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The diazotrophic, bacterial endophyte Herbaspirillum frisingense GSF30T has been
identified in biomass grasses grown in temperate climate, including the highly
nitrogen-efficient grass Miscanthus. Its genome was annotated and compared with
related Herbaspirillum species from diverse habitats, including H. seropedicae, and further
well-characterized endophytes. The analysis revealed that Herbaspirillum frisingense
lacks a type III secretion system that is present in some related Herbaspirillum
grass endophytes. Together with the lack of components of the type II secretion
system, the genomic inventory indicates distinct interaction scenarios of endophytic
Herbaspirillum strains with plants. Differences in respiration, carbon, nitrogen and cell wall
metabolism among Herbaspirillum isolates partially correlate with their different habitats.
Herbaspirillum frisingense is closely related to strains isolated from the rhizosphere of
phragmites and from well water, but these lack nitrogen fixation and metabolism genes.
Within grass endophytes, the high diversity in their genomic inventory suggests that even
individual plant species provide distinct, highly diverse metabolic niches for successful
endophyte-plant associations.
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INTRODUCTION
Many gramineous species maintain a close association with endo-
phytic bacteria that are often beneficial for plant growth and
health (Reinhold-Hurek and Hurek, 1998). Their considerable
ecologic importance and agronomic potential is best documented
in warm tropical and subtropical climates (Reinhold-Hurek and
Hurek, 1998). Plant growth promoting bacteria are often con-
sidered as a cost efficient and ecological alternative to improve
crop growth on low-nutrient soils (Sturz et al., 2000) and may
gain further interest for future large-scale biomass production on
marginal land with low-input grasses (Heaton et al., 2008).

Herbaspirillum frisingense belongs to the β-proteobacteria and
is a close relative of Herbaspirillum seropedicae SmR1 (HsSmR1)
and Herbaspirillum rubrisubalbicans (HrM1), which are both
common in tropical and subtropical soils and endophytically col-
onize various grasses (Monteiro et al., 2012b). Endophytes are
referred to here as microorganisms (bacteria) that have low soil
competence and spend most of their life cycle within the plant,
mostly without causing symptoms of plant damage. Beneficial

Abbreviations: EC, Enzyme classification; AzoaBH72, Azoarcus sp. BH72;
Kp342, Klebsiella pneumoniae 342; AzospB510, Azospirillum sp. B510; GdPAI5,
Gluconacetobacter diazotrophicus PAl5; HfGSF30, Herbaspirillum frisingense
GSF30T; HsSmR1, Herbaspirillum seropedicae SmR1; HrM1, Herbaspirillum
rubrisubalbicans M1; HhIAM, Herbaspirillum huttiense subsp. putei IAM 15032;
HlP6-12, Herbaspirillum lusitanum P6-12 (DSM 17154); HGW103, Herbaspirillum
sp. GW103; HJC206, Herbaspirillum sp. JC206; HCF444, Herbaspirillum sp. CF444;
HYR522, Herbaspirillum sp. YR522; HsOs34, Herbaspirillum seropedicae Os34;
HsOs45, Herbaspirillum seropedicae Os45.

associations of HsSmR1 and HrM1 with sorghum, sugar cane,
rice, and maize have been reported, but HrM1 causes red stripe
disease on some sorghum varieties and can cause mottled stripe
disease on sugarcane. Other isolates of H. seropedicae from rice
(HsOs34, HsOs45) induced disease symptoms (Ye et al., 2012; Zhu
et al., 2012). So far, plant growth promoting action, but no dis-
ease symptoms, were identified for H. frisingense (Straub et al.,
unpublished observation), which was originally isolated from
the perennial C4-fiber plant Miscanthus in southern Germany
(Kirchhof et al., 2001). Other potential N-fixing bacteria, such as
Azospirillum doebereinerae (Eckert et al., 2001) and bacterial con-
sortia consisting of N2-fixing clostridia (Miyamoto et al., 2004)
has also been isolated from Miscanthus. Herbaspirillum frisingense
strains were also recovered from other biomass grasses, Spartina
pectinata and Pennisetum purpureum, grown in temperate condi-
tions. Model calculations proposed that Miscanthus x giganteus
gained substantial nitrogen from the N-fixation by endophytic
symbionts (Davis et al., 2010), but the type of nitrogen fixers
remains unclear. H. seropedicae isolates were shown to fix nitro-
gen in association with wild rice, but not with cultivated rice
(Elbeltagy et al., 2001).

