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Abstract

Background: Cellular therapy is a promising therapeutic strategy for malignant diseases. The efficacy of this therapy can be
limited by poor infiltration of the tumor by immune effector cells. In particular, NK cell infiltration is often reduced relative to
T cells. A novel class of fusion proteins was designed to enhance the recruitment of specific leukocyte subsets based on
their expression of a given chemokine receptor. The proteins are composed of an N-terminal chemokine head, the mucin
domain taken from the membrane-anchored chemokine CX3CL1, and a C-terminal glycosylphosphatidylinositol (GPI)
membrane anchor replacing the normal transmembrane domain allowing integration of the proteins into cell membranes
when injected into a solid tumor. The mucin domain in conjunction with the chemokine head acts to specifically recruit
leukocytes expressing the corresponding chemokine receptor.

Methodology/Principal Findings: A fusion protein comprising a CXCL10 chemokine head (CXCL10-mucin-GPI) was used for
proof of concept for this approach and expressed constitutively in Chinese Hamster Ovary cells. FPLC was used to purify
proteins. The recombinant proteins efficiently integrated into cell membranes in a process dependent upon the GPI anchor
and were able to activate the CXCR3 receptor on lymphocytes. Endothelial cells incubated with CXCL10-mucin-GPI
efficiently recruited NK cells in vitro under conditions of physiologic flow, which was shown to be dependent on the
presence of the mucin domain. Experiments conducted in vivo using established tumors in mice suggested a positive effect
of CXCL10-mucin-GPI on the recruitment of NK cells.

Conclusions: The results suggest enhanced recruitment of NK cells by CXCL10-mucin-GPI. This class of fusion proteins
represents a novel adjuvant in cellular immunotherapy. The underlying concept of a chemokine head fused to the mucin
domain and a GPI anchor signal sequence may be expanded into a broader family of reagents that will allow targeted
recruitment of cells in various settings.
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Introduction

Cell-based immunotherapy harnesses the natural cytotoxic

potential of immune cells to eliminate target cells in a highly

specific manner. In addition to T lymphocytes, the activity of NK

cells is desirable as they play a complementary role to CTL in the

antitumor response by recognizing tumors which are resistant to T

cell killing due to downregulation of MHC class I molecules [1–3].

A problem frequently encountered using cytotoxic lymphocytes as

anti-tumor agents is insufficient infiltration of the tumor tissue, in

particular evident for NK cells [4–8], which has been proposed as

an explanation for the lack of efficacy of cellular tumor-therapy in

many settings [9–11]. This has been linked to changes in the

tumor vasculature leading to reduced expression of adhesion

molecules on tumor endothelial cells, as well as reduced efficacy of

proinflammatory cytokines in upregulating adhesion molecule

expression [6,12–15].

We describe here an example of a novel class of reagents

designed to selectively recruit leukocytes based on chemokine

receptor expression (Figure 1). We use fusion proteins whose

backbone is a mucin domain derived from the chemokine

CX3CL1 (Fractalkine), which has the ability to capture and

recruit CX3CR1+ leukocytes under physiological conditions with

reduced requirement for additional adhesion molecules such as

ICAM-1 or VCAM-1 [16–18]. It has been shown that the

specificity of that protein can be redirected from CX3CR1+

leukocytes to leukocytes expressing other chemokine receptors by

exchanging the N-terminal chemokine domain for an unrelated
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chemokine [16]. In the current study we fused a CXCL10

chemokine head to the mucin-like stalk of CX3CL1, thereby

redirecting the recruitment tropism of the molecule towards

leukocytes expressing the CXCL10-specific receptor CXCR3

(Figure 1). Furthermore, the transmembrane-domain of CX3CL1

was exchanged for a C-terminal glycosylphosphatidylinositol (GPI)

anchor signal sequence. Purified GPI-anchored proteins possess

the ability to integrate spontaneously into the cell membranes of

virtually any cell eliminating the need for transfection [19].

Following expression and purification, the recombinant

CXCL10-mucin-GPI protein readily incorporated into cell

membranes and effectively fostered the direct recruitment of

CXCR3+ NK cells.

Materials and Methods

Ethics Statement
The research meets all applicable standards for the ethics of

experimentation and research integrity. The animal studies were

approved by and conducted in accordance with the principles of

the regulatory agency of the State of Bavaria, Germany. The

human T cell lines JB4 [20] and DS4 were derived from healthy

donors after written informed consent was obtained with respect to

taking the samples and making the cell line and upon approval by

the Ethics Committee of Ludwigs-Maximilians-University, Mu-

nich.

Molecular Cloning Strategies
Recombinant proteins were generated in Chinese Hamster

Ovary (CHO) cells. The PCR-based cloning techniques and

selection criteria used to generate the series of fusion-protein

constructs are described in Materials and Methods S1.

CXCR3 Receptor Internalization Assays
Coincubations of human CXCR3+ CD8+ CTLs (JB4, previ-

ously published in [20]) with non-transfected CHO cells or CHO

cells stably transfected with CXCL10-GPI or CXCL10-mucin-

GPI were performed as readout for bioactivity of the chemokine

domain. 66105 CHO cells in 25 ml RPMI 1640 (Invitrogen,

Carlsbad) were transferred into 96-well round bottom plates. 25 ml

recombinant human CXCL10 (Peprotech, Hamburg, Germany)

at concentrations of 1.5 mg/ml or 200 ng/ml in RPMI 1640

served as positive control, and 25 ml RPMI 1640 as negative

control. All samples were prepared in duplicates. 26105 JB4 cells

in 25 ml RPMI 1640 were added to each well prepared as

described above. The plate was incubated at 37uC and 5% CO2

for 30 min. All subsequent steps were performed on ice. The cells

were washed and resuspended in FACS buffer (2 mM EDTA, 2%

FCS in PBS). 7-AAD and FITC-labeled CD3-specific antibodies

(BD Pharmingen, Bedford, USA) were then added to all samples.

