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Abstract Obesity, and its associated comorbidities such as
type 2 diabetes, cardiovascular diseases, and certain cancers,
represent major health challenges. Importantly, there is a sexual
dimorphism with respect to the prevalence of obesity and its
associated metabolic diseases, implicating a role for gonadal
hormones. Specifically, estrogens have been demonstrated to
regulate metabolism perhaps by acting as a leptin mimetic in
the central nervous system (CNS). CNS estrogen receptors
(ERs) include ER alpha (ERα) and ER beta (ERβ), which are
found in nuclear, cytoplasmic and membrane sites throughout

the brain. Additionally, estrogens can bind to and activate a G
protein-coupled estrogen receptor (GPER), which is a
membrane-associated ER. ERs are expressed on neurons as
well as glia, which are known to play a major role in providing
nutrient supply for neurons and have recently received increas-
ing attention for their potentially important involvement in the
CNS regulation of systemic metabolism and energy balance.
This brief overview summarizes data focusing on the potential
role of astrocytic estrogen action as a key component of estro-
genic modulation responsible for mediating the sexual dimor-
phism in body weight regulation and obesity.
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1 Introduction

Obesity has become a global health challenge of staggering
proportions, and its prevalence continues to increase. Obesity is
associated with comorbidities including type 2 diabetes, the
metabolic syndrome, cardiovascular disease, cancer, sleep ap-
nea and osteoarthritis [1]. Obesity is believed to be associated
with a pattern of moderate but chronic inflammatory processes
in both peripheral organs and the central nervous system
(CNS), which contributes to leptin and insulin resistance [2].

Obesity affects males and females differently. The meta-
bolic response to dietary regimes and pharmacological treat-
ments for obesity differ between the sexes [3–9]. Differences
in the levels of circulating gonadal steroids are critical for
many of the sexually dimorphic characteristics. Estrogens are
sex steroid hormones with known essential roles in reproduc-
tion, but additionally, estrogens mediate protective actions
against body weight gain and metabolic diseases [10–15].
Estrogens exert their influence on diverse target tissues, in-
cluding the CNS where they bind and activate receptors in
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neurons and astrocytes [16–18]. These sex steroids also have
neuroprotective and anti-inflammatory actions in the CNS,
with some of these actions being mediated by effects on glial
cells [19, 20], which express both estrogen receptors (ER)
isoforms, ERα and ERβ [21]. Astrocytes participate in di-
verse neuroendocrine functions [22, 23], including CNS
regulation of systemic metabolism as well as in the pathogen-
esis of metabolic diseases [24–26]. Although the role of
estrogens in the control of energy balance has been studied
extensively, the exact neuroendocrine circuits and intracellular
signaling pathways implicated in estrogenic neuroendocrine
regulation of systemic metabolism remain to be completely
characterized. This review provides a brief overview of the
potential role of neuroendocrine estrogen signaling as a me-
diator of the sexual dimorphism in bodyweight regulation and
obesity with a specific focus on the emerging role of estrogen
action in astrocytes.

2 Sexual dimorphism and metabolic control

Males and females differ in where body fat is stored, endo-
crine secretory patterns, and how the brain responds to hor-
monal signals that regulate food intake and body weight [13,
14, 27, 28]. Sex differences in body fat distribution are evident
after puberty [29, 30]. Females predominantly accumulate
subcutaneous body fat, resulting in a “pear” shape, while
males deposit more body fat viscerally, resulting in an “apple”
shape [31]. However, these sex differences in body fat distri-
bution diminish after estrogen deficiency caused by meno-
pause. Post-menopausal females tend to accumulate more
visceral fat and become more susceptible to metabolic disor-
ders than pre-menopausal women [32, 33].