The entire HsSmR1 genome (Pedrosa et al., 2011) and vari-
ous other Herbaspirillum genomes (Table 1) from diverse habi-
tats were recently sequenced, while that of HrM1 was partially
sequenced (Monteiro et al., 2012a). Sequenced Herbaspirillum
species include plant growth promoting soil bacteria (HGW103)
from the rhizosphere of the grass Phragmites australis (Lee et al.,
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Table 1 | Bacteria included in the genome/protein comparison.

Species Abbreviation Available sequences Isolated from Accession number References

Herbaspirillum
rubrisubalbicans M1

HrM1 SSH library Various grasses Monteiro et al., 2012a

Herbaspirillum huttiense
subsp. putei IAM 15032

HhIAM Contigs Well water ANJR00000000 De Souza et al., 2013

Herbaspirillum lusitanum
P6-12 (DSM 17154)

HIP6-12 Contigs Root nodules of
Phaseolus vulgaris

AJHH00000000 Weiss et al., 2012

Herbaspirillum sp.
GW103

HGW103 Contigs
4655 proteins

Rhizosphere of
Phragmites australis

AJVC00000000 Lee et al., 2012

Herbaspirillum sp. JC206 HJC206 Contigs Human fecal flora CAHF00000000 Lagier et al., 2012

Herbaspirillum sp. CF444 HCF444 Contigs
4974 proteins

Rhizosphere and
endosphere of Populus
deltoide

AKJW00000000 Brown et al., 2012

Herbaspirillum sp.
YR522

HYR522 Contigs
4612 proteins

Rhizosphere and
endosphere of Populus
deltoide

AKJA00000000 Brown et al., 2012

Herbaspirillum
seropedicae Os45

HsOs45 Contigs Rice roots AMSA00000000 Zhu et al., 2012

Herbaspirillum
seropedicae Os34

HsOs34 Contigs Rice roots AMSB00000000 Ye et al., 2012

Herbaspirillum
seropedicae SmR1

HsSmR1 Full genome
4735 proteins

Tropical grasses CP002039 Pedrosa et al., 2011

Herbaspirillum
frisingense GSF30T

HfGSF30 Contigs
4871 proteins

Various grasses AEEC00000000 This work

Gluconacetobacter
diazotrophicus PAI5

GdPAI5 Full genome
3851 proteins

Sugarcane AM889285–AM889287 Bertalan et al., 2009

Azoarcus sp. BH72 AzoaBH72 Full genome
3989 proteins

Kallar grass AM406670 Krause et al., 2006

Klebsiella pneumoniae
342

Kp342 Full genome
5768 proteins

Maize CP000964–CP000966 Fouts et al., 2008

Azospirillum sp. B510 AzospB510 Full genome
6309 proteins

Rice AP010946–AP0109452 Kaneko et al., 2010

2012), isolates (HlP6-12) from the root nodules of Phaseolus
vulgaris (Weiss et al., 2012), strains (HCF444 and HYR522) col-
onizing poplar (Brown et al., 2012), a strain (HhIAM) isolated
from Japanese well water (De Souza et al., 2013) and an isolate
(HJC206) from human fecal flora (Lagier et al., 2012).

Detailed descriptions of the entire genome sequences
from various distant, well-described endophytes with defined
endophytic habitats and plant growth promoting capabilities
include Azoarcus sp. BH72 (AzoaBH72, a β-proteobacterium)
(Krause et al., 2006), Klebsiella pneumoniae 342 (Kp342,
γ-proteobacterium) (Fouts et al., 2008), Azospirillum sp.
B510 (AzospB510, α-proteobacterium) (Kaneko et al.,
2010) and Gluconacetobacter diazotrophicus PAl5 (GdPAI5,
α-proteobacterium) (Bertalan et al., 2009). However, funda-
mental questions regarding their competitiveness, specificity to
invade selected hosts, manipulate the plant growth, strategies for
nutrition and survival in the plants, and the essential set of genes
required for endophytic life, remain unclear.

Although it is desirable to have entire genome sequences
available, the comparison of the genomic inventories does not
necessarily require completely assembled genomes. Instead, com-
parisons of incomplete draft genome sequences with related

species represents often a sufficient powerful approach for the
identification of similarities and differences in their genomic
inventory (Almeida et al., 2009; Studholme et al., 2009).

