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Abstract

Osteosarcomas (OS) are complex bone tumors with various genomic alterations. These alterations affect the expression and
function of several genes due to drastic changes in the underlying gene regulatory network. However, we know little about
critical gene regulators and their functional consequences on the pathogenesis of OS. Therefore, we aimed to determine
microRNA and transcription factor (TF) co-regulatory networks in OS cell proliferation. Cell proliferation is an essential part in
the pathogenesis of OS and deeper understanding of its regulation might help to identify potential therapeutic targets.
Based on expression data of OS cell lines divided according to their proliferative activity, we obtained 12 proliferation-
related microRNAs and corresponding target genes. Therewith, microRNA and TF co-regulatory networks were generated
and analyzed regarding their structure and functional influence. We identified key co-regulators comprising the microRNAs
miR-9-5p, miR-138, and miR-214 and the TFs SP1 and MYC in the derived networks. These regulators are implicated in NFKB-
and RB1-signaling and focal adhesion processes based on their common or interacting target genes (e.g., CDK6, CTNNB1,
E2F4, HES1, ITGA6, NFKB1, NOTCH1, and SIN3A). Thus, we proposed a model of OS cell proliferation which is primarily co-
regulated through the interactions of the mentioned microRNA and TF combinations. This study illustrates the benefit of
systems biological approaches in the analysis of complex diseases. We integrated experimental data with publicly available
information to unravel the coordinated (post)-transcriptional control of microRNAs and TFs to identify potential therapeutic
targets in OS. The resulting microRNA and TF co-regulatory networks are publicly available for further exploration to
generate or evaluate own hypotheses of the pathogenesis of OS (http://www.complex-systems.uni-muenster.de/
co_networks.html).
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Introduction

Osteosarcoma (OS) is a rare type of cancer frequently occurring

in children and young adolescents [1]. It is a complex tumor

typically accompanied by severe genomic instability and extensive

mutations hampering the identification of a genetic root [2–4].

These genomic alterations affect several genes to a varying extent

depending on patient and OS subtype. For instance, frequent

mutations and deletions of the tumor suppressor genes TP53, RB1,

and CDKN2A and mutations and amplification of the MYC locus

[5,6]. However, their interactions in the molecular pathogenesis and

the underlying cellular network of OS are poorly characterized.

Recently, attention has been focused on the impact of

microRNAs in OS. Besides transcription factors (TFs) that

transcriptionally regulate gene expression, microRNAs are a class

of small, conserved, non-coding RNA molecules generally acting

on the post-transcriptional level. They are mono- or polycistro-

nically transcribed, processed to mature molecules and subse-

quently incorporated into the RNA Induced Silencing Complex

(RISC). Once integrated in RISC, microRNAs are able to select

their target genes via binding to partially complementary

sequences in the 39-UTRs of mRNAs that lead to mRNA

degradation or translational inhibition. Computational prediction

methods revealed that individual microRNAs regulate hundreds of

target genes and one target gene might be regulated by several

microRNAs [7]. According to Friedman et al. [8] around 60% of

human genes are predicted to be regulated by multiple micro-

RNAs in a cooperative manner. This huge number of target genes

suggests a widespread control of biological processes including

differentiation, proliferation, migration, and apoptosis [9].

In cancer, microRNAs might serve as onco- and/or tumor

suppressor-microRNAs. Amplification or over-expression of on-

cogenic microRNAs can down-regulate tumor suppressor proteins.

Likewise, deletion or under-expression of tumor suppressor

microRNAs might lead to the up-regulation of oncogenes [10].

In addition, more than 50% of microRNA genes are located
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within fragile sites in the genome and are frequently subjected to

chromosomal alterations [11]. In this manner, they can affect

cancer development and progression.

MicroRNAs share several regulatory concepts with TFs, e.g.

they simultaneously regulate many target genes and cooperate

with other regulators. However, TFs activate or repress their

target gene expression whereas microRNAs regulate their targets

primarily through repression to fine-tune cell-specific gene

regulatory programs [12]. Because the expression of microRNAs

often depends on TF regulation and vice versa, it is not surprising

that both families of regulators are tightly related to each other in

gene regulatory networks. The coordinated transcriptional regu-

lation of microRNAs and their target genes by TFs is a recurrent

network motif. The two types of gene regulators frequently form 3-

node feedforward loops (FFLs) with common target genes [13].

Recently, Sun et al. [14] extended this regulatory motif to 4-node

FFLs by integrating additional TF target genes. The extension of

3-node to 4-node motifs illustrated a more detailed model of the

oncogenesis of glioblastoma by recruiting additional disease genes

not directly targeted by microRNAs.

Several studies have shown an involvement of microRNAs in

the pathogenesis of OS. They demonstrated down-regulation of

miR-143 in OS progression [15], up-regulation of the oncogenic

miR-17,92 cluster in OS cells [16], and regulatory functions for

miR-199a-3p [17], miR-21 [18], and miR-125b [19] in OS cell

proliferation and migration. Additional genome-wide microRNA

analyses suggested sets of microRNAs to discriminate OS from

osteoblasts and bone tissue [20–23]. All studies proposed the use of

microRNAs as biomarkers in OS that might correlate with clinico-

pathological parameters. However, those studies lack a compre-

hensive analysis of the functional consequences of aberrant

microRNA expression in OS. Analyzing microRNAs in the

context of their microRNA and TF co-regulatory networks might

provide a deeper understanding of the pathogenesis of OS.

