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Abstract

We have detected differences in metabolite levels between doped athletes, clean athletes, and volunteers (non
athletes). This outcome is obtained by comparing results of measurements from two analytical platforms: UHPLC-
QTOF/MS and FT-ICR/MS. Twenty-seven urine samples tested positive for glucocorticoids or beta-2-agonists and
twenty samples coming from volunteers and clean athletes were analyzed with the two different mass spectrometry
approaches using both positive and negative electrospray ionization modes. Urine is a highly complex matrix
containing thousands of metabolites having different chemical properties and a high dynamic range. We used
multivariate analysis techniques to unravel this huge data set. Thus, the several groups we created were studied by
Principal Components Analysis (PCA) and Partial Least Square regression (PLS-DA and OPLS) in the search of
discriminating m/z values. The selected variables were annotated and placed on pathway by using MassTRIX.
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Introduction

The molecular diversity of the human urinary metabolome is
very well reflected by the existing databases [1,2] displaying
thousands of metabolites classified in as much as 70 different
structural classes [3-5]. The majority of these metabolites are
small molecular weight compounds having molecular weights
between 100 and 800 Dalton (Da) and small peptide fragments
[6] with very different physico-chemical properties (solubility,
polarity, proton affinity, etc). Despite this astonishing chemo-
diversity, for quite some time, mainly targeted studies, often
restricted to a particular chemical family or to compounds
having similar properties have been applied into doping control
studies. Moreover, the metabolites and the changes were often
regarded in an univariate manner and the correlations between
them were often disregarded.

Nowadays, the progresses made in analytical fields like
sample preparation, chemical analysis and data processing
offer a wider view of the metabolome and greatly contribute to

our understanding of the biochemical transformations. Among
these, two are believed to have played a key role: the
introduction of high (Time of Flight mass spectrometry, TOF)
and ultra-high resolution techniques (Fourier Transform Ion
Cyclotron Resonance mass spectrometry, FT-ICR/MS) and the
development of algorithms capable of handling the thousands
of signals generated by such analytical platforms. Indeed,
techniques such as FT-ICR/MS are becoming more and more
available and their advantages can be now fully exploited.
Thus, molecular formulae generation based on exact masses
and relevant database search are now possible due to the high
resolution and accuracy of this type of technique [7,8]. Of equal
importance, the recent advances in the pre-processing [9],
mathematical modeling [10,11] and the statistical analysis [10]
lead to more comprehensive biological interpretation of the
metabolomics data [12]. Up to present, this strategy has been
applied in a variety of fields, including drug discovery [13,14],
nutrition [15,16], toxicology [17], clinical trials [18] and more
recently chemical submission [19]. It is of particular interest in
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areas like doping control as new approaches are needed to
fight the ongoing development of performance-enhancing
methods [20-23].

In this study, this strategy was applied to real urine samples
collected from volunteers (V), high-level clean athletes (CA)
and athletes declared positive for the use of beta-2-agonists
(salbutamol, S) or glucocorticoids (budesonide, B). The choice
of the doping agents was based on three criteria: the high
frequency detection in sport [24], the common medical use in
asthma treatment and respiratory conditions [25] and the
excretion through urine [26,27]. The main purposes of this
paper are to explore (i) the metabolic differences between
volunteers and sportsmen and (ii) the metabolic changes
induced by the intake of budesonide and salbutamol.

Materials and Methods

Study design and general strategy
Firstly, the spectra acquired with FT-ICR/MS were

preprocessed and prepared for analysis. Several groups
(Figure 1) were selected and treated independently via
mathematical and statistical methods such as Principal
Component Analysis (PCA, unsupervised) and Orthogonal
Partial Least Square (OPLS, supervised). The two models
involving budesonide and salbutamol treated athletes were
then compared in order to emphasize the metabolic similarities

and differences. Finally, we compare the data obtained by
direct injection into the FT-ICR mass spectrometer with the one
obtained by including a separation step in the analysis
framework. Thus, the LC-QTOF data set was compared with
the FT-ICR/MS data set by means of PCA-CCA (Principal
Components Analysis-Canonical Correlation Analysis).