Among each pair of duplicates, one sample additionally received

RPE-labeled, CXCR3-specific antibody (clone 1C6, BD Pharmin-

geņ Bedford. Additional control experiments presented in

Materials and Methods S1 used clone 49801; R&D Systems,

Minneapolis), while the other received an RPE-labeled isotype

control (BD Pharmingen, Bedford, USA). FACS analysis was then

used to identify (CD3-positive) JB4 cells and the mean fluorescence

intensity (MFI) of CXCR3 on these cells was determined.

Internalization was expressed as percent reduction of CXCR3

MFI compared to the medium/non-transfected controls.

Protein purification
The GPI-anchored fusion proteins were purified using Fast

Protein Liquid Chromatography (FPLC). This was facilitated by

the inclusion of a double c-myc epitope tag integrated into all

constructs, and the use of anti-c-myc affinity chromatography. The

specific methods are detailed in Materials and Methods S1.

Incorporation of purified proteins Into Cell Membranes
FACS staining was used to assess the ability of purified

recombinant fusion proteins to incorporate into cell membranes.

CHO or endothelial cells were detached and resuspended in

prewarmed serum-free culture medium. 16106 CHO cells or

56105 endothelial cells per well were transferred into a sterile

96 well round bottom plate and the cells were resuspended in

100 ml of serum-free medium containing defined concentrations of

purified recombinant fusion proteins or a buffer control. All

samples contained the same percentage of chromatography buffer.

The cells were incubated at 37uC and 5% CO2 for 1–1.5 h,

washed and resuspended in FACS buffer containing monoclonal

antibodies (anti c-myc: clone 9E10, purified in house), or isotype-

matched control antibodies (Sigma-Aldrich, Taufkirchen, Ger-

Figure 1. Composition of CXCL10-mucin-GPI as an example for
a novel class of GPI-anchored chemokine fusion proteins. The
mucin domain of CX3CL1 was combined with a GPI anchor and a
CXCL10 chemokine head to generate a flexible tool for the modification
of tumor micromilieus capable of selectively stimulating the recruit-
ment of CXCR3+ leukocytes. The chemokine head directs the specificity
towards CXCR3+ leukocytes, while the mucin domain assists in the
recruitment process and lowers the requirement for other adhesion
molecules. Inclusion of a GPI anchor allows the protein to integrate into
the cell membranes of tumor, stromal and endothelial cells when
applied exogenously, thus superseding the transfer of genetic material
into the tumor.
doi:10.1371/journal.pone.0072749.g001

CXCL10-GPI-Anchored Proteins in Tumor Therapy

PLOS ONE | www.plosone.org 2 August 2013 | Volume 8 | Issue 8 | e72749



Figure 2. The recombinant GPI-anchored proteins are present on transfected CHO cells and activate CXCR3. A: Stably transfected CHO
cells expressing the GPI-anchored CXCL10 constructs (CXCL10-GPI or CXCL10-mucin-GPI) or a control lacking the GPI anchor (CXCL10-mucin-Stop)
were incubated with antibodies against the c-myc epitope tag, the mucin domain, the CXCL10 chemokine head or matching isotype controls. Bound
antibodies were detected by staining with FITC-conjugated secondary antibodies and the fluorescence intensity was measured by FACS. Black lines
indicate staining with isotype controls, blue lines indicate staining with specific antibodies. B: In the case of CHO cells transfected with the GPI-
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many). Following incubation for 45 min at 4uC, the cells were

washed and resuspended in FACS buffer containing RPE-labeled

secondary antibodies (Dako, Roskilde, Denmark, 10 mg/ml) and

7-AAD. After 30 min incubation at 4uC, the cells were washed

again and analyzed.

Immunofluorescence microscopy was used to detect the

subcellular localization of the incorporated proteins. Primary

microvascular endothelial cells were grown in culture dishes with

high fluorescence permeability (Ibidi, Martinsried, Germany).

Subsequently, the cells were washed and incubated for 1.5 h with

purified CXCL10-GPI (1.8 nM), CXCL10-mucin-GPI (0.8 nM)

or a buffer control, all diluted in culture medium and all

containing the same percentage of buffer to exclude artifacts.

Following treatment, the cells were washed and fixed with 1%

Paraformaldehyde. Incorporated proteins were then detected

using anti c-myc primary and biotinylated secondary antibodies

in combination with RPE-labeled streptavidin.

Laminar flow Assays
Laminar flow assays were performed in analogy to previously

described experiments [21–25]. Experiments were performed

using either primary microvascular endothelial cells from fetal

foreskin, selected for blood vessel endothelial cells (CD31+, von-

Willebrand factor+, Podoplanin-, Smooth muscle actin-; Promo-

cell, Heidelberg, Germany) or CHO cells (ATCC, USA).

For experiments involving endothelial cells, the cells were grown

to 80% confluence in tissue culture flasks. 24 h prior to the

experiment, the cells were seeded into microscope slides (m-slide I

0.4 ibitreat, ibidi, Martinsried, Germany), which were precoated

with 12 mg/ml Collagen G (Biochrom, Berlin, Germany) for

30 min. Cells were split at an area ratio of 1:0.8 into the slides. 1 h

prior to the analysis, the slides were treated with purified GPI-

anchored proteins diluted in serum-free culture medium.

For experiments assessing adhesion to transfected CHO cells,

the cells were grown to 90% confluence. One day before the assay,

the cells were seeded at a ratio of 1:1 into the slides.

HBSS buffer (Sigma, Taufkirchen, Germany) supplemented

with 50 mM HEPES (Invitrogen, Carlsbad, CA, USA) and 0.5%

BSA (Invitrogen, Carlsbad, USA) was used for flow studies.

