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ABSTRACT: The dimethyl sulfoxide (DMSO) solubility data from Enamine and two UCB pharma compound collections were
analyzed using 8 different machine learning methods and 12 descriptor sets. The analyzed data sets were highly imbalanced with
1.7−5.8% nonsoluble compounds. The libraries’ enrichment by soluble molecules from the set of 10% of the most reliable
predictions was used to compare prediction performances of the methods. The highest accuracies were calculated using a C4.5
decision classification tree, random forest, and associative neural networks. The performances of the methods developed were
estimated on individual data sets and their combinations. The developed models provided on average a 2-fold decrease of the
number of nonsoluble compounds amid all compounds predicted as soluble in DMSO. However, a 4−9-fold enrichment was
observed if only 10% of the most reliable predictions were considered. The structural features influencing compounds to be
soluble or nonsoluble in DMSO were also determined. The best models developed with the publicly available Enamine data set
are freely available online at http://ochem.eu/article/33409.

■ INTRODUCTION

Solubility in dimethyl sulfoxide (DMSO) is one of the
important parameters considered by pharmaceutical companies
during early drug discovery.1,2 The compounds that are
nonsoluble cannot be used in automatized high-throughput-
screening (HTS) and are thus lost for experimental measure-
ments. Moreover, they may have low water solubility and thus
be nonbioavailable. Therefore, companies try to minimize the
number of such molecules when acquiring new collections.
There have been only a few studies in which machine

learning methods were used for the classification of molecules
as soluble and nonsoluble in DMSO.3,4 The problem of model
development for this property is directly connected to the
limited availability of experimental data. While industry

routinely screens hundreds of thousands of molecules, these
data are usually not publicly available.
The number of molecules that are nonsoluble in DMSO is

usually only a small fraction of the soluble ones, i.e. the data are
highly imbalanced. The problem of imbalanced data learning is
well-known in the machine learning literature.5 It is also
frequently faced in the chemoinformatics field, in particular in
HTS virtual screening experiments. Indeed, in the latter cases
only a tiny fraction of molecules is detected as active ones and
the developments are targeted to extend the hits with new
chemical scaffolds. The problem of prediction of solubility in
DMSO is to some extent an opposite one: instead of
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maximizing the number of samples from the under-represented
class of nonsoluble molecules, the goal is to further decrease it.
In this study, we used a battery of machine learning methods

and descriptors to develop new models for prediction of
solubility in DMSO and to compare their performances. We
show that the frequently reported performance measures of the
prediction performance (such as total accuracy, Matthews
correlation coefficient, balanced accuracy), which are reported
for the whole data set, are not sufficient for practical
applications of methods for screening of new molecules. We
show that the use of a positive predictive value within a
specified coverage provides the appropriate measure to
compare predictive models for filtering molecules that are not
soluble in DMSO.
We also address the problem of the prediction accuracy by

developing models using data from separate companies as well
as by combining them. We show that collaborative efforts are
beneficial to all partners contributing the data.

■ DATA

Compound Libraries. The DMSO solubility data (sol-
ubility in 100% DMSO) were collected from UCB (UCB
Pharma S.A., http://www.ucb.com) and Enamine Ltd. (http://
www.enamine.net) companies. All data were available in SDF
format. They were standardized, stripped of salts, and
neutralized using ChemAxon tools6 that are integrated in the
OCHEM7 model development workflow.8

Both companies used the same threshold of 10 mM to
separate soluble and nonsoluble molecules and thus the data
sets could be merged seamlessly. More specifically, the
following steps were used at the UCB

(1) Add DMSO volume upon solid to get the theoretical
10 mM solution

(2) Orbital shaking (2000 rpm) at room temperature during
30 min

(3) Visual inspection: look through the vial in front of a light
source with several bottom-up cycles to check for
turbidity or solid deposits

Enamine used the same procedure with the exception of the
second step, which used multicycle pipetting at room
temperature. The first UCB data set (UCB1) contained 72
999 molecules including 1294 (1.7%) nonsoluble ones. The
Enamine data set, after filtering of duplicates, comprised 50 620
molecules with 2681 (5.3%) nonsoluble ones.
The low percentage of nonsoluble molecules in the UCB

collection may reflect the strategy of the company to focus on
central nervous system (CNS) active compounds. This CNS
focus biases the molecule selection toward particular
physicochemical windows (LogD, pKa, MW), which induce
improved solubility. The Enamine data has the ratio of
nonsoluble/soluble compounds that could be expected in
typical screening libraries.
Additionally, we analyzed a third data set, UCB2, of 39 470

molecules (5.8% nonsoluble), which corresponded to the
recent acquisitions and measurements performed at UCB. This
set was composed of all insoluble and a diverse selection of
soluble molecules. It was used to evaluate performances of
algorithms developed in this study. The final model was
developed using all molecules.
Since in the current study only solubility in DMSO is

considered, we will refer to soluble and nonsoluble in DMSO
molecules as “soluble” or “nonsoluble” ones by skipping
mentioning “in DMSO”.

