the EBV-related baboon virus herpesvirus papio
identified nine regions (32) that are also conserved in the
EBNA2 proteins of other old world primate lymphocryptovi-
ruses (4, 35). These conserved regions mediate nuclear local-
ization and transactivation (5, 32), interaction with CBF1 and
the repression-to-activation switch protein SKIP (13, 18, 46,
50), and interaction with Nur77 (29). Binding of EBNA2 to
Nur77 is a property shared with NotchIC (23) and is mediated
by EBNA2 conserved region 4 (CR4). The interaction blocks
Sindbis virus-induced apoptosis and Nur77-mediated apoptosis
in transfected cells by preventing mitochondrial targeting of
Nur77 (29). A tumorigenic phenotype is associated with in-
creased resistance to apoptosis in addition to increased prolif-
eration. To further evaluate the potential contribution of
EBNAZ2’s antiapoptotic activity to EBV-associated disease, we
used the EREB2-5 transcomplementation assay (11, 12) to
examine EBNA2 function in an EBV-infected B-cell back-
ground. EREB2-5 is an EBV-immortalized B-cell line in which
EBNAZ2 is expressed as an estrogen receptor binding domain-
EBNAZ2 fusion (EREBNA2) (27). EBNA2 function is depen-
dent on the presence of estrogen in the culture medium, and in
the absence of estrogen, EREB2-5 cells undergo growth arrest
and apoptosis (26, 27). Lentivirus transduction of wild-type or
immortalization-competent mutant EBNA2 can rescue cell
growth in the absence of estrogen, whereas transduction of an
immortalization-incompetent EBNA2 mutant fail to compen-
sate for estrogen withdrawal (11). Thus, the transcomplemen-
tation approach can be used to study the properties of EBNA2
mutant proteins in the context of latent EBV infection.
Ectopically expressed EBNA2ACR4 supports growth of
EREB2-5 cells in estrogen-free medium. Recombinant lentivi-
ruses expressing EBNA2 and EBNA2ACR4 (with a deletion of
amino acids 123 to 147) were constructed in the vector pLK2. The
IRES-eGFP fragment of the lentivirus vector pLVEF.GFP (8)
was replaced with the IRES-hrGFP cassette from pIRES-
hrGFPla (Stratagene) to generate pLK2. A BglII fragment en-
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FIG. 1. Effect of estrogen starvation on growth of EBNA2-trans-
duced EREB2-5 cells. Ten thousand cells/well were plated into 96-well
plates, and cell proliferation was monitored using the CellTiterGlo
assay to measure ATP usage. LK2-EREB2-5 cells with estrogen ([])
and without estrogen (M), LK2-EBNA2 cells with estrogen (2) and
without estrogen (4), and LK2-EBNA2ACR4 cells with estrogen (O)
and without estrogen (@) are shown. Data shown are the means for
three assays, with standard deviations provided.

coding EBNA2 was introduced into the BamHI site of pLK2 to
form wild-type EBNA2-expressing virus (LK2-EBNA2), and an
EcoRI/BgllII fragment encoding EBNA2ACR4 was ligated as a
blunt-end fragment into EcoRV-cleaved pLK2 to form LK2-
EBNA2ACR4. LK2, LK2-EBNA2, and LK2-EBNA2ACR4 vi-
ruses were produced by transient transfection of 293T cells as
previously described (8). EREB2-5 cells were transduced with the
recombinant lentiviruses, and cells expressing green fluorescent
protein were enriched using fluorescence-activated cell sorting.
After expansion for 3 weeks in the presence of estrogen, fluores-
cence-activated cell sorting analysis indicated that the resulting
cell pools had similar mean fluorescence intensities and were
more than 95% green fluorescent protein positive (data not
shown). The transduced cultures were then tested for their ability
to survive in estrogen-free conditions, using the CellTiter-Glo
luminescent cell assay (Promega) to measure viable cell number.
After estrogen withdrawal, LK2-transduced cells stopped growing
and died, whereas the growth of LK2-EBNA2- and LK2-
EBNA2ACRA4-transduced cells was unaffected by the absence of
estrogen, although viable LK2-EBNA2ACR4 cells did accumu-
late at a slower rate than LK2-EBNAZ2 cells (Fig. 1). The ability of
EBNA2ACRA4 to support LCL growth and LMP1 expression is
consistent with observations previously made by using a recom-
binant EBV carrying a larger EBNA2 deletion encompassing the
CR4 region (6).

Selection of EREB2-5-transduced cells lacking ER-EBNA2
expression. We wished to examine the importance of the
Nur77-EBNA2 interaction for protection against apoptosis,
using the EBNA2ACRA4-transduced EREB2-5 cells. However,
the continued expression of the ER-EBNA2 fusion protein in
these cells complicated their utility. The EBNA2- and
EBNA2ACRA4-transduced EREB2-5 cells were cultured in es-
trogen-free medium for 2 months, after which clones were
identified that no longer expressed ER-EBNA?2 proteins (Fig.
2A, upper and middle panels). The level of LMP1 expression
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FIG. 2. EBNA2ACRA4 is transcriptionally competent in supporting
LMP1 expression and Cp promoter activity. (A) Upper panel, Western
blot probed with anti-EBNA2 PE2 monoclonal antibody (DAKO).
ER-EBNAZ2 is expressed in EREB2-5 cells transduced with LK2. ER-
EBNA2 plus EBNA2 are expressed in LK2-EBNA2- and LK2-
EBNA2ACR4-transduced cells. Middle panel, Western blot showing
loss of ER-EBNA2 expression in LK2-EBNA2 and LK2-
EBNA2ACR4 cells grown continuously in the absence of estrogen.
LK2-EREB2-5 cells maintained in estrogen-containing medium retain
ER-EBNA2 expression. Lower panel, the membrane shown in the
middle panel was stripped and reprobed with anti-LMP1 S12 mono-
clonal antibody (32a). LK2-EBNA2ACR4 cells showed no deficit in
the ability to mediate LMP1 expression. (B) Transient expression assay
in which HeLa cells were cotransfected with the EBV Cp promoter
reporter 4X Cp-CAT and either control vector or an expression plas-
mid for EBNA2, the EBNA2 mutant (EBNA2WW), or EBNA2ACR4.
EBNA2ACR4 was as effective as EBNAZ2 in activating expression of
4x Cp-CAT.