CXCR3+ CD8+ CTLs [DS4, unpublished], were resuspended in

assay buffer to yield a concentration of 26105. This cell line was

derived from mixed lymphocyte/tumor cells cultures using PBL of

a healthy donor and the allogeneic human renal cell carcinoma

cell line RCC26. Following the initial priming, CD8+ T cell clones

were established by limiting dilution cloning and are routinely

cultured in the laboratory of Dr. Noessner. We are happy to

provide this line upon request. The NK cell line YT (ATCC 434;

DSMZ GmbH, Braunschweig, Germany), or primary murine NK

cells (freshly isolated from the spleens of C57BL/6 wt mice using

magnetic beads) were used in concentrations of 2.66105 or 3x105

cells/ml, respectively. The cells were kept in a water bath at 37uC
throughout the experiment. Experiments were performed at 37uC
in an incubation chamber (ibidi, Martinsried, Germany) mounted

on the stage of an inverted microscope equipped with a digital

video camera (Horn Imaging, Aalen, Germany). Each slide was

first flushed with assay buffer using a programmable syringe pump

(WPI, Sarasota, USA) to remove cell debris. Subsequently,

leukocyte suspension was flushed into the slide. The flow rate

was then lowered to yield the desired shear stress (indicated in each

figure) and the interactions were recorded for 5 min.

Videos were used to determine the number of leukocytes

accumulating in the respective field of view. Tight adhesion was

defined as an event in which a particular NK cell adhered to the

endothelium and did not move further than one cell diameter

within 30 sec. Rolling adhesion was defined as an event in which

the NK cell adhered to the endothelium, but was dragged along

the endothelium by the shear forces exerted by the buffer at a

higher speed than one cell diameter per 30 sec or detached again.

Cells displaying both rolling and tight adhesion were counted only

as tightly adherent.

In vivo Analysis
Murine 291 B cell lymphoma cells [26] were implanted in

female wt C57BL/6 mice (Taconic, Ry, Denmark) between 11

and 21 weeks of age. 107 291 cells in 150 ml PBS were injected

subcutaneously into each flank of the mice. Tumor growth was

monitored by palpation and the experiments were initiated once

the tumors had reached a diameter of approximately 8 mm.

Purified CXCL10-mucin-GPI (0.23 pmol) in 50 ml PBS supple-

mented with 0.025% Triton X-100h was injected into the center

of each tumor. As controls, either the same or a 5006higher molar

quantity (115 pmol) of commercially available human CXCL10

(rhCXCL10) were injected. Additional controls included com-

pletely untreated tumors and injection of the same volume of

identically purified sEGFP-GPI. Three separate tumors were

treated with each protein or control. After 4 h, the mice were

sacrificed and the tumors were removed.

FACS Analyses of Tumors
For FACS analysis, the tumors were minced, filtered through a

40 mm cell strainer (Becton Dickinson, Heidelberg, Germany),

washed in PBS (Life Technologies, Darmstadt, Germany),

depleted of red blood cells and washed in PBS again. Cells were

stained with ethidium monoazide for dead cell exclusion prior to

labeling with specific antibodies for CD3 (eF450), CD8 (AF488)

(both from eBioscience, Frankfurt, Germany), CD4 (PerCP),

NK1.1 (PE) (both from Becton Dickinson, Heidelberg, Germany)

and CXCR3 (APC) (BioLegend, Fell, Germany). Staining was

anchored version of eGFP (sEGFP-GPI), RPE-conjugated secondary antibodies were used to detect the c-myc epitope tag (anti c-myc antibodies: blue
line, isotype control: black line) while the fluorescence by the EGFP-protein was measured in the FL-1 channel (green line) and compared to non-
transfected CHO cells (grey line). All histograms are gated on viable cells identified by 7-AAD exclusion. C: CXCR3 on human T cells is internalized
after coincubation with cells expressing CXCL10-GPI or CXCL10-mucin-GPI. Human CXCR3+ CTL (JB4) were incubated with CHO cells stably
transfected with the GPI-anchored CXCL10 fusion constructs (CHO-CXCL10-GPI or CHO-CXCL10-mucin-GPI) or non-transfected CHO cells for 30 min.
Other samples were incubated with commercially available soluble CXCL10 (rhCXCL10) at the indicated concentrations. The CXCR3 signal on the T
cells was subsequently determined by FACS and related to the CXCR3 signal on T cells incubated with non-transfected CHO cells or medium without
chemokine, respectively. Bars represent averages of two (CHO-CXCL10-GPI and 100 ng/ml rhCXCL10) or three (all other conditions) independent
experiments +/2 standard deviations. Statistical significance was calculated using the Kruskal-Wallis test (P = 0.0167), followed by Dunns post test;
* = P,0.05. D: Adhesion of CXCR3+ T cells (DS4) is stimulated by contact with the GPI-anchored CXCL10 fusion proteins. CHO cells transfected with
CXCL10-GPI, CXCL10-mucin-GPI or sEGFP-GPI as control were grown to confluence in channels with defined geometry. T cells were drawn into the
channel, left to adhere for 5 min under static conditions and subsequently subjected to a shear stress of 1 dyn/cm2. T cells that were still adherent
after 2 min of flow were counted and the results were expressed as cells/mm2. The bars represent averages from three independent experiments +/2
standard deviations. Statistical significance was calculated using the Kruskal-Wallis-test (P = 0.039) followed by Dunns post test; * = P,0.05.
doi:10.1371/journal.pone.0072749.g002
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Figure 3. Purified GPI-anchored proteins incorporate into cell membranes. A: In order to test the capacity of the purified recombinant
fusion proteins to reincorporate into cell membranes, non-transfected CHO cells were incubated with the purified GPI-anchored proteins (0.9 nM) for
1 h at 37uC. As controls, two samples were treated either with identically diluted chromatography buffer (buffer) or MEM alpha medium (medium).
The soluble CXCL10-mucin-Stop protein served as an additional control as it lacks a GPI anchor. All samples except the medium control contained the
same percentage of chromatography buffer and detergent. Following incubation, the cells were washed and tested for the presence of the proteins
on their surface by FACS staining. Dead cells were identified by 7-AAD staining and the histograms shown are gated on viable cells. The black lines
indicate staining with isotype-matched control antibodies, blue lines staining with anti c-myc antibodies. Mean fluorescence intensities (MFIs) are
given for each sample. This experiment was performed routinely to monitor protein quality after purification and the data shown here therefore
stand representative for over 20 independent experiments. B: To verify the subcellular localization of the incorporated proteins, immunofluorescence
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performed in FACS buffer consisting of PBS, 2% FCS, 0.1%

sodium azide and 5 mM EDTA. FACS analyses were performed

using a LSR II (Becton Dickinson, Heidelberg, Germany) and data

were analyzed using FloJo 8.8 software (TreeStar, OR, USA).