Sample Collection
The protocol was approved by the Institutional Review Board

of the University of Lyon, F-69622, forty-three bd du 11
novembre, Villeurbanne, and the Institutional Review Board of
the French Anti-Doping Agency, 143, avenue Roger Salengro,
Châtenay-Malabry (according to the Declaration of Helsinki).
All subjects gave written informed consent before the study
commenced. The investigation was conducted in accordance
with the ethical principles of Good Clinical Practice. The
experiment includes 11 urine samples coming from clean
athletes, 9 urine samples collected from volunteers and 27
urine samples provided by the French Anti-Doping Agency
(AFLD, Chatenay-Malabry) and coming from athletes declared
positive for illicit substance consumption. Among the 27
positive samples, 17 samples belong to salbutamol doped
athletes and 10 samples belong to budesonide doped athletes.
The urine samples coming from volunteers were collected in
comparable conditions and by following the AFLD guidelines.

Figure 1.  Study design and general strategy.  
doi: 10.1371/journal.pone.0074584.g001
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All urine samples were aliquoted and stored at -24°C until
analysis, as recommended for stability reasons [27].

Sample Preparation
A “quality control” (QC) sample was prepared as

recommended in different publications [28-30] by mixing equal
volumes (50 µL) of each of the samples as they were being
aliquoted. This “pooled” urine was used to provide a
representative mean sample containing all the analytes that will
be encountered during the analysis and it was mainly used to
assess the quality of the data. At the beginning of the batch, 3
methanol samples were run to ensure that the analytical
system had come to equilibrium. The QC samples were
injected once at the beginning, in the middle and at the end of
the batch. For the FT-ICR analysis, all the samples were
diluted 50 times in methanol and vortexed for 2 minutes at
10000 rpm. The supernatant was then taken and injected. For
the UHPLC-QTOF analysis the urine samples were injected as
neat.

Experimental Conditions
Fourier Transform Ion Cyclotron (FT-ICR MS).  High-

resolution mass spectra were acquired on a Bruker (Bremen,
Germany) SolariX Fourier Transform Ion Cyclotron Resonance
MS equipped with a 12 Tesla superconducting magnet and an
Apollo II electrospray source. The high magnetic field FT-ICR
instrument combines the highest resolution (400.000 at m/z
400) and the best mass accuracy (<200 ppb) and thus enables
the direct conversion of the experimental mass into elementary
composition. The urine samples were infused with the micro-
electrospray source at a flow rate of 120 mL/h The The
nebulizer gas pressure and the drying gas pressure were fixed
at 20 psi and 15 psi, respectively. The source temperature was
250°C. Data was acquired in both positive and negative
electrospray modes. The mass spectrometer was externally
calibrated at the beginning of the batch. The calibration solution
consisted of arginine clusters (m/z of 173.10440, 347.21607,
521.32775 and 695, 43943) dissolved in methanol at a
concentration of 10 mg/L. Calibration errors in the relevant
mass range were always below 0.1 ppm (part per million).

Liquid chromatography coupled to quadrupole time of
flight mass spectrometry (UHPLC-QTOF-MS).  The UHPLC-
MS platform consisted of a chromatographic system suitable
for high resolution separations (Dionex Ultimate 3000) coupled
with a quadrupole time-of-flight (QTOF) mass detector
equipped with electrospray ionization (microTOF QII, Bruker
Daltonics). The chromatographic separation was conducted on
an Acquity C18 BEH column (100mm x 2.1 mm, 1.7 µm). The
column oven temperature was set to 50°C, injection volume at
5 µL and flow-rate at 0.5 ml/min without a split. The eluents
used were: (A) water acidified with 0.1% formic acid and (B)
acetonitrile with 0.1% formic acid. The gradient was set as
follows: 100% (A) over 2 min followed by a linear increase from
0 to 100% (B) over 30 min. An isocratic cleaning step at 100%
(B) over 5 min and column equilibration step at 100% (A) over
15 min were used after each sample. Each urine sample was
injected three times in order to assure reproducibility. Detection
was performed in negative electrospray mode under the

following conditions: nebulizer pressure 1 bar, dry gas flow 8 L/
min, source temperature 120 °C, source temperature 200 °C,
capillary voltage 3500 V. Mass spectrometric data were
collected over the range 80-1000 m/z in profile mode at 1
spectra/second. A sodium formate solution was injected for 0.1
min at the beginning of each run for internal calibration.

Data Analysis
The data analysis procedure followed in this paper consists

of: internal calibration, peak identification, peak list alignment,
mathematical and statistical analysis and database
annotations.

