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The contribution of endogenous retroviruses to the multistep process of lymphomagenesis was investigated in wild-type 
mice and in two different myc-• transgenic mouse lines by infection with Akv. This retrovirus is derived from the endogenous 
ecotropic provirus of the AKR mouse and was previously considered to be nonlymphomagenic. The mice of the two myc- 
k transgenic lines are predisposed to B-cell lymphomagenesis and were therefore considered to be more susceptible to 
Akv. For comparison, the same mouse strains were also infected with the exogenous Moloney murine leukemia virus 
(MoMuLV). Both MoMuLV and Akv increased the tumor incidence and shortened the tumor latency period in wild-type mice 
and in the transgenic mouse lines. The differences in pathogenicity, number of provirus integrations, and level of virus 
expression between MoMuLV and Akv indicate different mechanisms of lymphomagenesis: while MoMuLV induced tumors 
apparently by insertional mutagenesis involving common integration sites similar to previous reports, the enhancement of 
lymphomagenesis by Akv seems to be directed by other mechanisms. © 1995 Academic Press, Inc. 

INTRODUCTION 

The mouse genomic locus Akv-1 harbors the prototype 
(Risser and Horowitz, 1983) of endogenous ecotropic mu- 
rine leukemia viruses, Akv (Chattopadhyay et aL, 1975). 
In contrast to other MuLVs, Akv is regarded as non- 
lymphomagenic in healthy mice (Risser and Horowitz, 
1983). Molecular cloned Akv did not accelerate the onset 
of disease in AKR/J mice nor did it induce disease in 
C3H(f)/Bi mice or CBA/J mice within an observation pe- 
riod of 200 days after infection of newborns (Nishizuka 
and Nakakuki, 1968; Hays and Vredevoe, t977; Pedersen 
etaL, 1981; Lenz et aL, 1982; Lenz and Haseltine, 1983; 
0elander and Hasettine, 1984). In contrast, Moloney mu- 
fine leukemia virus (MoMuLV), an exogenous ecotropic 
MuLV originally isolated from a sarcoma passaged in 
Balb/c mice (Moloney, 1960), induces predominantly T- 
lymphomas within 3 months following its injection into 
newborn mice. 

Several potential mechanisms have been discussed 
for lymphoma induction by murine leukemia retroviruses 
which lack a cellular oncogene homologue (Kung et aL, 

1991; Tsichlis and Lazo, 1991). These include enhance- 
ment of the expression of a cellular oncogene by integra- 
tion of proviruses into its vicinity (promoter insertion), 
alterations of the protein structure or mRNA stability of 
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a cellular oncogene as a result of the integration event, 
and the de novo generation of recombinant viruses, as 
well as the biological effects of viral-encoded proteins 
which may also have a pathogenic potential. Whereas 
MoMuLV exerts its pathogenicity mainly by insertion mu- 
tagenesis, the biological effects of endogenous ecotropic 
retroviruses in their natural hosts are less clear. Similar 
to the integration of exogenous retroviruses, relocation 
of activated retroviral sequences within the host genome 
can act as insertional mutagens (Kung et aL, 1991; Mi- 
treiter et aL, 1994). 

Although previous experiments indicated that Akv is 
nonlymphomagenic in mice of strains AKR, CBA, and 
C3H, endogenous ecotropic retroviruses do have a 
lymphomagenic potential. For example, molecularly 
cloned Balb/c-derived endogenous ecotropic MuLVs 
have been shown to induce lymphomas after a long la- 
tency period (Pedersen et aL, 1990). 