Histology of Tumor Sections
For histology, the tumors were fixed for 24 h in 10% neutral

buffered formalin. The presence of NK cells and T cells was

detected using immunohistology with antibodies specific for

NKp46 and CD3, respectively. The methods detailing the various

procedures and reagents used are available in Materials and

Methods S1.

Results

Expression of the Fusion Constructs in CHO Cells
DNA constructs of CXCL10-mucin-GPI and controls in which

the mucin domain or the GPI anchor signal sequence was deleted

(CXCL10-GPI and CXCL10-mucin-Stop, respectively) or in

which the GPI anchor was fused to an eGFP protein (sEGFP-

GPI) were generated and stably expressed in dihydrofolatereduc-

tase-deficient Chinese hamster ovary (CHOdhfr2/2) cells. FACS

surface staining was used to identify the expressed proteins on the

cell surface (Figure 2A and B). The various subunits (chemokine

head, mucin-like stalk, and c-myc epitope tag) of the fusion

proteins were detected using a panel of monoclonal antibodies (see

Materials and Methods S1). All GPI-anchored proteins, but not

the control protein CXCL10-mucin-Stop lacking a GPI anchor,

were detected on the surface.

The Engineered Fusion Proteins Induce Receptor
Internalization and Adhesion

The ability of the CXCL10-based recombinant proteins to

induce specific internalization of CXCR3 was used to demonstrate

functionality. The experiments were performed in analogy to

previously published experiments with soluble CXCL10 [27–30].

CXCR3+ human CTLs (JB4) were incubated either with stably

transfected CHO cells expressing CXCL10-GPI or CXCL10-

mucin-GPI or with soluble CXCL10 as positive control

(Figure 2C). The CXCR3 surface signal was subsequently

determined by FACS analysis using a PE-conjugated monoclonal

antibody and the degree of internalization was calculated. The

signal intensities after coincubation with non-transfected CHO

cells or medium were set as 100%. A significant decrease in

CXCR3 surface staining was seen after coincubation with CHO-

CXCL10-GPI or CHO-CXCL10-mucin-GPI cells indicating

bioactivity of the chemokine domain. A similar degree of

internalization required 750 ng/ml (86 nM) soluble CXCL10.

Similar results were obtained when using a different CXCR3-

specific antibody (Figure S1). As an additional control, the assay

was performed on ice, by which the loss of surface signal intensity

was strongly attenuated. This indicated an active internalization

process rather than a blockade of the antibody binding site by the

receptor-bound chemokines (Figure S1). Moreover, we also

observed a sustained calcium response in the T cells when

coincubated with transfected CHO cells (Figure S2), indicating

signal transduction from the activated receptor.

The ability of the recombinant GPI-anchored CXCL10 fusion

protein to induce adherence to a cell monolayer was used as an

additional indicator of bioactivity of the chemokine domain.

Transfected CHO cells expressing CXCL10-GPI, CXCL10-

mucin-GPI or sEGFP-GPI were grown to confluence in channels

with defined geometry. CXCR3+ CTLs (DS4) were then drawn

into the channel and left to adhere for 5 min under static

conditions. The cells were then subjected to physiologic shear

stress (1 dyn/cm2). The detachment of the cells was monitored by

video microscopy and cells adherent after 2 min of flow were

determined (Figure 2D). On average 69 cells/mm2 adhered in a

shear-resistant manner to CHO cells expressing CXCL10-mucin-

GPI. Significantly less (p,0.05 using the Kruskall-Wallis test

followed by Dunns post test) cells adhered to CHO-sEGFP-GPI

cells used as negative control (on average 37 cells/mm2). An

average of 56 cells/mm2 remained adherent to CHO cells

expressing CXCL10-GPI (lacking the mucin domain). Recombi-

nant CXCL10-mucin-GPI protein expressed on the CHO cells

thus enabled the CXCR3+ CTLs to more efficiently adhere to the

monolayer.

Cell Surface Engineering Using the Engineered Fusion
Proteins

Next, we determined the ability of exogenously added, purified

proteins to integrate into cell membranes. Non-transfected CHO

cells were incubated with purified recombinant GPI-anchored

proteins. Purified CXCL10-mucin-Stop protein, which lacks the

GPI anchor, was used as a control. It was applied at a higher

concentration than the GPI-anchored proteins to allow potential

detection of non-specific binding at low affinity. FACS staining

was then used to detect the incorporated proteins on the cell

surface (Figure 3A).

The CXCL10-GPI, CXCL10-mucin-GPI and sEGFP-GPI

proteins were each detected on the surface of the treated CHO

cells, whereas the soluble CXCL10-mucin-Stop protein was not,

indicating that the membrane incorporation was mediated by the

GPI anchor. Similar results were obtained using primary or

immortalized microvascular endothelial cells or primary endothe-

lial cells isolated from umbilical veins (data not shown). The

staining intensities were found to correlate with the concentration

of recombinant proteins used in the respective experiment (data

not shown).

The subcellular localization of the incorporated proteins was

then assessed by immunofluorescence microscopy. Primary

microvascular human endothelial cells were used as target cells,

and incorporated proteins were detected using specific antibodies

(Figure 3B). The purified GPI-anchored CXCL10 fusion proteins

could be detected in a membrane-associated manner on the

surface of the endothelial cells, demonstrating that they had

incorporated spontaneously into the cell membranes of the

endothelial cells.