In this study, we joined different data sources to analyze the

contribution of microRNA and TF co-regulatory 3-node and 4-

node motifs to the proliferative activity of OS cells. First, we

divided seven OS cell lines into high and low proliferation groups

by performing proliferation assays. Expression analysis based on

these groups yielded differentially expressed (DE) microRNAs and

mRNAs. Second, high efficacy microRNA target genes were

obtained by integrating computational predicted targets with DE

mRNAs. Only microRNAs with significantly enriched target genes

were considered in the analysis. Third, microRNA target genes

were clustered according to their functional similarity to explore

their distinct biological processes. Fourth, transcription factor

binding site (TFBS) information was added to assemble 3-node

and 4-node motifs of non-random microRNA and TF co-regulator

pairs. Fifth, the resulting 3-node and 4-node motifs were merged

to form microRNA and TF co-regulatory networks to examine the

coordinated regulation of microRNAs and TFs (Figure 1).

Here, we present the first study analyzing microRNA and TF

co-regulation in OS and uncover critical microRNA players of the

functional processes implicated in OS cell proliferation.

Figure 1. Workflow. The figure illustrates the procedure of the
present study determining microRNA and TF co-regulation in OS cell
proliferation.
doi:10.1371/journal.pcbi.1003210.g001

Author Summary

Osteosarcomas (OS) are bone tumors most frequently
affecting children and young adolescents. We do not know
much about its molecular pathogenesis hampering per-
sonalized therapies to more effectively cure patients. To
this day, almost all patients receive adjuvant chemother-
apies independent of its necessity. Hence, we need to gain
a comprehensive understanding of the molecular patho-
genesis of OS to uncover molecular components that can
be used as therapeutic targets. MicroRNAs and transcrip-
tion factors (TFs) are master regulators of the cellular
system. They control the amount of genes expressed in a
cell at a specific time point that ultimately results in a
distinct cellular phenotype. Here, we investigated micro-
RNA and TF co-regulatory networks in OS cell growth as
one hallmark in cancer. We uncovered key microRNA and
TF regulators that cooperatively control growth-related
pathways in OS and proposed potential therapeutic
targets. This study illustrates the benefit of analyzing
complex diseases from a network perspective because no
molecular component functions isolated from the under-
lying cellular system.

MicroRNA and TF Co-regulation in Osteosarcoma
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Results

OS cell proliferation and differential microRNA expression
In order to investigate the deregulated microRNA and TF co-

regulatory networks of proliferative OS cells, we used seven

authenticated OS cell lines. The cell lines were divided according

to their proliferative activity by performing a proliferation assay.

Four OS cell lines exhibited a high proliferative activity with a

doubling time ,10 hours while three showed less proliferation

(Table 1). MNNG/HOS, U2-OS, and SJSA-1 showed additional

extensive migratory capabilities. The expression analysis of the

microRNAs was based on these two proliferation groups. The

analysis yielded nine down-regulated and eight up-regulated

microRNAs that passed the differential expression criteria (False

discovery rate (FDR) ,0.05 & log2 Fold change (FC)$|1|,

Table 2). The derived DE microRNAs have been reported in

association with neoplastic disease either due to oncogenic or

tumor suppressor properties. Hierarchical clustering of them

clearly separated the OS cell samples according to their

proliferative activity (Figure 2). Hence, we selected the DE

microRNAs as candidates that might affect OS cell proliferation

for further analysis.

OS proliferation-related microRNA target genes
To explore the functional consequences of DE microRNAs on

OS cell proliferation, we determined their target genes by

integrating gene expression profiles with computational predicted

target genes.

First, the expression analysis of mRNAs resulted in a total of 666

up-regulated and 610 down-regulated mRNAs. We applied loose

filter criteria for DE mRNAs without correcting for multiple tests

(p-value,0.05 & log2 FC$|0.7|) because microRNA regulation

might lead to subtle changes in gene expression. Next, we

superimposed the DE genes with predicted microRNA targets to

obtain target genes affecting OS cell proliferation. We assumed

that microRNAs exhibit an inverse regulatory relationship to their

functional target genes, i.e. microRNA expression is inversely

correlated to its target gene expression. Hence, down-regulated

targets were assigned to up-regulated microRNAs in high

proliferative OS cells and vice versa.

To exclude DE microRNAs with random association to OS cell

proliferation, we tested for microRNA target gene enrichment

within the list of DE genes. Among the 17 DE microRNAs, 12 are

significantly enriched due to their targets (FDR,0.05, Table S1).

To account for different numbers of targets that might influence

the enrichment analysis, we also computed the target gene

enrichment of 1,000 permuted samples. The permutation

procedure confirmed previous results (Figure S1). Consequently,

Figure 2. Clustering of differentially expressed microRNAs. The
heatmap illustrates the expression profiles of DE microRNAs (log2
FC$|1| & FDR,0.05, y-axis) among all OS cell samples (x-axis). High
(dark blue) and low (light blue) proliferative OS samples are clearly
separated. The red/green color code corresponds to the expression
deviation from the average expression among all samples. Complete-
linkage clustering was performed with the Pearson correlation as
distance metric.
doi:10.1371/journal.pcbi.1003210.g002

Table 1. Proliferation and migration potential of OS cell lines.

Cell line Proliferation Migration

HOS-58 low low

SaOS-2 low low

ZK-58 low low

MG-63 high low

MNNG/HOS high high

SJSA-1 high high

U2-OS high high

doi:10.1371/journal.pcbi.1003210.t001

Table 2. Differentially expressed microRNAs dependent on
OS cell proliferation.

microRNA log2 FC FDR References

miR-181a 22.28 0.000013 [20]

miR-9-3p 22.01 0.00443 [23]

miR-181d 21.82 0.000028 [23]

miR-138 21.81 0.03828 [33]

miR-214 21.59 0.03083 [20]

miR-9-5p 21.44 0.00525 [23]

miR-181b 21.17 0.000028 [20]

let-7f 21.09 0.00211 [73]

miR-92b 21.06 0.000149 [74]

miR-130a 2.77 0.00698 [75]

miR-21-5p 2.31 0.03760 [18]

miR-155 2.05 0.00382 [76]

miR-222 1.87 0.00698 [77]

miR-221 1.45 0.00823 [77]

miR-100 1.26 0.03827 [22]

miR-21-3p 1.23 0.03760 [23]

miR-151-5p 1.00 0.00698 [78]