Evaluation of Intrinsic Noise. The measurements of
DMSO solubility can be subjected to experimental errors, in
particular if molecules are on the borderline of solubility.
Insolubility might be associated with one or several of the

following events. From the kinetic point of view, the initial solid
compound might dissolve at a different speed depending on its
intrinsic solubility as well as its solid form. Solubilized
compounds might even sometimes reprecipitate due to
recrystallization under a new, much less soluble solid form.
From the reactivity point of view, some compounds might react
with the DMSO, dissolved oxygen, or residual solvent water.
These reactions (hydrolysis, oxidation, etc.) could lead to
compound decomposition, which might generate insoluble
species or cause precipitation of the parent molecule. Also,
some acids can cause decomposition of DMSO through the

Figure 1. Basic steps of model development and analysis using OCHEM.
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Pummerer rearrangement9 with formation of formaldehyde and
methylmercaptan, which can further react with solutes and
cause their precipitation.
A previous estimation of inconsistencies in DMSO solubility

measurements has been reported by the ChemDiv company: a
random re-evaluation of their data revealed a 1% error rate.2

The initial Enamine data set contained 50 907 molecules. This
number comprised 279 duplicates: 273 pairs of molecules
within one solubility class and 7 duplicates within two different
solubility classes, thus providing an estimation of the error rate
of about 2%, that is the ratio of pairs of duplicated molecules
having different classes of solubility to those that have the same
solubility.

■ METHODS

Machine Learning Methods. The model for DMSO
solubility was developed using a number of classification
machine learning approaches available at the OCHEM site.8

The workflow for model development is shown in Figure 1.
Below, we briefly overview them and full details can be found in
the cited references:
k Nearest Neighbors (kNN) predicts a property for a

compound using the consensus voting of k compounds from
the training set that are nearest to it according to some distance
metric. We used the Euclidean distance calculated using
normalized descriptors (mean 0 and standard deviation 1).
The number of nearest neighbors that provided the highest
accuracy of classification was calculated following a systematic
search in the range (0, 100).
Associative Neural Network (ASNN) uses the correlation

between ensemble responses as a measure of distance amid the
analyzed cases for the nearest neighbor technique.10,11 Thus
ASNN performs kNN in the space of ensemble predictions.
This provides an improved prediction by the bias correction of
the neural network ensemble. The configurable options are the
following: the number of neurons in the hidden layer, the
number of iterations, the size of the model ensemble, and the
method of neural network training. The default values provided
at the OCHEM Web site were used.
Fast Stagewise Multivariate Linear Regression (FSMLR) is

a procedure for stagewise building of linear regression models
by means of greedy descriptor selection.12

Partial Least Squares (PLS). The number of latent variables
was optimized automatically using 5-fold cross-validation on
the training set.
Multiple Linear Regression Analysis (MLRA) uses stepwise

variable selection. The method eliminates on each step one
variable that has a regression coefficient nonsignificantly
different from zero (according to the t-test). Thus MLRA has
only one parameter, ALPHA, which corresponds to the p-value
of variables to be kept for the regression. ALPHA = 0.05 was
used.
Support Vector Machine (SVM) uses the LibSVM

program.9 The SVM method has two important configurable
options: the SVM type (ε-SVR and μ-SVR) and the kernel type
(linear, polynomial, radial basis function, and sigmoid). Classic
ε-SVR and radial basis function kernels were used. The other
SVM parameters, namely cost C and width of the RBF kernel,
were optimized using default grid search, which was performed
according to the LibSVM manual.
J48 and RF are Java implementations of WEKA13 C4.5

decision tree and Random Forest, respectively. The default

parameters provided by WEKA were selected and thus there
was no optimization. Each RF model was built using 10 trees.

Molecular Descriptors. The online chemical database and
modeling environment (OCHEM) Web site offers a large
selection of descriptors, which were contributed by different
academic groups and commercial enterprises. Their list and
brief description can be found elsewhere.8,14 For this study, we
considered each block as a separate set; that is, we did not
combine descriptor types from different vendors. Below we
briefly list them and provide links and references to detailed
descriptions. The information whether descriptors in the block
are based on 2D or also require 3D structures is also specified.
ADRIANA.Code (3D) comprises 211 molecular descriptors

based on a sound geometric and physicochemical basis. The
classes of descriptors cover global molecular descriptors, shape
and size descriptors, topological, and 3D property-weighted
autocorrelation descriptors.15

CDK (3D) included topological, geometrical, constitutional,
electronic, and hybrid descriptors.16 In total, 274 descriptors
were calculated.
ChemAxon 499 descriptors (3D) included elemental

analysis, charge, geometry, partitioning, protonation, isomers,
and “other” descriptors.8

Dragon6 (3D) represented the largest pool, which included
4885 descriptors grouped in 29 different blocks.17

E-state indices18,19 (2D) were calculated using E-state
program, which was used to predict logP and water solubility
in the ALOGPS program.20 The logP and logS values
calculated using ALOGPS 2.1 version were also included.
ISIDA Fragmentor (2D)21 was used to calculate augmented

atoms of length 3 to 5.
GSFrag (2D) included descriptors based on fragments that

contain a labeled vertex, allowing one to capture the effect of
heteroatoms.22

Inductive descriptors (3D), which are based on LFER
(Linear Free Energy Relationships) equations for inductive and
steric substituent constants, were implemented according to ref
23. These descriptors were used for modeling of different
physicochemical and biological properties24 and thus were also
expected to be relevant for the analysis of DMSO solubility.
Mera (3D) included geometrical, energy characteristics, and

physicochemical descriptors.25 In this set we also included
MERSY (MERA Symmetry), which estimates molecular
symmetry and chirality.
Shape Signatures (3D) encoded spatial shape characteristics

of molecules using ray tracing, which explores volume enclosed
by the solvent accessible surface of a molecule.26

Spectrophores fingerprints27 (3D) are calculated as one-
dimensional compression of molecular properties fields
surrounding molecules.
Extended-connectivity fingerprints (2D)28 with diameter 4

and vector length 1024 (ECFP4) were calculated using
ChemAxon tools.6 These descriptors, and in particular
ECFP4,28 are frequently used for similarity searching. We
used these descriptors to compare performances of different
approaches to define molecular similarities.