The raw data (FT-ICR/MS and UHPLC-QTOF) were
independently pre-processed with the proprietary software
DataAnalysis (Bruker Daltonik, Bremen). The FT-ICR/MS
acquired spectra were internally calibrated using a reference
list: solvent impurities for the positive mode and fatty acids for
negative mode in order to account for deviations occurring
during the batch. Calibrations errors were found to be inferior to
0.2 ppm regardless of the ionization mode. Next, the peaks
having a signal-to-noise ratio superior to four (4) were exported
to individual peak lists. The peak lists were then aligned over
the entire mass range through an in-house software with a
tolerance of 1 ppm [31]. Profile Analysis (Bruker Daltonics) was
used to internally calibrate and align the UHPLC-QTOF data in
both m/z and retention time directions Tolerances of ±0.05 Da
and ±0.2 min were used, respectively.

Prior to data analysis the FT-ICR/MS and UHPLC-QTOF
data sets were Pareto-scaled. Modeling and statistical analysis
were done with SIMCA-P+12 (Umetrics, Umeå, Sweden) and
in MATLAB (v.10, Mathworks, USA). Several techniques were
used in order to extract the information contained in the
multivariate data sets. Firstly, Principal Component Analysis
(PCA) was used in order to have a first overview of the FT-
ICR/MS data and to detect general trends and relations
between the spectra and the variables (m/z). Orthogonal Partial
Least Squares regression (OPLS), was used in order to select
those signals related to the nature of samples e.g. treated,
clean, volunteer and athlete (supervised technique). As
showed in Figure 1, the models were built for each comparison.
These models were firstly validated by the 7 fold cross
validation procedure implemented in the software and then with
CV-ANOVA (Cross Validation ANOVA), in order to exclude the
possible presence of over-fitting. Pertinence indicators such as:
p-value, R2(Y) and Q2(cum), were subsequently reported for
each model indicating the significance, the goodness of the fit
and the goodness in the model prediction. Moreover potential
discriminating variables were chosen by examining the S-plot
(which combines the modeled covariance and correlation,
variables with high value in magnitude and reliability can be
candidate for the class separation) and VIP values (variable
influence in the projection). Additionally graphical methods
such as SUS-plot (Shared and Unique Structures) were used
for model comparison. Canonical Correlation Analysis
preceded by PCA was done in MATLAB in order to compare
the output of the two platforms (UHPLC-QTOF and FT-ICR).

The masses characterizing the metabolic distinction were
submitted to MassTRIX using Homo sapiens as reference

Non-Targeted Metabolomics for Doping Control

PLOS ONE | www.plosone.org 3 September 2013 | Volume 8 | Issue 9 | e74584



species and a maximum error of 1 ppm. This web server
assigns a potential annotation from KEGG (http://
www.genome.jp/kegg/), LipidMaps (http://www.lipidmaps.org/)
and HMDB [4,5] to each m/z value. As second step, MassTRIX
calls the KEGG/API (http://www.genome.jp/kegg/soap/) to
generate the pathway maps of the annotated masses [6].

Results and Discussion

FT-ICR/MS
The alignment of the FT-ICR/MS peak lists lead two matrices

corresponding to the two ionization modes. Initially the positive
and the negative matrices counted 23.246 signals and 20.830
signals, respectively. The signals appearing in less than 5% of
the samples were associated to noise and were excluded from
further analysis. Thus, the positive and negative matrices
underwent a serious downsizing to 63% and 89% of the initial
number of signals, respectively. The majority of the remaining
signals are situated between 150 and 500 Da and its
distribution is shown in Figure 2.

UHPLC-QTOF/MS
The positive mode (Figure 3) yielded 47133 variables. Some

of these are metabolites while others are fragments, adducts,
isotopes and noise. 40457 variables are present in less than
five samples. As before, these variables were considered

unreliable and were not included in the statistical analysis. 104
variables were detected in all the samples. The majority of the
detected compounds have molecular weights between 100 and
700 Da. Since the distribution of the detected signals over the
mass range is sensitive to the acquisition parameters of the
mass spectrometer, a direct comparison of two distributions
(UHPLC-QTOF and FT-ICR) would not be appropriate.

Figure 3.  UHPLC-QTOF/MS chromatogram.  
doi: 10.1371/journal.pone.0074584.g003

Figure 2.  Distribution of the signals as a function of the mass range.  
doi: 10.1371/journal.pone.0074584.g002
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A detailed analysis of the data emphasises a wide range of
polarity. Approximately 16% of the compounds are eluted
before 20% acetonitrile and the vast majority of compounds are
eluted before reaching 75% acetonitrile.