DE microRNAs are shown with their corresponding log2 FC and FDR. A negative
log2 FC indicates that microRNAs are down-regulated in high proliferative OS
cells and vice versa. The references demonstrate an implication in cancer of the
respective microRNA.
doi:10.1371/journal.pcbi.1003210.t002

MicroRNA and TF Co-regulation in Osteosarcoma
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we excluded 5 microRNAs from further analyses (miR-92b, let-7f,

miR-9-3p, miR-151-5p, and miR-100). The remaining 12 OS

proliferation-related microRNAs are implicated in the regulation

of 474 target genes. Hierarchical clustering of the target genes

resulted in a distinct separation of the high and low proliferative

OS cell samples (Figure 3A).

Functional clustering of microRNA targets
We further investigated the underlying biological processes

of OS proliferation-related microRNAs. We classified micro-

RNA target genes according to their functional similarities of

their gene ontology (GO) biological process terms using fuzzy

c-means clustering (FCM). After determining FCM parame-

ters (Figure S2), we obtained two clusters. Principal Compo-

nent Analysis (PCA) supported the results. The first two

components separate the determined clusters (Figure 3B).

Cluster C1 consists of 172 members and cluster C2 contains

212 members. The remaining 90 microRNA targets could not

be annotated with a GO biological process term and were

excluded from further analysis. The clustering suggested that

the microRNA targets can be classified into two broad

functional classes.

GO enrichment analyses revealed that members of C1 are

mainly involved in metabolic processes like protein modification,

nucleic acid metabolism, and carbohydrate metabolism, whereas

members of C2 are implicated in signal transduction pathways

leading to proliferation, differentiation, apoptosis, and migration.

Both clusters demonstrate that cancer cells adapt metabolic

processes for cell proliferation and survival [24]. A comparison

between the five most informative GO terms (FDR,0.05)

illustrating the specific biological aspects of each cluster is shown

in Figure 3C.

Figure 3. Functional implications of microRNA target genes in OS proliferation. (A) Differentially expressed microRNA target genes. The
heatmap shows the expression of DE microRNA target genes (log2 FC$|0.7| & p-value,0.05, y-axis) among all OS cell samples (x-axis). High (dark
blue) and low (light blue) proliferative OS samples are grouped into distinct clusters. The red/green color code corresponds to the expression
deviation from the average expression among all samples. Complete-linkage clustering was applied with the Pearson correlation as distance metric.
(B) Principal component analysis based on GO functional similarity. The figure draws the first (x-axis) and second (y-axis) principal components based
on the GO functional similarity of microRNA target genes. The target genes are color coded according to their cluster membership determined by
FCM. The radius of each gene represents the strength of association to its cluster. (C) Comparison of the GO enrichment analyses of the distinct
clusters. Each row corresponds to a specific biological process category. The number of genes included in each category is indicated in the round
brackets. Circle sizes correspond to the percentage of row-genes located in a cluster. Significantly enriched categories are color coded in red and
random categories in blue.
doi:10.1371/journal.pcbi.1003210.g003
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Identifying microRNA and TF co-regulated target genes
Transcriptional regulation of TFs is tightly coupled with the

post-transcriptional regulation of microRNAs. We utilized their 3-

node and 4-node co-regulatory motifs to study DE microRNA and

TF co-regulation in OS cell proliferation for each functional

cluster.

Every possible 3-node and 4-node FFL motif was determined to

assess significant microRNA and TF combinations (FDR,0.2) by

using the hypergeometric test (Table S2 and S3). For the 3-node

FFL, we obtained non-random microRNA and TF pairs with

common target genes (Figure 4A). For 4-node FFL motifs, we

assessed non-random microRNA and TF pairs that regulate gene

neighbors in the protein interaction network (Figure 4B). The

individual 3-node and 4-node FFL motifs are listed in Table S4

and S5, respectively.

Subsequently, we analyzed the co-regulated target genes of

significant microRNA and TF combinations. The results are

summarized in Table 3. Noticeably, the microRNA and TF duo

with the highest number of co-regulated target genes in both

functional clusters is miR-9-5p and SP1 (Figure 5) indicating a

prominent role in OS cell proliferation.

Further, we examined the co-expression of genes co-regulated

by the same microRNA and TF pairs. We computed the Pearson

correlation coefficients between co-regulated gene pairs as a

measure of their co-expression. The distribution of the resulting

correlation values was compared to the correlation distribution of

random genes by the Kolmogorov-Smirnov (KS) test. The co-

expression of co-regulated gene pairs tends to be significantly

higher than for random genes (p-value,2.2610216, Figure 4C).

This result supports the hypothesis of non-random microRNA and

TF co-regulation within the list of their common or interacting

target genes and suggests a similar functional context for their

targets.

Generating microRNA and TF co-regulatory networks
Subsequently, we constructed the microRNA and TF co-

regulatory networks that highlighted the combinatorial regulation

patterns and regulated biological processes of microRNAs and

TFs. The networks of C1 and C2 were generated by joining all

significant co-regulatory relationships of microRNAs and TFs

(Table 3). The resultant microRNA and TF co-regulatory

networks are provided for full exploration on our website

(http://www.complex-systems.uni-muenster.de/co_networks.

html).

To assess the contribution of individual nodes in the co-

regulatory networks on the networks’ stability and robustness, we

calculated the node degree and betweenness centrality parameters.

The node degree distributions are highly right skewed. A large

fraction of nodes shows a low degree and only few nodes have high

degrees (Figure S3). Almost all microRNAs and TFs are located at

higher node degrees as indicated by their average node degrees

(C1: microRNAs 19 and TFs 19, C2: microRNAs 25 and TFs 49).