Here, the bacterial genome of Herbaspirillum frisingense
GSF30T was sequenced and annotated. The genome (containing
a few gaps) was compared to other Herbaspirillum strains and
selected, well-described plant endophytes. These served as refer-
ences to compare the basic genome equipments necessary to col-
onize the endophytic niche. The lack of the type III secretion sys-
tem, diversity in other secretion systems and major differences in
the basic metabolic capacities characterize Herbaspirillum frisin-
gense as a non-pathogenic, diazotrophic endophytic grass colo-
nizer that is closely related to non-diazotrophic Herbaspirillum
strains that were isolated from the rhizosphere and from well
water.

MATERIALS AND METHODS
SEQUENCING
H. frisingense GSF30T was grown over night at 30◦C on LB-media
containing 50 μg/l kanamycin. Genomic DNA was isolated and
sequenced with the Roche/454 GS FLX system and with illumina
technology, to increase the coverage and to close gaps. Sequencing
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and de-novo assembly was performed by GATC Biotech AG
(Germany). The entire genome shotgun sequencing project has
been deposited at DDBJ/EMBL/GenBank under the accession
AEEC02000000 (Accession: PRJNA50373, ID: 50373).

GENOME ANNOTATION
Open reading frame prediction and annotation were performed
by the NCBI Prokaryotic Genomes Automatic Annotation
Pipeline (PGAAP) in April 2013.

PHYLOGENY
16S rRNA sequences of all 14 bacteria were obtained from
NCBI and analyzed with MEGA5.2 (Tamura et al., 2011). The
sequences were aligned using ClustalW and the phylogeny recon-
struction was done using the Maximum Likelihood method with
500 Bootstrap Replications. Marker protein sequences (or pro-
teins predicted from draft genome sequences) were selected with
AMPHORA2 (Wu and Scott, 2012). Four sequences were not
identified in HsOs45 (rplK, rpoB, rplL, rplA) and were excluded,
as well as duplicate sequences. A concatenated tree and phyloge-
netic analysis was conducted with MEGA5.20.

GENOME COMPARISONS
All bacteria included in the genome/protein comparison are
shown in Table 1. Among these are six without protein annota-
tion, five have draft genome information, while sufficient publi-
cally available data for comparison is lacking for Herbaspirillum
rubrisubalbicans M1. The partial, fragmented genomic sequences
available for Herbaspirillum sp. isolates B501, B59, and B65
were not included. Herbaspirilla nucleotide sequences were
searched with annotated protein sequences, preferably from

Herbaspirillum seropedicae SmR1, using NCBI’s tblastn algo-
rithm against whole-genome shotgun contigs (wgs) databases.
Ambiguous hits (expect value >e-50 or identically predicted
amino acids <80%), or multiple hits were reviewed with blastx
against the nr protein database.

RESULTS
GENOME SEQUENCING AND ANNOTATION
The genome sequence of H. frisingense GSF30T was obtained
using a combined strategy with 454 pyrosequencing (Margulies
et al., 2005) and illumina technology. The 454 sequencing pro-
duced more than 600000 reads with approximately 48× cover-
age and 265 Mb, the illumina sequencing more than 25 million
reads, ca. 420 times coverage and 2.3 Gb. From these, 93 con-
tigs (>200 bp) were assembled with a total length of ∼5.4 Mb,
which is in the lower range of endophyte genomes. Compared to
the similarly sequenced bacterial draft genome of Pseudomonas
syringae pv. tomato T1, a relatively large number of contig gaps
was present in the HfGSF30 draft genome. The individual inspec-
tion of the contig borders identified that repetitive sequences
likely perturbed the total assembly of sequences.

The contig endings were manually compared using NCBI’s
blastn to the full genome of Herbaspirillum seropedicae SmR1
and a clear colinearity was identified for around 70% of the
contigs, leaving 28 gaps. These sequences were used to carry
out the analysis. On average, the coverage of contigs with more
than 500 bp was ∼400, which likely represents >99.9% of the
entire sequence. The genomic inventory and its relation to distinct
physiological processes is discussed below; the references for the
endophyte genomes are given in Table 1. Based on their 16S rRNA
sequence, H. frisingense is phylogenetically most closely related
to HGW103 and HhIAM (Figure 1A). However, based on the