For a more detailed investigation of the biological ef- 
fect of the molecularly cloned Akv on lymphoma develop- 
ment we took advantage of new transgenic NMRI mouse 
lines whose transgene construct mimics the genetic re- 
arrangement found in human Burkitt's lymphoma (Lipp 
et al., manuscript in preparation). It was hypothesized 
that these mice are prone to develop lymphomas after 
additional somatic alterations, and therefore are possibly 
more sensitive for lymphomagenic effects of retroviruses. 
Our studies show that Akv has an enhancing potential 
on lymphoma development in these myc-K transgenic 
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mice. Equally, by extending the observation period, Akv 
could be shown to induce lymphomas in wild-type NMRI 
mice, although at lower incidence. The lymphomagenic 
potential of Akv, the induced tumor type, and the integra- 
tion and expression pattern of Akv are different from that 
of Moloney murine leukemia virus, suggesting distinct 
pathogenic pathways for Akv and MoMuLV-induced 
tumors. 

MATERIALS AND METHODS 

Myc-kappa transgenic and wild-type mouse lines 

Three different mouse lines were used to determine 
the pathogenicity of Akv in comparison to MoMuLV= wild- 
type NMRI mice and two myc-K transgenic NMRI mouse 
lines (lines 614 and 615). NMRI is originally derived from 
Swiss mice (Staats, 1985) and has been maintained in 
our animal facilities as an outbred breeding colony since 
1966. The generation of myc-K transgenic NMBI mice 
will be described elsewhere in detail (Lipp et aL, manu- 
script in preparation). Briefly, the transgene was a fusion 
construct between the human myc gene and the re- 
arranged human kappa light chain gene; both genes 
were isolated from human Burkitt's lymphoma cell line 
BL64. The human myc gene carries point mutations in 
the first exon and the first intron; the functional kappa 
gene contains the intron enhancer between the J exon 
and the C exon (Hartl and Lipp, 1987). Two transgenic 
genotypes were used for further breeding, giving rise to 
the transgenic lines 614 and 615. Line 614 has approxi- 
mately 6 transgene copies integrated into the cellular 
DNA, whereas line 615 has about 50-100 copies. 

Retroviral infection 

transfer blotting according to standard procedures and 
crosslinked to the filters by uv light (254 nm). 

RNA was extracted by the guanidinium isothiocyanate 
method of Chomczynski and Sacchi (1987) using the 
modification by Puissant (1990). For Northern blot analy- 
sis, 5 #g of total RNA was denatured with glyoxal/DMS0 
(McMaster and Carmichael, 1977), separated on agarose 
gels, and transferred to nylon membrane by neutral capil- 
lary blotting. Filters were stained with methylene blue 
and hybridized as described below. 

Hybridization and probes 

Filters were hybridized with 32p-labeled hybridization 
probes under stringent conditions according to the 
method of Church and Gilbert (1984). 

The following probes were used for hybridization, bmi 
19.1 (van lzohuizen et al., 1991), Mlvi-1/pTS26pp, Mlvi- 
2/pTS6, Mlvi-2/pTSl0 (Wirschubsky et aL, 1986), pim-l/ 
Probe A (Ouypers et aL, 1984), N-myc/Nb-1 (Schwab et 
al., 1983), murine pSV c-myc (Land et aL, 1983), human 
c-myc/S421 (Pvull fragment of 1 st exon (Lipp et al., 1987)), 
T-cell receptor/3/RBL5 (Caccia et aL, 1984), and an ec0- 
tropic virus specific probe (Chattopadhyay et al., 1980). 
As NMRI mice do not harbor endogenous ecotropic re- 
troviruses crosshybridizing with this probe (Leib-MOsch 
et al., 1986), the probe is specific for Akv proviruses in 
Akv-infected NMRI mice and for the ecotropic MoMuLV 
in MoMuLV-infected NMRI mice. For GAPDH we used a 
PeR-product derived from rat DNA with the primers 5'- 
OCAOCACCCTG-i-I-GCTGTAGC-3' and 5'-TGGOOAAGG- 
TCATCOATGAOAACT-3'. The murine #-probe was an 
Xba fragment from clone pSV#M5 (M. Reth, Freiburg), 
containing the exon 0t-4 of the #-chain. 