Figure 4. MicroRNA and TF co-regulatory motifs. Schematic illustration of (A) 3-node and (B) 4-node FFL motifs. A 3-node motif contains a
microRNA, a TF, and a commonly regulated target gene. In contrast, 4-node FFLs comprise a microRNA, a TF, a microRNA target gene (primary target),
and a TF target gene (secondary target) that interacts with the primary target. MicroRNAs are indicated with diamonds, TF with triangles, primary
targets with rectangles, and secondary targets with circles. (C) Coexpression of microRNA and TF target genes. The plot shows the observed and
random cumulative distribution functions (CDFs, y-axis) of the Pearson correlation coefficients (x-axis) between any gene pair regulated by a specific
microRNA and TF 3-node and 4-node motif. The observed and random CDFs are compared using the KS test. The p-values are indicated within the
plots. Green and orange color codes correspond to the distinct clusters C1 and C2.
doi:10.1371/journal.pcbi.1003210.g004

MicroRNA and TF Co-regulation in Osteosarcoma

PLOS Computational Biology | www.ploscompbiol.org 5 August 2013 | Volume 9 | Issue 8 | e1003210



We expected that finding as microRNA and TF co-regulation is

the main subject of the present study.

Each network contains three types of nodes, namely micro-

RNAs, TFs, and target genes. We ranked the nodes according to

their node degrees and node type. The top 25% of microRNAs

and TFs and the top 5% of target genes were considered as hubs in

the C1 and C2 networks (Table S6). We detected the hub

microRNA miR-214 and the hub TFs CREB1, SP1, and ZIC2 in

both networks suggesting a central function in OS cell prolifer-

ation. Strikingly, around 50% of microRNA and TF target gene

hubs in the two networks are TFs themselves. The microRNA and

TF co-regulatory network derived from C1 contains ATF6,

GTF2A1, HIVEP2, KLF5, LMO3, NFKB1, and TBPL1 and the

C2 network comprises BCL6, BCL6B, E2F4, HES1, JUN, LMO4,

RARA, REST, SIN3A, TCF7L2, and ZBTB16. Some of these TFs

(ATF6, E2F4, JUN, RARA, and REST) are implicated in building

3-node and 4-node FFL motifs in one or two networks. The

remaining TFs were either not existent in the UCSC conserved

TFBS track or do not produce any significant FFL. Additionally,

we found epigenetic modulators and genes involved in protein

modification processes, like protein ubiquitination and phosphor-

ylation. As already mentioned, the microRNA targets in C2 are

associated with signal transduction for maintaining OS cell

proliferation. Among the hub genes in the network derived from

C2, 30% of target gene hubs (AMOT, ARF6, CACNA1A, CTNNB1,

GRB2, NOTCH1, PDGFRB, PIK3R1, SMAD7, and TGFBR2) are

related to signaling pathways that participate in cell proliferation,

survival, and migration.

Moreover, we assessed over-represented functional pathways

derived from the KEGG database [25]. The enriched categories

(FDR,0.05) are shown in Table S7. We detected an enrichment

of genes involved in the cell cycle and cancer related pathways in

both networks. We expected to observe these functional categories

as we analyzed the proliferative potential of OS tumor cell lines.

Further, we observed a similar functional trend between the C1

and C2 networks as for their corresponding functional clusters.

Within the co-regulatory network of C2, signaling pathways are

significantly over-represented such as the MAPK-, TGFB-, and

WNT-signaling pathways. In contrast, the network of C1

comprises a significant number of genes required for the basal

transcription machinery.

Tightly connected microRNA and TF co-regulated
subnetworks

After examining the global co-regulation patterns of micro-

RNAs and TFs in both networks, we were interested in sets of

microRNAs and TFs that co-regulate densely connected network

modules. To investigate the local structure of the OS proliferation-

related co-regulatory networks, the walktrap algorithm was

applied [26].

The algorithm obtained six modules within the metabolic

network of C1 (Figure S4) and six modules in the signaling

network of C2 (Figure S5). The size and node types within each

module are indicated in Table 4. Strikingly, miR-9-5p is located in

the largest module and is regulated through the TFs ATF2,

BACH1, CREB1, and SP1 in both networks. As mentioned before,

miR-9-5p and SP1 co-regulate the largest number of target genes

and thus indicate a prominent function in OS cell proliferation.

Further, we run the Functional Annotation clustering Tool of

the DAVID database [27] to classify the distinct network modules

according to their GO biological process and molecular function

terms. We annotated each module with the biological aspect of its

maximum enrichment score (ES). Among the 12 modules, five are

mainly involved in transcriptional regulation processes, which is in

accordance with previous studies that illustrated that microRNAs

function via TFs to regulate various biological processes like cell

proliferation [28,29]. Despite the top scored biological associa-

tions, one module (C2.1) is related to negative regulation of

differentiation (ES.3.9), particularly to osteoblast differentiation

due to the genes CDK6, MEN1, SKI, SMAD3, and SOX2, which

might provide a link to the pathogenesis of OS (Figure S5A).

Within this module, the TF MYC (node degree 83) co-regulates

several targets with miR-138 (node degree 25). The top ranked

target gene in this module is SIN3A (node degree 57).

Discussion

OS is a complex tumor with varying degrees of genomic

alterations and affected disease genes. This genomic complexity

makes it difficult to identify a genetic cause and deregulated

pathways in the pathogenesis of OS. Systems biological approach-

es provide tools to investigate the interactions between candidate

genes by integrating different data sources on the network level.

Thereof, cooperative or compensative effects between candidate

genes might be observed. Hence, network-based approaches

seemed to be ideally suited to study the implication of functional

pathways in OS. This study represents the first attempt to

investigate microRNA and TF co-regulatory networks in the

pathogenesis of OS. In the course of the study, several data sources

were integrated, namely microRNA and mRNA expression

profiles, TFBS information, and protein interaction data. There-

with, we aimed to unravel possible candidate genes and their

interplay that ultimately result in a high proliferative phenotype of

OS cell lines. The derived microRNA and TF networks are

publicly available (http://www.complex-systems.uni-muenster.de/

co_networks.html).