Filtering of Descriptors. Before development of models, all
descriptors were filtered. The almost constant descriptors that
had two or less different values were eliminated. We also
deleted highly correlated descriptors (R > 0.95) as well as those
that had standard deviation less than 0.01. These are the
standard filters used in the OCHEM workflow (Figure 1).
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Bagging. Bagging is an ensemble modeling approach that
calculates several (usually tens to hundreds) models and
averages them to produce the final model.29 For our analysis,
we used ensembles of N = 64 models. The use of larger
numbers of models per ensemble (i.e., 128, 256, 512 and 1024)
did not provide a significant increase of the balanced accuracy
of models but required more computational power.
The traditional bagging creates multiple replicas of the initial

training set by randomly selecting molecules for replacement
from the initial set. On each run, about 33% of the molecules
are not selected by bagging and form “out-of-the-bag” sets,
which are used to test the performance of models. When
creating training and test sets, we initialized a random generator
using the same number and, thus, all methods used the same
data.
To address the problem with unequal distribution of samples

between classes of active and inactive molecules, we used so-
called stratified bagging.5 In this analysis, we created the
balanced training data sets by limiting the number of soluble
molecules to be the same as that of the nonsoluble ones. Thus,
the sizes of the bagging training sets were double the number of
the nonsoluble molecules. Therefore, only about 4−11% of the
compounds from UCB and Enamine data sets were used to
build each individual bagging model. However, since data sets
for each model were generated randomly, the majority of
molecules contributed to the bagging procedure.
Since we used balanced training sets, the total (ACC) and

balanced accuracies (BAC) measures for the training sets were
identical (see Table 1). The parameters of methods (e.g.,
number of nearest neighbors in kNN, parameters of SVM, etc.)
were optimized to provide the lowest error for the training sets
using different procedures implemented for each method (e.g.,
leave-one-out for kNN; 5-fold internal cross-validation for
SVM; hold-out procedure for ASNN, etc.). Each of these
procedures introduced a different degree of fit. Therefore, the
fitting results for the training sets were not reported in this
article. The performance of the developed models was
compared using molecules that were not selected for the
respective training sets. These “out-of-the-bag” molecules were
predicted only after the models were built.
The training of models using balanced sets of molecules is

considered as one of the most successful strategies to address
the problem of imbalanced data sets.5 The bagging approach
was also important to provide the reference method to estimate
the accuracy of predictions, as described in the next paragraph.
Estimation of the Prediction Accuracy. One of the goals

of this study was to develop a strategy to enrich the molecule
selection with soluble molecules. The use of the most accurate
predictions was important for such a selection. The accuracy of
predictions of models was estimated based on the concept of
the distance to model.30−33 The distance to model (abbreviated
as DM) could be algorithm- and data-specific. In our previous

studies, we have shown that the deviation of predictions in an
ensemble of models was one of the most accurate DM to
separate reliable and nonreliable predictions.31 Indeed, the
deviation of the ensemble of models accounts both for used
descriptors and the modeled property and corresponds to one
of the “property-based similarities” as defined elsewhere.32

The standard deviation of predictions within bagging
ensembles (BAGGING-STD) provided a convenient way to
provide a uniform measure across different methods analyzed in
this study. Following development of models, their prediction
variances were used to order molecules from most reliable
(smallest BAGGING-STD) to least reliable (largest BAG-
GING-STD) predictions. For the majority of studies, as
described below, only the 10% of molecules with the lowest
BAGGING-STD values were considered. The selection of 10%
was based on the assumption that the selection of compounds
is usually performed from redundant libraries having tens to
hundreds of molecules. Thus, the 10% threshold was selected
to identify a reasonable number of molecules that could be used
for further filtering with other filters.

Estimation of the Performance of Methods. Several
measures were analyzed to estimate the accuracy of models.
The total accuracy (ACC), balanced accuracy (BAC),
Matthews correlation coefficient (MCC), positive predictive
value (PPV), sensitivity, and specificity were considered (see
Table 1). In addition to measures defined for the whole set, one
can also consider their performance for a subset of, e.g. most
reliable predictions, i.e. PPV10% would refer to the PPV for the
10% of molecules with the lowest BAGGING-STD values.
One more measure, enrichment of the soluble molecules,

defined as a ratio of the percentage of nonsoluble molecules
within the whole analyzed set to the percentage of insoluble
compounds predicted as soluble ones within PPV10% molecules
(i.e., 100%-PPV10%)

= ‐ENR %nonsoluble/(100% PPV )10% 10% (1)

was used. This number was also compared to ENR100%
calculated as

= ‐ENR %nonsoluble/(100% PPV )100% 100% (2)

i.e., to the average enrichment of models when ignoring the
accuracy of predictions.

Exclusion of Duplicates. The duplicates within each data
set were eliminated in the data preparation process, i.e., during
data upload to the database. OCHEM used InChi hash-keys34

to automatically detect duplicates (stereochemistry is also
considered) during the data upload process. The molecules that
had the same reported type of solubility were automatically
marked as “internal duplicates” and were not uploaded to the
database (but were used to perform analysis described in
section Evaluation of Intrinsic Noise). However, it could appear
that some molecules have exactly the same descriptors despite

Table 1. Performance Measures Frequently Used to Compare Classification Models

experimental measurements

soluble nonsoluble

predicted
solubility

soluble true positive (TP) false positive (FP) positive predictive value PPV = TP/(TP + FP)
nonsoluble false negative (FN) true negative (TN) negative predictive value NPV = TN/(TN + FN)

sensitivity = TP/(TP + FN) specificity = TN/(TN + FP)
accuracy (ACC) = (TP + TN)/(TP + FP + FN + TN)
balanced accuracy (BAC) = 0.5(sensitivity + specificity)
Matthews correlation coefficient (MCC) = (TP × TN − FP × FN)/[(TP + FP)(TP + FN)(TN + FP)(TN + FN)]1/2
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their chemical structures being different. We automatically
identified such groups of molecules and used each group either
in the respective training set or in the out-of-the-bag set. Thus,
if some molecule were a duplicate in the Enamine and in one of
the UCB sets, our procedure would always assign it either to
training or out-of-the-bag set, but not to two sets simulta-
neously.