FIGURE 1 | Phylogenetic relationship based on 16S rRNA sequences (A)

and marker proteins (B). HfGSF30 and other Herbaspririllum strains and
diverse endophytes. The scale bar represents 2% (A) or 10% (B) sequence
divergence and numbers on the tree represent bootstrap values. HsSmR1,
Herbaspirillum seropedicae SmR1; HsOs34, Herbaspirillum seropedicae
Os34; HsOs45, Herbaspirillum seropedicae Os45; HfGSF30, Herbaspirillum

frisingense GSF30T; HGW103, Herbaspirillum sp. GW103; HhIAM,
Herbaspirillum huttiense subsp. putei IAM 15032; HYR522, Herbaspirillum
sp. YR522; HCF444, Herbaspirillum sp. CF444; HlP6-12, Herbaspirillum
lusitanum P6-12 (DSM 17154); HJC206, Herbaspirillum sp. JC206;
AzoaBH72, Azoarcus sp. BH72; AzospB510, Azospirillum sp. B510; Kp342,
Klebsiella pneumoniae 342; GdPAI5, Gluconacetobacter diazotrophicus PAl5.
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sequence similarity of 27 marker proteins, HfGSF30 groups out-
side a cluster containing the H. seropedicae strains and HGW103
and HhIAM (Figure 1B).

PROTEIN SECRETION SYSTEMS
The HfGSF30 genome encodes the type I, type VI, Sec-SRP and
the Tat (twin-arginine translocation) systems, but lacks the type
III secretion system, as shown in Figure 2. The type III secre-
tion system is typically used by pathogenic bacteria to deliver
effector proteins into the plant host cells, but is also used in bene-
ficial interactions for optimization (Viprey et al., 1998). HfGSF30,
as well as the reference grass endophytes AzoaBH72, AzospB510,
Kp342, and GdPAI5, completely lack the type III secretion sys-
tem hrp/hrc genes (Figures 2, 3, Table S1). By contrast, other
Herbaspirillum grass endophytes and poplar colonizers, namely
HsSmR1, H. rubrisubalbicans M1, HsOs34, HsOs45, HCF444, and
HYR522, contained that system. It is critical for pathogenicity,
but also endophytic invasion of HrM1 (Monteiro et al., 2012a).
Pedrosa et al. (2011) found no transposon elements flanking
the type III secretion system genes in HsSmR1, suggesting that
it was not recently added into the genome. Flanking regions of
the type III secretion system genes were only partially conserved
among Herbaspirillum strains, suggesting that the type III protein
secretion was deleted in some Herbaspirillum strains, including
HfGSF30.

All Herbaspirillum strains lack the type IV secretion system,
which is involved in virulence and horizontal gene transfer (Juhas
et al., 2008), but genes of this system are identified in more distant
endophytes, such as AzospB510, Kp342, and GdPAI5 (Figures 2,
3, Table S1). Except for Kp342, all mentioned endophytes and
Herbaspirillum strains contain the entire machinery for flagellum
export and function (Figure 3).

Furthermore, a reduced set of the type IV pilin secre-
tion/fimbrial assembly genes, members of the type II secretion
system, was identified in HfGSF30 (similar as in HGW103 and
HhIAM), when compared to H. seropedicae strains. The tree col-
onizers HCF444 and HYR522 have almost the same set of type
IV pilin secretion genes as HsSmR1. These genes were completely
absent in AzospB510, Kp342, and GdPAI5, while they were present
in AzoaBH72.

HfGSF30 possesses type VI secretion system genes. This system
is involved in host-bacteria interaction, both in pathogenic and
symbiotic relationships (Filloux et al., 2008). These genes are also
present in most Herbaspirillum strains and all considered grass
endophytes, except GdPAI5. Notably, the type VI system is present
in one, but lacking in another Herbaspirillum strain isolated from
poplar, and is also absent the strains isolated from nodules (HIP6-
12) and from human fecal flora (HJC206). HfGSF30 contains the
chaperone-usher system (type I pilus assembly proteins), whereas
some Herbaspirillum strains, including H. seropedicae isolated
from rice, and only Kp342, but not AzoaBH72, AzospB510, and
GdPAI5, contain that system (Figure 3, Table S1).