Table 3. Summary of proliferation-related microRNA and TF co-regulations.

Cluster Motif microRNA TF Primary targets Secondary targets microRNA and TF pairs

C1 3-node FFL 10 17 58 — 29

4-node FFL 8 20 69 227 23

total 10 29 85 213 46

C2 3-node FFL 10 31 88 — 58

4-node FFL 9 21 81 581 29

total 10 35 117 550 70

The table specifies the number of common and interacting target genes between non-random microRNA and TF pairs for 3-node and 4-node motifs and for the total
co-regulatory network they form.
doi:10.1371/journal.pcbi.1003210.t003

MicroRNA and TF Co-regulation in Osteosarcoma
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OS proliferation-related microRNAs are associated with a
proliferative phenotype

The microRNA and TF co-regulatory networks modeling OS

cell proliferation are based on 12 proliferation-related micro-

RNAs. Among these microRNAs, 11 were previously mentioned

in OS [20,22,23,18], whereas miR-138 was exclusively obtained in

this study. Previous studies focused on global microRNA

alterations in OS with respect to osteoblast cells and bone tissue.

However, microRNA expression was partially inconsistent be-

tween different studies. Namløs et al. [23] hypothesized that

contradictory microRNA regulation in different genome-wide

studies might be explained due to distinct differentiation stages of

Figure 5. miR-9-5p and SP1 co-regulatory motifs. The co-regulatory motifs of miR-9-5p and SP1 are illustrated as graphs with nodes and edges
for (A) C1 and (B) C2. MicroRNAs are marked with diamonds, TFs with triangles, primary targets with rectangle, and secondary targets with a circle.
Yellow edges tag protein-DNA interactions, blue edges microRNA-target interactions, and dashed edges protein interactions. The red/green color
code presents the corresponding log2 FC.
doi:10.1371/journal.pcbi.1003210.g005

MicroRNA and TF Co-regulation in Osteosarcoma
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OS progenitor cells. In this study, the DE microRNAs were

assessed between high and low proliferative OS cells. The varying

proliferation activity between these cell lines might reflect distinct

differentiation stages of their progenitor cells. This might explain

the detection of proliferation-related microRNAs in global OS

studies.

In different biological contexts the down-regulated microRNAs

have been associated with decreased proliferation [30–33]. In

turn, up-regulated microRNAs have been related to an increased

proliferation potential [34–37]. These studies emphasize the

proposed influence of the derived microRNAs on OS cell

proliferation.

miR-9-5p and SP1 co-regulated targets are highly
involved in OS cell proliferation

The assembly of non-random microRNA and TF co-regulators

revealed several interesting combinations. Based on the huge

number of co-regulated target genes, the most notably co-

regulation duo is the miR-9-5p and SP1 pair. Depending on the

derived cluster, these co-regulators seem to affect distinct

functional pathways due to their target genes.

The C1 derived miR-9-5p and SP1 co-regulated target genes

seem to participate in NFKB-signaling. Commonly regulated target

genes include the TFs NFKB1, NFKB2, RELA, RELB, and BCL3

and the inhibitors NKRF, NFKBIA, and TNIP2 that cooperatively

activate or block target gene expression of NFKB, respectively [38].

This pathway is implicated in OS cell proliferation [39], and

NFKB1 is an experimentally validated target gene of miR-9-5p [40].

Furthermore, a regulatory circuit including SP1/NFKB1/HDAC

and miR-29b is known to induce leukemic growth [41]. Thus, miR-

9-5p might function in a similar context in OS than miR-29b in

leukemia.

On the other hand, the C2 derived miR-9-5p and SP1 co-

regulated genes might be involved in focal adhesion. We observed

cadherins (CDH1, CDH2, DSC2, and DSG2), further cell adhesion

molecules (e.g. FN1, ITGA6, ITGB1, JUP, PKP3, and VCL), and

calcium signaling receptors (e.g. CACNA1A and CALR). According

to StringDB [42], almost all commonly regulated genes interact

with each other indicating a functional association (Figure S6). A

possible pathway of miR-9-5p and SP1 co-regulation could

implicate CDH1 and CTNNB1 that modulate cell proliferation

[43]. CTNNB1 is not a commonly regulated target gene of miR-9-

5p and SP1. However, we observed some of its binding partners

(e.g. CDH1, CDH3, CTNNBPI1, RUNX2, and SMAD7). Addition-

ally, CTNNB1 is a hub gene in the C2 co-regulatory network.

Moreover, increased expression of miR-9-5p resulted in down-

regulation of the NFKB-SNAIL pathway and simultaneously to up-

regulation of CDH1 in melanoma cells [44]. All these observations

suggest a central role of miR-9-5p and SP1 co-regulation in OS cell

proliferation.

Functional implications of the miR-138-MYC-SIN3A
module in the pathogenesis of OS

Merging significant microRNA and TF co-regulators resulted in

co-regulatory networks of C1 and C2. The networks provided a

global view on microRNA and TF co-regulation in OS cell

proliferation. To analyze the local co-regulation patterns within

the networks, we specifically extracted densely connected modules.

One of these modules, namely the C2.1 module, is implicated in

negative regulation of differentiation, particularly osteoblast

differentiation. It contains the hubs miR-138, MYC, and SIN3A.