in the selected EBNA2-transduced cells was similar to that in
the EBNA2ACRA4-transduced cells (Fig. 2A, lower panel), in-
dicating that there was no defect in regulation of LMP1 by
EBNA2ACR4. The ability of EBNA2ACR4 to activate the
EBYV latency Cp promoter was also checked in HeLa cells
cotransfected with a 4X Cp-CAT reporter and expression plas-
mids for EBNA2, EBNA2ACR4, or the non-CBF1-binding
EBNA2(WW) mutant as previously described (3). EBNA2A
CR4 was shown to be as effective as EBNA?2 in transactivation
of 4X Cp-CAT expression (Fig. 2B). These results reinforce
the point that the EBNA2ACR4 protein does not suffer from
any defects in transactivation function.

EBNA2 CR4 is necessary for inhibition of Nur77-induced
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FIG. 3. EBNA2 CR4 is necessary for resistance to etoposide- and
5-FU-induced cell death but not TNF-a-induced cell death. Estrogen-
independent LK2-EBNA2ACR4 and LK2-EBNAZ2 cells were treated
with (A, B) etoposide (10 pg/ml), (C, D) 5-FU (25 ng/ml), or (E, F)
TNF-a (5 ng/ml) plus cycloheximide (10 wg/ml; CalBiochem) for 20 h.
(G) EREB2-5 cells were grown in the absence of estrogen for 5 days
before treatment with TNF-a plus cycloheximide. Apoptosis was mea-
sured by annexin V-phycoerythrin binding. The data shown are repre-
sentative of three independent experiments. Drug-treated cells, shaded
profile; untreated cells, open profile.

cell death but not for TNF-a-induced cell death. LMP1 confers
a survival advantage on EBV-infected B cells by activation of
NF-kB-upregulated antiapoptotic genes, such as those encod-
ing A20, Bfl-1, and Bcl-2 (2, 9, 10, 17, 38). However, the
apoptosis-modulating activity of LMP1 is stimulus dependent.
LMP1 expression in HeLa cells protects against apoptosis in-
duced by tumor necrosis factor alpha (TNF-a) but provides no
protection against apoptosis induced by Fas or etoposide (49).
We previously showed that EBNA2 CR4 binds Nur77 and
could protect cells from stimuli, such as treatment with phorbol
esters or Sindbis virus infection, that induce apoptosis through
activation of Nur77. Nur77 has no role in TNF-a-induced cell
death but does mediate apoptosis induced by etoposide and
5-fluorouracil (5-FU) (30, 44). To examine the contribution to
B-cell survival of the EBNA2-Nur77 interaction, LK2-EBNA2
and LK2-EBNA2ACR4 cells lacking ER-EBNAZ2 expression
were treated with etoposide (10 pg/ml; Sigma), 5-FU (25 pg/
ml; Sigma), or TNF-a (5 ng/ml; Sigma) plus cycloheximide (10
ng/ml; Calbiochem). Reverse transcription-PCR analysis using
primers 5'-CACCCACTTCTCCACACCTT and 3'-ACAACT
TCCTTCACCATGCC showed induction of Nur77 transcripts
2 h after treatment with etoposide or 5-FU (data not shown).
Apoptosis was measured by binding of annexin V-PE (BD
Pharmingen) (Fig. 3). LK2-EBNA2 cells were resistant to
treatment with etoposide and 5-FU (Fig. 3B and D), while
LK2EBNA2ACR4 cells showed significant etoposide- and
5-FU-induced apoptosis (Fig. 3A and C). In contrast, both
LK2-EBNA2 and LK2-EBNA2ACR4 cells were resistant to
treatment with TNF-a (Fig. 3E and F). Parental EREB2-5
cells grown for 5 days in the absence of estrogen to eliminate

J. VIROL.

EREB?2 nuclear activity and LMP1 expression were sensitive to
TNF-a-induced apoptosis (Fig. 3G).

In summary, these results show that EBNA2 and LMP1
make separate and complementing contributions to cell sur-
vival in EBV-infected LCLs. EBNA2 interaction with Nur77
plays no part in resistance to TNF-a, and LMP1 is sufficient to
protect B cells from TNF-a-induced cell death. On the other
hand, LMP1 cannot protect against etoposide or 5-FU, which
are Nur77-mediated apoptotic stimuli, and EBNAZ2 is essential
for protection against these agents. Interestingly, LMP1 may in
fact sensitize cells to Nur77-mediated apoptotic stimuli. Nur77
has recently been shown to bind to Bcl-2 and to convert Bcl-2
from an antiapoptotic protector to a proapoptotic cell death
inducer (31). LMP1 is known to upregulate expression of Bcl-2
(17), and hence, additional mechanisms, such as the EBNA2-
mediated nuclear retention of Nur77, may be particularly im-
portant for the survival of LMP1-expressing latently EBV-
infected B cells.

This work was funded by Public Health Service grant R37 CA42245
to S.D.H. and by Johns Hopkins Lymphoma SPORE grant P50
CA96888.
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