The sexual dimorphism in fat content and distribution has
functional implications in regulating body weight [7]. Body
adiposity and body fat distribution are factors that contribute
to determining baseline levels of circulating cytokines and
adipokines, such as leptin [34], and regulate hormone sensi-
tivity, inflammatory responses, and even circulating levels of
steroids [7]. However, the sexual dimorphism in body weight
cannot be explained only by differences in body fat composi-
tion. For instance, circulating leptin levels are higher in fe-
males than males, regardless of body fat content [35–37], and
sex steroids are involved in the modulation of leptin levels
[38]. Taken together, these findings suggest that sex hor-
mones, potentially estrogens, may be involved in body weight
homeostasis.

3 Role of estrogens in metabolic control

Estrogens act as modulators of metabolism by regulating body
weight, fat storage, energy expenditure, feeding behavior and

glucose and lipid metabolism in both sexes [10–13, 15, 27,
39–42]. Estrogens exert their actions predominantly through
two ERs, ERα and ERβ, which are classically thought to act
as nuclear receptors [43]. Acting as transcription factors, ERs
regulate numerous downstream genes, including those in-
volved in cell cycle regulation, proliferation and apoptosis
[44]. In addition to their actions as nuclear transcription fac-
tors, a portion of estrogen-induced signaling can be attributed
to an extranuclear, non-genomic pathway and the activation of
rapid phosphorylation cascades, which, in addition to
membrane-associated ERα and ERβ (mERs), may be medi-
ated via the G protein-coupled ER (GPER).

Circulating levels of 17β-estradiol (E2), the major physio-
logical form of estrogen, correlate inversely with visceral fat
mass [45], protecting against adipose accumulation and
diminishing pro-inflammatory signaling [11, 39, 40, 42].
The loss of E2, either from menopause [41, 42], ovariectomy
(OVX) [11], or the inactivation of aromatase, an enzyme
essential for E2 synthesis [46], leads to increased food intake
and adiposity, both of which can be reversed by physiological
E2 replacement [47]. These restorative effects of E2, however,
are blocked in ERα knockout (ERαKO) mice regardless of
sex [15]. Moreover, intracranial injection of E2 in rats leads to
anorexia. These observations indicate that E2, similar to leptin,
has direct anorexigenic functions in the CNS, specifically in
the ventral medial (VMN) and arcuate nuclei (ARC) of the
hypothalamus [48, 49].

The hypothalamus plays a key role in controlling energy
and weight homeostasis. This brain area receives afferent and
sends efferent messages to the periphery in order to regulate
body weight by precisely balancing the intake of food, energy
expenditure and nutrient deposition in adipose tissue. Early
studies showed how lesions in specific hypothalamic nuclei,
such as the VMH [50, 51] or the lateral hypothalamic area
(LH) [52–54] produced drastic changes in food intake and
body weight. More recently, studies have identified other
hypothalamic sites, like the ARC, as key targets for hormonal
and neuropeptide signals involved in sensing and controlling
energy homeostasis [55].

E2 acts on the hypothalamus through its specific receptor
subsets, which are expressed in several hypothalamic nuclei,
including the ARC and the VMH. ERα is more abundantly
expressed throughout the whole brain compared to ERβ,
which coincides with ERα being considered the more relevant
ER for regulating energy homeostasis. Mice with mutations in
ERα are obese [56] and resistant to the restorative effects of E2

replacement [15], whereas mice with ERβ deletions maintain
a normal body weight [57]. However, ERβ appears to act as a
modulator of E2 actions in the brain since the hypophagic
effect of central E2 is blunted by ERβ gene manipulation [58].
ERα is more abundant in the ARC compared to other relevant
nuclei and is predominantly expressed in pro-opimelanocortin
(POMC) neurons [48, 59]. Increased circulating estrogens are

Rev Endocr Metab Disord



directly correlated with ERα mRNA levels in ARC POMC
neurons [60] and synaptic input to these neurons [47]. ERα
signaling in these ARC POMC neurons appears to mediate a
degree of the anorectic actions of estrogens as the selective
deletion of ERα in these neurons results in hyperphagia
without altering energy expenditure [48]. Conversely, silenc-
ing of ERα in the VMH using RNA interference [61] or
selective deletion in steroidogenic factor-1 (SF-1) neurons
[48] leads to obesity and glucose intolerance as the conse-
quence of reduced energy expenditure with no effect on food
intake, which suggests a neuroanatomical segregation of the
homeostatic effects of ERα [48].