Female offspring of heterozygotes representing 
transgenics and nontransgenic controls were infected 
intraperitoneally within 36 hr after birth with 100 #1 of 
cell-free supernatant either from an Akv-producing 
NIH3T3 cell line (Lowy eta/., 1980) or from a BC cell line 
producing Moloney MuLV (Weiland and Mussgay, 1976). 
The inoculum contained 2 X 106-2 x 106 infectious virus 
particles. Infected and uninfected control mice were 
checked on 5 days per week. Mice were killed when 
they showed illness or tumor development or at the end 
of the experiment at 520 days postinfection. A complete 
autopsy including X-ray analysis was performed. The tu- 
mors were diagnosed by Northern and by Southern blot- 
ting. For statistic evaluation we used the log-rank test. 

DNA and RNA isolation 

DNA was isolated according to standard procedures. 
For Southern blot analysis, 12 #g of total genomic DNA 
from each mouse was digested with restriction enzymes 
and separated on 0.8% agarose gels. DNA was trans- 
ferred to a ZetaProbe nylon membran (Bio-Rad) by alkali 

RESULTS 

Acceleration and enhancement of lymphoma 
development by Akv 

The effect of molecularly cloned Akv on lymphoma 
development was tested in wild-type NMRI mice, and in 
two transgenic NMRI lines bearing the human myc gene 
fused to the rearranged human kappa light chain gene. 
The two transgenic mouse lines (614 and 615) differed 
in the number of copies of the transgene integrated into 
the cellular genome (Lipp et aL, manuscript in prepara- 
tion). Lymphoma development was examined in all three 
mouse lines during a total observation period of 520 days 
(Figs. 1A-10). Since uninfected wild-type NMRI mice de- 
veloped lymphomas spontaneously after 360 days, the 
tumors which developed after 1 year were considered 
age-related rather than induced and are not discussed 
further. 

Lymphoma were detected in 5% uninfected wild-type 
NMRI mice (Fig. 1A, Table 1), in 14% myc-K transgenie 
mice from line 614 (Fig. 1B), and in 88% transgenic mouse 
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FIG. 1. Tumor incidences from uninfected (white symbols), Akv-infected (grey symbols), and" MoMuLV-infected (black symbols) wild4ype and myc- 
transgenic NMRI mice. Shaded area= observation time 360-520 days, the period for spontaneously occurring tumors in noninfected wild-type 

and myc-~ transgenic mice. (A) Cumulative tumor incidence of uninfected (n = 22), Akv-infected (n = 20), and MoMuLV-infected (n = 19) wild-type 
mice. (B) Cumulative tumor incidence of uninfected (n = 14), Akv-infected (n = 20), and MoMuLV--infected (n = 14) myc-K transgenic mice of line 
614. (C) Cumulative tumor incidence of uninfected (n = 8), Akv-infected (n = 8), and MoMuLV-infected (n = 4) myc-K transgenic mice of line 615. 

fine 615, which harbors a high copy number  of the myc- 
Ktransgene (Fig. 1C). The only tumor in wi ld- type mice 

was detected at Day 255 (Table 1); ear l ier  independent  
experiments showed tumor deve lopment  in 3 of 99 
wild-type NMRI mice after a mean latency period of 

330 + 21 days (MOiler et al., 1988). The mean latency 
period for line 614 was 293 + 95 days and 180 _+ 86 
days for line 615. This di f ference is highly signif icant 
(P < 0.0001). 

After infection of newborn mice with Akv, the tumor 
incidence increased in all three mouse lines. Tumors 

developed in 50% infected wi ld- type NMRI mice with a 
significantly (P < 0.0001) shorter mean latency per iod 
of 249 + 49 days compared to uninfected controls. In 
transgenic mouse line 614 lymphomas deve loped in 60% 
infected mice with a mean latency period of 187 _+ 51 
days which was signi f icant ly (P < 0.0001) shorter than 

in uninfected animals. In the t ransgenic high-copy mouse 
line 615 lymphomas developed in 100% Akv-infected 
mice with a mean latency period of 137 + 52 days. The 

dif ference in latency period compared to uninfected mice 
of the 615 line was not significant. 