NITROGEN METABOLISM
The acetylene reduction assay has suggested nitrogenase activity
in HfGSF30 (Kirchhof et al., 2001). Among the Herbaspirillum
strains, nitrogen fixation genes were only present in H. seropedicae

strains and HfGSF30. The nif-region is very similar to the cor-
responding region of H. seropedicae SmR1 with 94% nucleotide
identity, 96% amino acid identity and identical gene arrange-
ment. Some gene products, nifB, nifX, nifZ1, fdxB, and fix, were
even 100% identical between HfGSF30 and HsSmR1. Nif genes
are absent in HGW103, HhIAM, HYR522, HCF444, HJC206, and
even in HlP6-12, which was isolated from Phaseolus nodules.
The AzospB510, AzoaBH72, GdPAI5, and Kp342 grass endophytes
contain the entire nif cluster (Figure 3).

HfGSF30 is equipped with an assimilatory nitrate reduc-
tase (nasAC) and a NAD(P)H-dependent nitrite reductase
(nirBD; EC 1.7.1.4), similar to AzospB510, AzoaBH72, Kp342 and
other Herbaspirillum strains, except for HJC206 (and GdPAI5),
which completely lack nitrate assimilatory and dissimilartory
genes (Figure 3). HfGSF30, HsSmR1, HsOs34, and HsOs45
strains contain the respiratory nitrate reductase (narGHJI), the
nitrite/nitrate transporter (narU) and a nitrate/nitrite sensor his-
tidine kinase transcription regulator (narXL) to utilize nitrate
in anaerobic respiration. Kp342 has a similar set of genes, but
other Herbaspirillum isolates, AzoaBH72, GdPAI5, and AzospB510
apparently cannot utilize nitrate as alternative electron accep-
tor in anaerobic conditions. The absence of nitrate reductase
in HJC206 is consistent with the minor role of nitrate in the
human habitat (Lagier et al., 2012), but the endophyte GdPAI5
also lacks the respective genes. The presence of α-, δ- and γ-
subunits of a formate dehydrogenase (EC 1.2.1.2) parallels the
occurrence of genes for nitrate reduction, and is absent in GdPAI5
and HJC206. However, HJC206 has formate dehydrogenase genes
with sequence similarity to Herminiimonas arsenicoxydans that
are unique in the Herbaspirillum genus.

HfGSF30 is likely capable to reduce nitrate to NO and fur-
ther to N2O (EC 1.7.2.1, 1.7.99.7), a feature exclusively present
in HfGSF30 among Herbaspirillum strains, but no nitrous oxide
reductase (EC 1.7.99.6) to reduce N2O to N2 is identified
(Figure 3). This is in line with previous experimental evidence,
which showed that NO−

3 reduction to N2 did not occur in
HfGSF30 (Kirchhof et al., 2001). Nitrogen reduction varies greatly
in other diazotrophic endophytes, namely AzoaBH72 appears
capable to reduce NO via N2O to N2, but a nitrite reductase
is missing. GdPAI5 also lacks nitrate reductase (Cavalcante and
Dobereiner, 1988). AzospB510, like HfGSF30, has the possibility
to reduce NO2 to N2O, but not to N2.

Amino acids, such as asparagine and aspartic acid, were uti-
lized as nitrogen sources by HfGSF30 (Kirchhof et al., 2001), but
the capabilities to synthesize aspartic acid and asparagine differ
among Herbaspirillum strains, with only HsSmR1 and HJC206
containing an asparagine synthase gene (Table S1). Although the
full urea cycle is present in all strains (except for GdPAI5), differ-
ences are identified with respect to the alternative urea degrada-
tion pathway, which is partially missing in HfGSF30, although it
is present in all other grass endophytes.

RESPIRATION
HfGSF30 contains four terminal oxidases that allow adaptation
to different oxygen levels and microhabitats: cytochrome aa3
(coxAB); cytochrome bd-type quinol oxidase (cydAB), cbb3-type
cytochrome c oxidase (fixPON), cytochrome o ubiquinol oxidase
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FIGURE 2 | Presence of secretion systems in HfGSF30 and comparison with other endophytes. HfGSF30 genome (red), AzoaBH72 (yellow), AzospB510
(green), Kp342 (blue), GdPAI5 (pink), and HsSmR1 (orange). Missing genes are shown in white.
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FIGURE 3 | Similarity and divergence of gene clusters reflecting

various cell functions, including secretion systems, cell wall,

nitrogen, carbon, and hormone metabolism in Herbaspirillum and

endophyte strains. Present genes are schown in green, lacking genes
are shown in yellow, missing information is given in gray. Strains from
left to right: HsSmR1, Herbaspirillum seropedicae SmR1; HsOs34,
Herbaspirillum seropedicae Os34; HsOs45, Herbaspirillum seropedicae