Unsupervised Statistical Analysis
The PCA is used in order to get a first glance of the

properties of the FT-ICR data. As a result of this analysis

applied to the totality of the samples, a clustering of some
samples becomes apparent by eye (see Figure 4). The 3D
score plot shows that the (clean) volunteers (V) are more
dispersed along the second principal component (Figure 4)
suggesting a larger variability in the metabolism or the
interference of different factors (diet, sport, medication, etc.).

The loadings plots are extremely complex and difficult to
interpret due to the presence of many different groups. In order

Figure 4.  Principal Component Analysis showing clusters corresponding to the 4 groups (B, S, V, CA).  
doi: 10.1371/journal.pone.0074584.g004
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to enhance the differences between the groups and isolate the
masses that discriminate them, supervised statistical methods
were used. Models opposing the clean athletes and the
volunteers (CA vs V), the clean athletes and the budesonide
treated athletes (CA vs B) and the clean athletes and the
salbutamol treated athletes (CA vs S) were created by using
the OPLS statistical method. The values of significance for the
FT-ICR models and UHPLC-QTOF models are reported in
Table 1.

(CA vs V): clean athletes vs volunteers
The aim of this study is to explore all the possible differences

between the two groups from a global point of view and to
emphasize the extent to which these differences interfere with
metabolomics studies [32]. The differences between the
metabolism of the non-athletes and that of high level athletes
have already been the subject of many research papers. Thus,
studies comparing the effects of endurance [33], sports type
[34], effort degree and duration [35,36], can be found in
literature. As the present study involves real urine samples, the
emphasized contrast will originate not only in the physical
effort, but also in any dietary, lifestyle or medical differences.

The OPLS model comparing the 10 volunteers to the 11
athletes controlled negatively by the AFLD, resulted in
excellent R2(Y) (0.99), Q2(cum) (0.711) and p-values. (0.003).
These values prove a strong relationship between the matrix of
the measured variables (m/z signals) and the class
membership in both positive and negative modes (Table 1).

Several discriminant signals were emphasized and selected
based on the S-plot and the VIP values. An explanatory
example of discriminant profiles having downtrend or uptrend
behaviors with respect to CA are shown in Figure 5a (creatine)
and Figure 5b (xanthosine), respectively. These signals were
identified in the UHPLC-QTOF data under the form [M+H]+

Thus, for the positive mode of the FT-ICR data, about 14,3%
of the total number of variables were selected as discriminant
signals based on their contributions in the covariance and in
the correlation. Among these, close to 50% appear as uptrend
with respect to CA.

The discriminant signals are loaded into MassTRIX and the
metabolic pathways presenting the highest number of

Table 1. Significance values for the OPLS models (CA vs
B), (CA vs S) and (CA vs V).

 ESI+ ESI-

 p R2 Q2 p R2 Q2
FT-ICR/MS models       
CA vs V 0.003 0.99 0.711 0.007 0.959 0.563
CA vs S 0.02 0.988 0.467 0.03 0.979 0.464
CA vs B 0.07 0.954 0.389 0.06 0.697 0.29
LC-QqToF models       
CA vs V 0.003 0.99 0.69 0.007 0.93 0.55
CA vs S 0.03 0.97 0.47 0.03 0.98 0.5
CA vs B 0.08 0.90 0.28 0.06 0.7 0.14

doi: 10.1371/journal.pone.0074584.t001

annotated compounds are shown in Figure 6a (white columns).
A large part of the uptrend metabolites were identified as
belonging to steroid hormone biosynthesis, pentose and
glucuronate interconversions, starch and sucrose metabolism,
ABC transporters, galactose metabolism and some amino
acids metabolism (arginine, purine, hystidine and proline). The
metabolites having downtrend relative intensities are situated
on the starch and sucrose and pentose and glucuronate
interconversions pathways.

In the negative mode, among the 11% of the discriminating
signals, almost 4% have an uptrend behavior with respect to
the group of CA. As in the positive mode the steroid hormone
biosynthesis and pentose and glucuronate inetconversion
pathways appear to have different trends in the two groups
(Figure 6b, white columns). Phenylalanine metabolism seems
to be another important pathway since as much as 8
compounds have a downtrend profile with respect to CA.
Unlike the positive mode which counts 18% discriminant
signals annotated by MassTRIX, the negative mode, which is
less universal, counts around 9% annotated discriminant
signals.