Pathogenic i ty of Akv was compared with that of Mo- 
MuLV. Wild-type NMRI mice and mice of the two 
t ransgenic l ines were infected with MoMuLV as new- 
borns. The tumor incidence within 360 days after infec- 

t ion was 100% for wi ld-type mice, 92% for mice of l ine 
614, and 100% for mice of line 615. The mean latency 
periods for these tumors were 144 _+ 49 days in the wi ld- 
type NMRI mice (P < 0.0001 compared to Akv-infected 
controls), 139 _+ 34 days in line 614 (P < 0.01 compared 
to Akv-infected 614-line mice), and 117 + 23 days in line 
615 (not s igni f icant compared to Akv-infected 615-line 
mice). The mean tumor latency period in MoMuLV- im 
fected l ine-615 mice was 22 days shorter than in line 

614 mice, but the di f ference was not significant. 
In summary, Akv infection enhanced the tumor inci- 

dence and shortened the tumor latency period both in 
wi ld- type NMRI mice and, more particularly, in mice of 
the myc-K t ransgenic lines. MoMuLV enhanced lympho- 

T A B L E  1 

TUMOR INCIDENCES AND MEAN LATENCY PERIODS OF TUMOR DEVELOPMENT OF WILD-TYPE AND myc-• TRANSGENIC NMRI MOUSE LINES 

NMRI mouse line 

Virus infection Wild-type Myc-K 614 Myc-K 615 

00ntrol 1/22 (5%) 8 b , o  2/14 (14%) 293 ± 95 days 7/8 (88%) 180 ± 86 days 
AKV-infected 10/20 (50%) 249 ± 49 days 12/20 (60%) 187 ± 51 days 8/8 (100%) 137 ± 52 days 
MoMuLV-infected 19/19 (100%) 144 + 49 days 12/13 (92%) 139 ± 34 days 4/4 (100%) 117 _+ 23 days 

aTumor incidences in number of tumor bearing animals/total number of animals. The percentage is given in parentheses. Each mouse carried 
0nly one tumor. 
bThe mean latency periods of the tumors. The mean value and standard deviation were determined from the age of the mice when the tumor 

was detected. 
CNot to be determined in this experiment. A single tumor was observed after 255 days. 
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TABLE 2 

TUMOR TYPES IN NONINFECTED, AkV-INFECTED, AND MoMuLV-INFECTED WILD-TYPE AND myc-K TRANSGENIO NMRI MOUSE LINES a 

Tumor type 

Virus infection NMRI mouse line PreB-cell B-cell T-cell Other b 

Oontrol wt (1)c 1/1 (100%) 0/1 (0%) 0/1 (0%) 0/1 (0%) 
myc-~< 614 (2) 0/1 (0%) 1/1 (100%) 0/1 (0%) 0/1 (0%) 
myc-K 615 (7) 0/7 (0%) 6/7 (86%) 1/7 (14%) 0/7 (0%) 

Akv-infected wt(10) 2/8 (25%) 5/8 (63%) 0/8 (0%) 1/8 (13%) 
myc-K 614 (12) 1/10 (10%) 5/t0 (50%) 2/10 (20%) 2/10 (20%) 
myc-K 615 (8) 0/8 (0%) 7/8 (88%) 0/8 (0%) 1/8 (12%) 

MoMuLV-infected wt (19) 0/10 (0%) 1/10 (10%) 6/10 (60%) 3/10 (30%) 
myc-K 614 (12) 1/11 (9%) 1/11 (9%) 7/11 (64%) 2/11 (18%) 
myc-K 615 (4) 0/2 (0%) 1/2 (50%) 1/2 (50%) 0/2 (0%) 

a Percentage of tumors of the preB-cell, B-cell, and T-cell type, which developed within the observation period of 360 days. The tumor type was 
determined by the presence of #-chain, K-chain, and TORfl-chain mRNA. 

b Tumors expressing both or none of the B-cell and T-cell markers. 
° The total number of tumors which developed within 360 days is given in parentheses; 58 of 75 tumors have been characterized. 

magenesis  more than Akv, independent  of the genet ic 
background. 