Os45; HfGSF30, Herbaspirillum frisingense GSF30T; HGW103,
Herbaspirillum sp. GW103; HhIAM, Herbaspirillum huttiense subsp. putei
IAM 15032; HYR522, Herbaspirillum sp. YR522; HCF444, Herbaspirillum
sp. CF444; HlP6-12, Herbaspirillum lusitanum P6-12 (DSM 17154);
HJC206, Herbaspirillum sp. JC206; AzoaBH72, Azoarcus sp. BH72;
AzospB510, Azospirillum sp. B510; Kp342, Klebsiella pneumoniae 342;
GdPAI5, Gluconacetobacter diazotrophicus PAl5.

(cyoABC). Genes for NADH dehydrogenase, succinate dehydro-
genase and cytochrome c reductase are ubiquitously identified in
all Herbaspirillum strains.

The high affinity cbb3-type cytochrome c oxidase may support
ATP-synthesis under oxygen limitation during nitrogen fixation
and accordingly, this system is lacking in the non-diazotrophic
HCF444. However, the diazotrophic Kp342 and GdPAI5 also
lack this oxidase and it is present in other nitrogenase-lacking
Herbaspirillum strains. Multiple coxAB copies are only present
in H. seropedicae strains and in the strain isolated from nodules
(HIP6-12). The cytochrome bd-type quinol oxidase is absent in
HCF444 isolated from poplar and Kp342.

CARBOHYDRATE METABOLISM AND CELL WALL DEGRADATION
A broad spectrum of monosaccharides, organic acids and
alcohols, but not di-and tri-saccharides, are utilized as carbon
sources by HfGSF30 (Kirchhof et al., 2001). This is in line
with the identification of metabolizing enzymes for these sub-
strates. HfGSF30 lacks the sucrose-degrading enzyme invertase

(EC:3.2.1.26) and α-glucosidase (EC:3.2.1.20), while HsSmR1,
HsOs34, HsOs45, HCF444, HhIAM, and AzoaBH72 encode
α-glucosidase. AzospB510 and GdPAI5 lack both enzymes,
while both are present in Kp342. Except for HCF444 and
HJC206, all Herbaspirillum strains had two trehalose synthesis
pathways (otsAB and treXYZ). A gene related to the large
ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)
subunit from plants was also present in several Herbaspirillum
strains, including HfGSF30, but no sequence encoding a
phosphoribulokinase was found (but present in AzoaBH72
and Kpe342). Therefore, CO2 fixation appears to be impos-
sible for these endophytes and the RubisCO-like proteins
are probably involved in sulfur metabolism (Tabita et al.,
2007). A few membrane transporters were notably different
within the Herbaspirillum strains: the arsenite/antimonite
transporter was only present in HfGSF30, HsOs34, HsOs45,
HGW103, and HhIAM, differences were also obvious in
the number and type of ammonium and iron transporters
(Table S1).
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There is no evidence that the plant cell wall was affected by
H. frisingense colonization (Rothballer et al., 2008), but HfGSF30
(and HsOs34, HsOs45, HGW103, HhIAM, HYR522, and other
endophytes) are equipped with an endo-1,4-D-glucanase that
may break down cellulose (EC:3.2.1.4, absent in HsSmR1). Two
chitin deacetylases (EC:3.5.1.41 and 3.1.1.58) are present in all
Herbaspirillum strains, while HsSmR1 and HJC206 possess two
additional enzymes. α-glucosidase (EC:3.2.1.20) and α–amylase
(EC:3.2.1.1) are absent in HfGSF30 and some Herbaspirillum
strains. In HrM1, a large operon involved in cellulose synthe-
sis (or degradation) appears crucial for colonization (Monteiro
et al., 2012a); this entire operon was present in HfGSF30, HsOs34,
HsOs45, HGW103, HhIAM (and Kp342), but was absent in
HsSmR1, HlP6-12, HYR522, HCF444, HJC206.