(S vs CA) and (B vs CA): Salbutamol/Budesonide
treated athletes vs clean athletes

As previously, the OPLS models were built for each of the
two comparisons and for each of the two ionization modes. The
comparison between the clean athletes and the salbutamol
treated athletes (S vs CA) shows good performance indicators,
irrespective of whether we look to the positive or to the
negative mode. On the contrary, the model opposing the clean
athletes and the budesonide treated athletes (B vs CA) is
weaker and the p-value for the cross-validation is above the
considered threshold (0.05) (see Table 1). This observation
could be explained either by a weaker effect of medication or
by an insufficient number of samples, as seen elsewhere.

Among the 1602 discriminant masses (~7%) selected in
positive electrospray, salbutamol was found as a highly
discriminant signal (Figure 7b). Its presence was confirmed by
exact mass measurement (error 0.1ppm) and the assessment
of the isotopic profile and testifies to the feasibility of this
approach.

Figure 8a shows a higher number of downtrend then uptrend
signals with respect to salbutamol treated athletes (black
columns). Also, the metabolic pathways that seem to be
modified are those involving protein digestion, amino acids
(arginine, proline, tryptophan, and lysine) [37-41] and pentose.
According to the same figure, budesonide intake plays an
important role in the biological reactions belonging to pathways
such as steroid hormone biosynthesis. This could be explained
by the fact that budesonide is a glucocorticoid itself.

In negative mode (Figure 8b) the trend is reversed and only
a few uptrend variables are highlighted. The number of
annotated compounds remains nevertheless lower than in
positive mode and the majority of the compounds are issued
from the model concerning the salbutamol treated athletes
(~0.54% from the totality of examined variables).

Non-Targeted Metabolomics for Doping Control
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Similarities and differences between salbutamol and
budesonide treated athletes

SUS-plot is a graphical tool used to compare two statistical
models (Figure 9). It indirectly finds the shared and the unique
features of the groups that constitute the models. In brief, the
SUS-plot is obtained by plotting the loading vector of a first
model against the loading vector of the second model.

Pathways like ABC transporters appear as modified by both
treatments to a similar degree. Steroid hormone biosynthesis
pathway is modified mainly by budesonide and only in a small
degree by salbutamol. In turn, pentose and glucose pathway is
manly modified by salbutamol and to a smaller extent by
budesonide. Surprisingly, fructose and mannose metabolisms
do not appear to be modified when the two treatments are
considered separately. In contrast, only when the two types of
samples are considered as a single group (BS vs CA, Figure 1)
they appear to be modified. Arachidonic acid and vitamin B6
metabolisms are modified by budesonide only, while linoleic
acid metabolism or biosynthesis of unsaturated fatty acids are
specific to salbutamol treatment (Figure 8a and 8b).

Legitimacy of including volunteers in the experimental
setup

As seen previously, a clear difference between the
volunteers and the clean athletes can be made at metabolic
level by using a global approach. In order to study the
legitimacy to associate the volunteers to clean athletes, two
models were compared in positive electrospray: (BS vs CA)
and (BS vs CA+V).

As it can be seen in Figure 6a, the number of downtrend
compounds annotated in MassTRIX is basically not influenced
by the introduction of volunteers in the group of clean athletes
(grey and black segments). However, for the uptrend
metabolites, the metabolic differences between the athletes
and the volunteers seem to have a greater impact on the
comparison between treated (BS, budesonide and salbutamol
together) and clean individuals (V+CA, athletes and volunteers
together). This is, for example, the case of steroid hormone
biosynthesis pathway. In figure 6a, we can see that when
considering (BS vs CA) there are no uptrend annotations (black
segment). However, a small segment of uptrend metabolites
appears when associating the volunteers to the group of clean
athletes (grey segment).

Figure 5.  CA vs. V discriminant profiles: (a) creatine and (b) xanthosine.  
doi: 10.1371/journal.pone.0074584.g005
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Canonical Correlation Analysis for the comparison of
two analytical techniques

As stated previously, the two analytical platforms were used
independently to obtain the molecular fingerprints of each urine
sample: UHPLC-QTOF/MS and FT-ICR/MS and the models
resulted in similar performance indicators (Table 1). The latter
has the advantage of having a very high resolution and 200
ppb precision, while the former one includes a possible
separation step before the mass spectrometer which limits

ionization suppression phenomena. By considering a tolerance
of 5 mDa, we found that about 21% of the signals detected in
FT-ICR are common to both data sets Thus, approximately
15% of the discriminating signals whose profiles were visually
checked were detected in both data sets and almost 57% came
from the FT-ICR data (see Table S1 for discriminating
compounds as annotated by MassTRIX).