Expression of B- and T-cel l  d i f ferent ia t ion markers 

Lymphoid tumors which deve loped within 360 days 

were identif ied as preB-cell, B-cell, or T-cell tumors by 

determining the expression of IgM h e a w  chain (#-chain) 
mRNA, kappa light chain (K-chain) mRNA, and T-cell re- 
ceptor /g-chain (TCR/~) mRNA. 

The single lymphoma in wi ld- type mice expressed the 
#-chain, but not the K-chain or the TCRfl  (Table 2) and 
was classif ied as preB-cell lymphoma. The majori ty of 
the lymphoid tumors in noninfected t ransgenic  mice ex- 
pressed both #-chain and K-chain mRNA, but not TOR/~- 
chain mRNA. They were classif ied as mature B-cell tu- 
mors and included the one tumor from t ransgenic mouse 
line 614 (100%) and six of the seven (86%) tumors from 

t ransgenic mouse line 615. 
In Akv-infected mice B-cell tumors were the predomi-  

nant tumor type. The expression pattern of mature B-cell 

tumors was found in 5 of 8 (63%) tumors in Akv-infected 
wi ld-type mice, in 5/10 (50%) tumors in Akv-infected myc- 

t ransgenic mice of line 614, and in 7/8 (88%) of Akv- 
infected myc-K t ransgenic mice of line 615. Only a few 
preB-cell and T-cell tumors were found in the Akv-in- 

fected mice (Table 2). 
In MoMuLV- infected mice the majority of the tumors 

was classif ied as T-cell tumors. These tumors expressed 
the TCRfl  mRNA, but nei ther #-chain nor K-chain mRNA. 
In MoMuLV- infected mice, T-cell tumors were found in 
6/10 (60%) wi ld-type mice, in 7/11 (64%) l ine-614 mice, 
and in 1/2 l ine-615 mice. 

In summary, noninfected wi ld- type NMRI and myc-K 
t ransgenic mice predominant ly  develop tumors of the 
mature B cell type and Akv infection further enhanced 
the deve lopment  of this type of tumor. MoMuLV induced 

mainly T-cell tumors in these mice, irrespective of the 

myc t ransgenic background. 

Express ion of Akv and M o M u L V  prov i ruses 

Akv- in fected mice showed  high levels of viral ex- 

press ion in 33/39 (85%) of the tumors  (Fig. 2). In con- 
trast, in MoMuLV- in fec ted  mice, express ion  of the pro- 
v i rus was  detec ted in only  1 tumor  of 26 (4%) in North- 

ern blot analysis.  
The steady state levels of viral mRNA did not correlate 

with the number  of integrated proviruses found in the 
tumor DNA (Fig. 3). For example,  tumor 177, which con- 
ta ined four Akv proviruses, showed abundant  expres- 
sion, whereas expression of viral transcripts in tumor 
174, which conta ined seven Akv proviruses, was rela- 

t ively low. Similarly, the one MoMuLV provirus in tumor 
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FIG. 2. Provirus expression in tumors of Akv- and MoMuLV-infected 
mice. Northern blots were hybridized with probes for mouse ecotropic 
retroviruses (Chattopadhyay eta/., 1980) and GAPDH. Akv and MoMuLV 
show both the viral genomic 8.3-kb and the spliced 3.0-kb transcripts. 
The numbers indicate different tumors. Tumors 4, 26, and 31 were 
classified as T-cell tumors, 13, 19, 54, 56, 61, 172, 174, 175, and 177 
as B-cell tumors, and tumor 170 as preB-cell tumor. Tumors 30 and 
134 showed neither B-cell nor T-cell markers. 
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FNG. 3. Proviral integration pattern of Akv and MoMuLV. Tumor DNA 
from different Akv- or MoMuLV-infected mice was digested with EcoRI. 
The Southern blot was hybridized with a probe specific for mouse 
ecotropic retroviruses (Chattopadhyay et aL, 1980). The numbers indi- 
cate independent tumors as described in the legend to Fig. 2. 