Surface Engineered Endothelial Cells Recruit NK Cells
Under Physiologic Flow in vitro

Based on our initial hypothesis, CXCL10-mucin-GPI should be

able to recruit leukocytes in the absence of an inflammatory

reaction, thereby overcoming endothelial cell anergy within tumor

microscopy was performed. Primary microvascular endothelial cells were treated with purified CXCL10-GPI, CXCL10-mucin-GPI or a buffer control
diluted in culture medium, with all samples containing the same percentage of buffer to exclude artifacts. After treatment, the cells were washed,
fixed with Paraformaldehyde and incorporated proteins were detected using anti c-myc primary and biotinylated secondary antibodies followed by
RPE-labeled streptavidin. The figure shows fluorescence images and corresponding bright field images from a representative experiment, which was
performed three times. All images within each row were acquired using the same exposure time. The black bars indicate 50 mm.
doi:10.1371/journal.pone.0072749.g003
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tissues. Once anchored into the cell membranes of endothelial

cells, the mucin domain together with the chemokine head should

concertedly induce rolling and tight adhesion of CXCR3+

leukocytes, followed by diapedesis into the tumor tissue. The

effect of CXCL10-mucin-GPI on the recruitment of NK cells was

assessed in vitro using laminar flow assays. The assays were

conducted using resting primary human microvascular endothelial

cells. These cells normally do not support the adhesion of

leukocytes under conditions of physiologic flow due to the absence

of selectin molecules, which are not present on resting cells

[24,25,31]. Also in our hands, E-selectin was not detected on the

resting endothelial cells by FACS analysis (data not shown).

Primary human microvascular endothelial cells were incubated

for 1 h with purified GPI-anchored CXCL10 fusion proteins

diluted in growth medium, or with identically purified and diluted

sEGFP-GPI protein. Parallel slides were incubated with commer-

cially available recombinant CXCL10 in vehicle at a 1000 fold

higher concentration, to allow detection of even minor effects

mediated by conventional CXCL10. NK cells were then perfused

over the endothelial cells with a shear rate of 1 dyn/cm2 and

interactions were monitored by video microscopy (Figure 4A;

readers may also refer to the exemplary video S1 which shows the

adherence of YT cells to endothelial cells treated with either

recombinant CXCL10 or CXCL10-mucin-GPI in real-time). On

average, 60 NK cells/mm2 underwent adherence to endothelial

cells incubated with CXCL10-mucin-GPI. By contrast, on average

only 2 cells/mm2 adhered to the samples treated with the GPI-

anchored negative control protein sEGFP-GPI. This attested that

the adhesion was due to the activity of the chemokine-mucin part

of the fusion protein and neither the incorporation process nor the

presence of a GPI-anchored protein on the cell surface sufficiently

activated the endothelial cells to induce adhesion events.

CXCL10-GPI failed to recruit significantly more cells than the

two controls (4 cells/mm2 on average), demonstrating that the

mucin domain was a prerequisite for efficient NK cell recruitment.

Recombinant CXCL10 also failed to induce NK cell adherence (0

cells/mm2 on average), in accordance with earlier observations

[23,32–34].

To analyze if CXCL10-mucin-GPI was able to induce tight

adhesion of captured NK cells (which is required for extravasa-

tion), the adherent cells were further characterized. Cells that

displayed tight adhesion, defined as an event in which the

respective NK cell did not move further than one cell diameter

within 30 sec, were differentiated from those that displayed rolling

adhesion, defined as an event in which the respective NK cell

adhered to the endothelium, but was dragged along the

endothelium by the shear forces exerted by the buffer at a higher

speed than one cell diameter per 30 sec or detached again. Cells

displaying both rolling and tight adhesion were counted only as

tightly adherent (Figure 4B). Readers may also consult video S2

which exemplifies rolling and tight adhesion events.

Endothelial cells incubated with CXCL10-mucin-GPI induced

both rolling and tight adhesion of the NK cells. On average 41

cells/mm2 displayed rolling adhesion, while 35 cells/mm2 adhered

tightly to the endothelial cells. CXCL10-GPI lacking the mucin

domain could only induce on average 3 events of rolling adhesion

and 2 tight adhesions/mm2. 2 events of rolling adhesion were seen

with endothelial cells incubated with the sEGFP-GPI control

protein, and no adhesion at all occurred to cells treated with

commercially available recombinant CXCL10. These results

again indicated a dependence of the adhesion process mediated

by CXCL10-mucin-GPI on the presence of the mucin domain,

both for the induction of rolling as well as tight adhesion.

Figure 4. CXCL10-mucin-GPI induces rolling and tight adhesion
of CXCR3+ NK cells under conditions of physiologic flow.
Laminar flow assays were performed to test if resting primary human
microvascular endothelial cells treated with the GPI-anchored CXCL10
fusion proteins could recruit freely flowing CXCR3+ NK cells (YT) under
conditions of physiologic flow. A: Resting primary human endothelial
cells from fetal foreskin, selected for blood vessel endothelial cells, were
treated with 0.34 nM of GPI-anchored CXCL10 fusion proteins or with
identically diluted sEGFP-GPI protein for 1 h. Other slides were treated
with commercially available CXCL10 at 1000-fold higher concentration
as additional control (rhCXCL10). All samples contained the same
percentage of chromatography buffer and detergent. Subsequently, YT
cells were perfused over the endothelial cells with 1 dyn/cm2 and the
number of cells accumulating on the endothelial cells was counted.
Data shown here are derived from six independent experiments, each
performed using independent protein preparations and separate
batches of cells. Bars represent the average numbers of cells adhering
to the endothelium, +/2 SEM. Statistical significance was calculated
using the Kruskal-Wallis test (P = 0.0022) followed by Dunns post test;
** = P,0.01. B: Experiments were performed as detailed in A. Tight
adhesion was defined as an event in which a particular NK cell adhered
to the endothelium and did not move further than one cell diameter
within 30 sec. Rolling adhesion was defined as an event in which the NK
cell adhered to the endothelium, but was dragged along the
endothelium by the shear forces exerted by the buffer at a higher
speed than one cell diameter per 30 sec or detached again. Cells
displaying both rolling and tight adhesion were counted only as tightly
adherent. Bars represent averaged values derived from four indepen-
dent experiments +/2 SEM. Statistical significance was calculated using
the Kruskal-Wallis test (P = 0.0038 for rolling adhesion and 0.0021 for
tight adhesion) followed by Dunns post test; * = P,0.05, ** = P,0.01.
doi:10.1371/journal.pone.0072749.g004
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The Human CXCL10-based Fusion Proteins Also Enhance
the Adherence of Primary Murine NK Cells Under Flow

As a prerequisite for in vivo studies, it was then determined if the

human CXCL10 fusion proteins were also active on murine cells.