In addition to its central actions, estrogen signaling also
regulates certain peripheral hormones, such as leptin, that
influence feeding, meal size and thermogenesis through
their actions in the CNS. Leptin is a metabolic hormone,
which is generally believed to cross the blood-brain barrier
(BBB) to interact with leptin receptors in the hypothalamus
and brainstem [62–68], resulting in the inhibition of food
intake and increased energy expenditure [63, 65, 67–73].
Although there are at least six alternatively spliced isoforms
of the leptin receptor, the long form of the leptin receptor
(OB-Rb) is the one primarily involved in metabolic control
[74]. Ob-Rb co-localizes with ERα in the ARC [75],
suggesting a coordinated interaction, and ARC Ob-Rb
mRNA is, in fact, modulated by estrogens [76]. Females
have higher circulating levels of leptin compared to males,
and these levels are independent of differences in body
composition [35–37]. Leptin sensitivity in females varies
throughout life depending on basal levels of estrogens, with
a direct relationship between estrogen levels and hypotha-
lamic leptin sensitivity [77, 78]. E2 treatment of both males
and OVX females increases central leptin sensitivity [78],
indicating a relevant interaction between leptin and E2, with
both hormones exerting similar patterns of metabolic ac-
tions in the hypothalamus [47, 79].

4 Role of hypothalamic astrocytes in the control
of metabolism

Astrocytes are the most abundant glial cells in the mammalian
brain. After the first descriptions of glia as passive supporters
of neurons [80], data in subsequent years have revealed con-
siderable evidence suggesting that glia are actively involved
and required for effective function of the CNS. Glia are critical
to synaptic transmission, regulation of neural immune re-
sponses, antioxidant defense, structural and nutritive support
of neurons, and neuronal survival [81–87].

The role of glial cells in metabolic control and obesity is an
active area of investigation [2, 24–26, 88]. Hypothalamic
astrocytes play a crucial role in brain homeostatic control of
metabolism due in part to their strategic location close to the

BBB. These cells transport and release many substances (e.g.
ions, glucose, lactate, fatty acids, ketone bodies) from the pe-
ripheral circulation into the brain to provide nutrients for neurons
and regulate the extracellular environment [84, 89, 90]. It is well
known that hypothalamic neurons respond to hormones and
possess the respective receptors, but astrocytes also express
receptors for some of the same hormones involved in metabolic
control, including leptin and estrogens [21, 91–96].

Astrogliosis, a reactive phenotype of astrocytes character-
ized by the up-regulation of structural glial proteins such as
glial fibrillary acidic protein (GFAP) and vimentin [97], has
been detected in the hypothalamus of high fat diet-induced
obese rodents [24, 25], and precedes weight gain [25].
Astrogliosis is known to be associated with tissue injury and
neurodegenerative diseases [98, 99]. However, the potential
role of such reactive gliosis in the pathogenesis of metabolic
diseases such as obesity has not yet been clarified. Hypotha-
lamic astrogliosis in obese mice is accompanied by increased
cytokine expression [25], weakened leptin signaling in hypo-
thalamic neurons and increased astrocytic ObR expression
[91, 100], suggesting that astrocytes are involved in the reg-
ulation of leptin signaling.

4.1 Astrocytic estrogen action and metabolic control

Astrocytes are targets for estrogen action [20, 101–105] as
reflected by the fact that astrocytes express both ERα and
ERβ receptors either on their plasma membranes or intracel-
lularly [21, 92–96]. Activation of the mER initiates a rapid,
free cytoplasmic calcium concentration ([Ca2+]) flux via the
phospholipase C (PLC)/inositol trisphosphate (IP3) pathway
[96]. Recently, the transmembrane ER, G protein-coupled
estrogen receptor (GPR) 30, was reported to mediate non-
genomic and rapid estrogen signaling in astrocytes
[106–108], contributing to the neuroprotective effects of E2.
Despite these reports, ERα appears to be primarily responsible
for the signaling in astrocytes [94, 101, 108, 109]. Kuo and
colleagues observed that the E2-induced [Ca2+] response was
significantly attenuated in ERαKO mouse astrocytes,
suggesting E2 signaling through mERα. Furthermore, PPT, a
selective ERα agonist, induced similar [Ca2+] responses to E2

in astrocytes and glial progesterone synthesis is equally facil-
itated by PPT and E2 [108].