13 was transcribed, but no transcripts were found from 
the two MoMuLV proviruses in tumor 2. No correlation 
was observed between virus expression and the tumor 
type or a particular mouse line. 

Proviruses in the tumor genomes and rearrangement 
of cel lular g e n e s  

The integration patterns of Akv and MoMuLV provi- 
ruses in the DNA of the tumors were examined by South- 
ern blot analysis (Fig. 3). 

The tumors of Akv-infected mice showed 2 -10  provi- 
ruses (average 5) integrated in the genome, in contrast, 
tumors of MoMuLV-infected mice contained 1 or 2 provi- 
ruses. DNA from 5 tumors out of 7 showed MoMuLV 
pr0viruses on a 16-kb EcoRI restriction fragment, 3/7 tu- 
mors on a 13-kb EcoRI restriction fragment when hybrid- 
ized with a probe for ecotropic MuLV. One tumor had 
acquired proviruses on EcoRI restriction fragments of 
both sizes. Digestion of the same tumor DNAs with Asnl 
showed the same distribution of restriction fragments, 
indicating that these fragments represent two common 
integration sites of the MoMuLV provirus in myc-K 
transgenic mice. 

We tested several cellular genes which are known to 
be target genes for insertional mutagenesis by retrovi- 
ruses or have been reported to be rearranged in tumors 
of Akv- and MoMuLV-infected mouse lines. These in- 
cluded pim-1 and bmi-1, common integration sites in 
tumors of the B-cell lineage (Selten et aL, 1986; Haupt 
eta/., 1991; van Lohuizen et al., 1991), c-myc, N-myc, 
Mlvi-1, and Mlvi-2 (Tsichlis eta/., 1983; Corcoran eta/., 
1984; Li etaL, 1984; O'Donnell eta/., 1985; Tsichlis etaL, 
1985; van Lohuizen eta/., 1989) as preferred integration 

; sites for proviruses in T cell tumors, and p53, which has 

been found to be a target for insertion mutagenesis in 
retrovirus-induced leukemia (Wolf and Rotter, 1984; Mo- 
wat eta/., 1985; Hicks and Mowat, 1988). None of these 
loci were rearranged (data not shown), indicating that 
they were not targets for Akv or MoMuLV provirus inte- 
gration in the tumors of myc-K transgenic mice. 

D I S C U S S I O N  

Akv, the endogenous ecotropic virus of the AKR mouse 
is commonly referred to as nonlymphomagenic (Risser 
and Horowitz, 1983). The results from the experiments 
presented here, however, show that Akv harbors signifi- 
cant lymphomagenic potential. In NMRI mice, Akv en- 
hances the ,tumor incidence and shortens the latency 
period of lymphoma development. 

Two factors may explain the discrepancy between our 
experiments and-earlier reports= the extended observa- 
tion period and a higher sensitivity of the NMRI mouse 
strain. In earlier reports Akv-infected mice of mouse 
strains AKR, CBA, and C3H were observed for a maxi- 
mum of 230 days (Pedersen etaL, 1981; Lenz etaL, 1982; 
Lenz and Haseltine, 1983). The observation period of our 
experiment was 360 days and 50% of the infected wild- 
type NMRI mice developed lymphomas during this time. 
However, 20% of the Akv-infected NMRI mice had already 
developed lymphomas within 230 days, indicating that 
the NMRI mouse strain may also be more sensitive than 
the mouse strains previously tested. 