First, soluble human CXCL10 was verified to activate murine

CXCR3 using a murine T cell line in calcium mobilization assays.

Here, murine and human CXCL10 elicited virtually identical

signals (Figure S3). The same result was found when murine and

human CXCL10 were compared in CXCR3 internalization

assays using murine T cells (Figure S3). Subsequently, the GPI-

anchored CXCL10 fusion proteins were assessed regarding their

ability to induce adhesion of primary murine NK cells under flow.

Primary human microvascular endothelial cells were treated with

CXCL10-GPI or CXCL10-mucin-GPI or commercially available

human CXCL10 at a much higher concentration. Murine NK

cells were then perfused over the endothelial cells at a shear rate of

0.4 (Figure 5A) or 1 dyn/cm2 (Figure 5B). At the subphysiologic

flow rate of 0.4 dyn/cm2, 70 events of rolling adhesion and 37

tightly adhering NK cells/mm2 were observed for the endothelial

cells treated with CXCL10-mucin-GPI. For the CXCL10-GPI

protein, 14 rolling and 18 tight adhesions/mm2 were seen,

suggesting that some adhesion was induced by the membrane-

anchored CXCL10 also in the absence of the mucin domain.

While few adhesion events (up to 8 events/mm2) were seen with

soluble CXCL10, this was also true for the medium control. This

background adherence was completely abrogated when the

physiologic shear rate of 1 dyn/cm2 was employed (panel B).

Here also the difference between the two CXCL10 fusion proteins

was more pronounced. Eight times more cells were tightly bound

by the protein containing the mucin domain than by the one

lacking it. The difference in the induction of rolling adhesion was

also more pronounced at the more physiologic shear rate: No

events were observed in the sample with CXCL10-GPI, while

CXCL10-mucin-GPI was able to induce 30 rolling adhesions/

mm2. These results suggested that CXCL10-mucin-GPI is

effective also on murine CXCR3 and can recruit murine NK

cells within the same range of efficiency as seen with human NK

cells. Moreover, the results underlined the importance of the

mucin domain for recruitment at physiologic shear stress.

Activity of the CXCL10-based Fusion Proteins in
Established Murine Tumors

A model based on subcutaneously transplantable B cell tumors

was used to study the effects of CXCL10-mucin-GPI after

intratumoral injection in vivo (Figure 6). The 291 B cell lymphoma

line [26] was established from a transgenic C57BL/6 mouse

carrying the c-myc oncogene under the control of the Igl
promoter [35]. The tumor cells were negative for CXCR3 by

FACS and reverse transcriptase real-time PCR (data not shown).

Tumor cells were injected into the flanks of wildtype C57BL/

6 mice and palpation was used to assess tumor growth. For

characterization of tumor tissue, tumors were excised and

subjected to hematoxylin/eosin staining (H/E) or immunohistol-

ogy for CD3 and NKp46 (Figure 6).

The tumors were well vascularized with a high number of blood

vessels visible in H/E staining as depicted in panels A and B, and

displayed little signs of necrosis. Panels D, E and F represent serial

sections of a position near the tumor center. CD3 staining showed

pronounced infiltration of the tumor mass with T cells, especially

in the vicinity of the blood vessels. NKp46 staining of the same

position revealed a much lower infiltration with NK cells

compared to CD3+ cells. This finding was true for all untreated

tumors. At the tumor margins, however, occasionally clusters of

NKp46+ cells could be found, as exemplified in panel C. These

clusters contained only few CD3+ cells (data not shown). In

summary, CD3+ cells were found abundantly and relatively

equally distributed throughout the tumors, while NKp46+ cells

sometimes displayed a highly unequal distribution. For this reason,

FACS analysis was used to establish the level of NK cell infiltrate

within the tumor tissue in order to avoid skewing of data by image

Figure 5. The human CXCL10 fusion proteins are bioactive in mouse. To validate that human CXCL10-based fusion proteins would be
functional in mouse-based models, the adhesion of primary murine NK cells to the human-based CXCL10 fusion proteins was evaluated. Primary
microvascular human endothelial cells were incubated for 1 h with 0.2 nM of CXCL10-GPI or CXCL10-mucin-GPI or commercially available human
CXCL10 (rhCXCL10; 115 nM). All samples except the medium control contained the same percentage of buffer and detergent. Primary murine NK
cells were then perfused over the treated endothelial cells with A: 0.4 or B: 1 dyn/cm2 shear stress, and adherent cells were counted. Cells with rolling
adhesion were differentiated from those that adhered tightly to the endothelium as in figure 4. The figure shows the results of one of two
representative experiments, with each bar summarizing data from two independent slides.
doi:10.1371/journal.pone.0072749.g005
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Figure 6. Subcutaneously implanted 291 tumors are well vascularized and show a pronounced infiltration with T cells. Tumor cells
were injected subcutaneously into the flanks of C57BL/6 mice. Grown tumors were excised, fixed and analyzed by hematoxylin/eosin (H/E) staining or
immunohistology using antibodies against CD3 or NKp46. A–F: The respective magnifications are indicated at the top of each image. Panels A and B
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acquisition differences. FACS analysis for T cells was in contrast

less informative due to the presence of lymphoid organs removed

together with the tumors and high numbers of lymphoid-derived

background T cells (data not shown).

In order to assess the effect of the recombinant CXCL10 fusion

proteins on lymphocyte recruitment, the purified proteins were

injected into the center of each tumor and immune infiltrates were

analyzed 4 h later. In immunohistology, the presence of T cells

was largely unchanged (high) throughout the tumors in all

treatment conditions (data not shown). FACS analysis revealed

the presence of NK cells in the tumors at ratios ranging from 0%

to 0.55% among the total lymphocytes (CD45+ cells) (Figure 6G).