Some effects of estrogens on astrocytes are sexually dimor-
phic. Specifically, the astrocyte-derived synthesis of steroids,
which is necessary for positive estrogen feedback [103], is
increased in females but not males in response to E2 stimula-
tion [110]. Likewise, astrocytes respond to E2 stimulation by
elevating the [Ca2+] levels in both sexes, but this stimulation is
less powerful in males [109]. Moreover, E2 increases the
amount of ERα at the cell membrane of astrocytes, but only
in adult females [110]. These results support the hypothesis
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that astrocytes respond to hormones in a sexually dimorphic
way [111, 112].

The majority of studies examining the central effect of
estrogen on astrocytes have focused on anti-inflammatory
actions [20, 113–115]. Specifically, estrogens are capable of
reducing the expression of several inflammatory markers,
such as interleukin 6 (IL-6), interferon γ-inducible protein
10 (IP-10) and NFκB, in cultured astrocytes [20, 114,
116–118]. Estrogens also regulate the expression of astrocytic
molecules that are involved in the regulation of neuroendo-
crine events in the hypothalamus, such as growth factors [119]
and glutamate transporters (GLT-1 and GLAST) [94], the
expression of which increases in response to activation of
GPR30 by E2 [120]. However, little is known about the effects
produced by estrogen on hypothalamic astrocytes in metabol-
ic disorders such as obesity.

Estrogens are involved in metabolic control, not only con-
trolling fat stores but also modulating central leptin sensitivity

[28]. E2 supplementation helps overcome central leptin resis-
tance in diet-induced obesity [121]. Centrally-delivered estro-
gen, in the form of a GLP-1-estrogen conjugate, attenuates
leptin resistance and reverses the metabolic syndrome in diet
induced obese mice [122]. Moreover, the regulation of leptin
signaling appears to be mediated by hypothalamic astrocytes
[91], which, as mentioned above, are important estrogen tar-
gets in the CNS. These novel findings indicate that estrogens
could act directly on astrocytes to ameliorate leptin resistance
and control body weight through hypothalamic glial signals.
In addition, since obesity produces a state of both peripheral
and central inflammation, the estrogenic regulation of astro-
cytic proinflammatory cytokine secretion also may have an
impact on the inflammatory response induced by obesity
(Fig. 1). Therefore, in view of the existing body of data and
given that the effects of E2 on astrocytes are sexually dimor-
phic [111, 112], further experiments on the role of estrogens in
astrocyte-mediated neuroendocrine actions are warranted in
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Fig. 1 Potential anti-inflammatory effects of estrogens on hypothalamic
inflammatory processes induced by overnutrition. HFD feeding induces
astrogliosis through activating NFκB pathway and releasing pro-inflam-
matory cytokines (IL-6). These astrocyte actions develop an inflammato-
ry enviroment which could have detrimental effects on neurons such as
the lack of leptin sensitivity as result of an increase in SOCS3 levels
induced by inflammatory pathway activation in these cells and leading a
positive energy balance. Estrogens are well-known for their protective

effects in several cell types and thus, we hypothesize that estrogens could
reduce astrocyte inflammatory phenotype through reducing fatty acids-
activated NFkB activity and consequently decreasing inflammatory me-
diators synthesis. These astrocyte effects mediated by estrogens could be
behind of the restoration of leptin signaling and sensitivity in neurons.
ERs estrogen receptors; E2 estradiol; IL-6 Interleukin; NFκβ nuclear
factor-κB; SOCS-3 suppressor of cytokine signaling 3
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order to explore the development of sex-specific therapeutics
for a more personalized treatment of obesity and related
metabolic disorders.
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