We hypothesize a function for members of C2.1 that might be

specific for the pathogenesis of OS. According to StringDB [42],

the genes in the module form a densely connected network

illustrating a tight functional relationship (Figure S7). The module

comprises members of the cell cycle (CCND1, CCND3, CDKN1A,

CDKN2C, and CDK6), all involved in the RB1-pathway [45]. The

complex of the module members SIN3A, NCOR1, SKI, and HDAC

can bind to RB1 and repress E2F target genes [46]. Therefrom, we

assumed a connection between module members and RB1, which

has been reported to be frequently deregulated in OS [5].

Further, SIN3A is an experimentally validated target gene of

miR-138 [47]. In the global co-regulatory network of C2 as well as

in C2.1 module, it depicts a hub gene. Its role in cancer is

contradictory, on the one hand it shows tumor suppressor

functions [48]. On the other hand, it acts in tumor growth [49].

Table 4. MicroRNA and TF co-regulatory subnetworks.

ID microRNA TF nodes edges associated biology p-valuea

C1.1 miR-221, -222, -130a, -
21-5p

JUN, HSF2, SRF, HSF1, FOXC1, I
RF7, FOXO1, YY1

72 156 transcription 2.0610203

C1.2 miR-21-3p E2F1, STAT3 33 53 phosphorylation 3.0610203

C1.3 miR-214 BPTF, ZEB1, E2F4, NFIL3 62 120 cell cycle 5.6610203

C1.4 miR-9-5p CREB1, CEBPB, ATF2, SP1, ZIC2, TCF3, BACH1 91 248 transcription 1.0610211

C1.5 miR-181a, -181b MEF2A, TBP, SREBF1, MAX, POU2F1 60 142 chromosome organization 8.1610204

C1.6 miR-138 MYC, KLF12 19 32 — —

C2.1 miR-138 MYC, FOXC1, USF1, ZIC1, FOXJ2 157 377 transcription 1.0610217

C2.2 miR-21-5p, -21-3p STAT3, IRF9, SOX9, MEF2A 70 124 transport 5.6610203

C2.3 miR-222, -221, -214 RORA, NR3C1, FOXO1 127 235 transcription 1.0610204

C2.4 miR-130a CEBPB, ZEB1, GATA2, SRF, YY1 87 144 differentiation 9.8610204

C2.5 miR-181a, -181b POU2F1, KLF12, NFIL3 21 41 — —

C2.6 miR-9-5p CREB1, TP53, NR2F2, NFIC, EGR1, ATF6, ATF2,
PAX6, SREBF1, SP1, BACH1, NFATC1

247 887 transcription 4.1610212

For each module the comprised microRNAs, TFs, number of nodes and edges, and associated biological aspects with corresponding p-values are presented.
aES$2.0.
— no significant associated biological aspect.
doi:10.1371/journal.pcbi.1003210.t004
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Taken together with the fact that SIN3A can interact with RB1, we

suggest a possible role for SIN3A in the pathogenesis of OS.

Model of OS cell proliferation
After examining and discussing the structural and functional

aspects of the co-regulatory networks, we integrated the main

results of the present study into a potential model of OS cell

proliferation (Figure 6). The focus of the model is on microRNA

and TF co-regulation of the microRNAs miR-9-5p, miR-138, and

miR-214 and the TFs SP1 and MYC.

In proliferative active OS cell lines, miR-9-5p, miR-138, and

miR-214 are significantly down-regulated leading to the up-

regulation of their direct target genes CDK6, E2F4, HES1,

ITGA6, NFKB1, NOTCH1, and SIN3A. CDK6 phosphorylates

RB1 and therewith the RB1/SIN3A/SKI/NCOR1/HDAC com-

plex cannot repress E2F4 target gene expression [45,46].

Activated NOTCH1 induces HES1 and sustains NFKB-signaling

through NFKB1, NFKB2, RELA, RELB [50]. CTNNB1 stabilizes

cell-cell adhesions in complex with CDH1. Unbound CTNNB1

can translocate to the nucleus [43]. All these signals end up in

the nucleus where they induce expression of proliferation

promoting genes like microRNAs up-regulated in high prolifer-

ative OS cells, CCND1, and FN1. In turn, they repress genes

implicated in growth-arrest.

Conclusion
The resulting microRNA and TF co-regulatory networks

display a detailed picture of the regulation of OS cell proliferation.

In the present study, we concentrated on distinct functional aspects

unraveled from the networks. The outcome suggests that down-

regulation of miR-9-5p, miR-138, and miR-214 results in a strong

proliferative phenotype of OS cells due to their impact on NFKB-

and RB1-signaling and on focal adhesion.

Our study provides potential therapeutic targets in OS and

proposes concepts for further research. In addition, we demon-

strated how systems biological approaches support the analyses of

complex diseases.

Materials and Methods

Data sets
We used microRNA and mRNA expression data of seven

authenticated OS cell lines, six from our previously published

study [16] and one additional (ZK-58). Prior to microarray

analyses, RNA was isolated and further processed as described in

[16]. MicroRNA and mRNA expression profiles were determined

on Exiqon’s miRCURY LNA and Affymetrix’s Human Gene 1ST

arrays, respectively.

Conserved TFBSs (hg19) were downloaded from the UCSC

Table Browser [51]. The track contained predicted TFBSs

Figure 6. Model of OS cell proliferation. The picture illustrates the proposed model of OS cell proliferation co-regulated by miR-9-5p, miR-138,
and miR-214 and the TFs SP1 and MYC. These regulators control mainly components of the NFKB- and RB1-pathway and of focal adhesion processes.
Primary microRNA targets are rectangular and secondary targets are ellipse shaped. Red marks up-regulated genes in proliferative active OS cell lines
and green indicates down-regulated genes. White nodes represent genes not DE in OS cell proliferation. Solid and dashed arrows illustrate direct and
indirect functional associations, respectively. RB1 is shaded in red to indicate that it is no member of the global networks.
doi:10.1371/journal.pcbi.1003210.g006
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conserved in the human/mouse/rat alignment that were deter-

mined by using the Transfac Matrix Database 7.0 [52]. Protein

interaction data were obtained from BioGRID release 3.1.92 [53].