Tumors treated with CXCL10-mucin-GPI showed the highest

numbers of NK cells (0.34%) compared to tumors that had

received any of the other treatments. Tumors injected with the

same molar amount of commercially available CXCL10 con-

tained on average only half as many NK cells (0.16%) as

CXCL10-mucin-GPI treated tumors. Also 500 x higher molar

amounts of commercially available CXCL10 were on average less

efficient (0.24%) than CXCL10-mucin-GPI. Differences were not

statistically significant due to the small sample size in this

experiment. Nevertheless, the data suggested a positive effect of

CXCL10-mucin-GPI on the recruitment of NK cells into

established tumors in vivo, complementing the results obtained

in vitro.

Discussion

Chemokines help direct the migration of cells. Because cellular

migration plays a central role in many human diseases, numerous

therapeutic tools to modify chemokine signaling networks have

been evaluated, mostly with the aim of suppressing the recruitment

of select cell types [36]. In contrast, in the present study an

approach to modify tissue micromilieus was developed that allows

the selective recruitment of cells carrying specific chemokine

receptors. The approach was based on fusion proteins consisting of

an N-terminal chemokine head, linked to the mucin-like domain

taken from CX3CL1, with a C-terminal GPI anchor replacing the

CX3CL1 transmembrane domain.

This novel class of reagents has diverse potential applications

ranging from regenerative medicine, e.g. in the context of

myocardial infarction where endothelial progenitor cells need to

be recruited, to cancer therapy, where tumor infiltration with anti-

neoplastic effector cells needs to be enhanced.

In the present study, examples of fusion proteins were designed

and tested in order to investigate the feasibility of this approach.

The proteins were designed for application in cancer therapy to

facilitate the recruitment of endogenous or adoptively transferred

lymphocytes. Our initial focus was on the facilitated recruitment of

NK cells.

NK cell infiltration has been identified as a positive prognostic

value in various tumors [2,3,37]. Poor NK cell infiltration in some

tumors has been associated with impaired immune-based tumor

control. A requirement for NK/T cell cooperation for full efficacy

in lymphocyte control of tumor growth has also been suggested

[38]. Thus, the recruitment of effector NK cells represents an

important step for effective immunological treatment of tumors.

The adoptive transfer of immune effector cells (T cells or NK

cells) has shown therapeutic efficacy in some settings and holds

promise for the development of future cancer therapies [39,40]. As

is seen with endogenous antitumor effector cells, one of the major

hurdles for a broader application of this treatment modality lies in

insufficient infiltration of the tumors by the adoptively transferred

cells [7–10,41].

The basis for the defective infiltration of tumors by endogenous

or adoptively transferred lymphocytes has been attributed to a

reduced interaction of leukocytes with the blood vessel wall [6–

8,14]. This phenomenon has been termed endothelial cell anergy

and is characterized by reduced expression of intercellular

adhesion molecule 1 and 2 (ICAM-1 and -2) and vascular

endothelial cell adhesion molecule 1 (VCAM-1) as well as changes

in the proteoglycans needed for appropriate presentation of

chemokines at the luminal side of endothelial cells [12–14].

Without these molecules leukocytes cannot undergo tight adhesion

or diapedesis [42,43]. We sought to overcome this problem by

generating a novel, flexible class of reagents that could be used for

the targeted modification of tissue micromilieus. According to our

hypothesis, recombinant fusion proteins such as CXCL10-mucin-

GPI when injected into a solid tumor, incorporate into the cell

membranes of tumor, stromal and endothelial cells [19]. When

present on tumor endothelial cells, the proteins should help

overcome endothelial cell anergy by specifically recruiting

leukocytes that express the matching chemokine receptor with

limited requirement for other adhesion molecules.

We show here that CXCL10-mucin-GPI is bioactive as it is able

to bind and activate the CXCL10 receptor CXCR3. Purified

proteins incorporated readily into the cell membranes of CHO

cells as well as microvascular endothelial cells. In our in vitro assay

system, the protein was able to recruit freely flowing NK cells

under conditions of physiologic flow following incorporation into

primary microvascular endothelial cells. This process was shown to

be dependent on the presence of the mucin domain. The results

obtained in a mouse tumor model documenting a trend towards

an enhanced NK cell recruitment into CXCL10-mucin-GPI

treated lymphoma nodules suggested that the positive effects hold

true also in vivo in a tumor setting. Following this first proof of

principle, the underlying concept of a chemokine head fused to the

mucin domain of CX3CL1 and a GPI anchor signal sequence

may be expanded into a broader family of reagents that allow

targeted recruitment of cells into various tissues. Along this line, we

currently have a manuscript in press describing the use of a similar

reagent which contains a CXCL12 (SDF-1) head in the

recruitment of CXCR4+ stem cells [44]. When expressed on

endothelial cells in vitro, this reagent effectively induced adhesion of

CXCR4+ cells. Moreover, if expressed in situ, it enhanced the

recruitment of endothelial progenitor cells in a rabbit hindlimb

show the presence of numerous blood vessels (arrows) throughout the tumors in H/E staining. Panels D, E and F represent serial sections of the same
position within a tumor. Various blood vessels are visible in H/E staining and the CD3 staining shows infiltration of the tumor with CD3+ cells (dark
grey/black staining). Less NKp46+ cells could be detected in the respective staining of the same position (dark grey/black staining; one cell is marked
by an arrow). Panel C depicts a cluster of NKp46+ cells, which was sometimes found at the margins of tumors (margin: upper part of the picture). G:
Injection of CXCL10-mucin-GPI tends to increase endogenous NK cell infiltration of subcutaneous tumors. Purified CXCL10-mucin-GPI was injected
into established 291 tumors. As controls, either the same or a 5006higher molar quantity of commercially available human CXCL10 (rhCXCL10) were
injected. As additional controls, the same volume of identically purified sEGFP-GPI was injected or the tumors were left completely untreated. The
animals were sacrificed 4 h after injection and infiltration of the tumors was assessed by FACS analysis. The figure shows the percentage of CD3-

NK1.1+ cells among the total lymphocyte count with each symbol representing one individual tumor and horizontal bars the average values.
Statistical significance was calculated using the Kruskal-Wallis-test (P = 0.19) followed by Dunns post test (not significant, N.S.).
doi:10.1371/journal.pone.0072749.g006
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ischemia model in vivo, leading to an enhanced perfusion post

ischemia.