SURVIVAL AGAINST THE PLANT DEFENSE AND ENVIRONMENTAL
STRESS
The plant defense against bacterial, fungal and viral threats gen-
erally involves the production of reactive oxygen species (ROS),
nitric oxide and phytoalexins. It has recently been shown that
antioxidant enzymes are up-regulated during biological nitrogen
fixation to prevent ROS in G. diazotrophicus PAl5 (Alquéres et al.,
2010), but compared to the other bacteria under study, this strain,
together with the human isolate HJC206, contains the least num-
ber of potential detoxification genes. Different strategies to cope
with reactive oxygen are apparent within Herbaspirillum strains
and other endophytes (Figure 3, Table S1).

BIOSYNTHESIS OF PLANT HORMONES
The production of plant hormones, or other beneficial agents,
is a common strategy of endophytes to promote plant growth
(Hardoim et al., 2008). All Herbaspirillum strains, except
for HJC206, contain the genes for 1-aminocyclopropane-1-
carboxylate (ACC) deaminase to degrade the ethylene precursor
ACC to 2-oxobutanoate and NH3. ACC is taken up by H. frisin-
gense (Rothballer et al., 2008) and its efficient breakdown by ACC
deaminase may reduce locally plant ethylene levels at sites of inva-
sion (Hardoim et al., 2008). The endophytes AzoaBH72, Kp342
and GdPAI5 do not contain ACC deaminase and thus appear not
capable of modulating plant ethylene signaling.

Auxin (indole acetic acid) synthesis proceeds via sev-
eral pathways, which are at least partially present in all
Herbaspirillum and other grass endophytes. Differences in
auxin production are suggested in the Herbaspirillum strains,
as only HsSmR1 encodes the amidase that releases NH3

and indole acetic acid from indole-3-acetamide iaaH (and
AzoaBH72) (Costacurta and Vanderleyden, 1995). However,
the essential tryptophan 2-monooxygenase (iaaM) for decar-
boxylation of tryptophan to indole-3-acetamide is not unam-
biguously identified in any Herbaspirillum. All Herbaspirillum
strains lack an ipdC homolog, which is present in Kp342,
where indole acetic acid may be synthesized by indole-3-
pyruvate decarboxylase from tryptophan via indole-3-pyruvic
acid. Herbaspirillum strains also lack enzymes for the indole-
3-acetonitrile pathway. Tryptophan-independent reactions from
indoles to indole acetic acid via transferases are likely and
potential genes are abundant, but no gene appears to encode

a clearcut prototype indole acetic acid-producing enzyme
(Figure 4).

Lactoserines are utilized by AzospB510 for quorum-sensing,
modulate the rhizosphere density competence and the adaptation
of the bacteria to the environment. H. frisingense GSF30T failed
to produce acyl homoserine lactones (Rothballer et al., 2008). In
accordance with these experimental findings, the genes related to
acyl homoserine lactone synthase and acylase were absent in all
Herbaspirillum strains (Figure 3).

DISCUSSION
The comparison of the draft genome sequence of HfGSF30 with
the genetic inventory of related Herbaspirillum strains and more
distant diazotrophic grass endophytes revealed a high diversity in
their potential capabilities. The well-characterized endophyte H.
seropedicae SmR1, which is associated with gramineous species
like sorghum, sugarcane, rice and maize (Kirchhof et al., 2001)
in warm climates, shares high nucleotide sequence identity with
HfGSF30. However, even higher conservation in the genomic
equipment was detected with non-diazotrophic Herbaspirillum
strains that were not isolated as endophytes, but rather from the
rhizosphere of Australian phragmites (HGW103) and well water
(HhIAM).

Among the sequenced endophytes, a differential inventory for
the nitrogen metabolism is striking. This suggests that a range
of different metabolic capabilities allows endophytic coloniza-
tion of various plant habitats, even within a single plant species.
HfGSF30 is closer related to Herbaspirillum seropedicae isolates
from rice than to HsSmR1, and among more distant endophytes
its metabolic capabilities most closely resemble that of AzoaBH72,
but it has little overlap with the metabolic equipment of the
sugarcane-associated GdPAI5. Endophytes may colonize different
niches within the same plant and interact; despite their con-
trasting metabolic inventory, different endophytic strains were
abundant in sugar cane fields that were inoculated with a bacterial
inoculation mixture including Gluconacetobacter diazotrophicus
PAI5 and Herbaspirillum (Fischer et al., 2012). Interestingly, even
bacteria not present in the inoculum were associated with these
sugarcane plants (Fischer et al., 2012).