■ RESULTS AND DISCUSSION
Overview of Analyzed Data Sets. Table 2 indicates

distribution of average properties between soluble and
nonsoluble molecules.
Previous work conducted to estimate aqueous solubility from

molecular structure showed that models based on parameters
such as clogP (calculated octanol/water partition coefficient,
log P), molecular weight, and the number of rotatable bonds
could lead to solubility in DMSO predictions with satisfactory
levels of accuracy and precision to be useful in the drug design
process.35 In the three data sets used in the study, although
insoluble compounds have, on average, higher molecular weight
(MW), higher log P, smaller solubility, and less rotatable bonds,
the property variations are small.
In terms of properties such as partial surface area (PSA) and

H-bond acceptors and donors (HBA and HBD), these are
closely associated to solubility but their net impact is hard to
predict. Indeed, H-bonding is favorable to solubility in the case
of solute−solvent interactions but unfavorable in the case of
solute−solute interaction (increase of solid crystal lattice).36 In
all three data sets, HBD/HBA have the largest variation
between solubility classes. If the average number of HBA is
always increasing for insoluble compounds, the average number
of HBD is decreasing, except for the UCB1 data set.
An analysis of an overrepresentation of chemical functional

groups within soluble and nonsoluble compounds was
performed using the SetCompare utility of OCHEM. The
functional groups were calculate using the ToxAlerts utility37

which uses SMARTS to recognize important chemical groups
(e.g., toxicophores, structural alerts, functional groups). For this
analysis we used SMILES arbitrary target specification
(SMARTS) patterns for about 580 functional groups. Around
250 of these groups were initially proposed by Haider.38 Miss
E. Salmina, who was a FP7MC ITN ECO project fellow in the
laboratory of IVT, extended these groups (in collaboration with
Prof. N. Haider) during her stay. The over- and under-
represented functional groups are available as ref 39. For each
group, we listed the number of appearances within both soluble
and nonsoluble molecules as well as p-values to observe such

differences by chance. The significance values were calculated
using a hypergeometric distribution.
The most significant functional groups, which contribute to

low solubility, are aromatic six-membered heterocyclic
compounds with two heteroatoms. Indeed, 42% of all
nonsoluble molecules have this structural feature while only
less than 16% of soluble compounds have it. The heterocyclic
compounds with only one heteroatom were also over-
represented (but to a lesser extent, i.e. 22% vs 13%) within
the set of nonsoluble molecules. Oxohetarenes were also 2.7
times (37% vs 14%) overrepresented within the nonsoluble set.
The other overrepresented groups in the set of nonsoluble
compounds included aromatic heterocyclic groups, five-
membered heterocycles, tertiary aliphatic amines, etc. A
presence of carboxylic acid derivatives (in particular amides),
carbonic derivatives, nonfused benzene rings, ureas, and
halogen derivatives was associated with increased solubility.
We also used the ScaffoldHunter software40 to detect over-

and underrepresented individual chemical scaffolds determining
DMSO solubility.39 The majority of overrepresented scaffolds
were detected for nonsoluble molecules. They could be used to
identify potential problems with DMSO solubility for new
molecules.

Outlook of Model Development. The models were
calculated using the UCB1, the Enamine, and the combination
of both data sets using OCHEM.8 OCHEM is a public, free
online tool for web users.7 It is backed up with more than 600
central processing unit (CPU) servers thus allowing it to solve
quantitative structure−property relationship (QSPR) problems
of high complexity. A number of calculations, e.g. Shape
Signatures, 3D conversion of molecules using Corina, and
Adriana.code descriptors, are performed at the partners’ Web
sites.8

Because of confidentiality issues, UCB molecules could not
be used for the online calculations at the OCHEM Web site.
While OCHEM was provided as a standalone version to UCB,
calculation of models using bagging methods required
significant computational resources, which were not available
for the software provided to the company. Molecular
descriptors were calculated at UCB locally and molecular
structures were kept private using an OCHEM built-in
descriptor shuffle key.
Therefore, for the purposes of the current study, we first

evaluated all sets of descriptors and methods using the public
version of OCHEM for the Enamine data set. In total, 96
models were calculated. After their analysis, we identified
several combinations of methods and descriptors to develop