Supporting Information

Figure S1 Human CXCL10 induces CXCR3 internaliza-
tion and Calcium flux in murine T cells. In order to confirm

cross-reactivity of the human-based CXCL10 fusion proteins in

the murine system, receptor internalization and Calcium mobili-

zation assays were performed. These complement the flow assay

experiments presented in figure 5 of the main manuscript. Murine

CD4+ CXCR3+ T cells (kindly provided by Frank Lehmann,

Helmholtz-Zentrum Munich) were used as target cells in both

assays. Murine CXCL10 was obtained from Peprotech, Rocky

Hill. A: Calcium mobilization. Murine T cells were loaded with

Fluo-4 according to the manufacturers instructions. Flow cytom-

etry was used to measure the fluorescence in the cell population.

30 seconds after the beginning of the assay (indicated by the black

arrow), 1 mg/ml human (orange line) or murine (blue line)

CXCL10 or buffer (black line) was added and the fluorescence

was measured for another 3 minutes. Human and murine

CXCL10 induced virtually identical Calcium responses in the T

cells. B: Receptor internalization. The assay was performed

essentially as described in the main manuscript, but using murine

T cells instead of human cells. The cells were incubated with 1 mg/

ml human or murine CXCL10 or a buffer control for 30 min and

subsequently stained with CXCR3-specific antibodies and ana-

lyzed by flow cytometry. The figure shows relative fluorescence

levels normalized to the ones found in the buffer-treated control

cells. Both human and murine CXCL10 induced similar levels of

CXCR3 internalization, indicative of cross-reactivity of the human

protein in murine cells.

(TIF)

Figure S2 CXCR3 internalization by the CXCL10 fusion
proteins. As shown in figure 2, panel C of the main manuscript,

the CXCL10 fusion proteins induced internalization of CXCR3

on cells of a human T cell line. To exclude the possibility that the

decrease in signal intensity was due to occupation of CXCR3 by

CXCL10 leading to decreased accessibility of the epitope for the

detection antibody instead of an actual internalization of the

receptor, additional experiments were performed. First, the

coincubation was performed at 4uC instead of 37uC in order to

slow down cellular activity. This lead to a much attenuated

CXCR3 internalization, consistent with an actual receptor

internalization, which is an active process that is slowed with

decreasing temperature. Second, a different antibody clone was

used for the detection of CXCR3, which yielded similar results as

the antibody clone used in the experiments presented in the main

manuscript.

(TIF)

Figure S3 Calcium mobilization by the CXCL10 fusion
proteins. A transient rise in the cytoplasmic calcium concentra-

tion is frequently used to monitor chemokine receptor activation

and the initiation of downstream signaling [2]. Coincubation

experiments were performed to assess the ability of the

recombinant CXCL10 fusion proteins to induce Calcium

mobilization in CXCR3+ cells. Human T cells (JB4) were loaded

with Fluo-4 according to the manufacturers instructions, centri-

fuged and resuspended in fresh assay buffer to yield 56106 cells/

ml. 50 ml of this suspension were transferred into each well of a 96

well flat bottom plate. The same number of wells was filled with

50 ml of assay buffer only as control. Subsequently, 50 ml of non-

transfected CHO cells or cells transfected with the recombinant

CXCL10 fusion proteins suspended in assay buffer (16107 cells/

ml) were added simultaneously to wells containing labeled DS4

cells or assay buffer. Measurements were performed in a

microlate-reader (485 nm excitation wavelength and 535 nm

emission wavelength) every 20 sec over a period of 40 min,

during which the plate was kept heated to 37uC. All samples were

run in duplicates. To compensate for CHO cell autofluorescence,

readings that had been taken in the samples in which the

respective CHO cells had been ‘‘coincubated’’ with assay buffer

only were subtracted for each time point from the readings that

had been taken in samples in which the respective CHO cells had

been coincubated with DS4 cells. For better readability, readings

are shown as D fluorescence values against coincubation with non-

transfected CHO. Commercially available soluble CXCL10 was

used in separate wells as positive control for the loading procedure

and the function of the Fluo-4 dye (data not shown). Before the

experiment, the transfected CHO cells were assayed for the

expression levels of the recombinant fusion proteins by FACS

analysis and found to express the proteins at similar levels (data not

shown). During the coincubation time of 40 min, a transient

increase of the fluorescence intensities could be observed,

indicating Calcium mobilization in the T cells. The relatively

long period of 40 min, over the course of which the increased

fluorescence was observed, may have resulted from single contacts

between T cells and CHO cells - each resulting in short-lived

calcium mobilizations - until eventually all T cells had been

desensitized for CXCL10. Interestingly, CHO cells transfected

with CXCL10-mucin-GPI induced a much faster and stronger

calcium response than cells transfected with CXCL10-GPI. It is

possible that the mucin domain facilitated the interaction of the

chemokine head with CXCR3 on T cells by presenting the

chemokine domain away from the cell surface.

(TIF)

Materials and Methods S1 Supplemental Materials and
Methods.

(DOCX)

Video S1 Endothelium treated with recombinant
CXCL10 and endothelium treated with CXCL10-mucin-
GPI. The videos show representative experiments, in which YT

cells were perfused over an endothelial cell monolayer treated with

recombinant CXCL10 or CXCL10-mucin-GPI at 1 dyn/cm2 as

detailed in the main manuscript (compare figure 4). The videos are

shown in real-time. After 10 or 20 seconds, the videos jump to the

end of the 5-minute observation period in each experiment. No

adhesions can be seen on the endothelial cells treated only with

recombinant CXCL10, while an accumulation of NK cells is

evident on endothelial cells treated with the CXCL10-mucin-GPI

fusion protein.

(Mp4)

Video S2 Rolling and tight adhesion. The video shows a

small section of endothelium treated with CXCL10-mucin-GPI as

detailed in the main manuscript in 16x fast motion. YT cells are

perfused over the endothelial cells at 1 dyn/cm2, The three cells

that are captured by the endothelial cells in the first half of the

video eventually reach tight adhesion, whereas several events of

rolling adhesion can be seen in the second half of the video.

(Mp4)
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