Proliferation assay to group OS cell lines
The OS cell lines were evaluated regarding their proliferative,

migrative, and invasive potential by using in vitro-assays (BD

Biosciences). Cells utilized in the assays showed 60 to 80%

confluence growth. Prior to the assays cell lines were synchronized

to ensure a uniform cell growth.

To analyze OS cell proliferation, duplicates of each cell line

(16105 cells) were seeded in 25 cm2 cell culture flasks. Cells were

harvested at 24, 48, 72, 96, and 168 hours of growth. The cell

number was determined by an automated cell counter (Beckman

Coulter). For each cell line and time point, the mean cell number

was calculated to estimate the growth rate and subsequently the

doubling time.

Further, the Biocoat Matrigel Invasion Assay and a migration

assay (BD Biosciences) were performed for each cell line in

duplicate with matrigel-coated and uncoated inserts, respectively.

Experiments were performed according to the manufacturer’s

instructions. Evaluation of invaded and migrated cells was done

after 24 and 48 hours by light-microscopic analysis. Ten visual

fields (magnification 106) were analyzed by counting stained cells

on the membranes.

Expression analysis of microRNAs and mRNAs
The expression data sets were analyzed using the Bioconductor

package limma [54]. DE genes between high and low proliferative

OS cells were determined using eBayes [54].

MicroRNA expression data were annotated with miRBase

release 18 [55], background corrected by normexp+offset 10 [56],

and normalized with printtiploess followed by RQuant [57]. In the

differential expression analysis we considered the top 75% of

microRNA probes that showed largest variation over all samples.

Multiple test correction was performed using Benjamini and

Hochberg’s FDR approach [58].

The mRNA expression data were preprocessed by the

Bioconductor package affy [59]. The Affymetrix Human Gene 1

ST array contains probes mapping among the whole transcript.

Therefore, we filtered probes that mapped to exons present in at

least 80% of a gene’s transcripts to get one stable expression value

per gene. Transcripts were derived from Ensembl release 63 [60].

The raw probe intensities were background corrected, normalized,

and summarized to the gene-level by applying the robust multi-

array average algorithm (rma) [59].

MicroRNA and TF target prediction
Predicted microRNA targets were obtained by running the local

perl scripts targetscan_60.pl and targetscan_61_context_scores.pl

that were online available at the TargetScan website (http://www.

targetscan.org/) [61]. Mature microRNA sequences were down-

loaded from miRBase release 18 [55]. To derive high efficacy

targets, we filtered target predictions with a context score#20.1

[61].

To determine TF target genes, we downloaded the transcrip-

tional start sites (TSSs) of all genes included in the mRNA

expression data set from the hg19 assembly of the UCSC Table

Browser [51] and the TSSs from our proliferation related

microRNA genes from miRStart [62]. Further, we defined the

promoter region to 2/+ 2000 nucleotides around the TSSs. Genes

having a TFBS that completely overlapped their promoter regions

were considered as TF targets. We just considered human TFs that

were expressed in at least one proliferation group of our OS cell

samples (log2 intensity$8).

Enrichment of microRNA target genes
To assess the enrichment of microRNA target genes in the list of

DE genes, a hypergeometric test was performed. Multiple test

correction was done by determining the FDR according to

Benjamini and Hochberg [58]. To account for the different

number of target genes of the DE microRNAs, a permutation

procedure was applied. We randomly selected the number of DE

genes out of the genes in our mRNA expression data set and

counted the number of random microRNA target genes. For each

permutation an enrichment score (ES, -log10 p-value) was

calculated. The permutation procedure was repeated 1,000 times.

The resulting permutation p-values were obtained by counting the

number of permuted ESs exceeding the observed one. This was

done for all DE microRNAs separately.

Fuzzy c-means clustering of DE microRNA targets
To classify DE microRNA targets according to their functional

similarity, their GO semantic similarity scores based on biological

process terms were computed using Resnik’s information content

approach of the GOSim package [63]. The resulting functional

similarity scores for any target gene pair were listed in a similarity

matrix, which was further utilized as distance matrix for clustering.

We applied FCM [64] to classify microRNA target genes

according to their functional similarity using the function fanny

from the R cluster package [65]. The fuzziness parameter was

estimated by Dunn’s coefficient [66] among a range of 1.1 to 1.5

and the cluster number was estimated over a range of 2 to 15 using

Dunn’s index [67]. The Dunn coefficient (range 0–1) indicates the

fuzziness of a cluster [66]. The Dunn index compared the between

cluster variation to the within cluster variation and measures the

cluster separation. A Dunn index .1 indicates a satisfying

clustering [67].

The derived functional clusters were evaluated by running a

GO enrichment analysis with the Bioconductor package GOStats

[68]. Multiple test correction was performed by using Benjamini

and Hochberg’s FDR approach [58].

Testing and evaluating microRNA and TF co-regulation
We tested for non-random microRNA and TF 3-node and 4-

node motifs by using the hypergeometric test adapted from Sun et

al. [14]. In contrast to them, we applied a different null model to

derive p-values specific for the underlying microRNA and TF co-

regulation pairs.

For the 3-node motifs we tested if a microRNA and TF pair had

significantly more commonly DE target genes than computation-

ally predicted target genes. In turn, co-regulation of microRNA

and TF pairs in 4-node motifs was tested based on commonly

regulated secondary target genes and compared to the genes with

corresponding TFBS in the whole 1st-neighbor protein interaction

network. The 1st-neighbor protein interaction network was

determined by extracting all 1st-neighbors of microRNA target

genes from the protein interaction data. Benjamini and Hoch-

berg’s FDR was used to adjust for multiple testing [58].