Table 2. Average Properties of Molecules from Analyzed Data Setsa

UCB1 UCB2 Enamine all

property sol insol delta% sol insol delta% sol insol delta% sol insol delta%

N 71705 1294 37182 2288 47939 2681 156826 6263
MW 321 347 7.8 295 368 22 358 389 8.3 336 372 10.2
NA 22.5 24.6 8.9 21 25.8 20.5 24.7 27 8.9 23.5 26 10.1
PSA 61 70.6 14.6 65.6 70.5 7.2 66.6 69.7 4.5 63.2 69.9 10.1
acceptors 3.76 4.3 13.4 4 4.7 16.1 4.5 5.7 23.5 4.03 5.03 22.1
donors 1.08 1.22 12.2 1.2 1.04 −14.3 0.92 0.56 −49 1.05 0.83 −23
rotatable bonds 4.4 4.26 −3.2 4.4 4.1 −7.1 5.1 4.8 −6.1 4.61 4.5 −2.4
log P 2.8 2.82 0.7 2.94 3.23 9.4 2.98 3.19 6.8 2.88 3.13 8.3
log S −3.76 −3.88 −3.1 −3.85 −4.23 −9.4 −4.04 −4.2 −3.9 −3.87 −4.15 −7

aN is the number of molecules in the data set; MWmolecular weight; NAnumber of nonhydrogen atoms; PSApolar surface area; log P and
log S are calculated using the ALOGPS 2.1 program.20
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final models using the individual and the combination of the
UCB and the Enamine data sets.
Traditional Accuracy Assessment. Since the DMSO data

set was highly imbalanced, the use of traditional accuracy
measures provided rather inconsistent results. Figure 2
demonstrates the shares of models with the highest accuracy
according to different accuracy measures among top-perform-
ing models. It is clear that decision tree J48 approach dominates
(Figure 2A) if we use the total accuracy as the criterion of the
model performance. The LibSVM method provides an equal
contribution with decision trees and random forest for the 4−8
best performing models using the Matthews correlation
coefficient (MCC) (Figure 2B). ASNN clearly dominates and
provides the largest number of top-performing models (Figure
2C) if we consider balanced accuracy (BAC).
Thus, depending on the used measure of the accuracy of

models, we can draw quite different conclusions about their
performances. The first measure, total accuracy, can be hardly
considered appropriate for the unbalanced data sets, and its
results were reported only for illustration purposes. The two

other measures, BAC and MCC, are frequently used for
analysis of unbalanced sets. As we can see, their results are also
quite incompatible. Thus, one should carefully consider and
select a performance measure for imbalanced data sets
depending on the practical requirements to the models in
question. The choice of the performance measure can strongly
influence the conclusions of the study.
Analysis of the experimental accuracy of DMSO models for

soluble and nonsoluble compounds as a function of the
estimated accuracy of predictions (BAGGING-STD) allows
better understanding of the results (Figure 3). First, the
accuracies of prediction of either soluble (sensitivity) or
nonsoluble (specificity) molecules gradually decrease with the
increase of the BAGGING-STD distance. Second, there are
different patterns in the performances of the models, which
depend on the method and descriptors used. All models have
higher sensitivity and thus higher accuracy of predictions of
soluble molecules. The ASNN provides similar accuracies for
both soluble and nonsoluble molecules.

Figure 2. Percentage of models contributed by different methods (y-axis) as a function of the number of n top-ranked models (x-axis) selected
according to accuracy (ACC), Mathew correlation coefficient (MCC), and balanced accuracy (BAC).
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Performance Comparison for the Most Reliable
Predictions. In order to better understand which measure
should be more appropriate for our analysis, let us consider a
typical use-case for a DMSO solubility model. When acquiring
a new molecule collection, the pharmaceutical company may
need to select only a tiny portion of molecules from the
chemical provider’s library. Indeed, the most typical strategy is
to acquire a “diverse set of compounds” for HTS screening in
order to identify some new promising chemical series that
could be active against potential targets. The selection of the
diversity set can be also based on the QSPR models and/or
additional filters, such as Lipinski’s “rule of 5”. In any case, the
researchers typically face the problem to identify a small subset
of molecules, 1−10% or even less, out of a large set of possible
candidates. Thus, in principle, a high accuracy of models could
be required just for a subset of all molecules.

Table 3 shows models that achieved the PPV10% ≥ 99% (and
thus lowest percentage of nonsoluble compounds) for 10% of
compounds with the highest accuracy of predictions. As it was
mentioned in the Data section, the Enamine training set
contained 5.3% of nonsoluble compounds. As indicated by
ENR100%, the acquisition of molecules amid those predicted as
soluble for the whole set would decrease the number of
nonsoluble molecules by 1.8−2.6-fold. The same procedure
applied to molecules that had the highest accuracy of prediction
within 10% coverage could decrease the number of nonsoluble
compounds by 5−9-fold. For example, the highest balanced
accuracy of the models for the total data set, 73.3%, was
calculated using the ASNN method applied for ISIDA
Fragmentor21 descriptors. This model has PPV100% = 97.9%.
The use of this model provided only a 2.5 fold enrichment for
the whole set. This enrichment was three times lower
compared to 7.6 fold when considering only the 10%
compounds with the most accurate predictions. As it was
mentioned before, prediction of solubility for 1−10% of
compounds would be sufficient for most of practical
applications. Thus the ability of models to differentiate reliable
versus nonreliable predictions and provide high enrichment of
the selected data set with soluble compounds determined the
real practical value of the models. Conversely, the traditional
measures such as ACC, BAC, and MCC would not be
important in practice.
Therefore, in this study we used PPV10% as the accuracy

measure for the comparison of the performances of the models.
We will refer to PPV, sensitivity, and specificity values
calculated for the 10% of compounds with the highest accuracy
of predictions as PPV10%, SENS10%, and SPEC10%, respectively.
We also noticed that for the majority of models PPV values
were stable for 5−15% of molecules before starting to decrease,
i.e., the change of the PPV threshold in this range would not
significantly affect the results reported in this study.