The metabolic traits discussed above differ widely in the
Herbaspirillum genus, in accordance with diverse habitats, man-
ifested, e.g., by the human isolate HJC206 or the nodule isolate
HlP6-12. These two bacteria show least overlapping genomic
capabilities with Herbaspirillum seropedicae strains (Figure 3).
With the exception of the Herbaspirillum strain isolated from
human fecal flora, all Herbaspirillum strains are equipped to uti-
lize nitrate as a nutrient and reduce it to ammonium. This is not a
common feature of plant endophytes, as GdPAI5 lacks all essential
nitrate assimilation genes. The capability of anaerobic respira-
tion using nitrate as an electron acceptor in HfGSF30, HsSmR1,
HsOs45, and HsOs34 correlates with the presence of nitrogen fixa-
tion genes, suggesting that these strains can adapt to low nitrogen
and oxygen availabilities. This is also underscored by the tendency
that these strains have higher number of terminal oxidase genes.

H. frisingense GSF30T turned out unique as a potential N2O
producer among the Herbaspirillum strains. Significant N2O
emissions, exceeding those of a heavily fertilized rye field, but less
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FIGURE 4 | Biosynthesis and manipulation of plant hormones in HfGSF30. Green arrows or EC numbers indicate possible reactions or present enzymes,
turquoise arrows indicate that at least one enzyme is missing in the pathway, while black arrows or EC numbers indicate that this pathway or enzyme is missing.

than those from fertilized maize, have been reported from fertil-
ized M. x giganteus, a host of HfGSF30 (Jørgensen et al., 1997;
Gauder et al., 2012). However, not relevant N2O emissions were
detected from unfertilized M. x giganteus (Jørgensen et al., 1997;
Gauder et al., 2012).

Hormone production and/or degradation may contribute to
the variable growth promoting effect of Herbaspirillum strains.
The metabolic pathways that produce these metabolites have
been identified by analytical tests (Rothballer et al., 2008) and
in the sequence. AzoaBH72, a native colonizer of Kallar grass,

appears in many aspects similar to HfGSF30. For example, both
strains lack the entire type IV secretion system, which is partially
present in the other sequenced endophyte genomes, but not in
the Herbaspirillum genus. Highly relevant is the lack of the type III
system in HfGSF30 (and in HhIAM, HlP6-12, HGW103, HJC206),
its presence and importance for colonization in HsSmR1 (and
HsOs45, HsOs34, HCF444, HYR522) and HrM1 (Monteiro et al.,
2012a); and similar diversity within parts of the type II system.
The different sets of secretion systems in HfGSF30 are compat-
ible with the observed broad host ranges and no pathogenicity
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associated with this strain. Furthermore, several further candi-
date genes that are potentially involved in plant colonization, e.g.,
genes encoding attachment proteins of the hemagglutinin-type
and genes involved in lipopolysaccharide formation and export
differ between individual Herbaspirillum strains (Monteiro et al.,
2012a). The absence of flagella that often harbor molecular pat-
terns that are recognized by the plant pathogen defense, may be
an advantage for high colonization numbers by Kp342 (Fouts
et al., 2008). However, HfGSF30 and the other endophytes contain
the entire flagella machinery, and this suggests that the flagellum
plays an important role for these organisms, similar as in other
root colonizing bacteria. For example, in Azospirillum brasilense
Sp7, the flagellum is not only crucial for the chemotactic move-
ment toward the root, but also for the initial attachment and final
anchoring to the root surface. Mutants impaired in flagella forma-
tion are severely hampered in their colonization efficiency (Croes
et al., 1993). However, it is also known that in contact with the
plant, Azospirillum brasilense strains undergo substantial pleo-
morphic changes which also includes the loss of the flagellum
(Assmus et al., 1995).

In summary, the HfGSF30 genome shows high similarity to
the well known diazotrophic endophyte Herbaspirillum serope-
dicae, but even higher similarity (except for nitrogen fixation)
with genomes from strains isolated from Australian phragmites
rhizosphere and Japanese well water. High similarity in secretion
systems and cell wall metabolism, among other traits, may suggest
that either the respective habitats of these Herbaspirillum strains

(HfGSF30, HGW103, HhIAM) are wider or that minor differ-
ences can confer different habitat competence. Grass endophytes
do not only utilize highly diverse interaction (secretion) and
attachment systems, but individual endophytes utilize highly dif-
ferent basic metabolic modules to survive in grasses. Endophytic,
rhizosphere-competent and well water Herbaspirillum bacteria
have surprising overlap in their genomic equipment.
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