Furthermore, evaluation of significant pairs of microRNAs and

TFs was performed by assessing the coexpression of genes targeted

by the same microRNA and TF pair. The Pearson correlation was

used as a measure for coexpression. Statistical significance was

determined by a permutation procedure. We randomly chose the

same number of genes targeted by 3-node and 4-node FFLs out of

all genes annotated in the mRNA expression data and computed

their correlation coefficients. The permutation procedure was
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repeated 1,000 times. Finally, we tested if the coexpression of the

genes in the FFLs was significantly greater than in randomly

selected gene pairs using the KS test.

MicroRNA and TF co-regulatory network generation and
analyses

The microRNA and TF co-regulatory networks were construct-

ed by merging all 3-node and 4-node FFL motifs. The networks

were modeled as graphs with nodes and edges. Nodes corre-

sponded to microRNAs, TFs, or target genes and edges

corresponded to microRNA-target regulation, TF-target regula-

tion, or protein interactions. To identify crucial network players,

we computed network centralities, namely node degree and

betweenness, using the R package igraph [26]. The node degree is

defined as the number of direct neighbors of a node in a network.

Nodes having a high number of direct neighbors are thought to be

important regulatory hubs inside the network. In contrast, a node’s

betweenness is a measure of the number of shortest paths between

any pair of nodes that run through it [69].

To detect tightly connected groups of nodes in the network, we

run the walktrap algorithm [70]. This algorithm finds modules in

connected graphs. It is based on random walks and assumes that

the random walker is trapped in dense parts of a network [26].

For further network evaluation we used the Functional

Annotation Tool of the DAVID database [27]. The networks

were visualized with Cytoscape 2.8.3 [71] and Cytoscape Web

1.0.2 [72].

Supporting Information

Figure S1 Enrichment of proliferation-related micro-
RNAs. The barplot of enrichment scores (ESs) of observed

microRNA target genes (cyan) and randomly selected targets

(grey). The ES of randomly selected microRNA targets is

illustrated as mean6stdev. Per microRNA we computed 1,000

random ESs. P-values between observed and random ESs were

obtained by counting the number of random ESs exceeding the

observed one.

(PDF)

Figure S2 Distribution of Dunn coefficients and indi-
ces determined by FCM clustering. (A) Assessing the

optimal fuzziness parameter. The plot illustrates the Dunn

coefficients (y-axis) among a range of fuzziness parameters (x-

axis) for different cluster numbers. The fuzziness was set to 1.1,

where the Dunn coefficient distribution exceeds 0.5 for all cluster

numbers. (B) Determining the optimal cluster number. The plot

shows the Dunn indices (y-axis) among a range of cluster

numbers (x-axis) for different fuzziness parameters. The optimal

cluster number was set to 2, where the Dunn index reached its

maximum value.

(PDF)

Figure S3 Node degree distribution of the microRNA
and TF co-regulatory networks. The plots show the fraction

of proteins (y-axis) among all node degrees (x-axis) from the

microRNA and TF co-regulatory networks (grey) of (A) C1 and (B)

C2. Different colors indicate distinct degree distributions of

different node types. Horizontal lines mark the average node

degree of individual node types. The values of the average node

degrees are listed in the plots’ legends.

(PDF)

Figure S4 MicroRNA and TF co-regulatory network
modules derived from C1. The figure shows network modules

defined by the walktrap algorithm. The modules C1.1 to C2.6 are

labeled from (A) to (F). Node shapes correspond to the distinct

node types: microRNAs (diamond), TFs (triangle), primary target

(rectangle), and secondary target (ellipse). Yellow edges mark TF-

DNA interactions, blue edges microRNA-target interactions, and

dashed grey edges protein interactions. The red/green color code

indicates the log2 FC.

(PDF)

Figure S5 MicroRNA and TF co-regulatory network
modules derived from C2. The figure shows network modules

defined by the walktrap algorithm. The modules C2.1 to C2.6 are

labeled from (A) to (F). Node shapes correspond to the distinct

node types: microRNAs (diamond), TFs (triangle), primary target

(rectangle), and secondary target (ellipse). Yellow edges mark TF-

DNA interactions, blue edges microRNA-target interactions, and

dashed grey edges protein interactions. The red/green color code

indicates the log2 FC. The C2.1 module implicated in negative

regulation of differentiation of osteoblast cells is tagged with a red

frame.

(PDF)

Figure S6 miR-9-5p and SP1 target gene associations.
The network is derived from the STRING 9.0 database [42]. It

illustrates experimental and literature-mined functional associa-

tions between miR-9-5p and SP1 target genes.

(TIF)

Figure S7 Module C2.1 target gene associations. The

network is derived from the STRING 9.0 database [42]. It

illustrates experimental and literature-mined functional associa-

tions between genes within the C2.1 network module.

(TIF)

Table S1 Enrichment of proliferation-related micro-
RNA target genes. Results of the hypergeometric test to

examine significantly enriched microRNA target genes within the

list of DE genes. The table marks the total number of predicted

target genes, the number of DE target genes, and the

corresponding FDR.

(XLS)

Table S2 Significant microRNA and TF co-regulatory 3-
node motifs. The table summarizes the number of common

target genes of each non-random microRNA and TF co-

regulatory pair with corresponding statistics.

(XLS)

Table S3 Significant microRNA and TF co-regulatory 4-
node motifs. The table summarizes the number of interacting

target genes of each non-random microRNA and TF co-

regulatory pair with corresponding statistics.

(XLS)

Table S4 Individual microRNA and TF co-regulatory 3-
node and 4-node motifs of C1.

(XLS)

Table S5 Individual microRNA and TF co-regulatory 3-
node and 4-node motifs of C2.

(XLS)

Table S6 MicroRNA and TF co-regulatory network
hubs. The table holds the node degree and betweenness

parameters of hub genes within the co-regulatory network of C1

and C2 for each node type.

(XLS)

Table S7 Over-represented KEGG pathways.

(XLS)
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