Overview of Top-Ranked Methods and Descriptors.
Only 2 out of 12 analyzed descriptors sets, namely

Figure 3. Specificities and sensitivities of different methods versus
coverage. The predictions were ordered according to the increasing
values of the BAGGING-STD distance to models. ASNN results were
calculated using E-state indices and provided the highest balanced
accuracy. J48 results were calculated using CDK descriptors and
provided the highest total accuracy. LibSVM using inductive
descriptors calculated the model with highest Mathew correlation
coefficient. The sensitivity and specificity of models decreases with
increasing values of BAGGING-STD and thus with increasing the
coverage.

Table 3. Top-Performing Models for DMSO Solubility Prediction Developed with Enamine Data Set within the Whole Data Set
and 10% Coveragea

method descriptors number of descriptorsb BAC100% PPV100% ENR100% PPV10% ENR10% BAC10% SENS10% SPEC10% NSOL10%

J48 CDK 175 71.8 97.5 2.2 99.4 8.8 87.1 97.8 76.4 2.3
ASNN E-state 205 73.1 97.9 2.6 99.4 8.8 92 96 88 4.7
ASNN Dragon6 1929 73.2 97.9 2.5 99.4 8.8 92.2 97 87.4 3.7
ASNN Fragmentor 872 73.3 97.9 2.5 99.3 7.6 90.2 95.8 84.6 4.3
ASNN ChemAxon 134 72.8 97.9 2.5 99.3 7.6 91.2 92.4 89.9 5.8
J48 E-state 205 71 97.3 2 99.2 7.6 77.5 99.4 55.6 1.7
ASNN CDK 175 73.2 97.9 2.5 99.2 6.6 91 94.8 87.2 5.3
J48 Dragon6 1929 71 97.3 2 99.2 6.6 88.8 97 80.6 4
J48 Fragmentor 872 71 97.3 2 99.1 5.9 82.2 98 66.4 2.5
ASNN Mera 259 70.9 97.7 2.3 99.1 5.9 88.3 96.2 80.4 4.2
ASNN Adriana 119 72.9 97.9 2.5 99 5.3 86 82.2 89.8 7.8
J48 Adriana 119 69 97.1 1.8 99 5.3 79.4 98.8 60 2.5
RF Fragmentor 872 72 97.6 2.2 99 5.3 88.3 97.4 79.1 4.7
ASNN GSFrag 314 71.9 97.8 2.4 99 5.3 87.6 85.5 89.7 7.5
J48 GSFrag 314 69 97.1 1.8 99 5.3 83 98.8 67.1 2.9
RF E-state 205 73 97.8 2.4 99 5.3 88.5 96.3 80.6 5.1
RF inductive 38 67 97.2 1.9 99 5.3 84.9 94.8 74.9 3.5
consensus all 74.2 97.9 2.5 99.6 13 87.5 98 77 1.2

aModels with PPV10% ≥ 99% were selected. bAfter filtering, see Methods section. NSOL10% is the percentage of nonsoluble molecules within 10%
coverage of the most highly accurate predictions.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400213d | J. Chem. Inf. Model. 2013, 53, 1990−20001996



Spectrophores and Shape Signatures, did not contribute to the
top-ranked models (Figure 4). For these descriptors, the best

result (PPV10% of 98.8% and 98.1% for ShapeSignatures and
Spectrophores, respectively) was calculated using the random
forest method (RF). We also investigated whether combina-
tions of descriptors could further improve the results.
Considering the limitation on the number of descriptors per
molecule that we currently had in our system, we decided to
consider only CDK, E-state, ChemAxon descriptors, MERA,
Adriana, and GSFrag. Their descriptors were joined in one set
and were used to developed new models. The models
calculated using ASNN and WEKA J48 had a PPV10% of
99.0% while other approaches had even lower accuracy. Thus,
combination of descriptors did not improve the accuracy of
predictions.
All top-ranked models were contributed by three methods:

ASNN, J48, and RF. ASNN and J48 methods accounted for
about 80% of the top-ranked models, by contributing 8 and 6
models, respectively. RF contributed the remaining models.
These three methods were considered for the further analysis.
All methods had higher sensitivity than specificity (with

exception of ASNN developed with GSFrag, Adriana, and
Dragon6 descriptors). These values were approximately the
same for all methods and were larger than 92%, with the
exception of the ASNN−Adriana and ASNN−Dragon6 models.
The specificity values were lower and ranged from 56% to 95%.
Thus, the nonsoluble compounds were more difficult to predict
and, on average, were predicted with higher errors compared to
the soluble ones.
Considering that all the sensitivity values of methods were

rather high and similar, one could expect that specificity
(accuracy of prediction of nonsoluble compounds) would
determine the PPV values. However, there was a very small
Pearson correlation coefficient (R = 0.29) between SPEC10%
and PPV10%. Actually, the PPV is not deterministically
determined by sensitivity and specificity only. It also depends
on the percentage of molecules from the nonsoluble class
within 10% coverage. As we can see in Table 3, different
approaches identified different percentages of nonsoluble
molecules as reliably predicted within the 10% interval. The
number of false positive (FP) predictions inside of the same
interval (calculated as (100%-SPEC10%)*NSOL10%) had much a

higher correlation R = −0.91 with the PPV. A negative value of
the correlation coefficient indicates that increase of the number
of FP predictions decreases the PPV.
As we can see in Table 3, the percentage of nonsoluble

molecules within 10% coverage of reliable predictions,
NSOL10%, strongly varied depending on the method. On
average, there were 4.6% of nonsoluble molecules within this
range. This number was lower as compared to the overall
percentage of nonsoluble molecules in the whole data set,
which was 5.3%.
The appearance of the molecules within 10% of the most