Canonical Correlation Analysis preceded by Principal
Components Analysis (PCA-CCA) was used in order to

Figure 6.  Metabolic pathways corresponding to discriminating signals (ESI+) annotated in MassTRIX (a).  Metabolic
pathways corresponding to discriminating signals (ESI-) annotated in MassTRIX (b).
doi: 10.1371/journal.pone.0074584.g006
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compare the multivariate information contained in the two data
sets. PCA was applied prior to the CCA in order to deal with
the multicolinearity present in this type of data, to reduce the
dimensionality, and thus, ease the interpretation of the results.
As an example, this method was used for the two data sets
corresponding to the model opposing the volunteers and the
clean athletes (V vs CA) in negative mode. For each of the two
data sets the 5 first principal components (loadings) were
selected for further analysis. In each case, the principal
components considered for CCA analysis accounted for about
50% of the total variance.

The analysis yielded five canonical functions explaining
96.6%, 71.5% 57.1%, 28.9% and 14.7% of the total variance
shared by the two data sets. The full model, as well as the
association of functions (f2,f3,f4,f5) and (f3,f4,f5) are
considered statistically significant since the associated p-
values are less than 0.05 (Table 2). On the contrary, the
associations of function 4 and 5 and function 5 alone are not
statistically significant and therefore not interpreted.

As for the OPLS models, the inspection of the canonical
coefficients and structure coefficients reveal highly correlated

principal components. Negatively or positively correlated m/z
variables can be emphasized by considering these principle
components (loadings). One such example is presented in
Figure 10. The two correlated signals (m/z=217.97 and m/
z=541.32) have down and up trend profiles, respectively. They
prove to contribute greatly to the first principal components
showing a clear discrimination between the two groups.

Thus, the CCA shows that, globally, the information
contained in the LC-TOF data set is the same with the one
contained in the FT-ICR data set.

Conclusions

The non-targeted analysis of forty-six human urine samples
was done on two analytical platforms: UHPLC-QTOF/MS and
FT-ICR/MS. Given the different origins of the samples
(V=Volunteers, CA=Clean Athletes, S=Salbutamol and
B=Budesonide) several groups were created. These groups
were firstly studied separately and then compared in order to
emphasize possible similarities or differences between the
samples. The statistical models created by using the OPLS

Figure 7.  S vs. CA discriminant profiles: (a) pantothenic acid and (b) salbutamol.  
doi: 10.1371/journal.pone.0074584.g007
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method show good predictability for two models: CA vs V and
S vs CA and lead to the selection of several discriminating

variables. Significant advances towards annotation
identification and interpretation have been made thanks to the

Figure 8.  Metabolic pathways corresponding to discriminating signals (ESI+) annotated in MassTRIX (a).  Metabolic
pathways corresponding to discriminating signals (ESI-) annotated in MassTRIX (b).
doi: 10.1371/journal.pone.0074584.g008
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high-resolution and high-precision measurements with the FT-
ICR/MS and due to MassTRIX. More precisely, a significant
number of the discriminated signals were annotated and placed
on metabolic pathways.

The Canonical Correlation Analysis showed a strong
correlation between the UHPLC-QTOF/MS data and the FT-
ICR data.

The non-targeted metabolomics approach proved to be a
helpful strategy even when real urine samples coming from a
heterogeneous population were considered. In order to confirm

Table 2. Significance parameters for the Canonical
Correlation Analysis.

 f1 f2 f3 f4 f5
squared canonical correlations
coefficients

0.96 0.715 0.571 0.289 0.147

associated p-values 6.84e-07 0.008 0.043 0.144 0.109

doi: 10.1371/journal.pone.0074584.t002

Figure 9.  Up and downtrend features shared by the two models in the positive and negative mode.  
doi: 10.1371/journal.pone.0074584.g009

Figure 10.  Negatively correlated variables emphasized by Canonical Correlation Analysis.  
doi: 10.1371/journal.pone.0074584.g010
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the results presented in this paper and take into account the
large inter-human variability, the same approach should be
repeated on a larger cohort of individuals. Further studies are
also needed in order to investigate the effect of other
stimulants and doping substances.
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