The long latency period suggests that Akv alone may 
not be sufficient to induce lymphoma, but may rather 
enhance lymphoma development in a mouse which is 
already predisposed to lymphomagenesis by other ge- 
netic or epigenetic alterations. To investigate this possi- 
ble role of Akv in tumorigenesis further, we infected myc- 
K and c-fos transgenic (Schmidt et al., 1995) mice, which 
are prone to develop tumors as a result of the transgenes' 
activity. The myc-K transgenic mice used in this study 
carry a human myc-K fusion gene which mimicks the 
rearrangement in Burkitt's lymphomas. Akv infection in- 
creased tumor incidence and reduced the mean tumor 
latency period by some 100 days in line 614. Akv did not 
significantly accelerate lymphoma development in the 
615 line, most probably because of the already very effi- 
cient induction of tumors by the high copy number of the 
myc-K transgene. 

We observed a similar biological effect for Akv in the 
development of osteogenic tumors in hMt-c-fos-LTR 
transgenic mice (Schmidt eta/.,  1995), suggesting that 
the biological effect of Akv is not restricted to Iymphoma- 
genesis. 

The spontaneously arising lymphomas in noninfected 
NMRI wild-type mice were of mature B-cell type. The 
same tumor type was found in Akv-infected NMRI wild- 
type mice as well as in uninfected and Akv-infected myc- 
K transgenic mice. In contrast, MoMuLV induced pre- 
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dominantly T-cell lymphomas in both infected wild-type 
and myc-• transgenic mice, indicating that the patho- 
genic effect of MoMuLV determines tumors formation 
independent of the presence of a dominant acting trans- 
oncogene. 

Akv and MoMuLV differed in the pattern of provirus 
integration. Akv-induced tumors showed several provi- 
ruses integrated into the cellular genome whereas only 
one to two proviruses were found in MoMuLV-induced 
tumors. As the integration pattern of MoMuLV on South- 
ern blot analysis indicates two common integration sites, 
we tested several loci which have been identified to be 
preferential targets for MoMuLV integration. We found no 
integration of MoMuLV in genes known to be preferential 
targets of this virus in E#-myc transgenic mice devel- 
oping preB lymphoma or in mice with T lymphoma. 

The tumors from Akv-infected mice showed 2-10 pro- 
viruses integrated into the cellular genome. It cannot be 
excluded that a family of genes could have been targeted 
by proviral integration; however, the complex integration 
pattern found in these tumors could indicate a patho- 
genic mechanism different from insertion mutagenesis. 
For example, the expression of a retroviral protein may 
contribute directly or indirectly to cellular transformation. 
Strong viral RNA expression was indeed found in most 
tumors from Akv-infected mice. On the other hand, RNA- 
expression of MoMuLV was not detected in most tumors 
of MoMuLV-infected mice in the experiments described 
here. 

An explanation for the different transcriptional activity 
in Akv- and MoMuLV-infected lymphoma cells may be 
found in the represser binding site (RBS) in the LTR of 
both viruses. In embryonal carcinoma cells the RBS me- 
diates the repression of MoMuLV transcription 48 hr after 
infection (Kempler et aL, 1993). It has been shown by 
mutation analysis that the last 3 bp of the 18-bp sequence 
of the RBS are necessary for the silencing effect (Kempler 
et al., 1993). The RBS sequence is well conserved be- 
tween MoMuLV and Akv, but differs in the last 2 bp in 
the Akv LTR, The active RBS in MoMuLV could explain 
whythe MoMuLV expression is repressed in lymphomas, 
whereas the expression of Akv, containing the altered 
RBS, is not. 

The results from the infection of both types of 
transgenic mice with Akv and MoMuLV suggest that Akv 
facilitates the development of the tumors to which the 
host cells are predisposed depending on their genetic 
background. The underlaying mechanism of Akv patho- 
genicity is not yet clear. Although insertion mutagenesis 
by Akv cannot be ruled out, the pathogenic mechanism 
appears to be distinct from that of MoMuLV. 
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