reliable predictions reflects the degree of their ease of
classification on the classes. Indeed, these compounds all had
the lowest BAGGING-STD and thus the majority of models
provided the same prediction of their membership class. The
under-representation of molecules within this interval shows
that the class of nonsoluble molecules was more difficult to
predict compared to the soluble ones. This result also correlates
with the lower specificity rate observed for nonsoluble
molecules in Table 3.
The maximum PPV10% value was 99.4% for this set. It

provided a lower estimation of experimental error, 0.6%, as
compared to the experimental error rate of 2% estimated in the
Methods section. Both these results, however, do not contradict
each other. As was mentioned before, the experimental errors
on solubility could be strongly related to some particular
molecular properties, e.g. initial crystal packing (strong H
packing) or instability. Thus, compounds having some specific
features could contribute to the high error rate, since their
solubility can change with time. Definitely, such compounds
will contribute to both soluble and nonsoluble predictions thus
causing a high uncertainty with their predictions. Unsurpris-
ingly, these compounds would not appear amid the most
confident prediction.
The remaining rate of 0.5% may correspond to the other

measurements’ errors as well as uncertainties in solubility
determination.

Importance of Stratified Learning.We investigated whether
better models could be achieved using all data. The models
were developed using E-state indices and all machine learning
methods described in the Methods section. All the models had
a BAC = 50% by predicting all compounds as soluble, i.e. failed
to separate both classes of compounds.

Comparison of Models Using 2D and 3D Descriptors. This
analysis was performed using subsets of 2D and 3D Dragon and
CDK descriptors, which required and did not require 3D
structures of molecules, respectively. The models calculated
using 2D descriptors had similar performances compared to
those calculated using all descriptors. Contrary to that, models
calculated only with 3D descriptors had on average lower
performances. This result can be also attributed to the absence
of stereochemistry for the chemical structures in the Enamine
data set.

Consensus Modeling. We verified whether a consensus
model based on models from Table 4 would offer additional
advantages compared to the individual models. The PPV10% of
this model was 99.6% and thus was higher than that of any
individual model. We also built a consensus model by combing
RF, J48, and ASNN models developed using the E-state
descriptors. The PPV10% of this model was 99.3% and thus did
not increase compared to the individual models. Thus, the
higher accuracy of the larger consensus model was presumably
due to the different representation of molecules with descriptor

Figure 4. Percentage of models calculated using different descriptors
(y-axis) as a function of the number of n top-ranked models (x-axis)
for PPV10% measure. Dragon, E-state, and CDK descriptors contribute
the largest share, 75%, of 10 top-ranked models.
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packages. Conversely, the models developed using the same set
of descriptors were based on the same representation of
molecules and thus their consensus did not improve the
performance.
The E-state descriptors participated in 3 out of 17 top-

performing models. Moreover, they provided the smallest set of
descriptors for the analysis. Because of the size of this data set
as well as problems to run a large computational analysis at
UCB, we decided to use only E-state for the further analysis.
Comparison of “Structure-Based” and “Property-Based”

Similarities. It was previously demonstrated that the use of
property-based similarities32 based on a disagreement of models
provides better separation of molecules with reliable and
nonreliable predictions compared to the traditional one based
on, e.g. Leverage.30,31,41,42 Cumulative PPV values calculated
for the Consensus model when using both types of similarities
are shown in Figure 5. Since the performance of the same

model was analyzed, PPV100% is exactly the same, 97.9%. If we
limit our analysis to a subset of molecules with the highest
accuracy of prediction, property-based similarities, e.g. Con-
sensus STD, calculate higher intermediate PPV values
compared to Leverage. Thus, the property-based similarities
provide better identification of molecules with correct
predictions thus confirming our previous results.
Analysis of the UCB1 Data Set. The results calculated

using different methods and E-state indices are summarized in

Table 5. This data set contained only 1.7% of nonsoluble
molecules, and thus, a random selection of molecules would

contribute PPV = 98.3%. Therefore, the enrichment by an
application of models developed with this set were smaller, e.g.
the top performing RF model provided only about a 3.4 fold
decrease in the number of nonsoluble molecules compared to
an 8.8 fold decrease observed for molecules from the Enamine
set.

Prediction of the UCB2 Data Set. The models developed
using UCB1, Enamine, and UCB1 + Enamine data were used
to predict a new data set of compounds that were recently
acquired and measured at the company. The accuracies of
predictions are reported in Table 5. The prediction of the
UCB2 set was a difficult task. The enrichments, when
considering all molecules (ENR100%), were rather low and
ranged from 1.4- to 2.4-fold. At the same time, the enrichments
ENR10% for 10% of coverage were on average 2−3 times higher
and provided much better filtering of nonsoluble molecules.
The models developed using the Enamine set provided the

lowest enrichments. This result is clearly understandable
considering different diversity of chemical compounds in the
libraries of chemical providers and those of chemical
companies. The models developed using UCB1 had a higher
accuracy while the highest accuracies were achieved for models
developed by a set, which combined the Enamine and UCB1
sets. It is interesting that an increase of the training set sizes had
practically no impact on the ENR100%, which only slightly
increased. However, the number of nonsoluble compounds
dramatically decreased within the 10% coverage for larger data
sets. Importantly, a combination of data from both companies
achieved models with the highest ENR10% values thus indicating
advantages of collaboration efforts.

Development of Models Using All Data. The final
models were developed using 3 analyzed methods, and the total
set of 163 089 molecules, which included 6263 nonsoluble
(3.84%) compounds. The PPV10% of the models ranged from
99% (RF) to 99.3% (J48) and 99.4% (ASNN). As in the
previous analyses, these values were higher than PPV100%, which
ranged from 98.1% (J48), 98.2, (RF) to 98.4% (ASNN). Thus,
the developed models could decrease the number of insoluble
molecules 2−2.4-fold when applied to the whole set of
molecules and 3.8−6.4 times when considering only 10% of
the most reliable predictions. This result again confirms that

Table 4. Statistical Parameters of Models Developed for
UCB1 Data Set Using E-State Indices

method PPV10% ENR10% SENS10% SPEC10%

RF 99.5 3.4 96.9 78.7
J48 99.5 3.4 98 74.1
ASNN 99.4 2.9 94.2 76.9

Figure 5. Cumulative positive predictive values (PPVs) are shown as a
function of distance to models (DMs) using two property-based
similarities32 (Consensus and Bagging STD) and Leverage, which was
calculated using ECFP4 descriptors.28 The same Consensus model was
analyzed and thus PPV100% values are identical for all three plots. The
PPV values for the first 500 compounds were averaged to decrease
chance fluctuations due to a small sampling size. All plots demonstrate
that the accuracy of predictions decreases for molecules with large
DMs. The property-based similarities better identify molecules with
correct predictions and thus higher PPVs compared to Leverage. Thus,
the acquisition of molecules selected from regions with most accurate
predictions, e.g. 10% of compounds, would provide a smaller fraction
of insoluble molecules when using property-based similarities
compared to that based on Leverage.

Table 5. Validation of Models Using the UCB2 Data Set

training data set UCB2 data set

training data
set/model PPV10% ENR10% PPV10% ENR10% PPV100% ENR100%

Enamine/RF 99 5.3 97.9 2.3 96.1 1.5
Enamine/J48 99.2 7.6 98.2 2.8 95.8 1.4
Enamine/
ASNN

99.4 8.8 98.4 3.2 96.6 1.7

UCB1/RF 99.5 3.4 99.1 5.9 97.6 2.4
UCB1/J48 99.5 3.4 98.9 4.8 96.8 1.8
UCB1/ASNN 99.4 2.9 98.4 3.2 97.4 2.2
Enamine +
UCB1/RF

99.5 10 99.2 7 97.1 2

Enamine +
UCB1/J48

99.4 7.8 99.2 7 96.7 1.8

Enamine +
UCB1/
ASNN

99.4 5.2 98.5 3.8 97.4 2.2
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taking into consideration only the most reliable predictions
allows significantly better filtering of nonsoluble compounds.
Models and Data Availability. The developed models are

available as a web reference.39 The readers can open models,
access, and analyze their statistics and applicability domain plots
as well as apply the models to new compounds using the
“Apply the model to new compounds” link at the bottom of the
selected model. This page also contains SetCompare results
with lists of significant groups and fragments identified for
soluble and insoluble compounds. The article profile provides
also access to data that were used for model development. The
data can be visualized in the browser and downloaded in SDF,
Excel, or in comma separated value (CSV) formats using the
“Export this basket” link provided for each data set.

■ CONCLUSIONS
We developed and analyzed QSPR models to predict DMSO
solubility of chemical compounds using several large data sets.
When applied to the whole sets, the developed models allowed
to decrease the number of nonsoluble compounds by about
1.4−2.7 times. By considering only 10% of the most reliable
predictions, one could achieve usually 2−3-fold enrichment and
thus decrease the number of nonsoluble compounds 3−9-fold.
This result indicates the importance of accounting for the
prediction accuracy. The consideration of only the fraction of
(the most accurately) predicted molecules corresponded to the
typical use-case scenarios for the developed DMSO models.
Indeed, these models are typically used to prescreen large
chemical libraries and to purchase only a small subset of
molecules with the most favorable properties. Therefore, the
ability of the developed models to reliably predict only a small
faction of the chemical library does not limit the scope of these
models.
J48, RF, and ASNN provided higher accuracy of predictions

than the other analyzed methods, such as libSVM, kNN,
MLRA, FSMLR, and PLS. It is remarkable that simple
classification algorithms such as J48 and RF achieved a very
high accuracy of predictions when using the bagging approach.
All three analyzed methods, J48, RF, and ASNN, provided
similar results for different sets of molecules. From a practical
point of view, the J48 and RF methods were faster to calculate
and required a smaller size to store the models.
The structural analysis of sets of soluble and nonsoluble

molecules identified functional groups and chemical scaffolds
that are likely to contribute to low solubility of molecules. The
results of this analysis can be important for planning and
development of new chemical series that should be soluble or/
and modification of the existing series in order to increase their
solubility.
The combination of data from both companies provided an

increase of the accuracy of prediction of the developed models
for the UCB2 set. This result indicates the importance to
promote collaborative studies and to develop models for
precompetitive absorption, distribution, metabolism, elimina-
tion, and toxicology (ADMETox) properties by joining efforts
of different stakeholders.
We also showed that consensus modeling by merging models

developed with different descriptors could increase the accuracy
of the models thus confirming results of our previous studies.43

However, if the same descriptors are used, the consensus
modeling may not provide additional advantages.
The ASNN-Estate and the consensus model based on all

models from Table 4 were made publicly and freely available at

the OCHEM Web site.39 These models allow Web users to
predict the solubility in DMSO of new molecules even before
they are synthesized or acquired, thus avoiding acquisition of
nonsoluble molecules and facilitating interpretation of HTS
experiments and speeding up the drug discovery process. To
our knowledge, these are the first public and freely accessible
models for the solubility in DMSO predictions. The availability
of public models, as those developed in the current study, is
expected to dramatically shape the future of computational
chemistry research during the coming years.44
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