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Abstract

Background Distal sensorimotor polyneuropathy (DSPN) is a common neurological
disorder in elderly adults and people with obesity, prediabetes and diabetes and is
associated with high morbidity and premature mortality. DSPN is a multifactorial disease
and not fully understood yet.
Methods Here, we developed the Interpretable Multimodal Machine Learning (IMML)
framework for predictingDSPNprevalence and incidencebasedonsparsemultimodal data.
Exploiting IMMLs interpretability further empowered biomarker identification.We leveraged
the population-based KORA F4/FF4 cohort including 1091 participants and their deep
multimodal characterisation, i.e. clinical data, genomics, methylomics, transcriptomics,
proteomics, inflammatory proteins and metabolomics.
Results Clinical data alone is sufficient to stratify individuals with and without DSPN
(AUROC = 0.752), whilst predicting DSPN incidence 6.5 ± 0.2 years later strongly benefits
from clinical data complemented with two or more molecular modalities (improved
ΔAUROC > 0.1, achieved AUROCof 0.714). Important and interpretable features of incident
DSPN prediction include up-regulation of proinflammatory cytokines, down-regulation of
SUMOylation pathway and essential fatty acids, thus yielding novel insights in the disease
pathophysiology.
ConclusionsThesemaybecomebiomarkers for incidentDSPN, guideprevention strategies
and serve as proof of concept for the utility of IMML in studying complex diseases.

Type 2 diabetes (T2D) and its comorbidities have become a global challenge
given the increasing case numbers and the enormous cost of diagnosis and
treatments, putting burden on the public healthmanagement worldwide1–4.
Distal sensorimotor polyneuropathy (DSPN) is the most common neuro-
logical complication inT2Dwhich is characterisedby a sensory loss of lower
limbs, with or without neuropathic pain, caused by nerve damage5.
Importantly, recent studies show that DSPN is also prevalent in elderly

adults and people with prediabetes and obesity, thus affecting an increasing
proportion of the general population6,7.

DSPN diagnosis is challenging. It is based on evaluating the sensing
ability of individuals, observing existing physiological conditions and
morphological changes, and finally conducting neurophysiological
measurements7. However, a large proportion of individuals with DSPN
remain undiagnosed8, and we lack computational methods to reliably
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Plain Language Summary

Distal sensorimotor polyneuropathy (DSPN)
is a common neurological disorder in elderly
adults and people with obesity, prediabetes,
and diabetes in which there is tingling or
numbness with or without pain. It is not fully
understood why it develops.We developed a
computational method that uses various
sources of information to enable people with
DSPN to be identified and also to predict
which people might develop DSPN in the
future. Further development of our method
might provide additional information that can
be used to prevent development of DSPN in
people with obesity, prediabetes, and
diabetes. Also, our method could potentially
be adapted to enable other complexdiseases
to be better understood.
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predict prevalent (i.e. cross-sectional) and incident (i.e. disease trajectory)
DSPN. Furthermore, the complex pathogenesis of DSPN is not fully
understood yet, and is anticipated to be multifactorial9, attributed by the
interplay ofmany intrinsic and extrinsic factors7, thus rendering predictions
challenging.

With the advent of multi-omics technologies, we are now able to
conduct high-throughput assays that simultaneously characterise hundreds
to millions of biomolecules across large patient cohorts10–12. As a result, the
number of datasets with deep multi-omic characterisation has been expo-
nentially increasing in recent years, e.g. the population-based KORA
(Collaborative Research in the Region of Augsburg) F4/FF4 cohort which
includes a subset of 1091 participants with DSPN label defined by the
Michigan Neuropathy Screening Instrument (MNSI)13. Each participant in
KORA is characterised with clinical data, genomics, methylomics, tran-
scriptomics, proteomics, inflammatory proteins and metabolomics13. Rise
of these large-scale multimodal datasets and computational integration
frameworks are the prerequisite to gain insights in complex multifactorial
diseases and comorbidities atmultiplemolecular levels14,15, here exemplified
with DSPN.

Statistical methods empower biological insights. For instance, to select
genes associated with a certain phenotype, e.g. gene expression patterns in
DSPN, the conventional method is setting a fixed significance threshold for
a certain univariate statistical test and selecting genes that fall under the
threshold16,17. While it is effective in identifying the most univariately sig-
nificant genes, it tends toneglect smaller effect sizeswhichmaycumulatively
contribute to a multivariate model. In order to address this, gene set
enrichment analysis (GSEA) is a powerful tool to prioritise functional
relevant genes regardless of their global effect size, as it puts genes into
context of biological signalling pathways using prior knowledge. Notably,
GSEA generalises to other biomolecules such as proteins and metabolites,
representing a potential approach to study complex systemic diseases18.

There are several multimodality data integration strategies. The sim-
plest approach is to concatenate all available features together before
supervised learning19,20. This method is simple to implement, however, it
requires extensive data processing and normalisation to incorporate het-
erogenousmodalities encompassing vast amounts of features, thereby often
neglecting important biological signals20. To address this, state-of-the-art
integration methods such as ensemble stacking (meta learning) are
employed to combine the powers of multiple data modalities and/or
learning algorithms, whilst increasing weights of more predictive mod-
alities/algorithms. This empowers to learn complicated structures and
relationships of the data21. A critical assumption of multi-view learning,
however, is that the single-view models should be independent21. This
assumption is often violated in complexmetabolic diseases, as there is a high
level of redundancy and correlations amongst feature layers. Nevertheless,
multi-view learning has proven to be superior compared to models lever-
aging concatenated feature space in crowd-sourced computational
challenges22,23.

In this study, we present the interpretable multimodal machine
learning (IMML) framework, and exemplify its capability with DSPN
classification and predicting DSPN onset over 6.5-years, i.e. prevalent and
incidence predictions, respectively. IMML focuses on deriving predictive,
interpretable and translational models leveraging sparse multimodal data.
For this, we developed a two-step feature selection and integrationmachine
learning framework. Thefirst step extracted functionally relevant features of
eachmolecular layer in isolation and leveragesGSEA,whilst the second step
benchmarked all combinations of data modalities based on cross-validated
and regularised linear models. We hypothesised that well performing
models at the minimum number of data modality would give insights into
thedisease aetiologyofDSPNand its incidence, thusmay improvediagnosis
and pave the way for prevention strategies.

The derived framework successfully classifies cross-sectional DSPN
and predicts future incident DSPN, as well as identify relevant and
actionable biomarkers of the disease. In particular, the model achieves the
AUROC of 0.752 and 0.714 for cross-sectional DSPN and incident DSPN,

respectively. Dissecting the model complexity shows that involving mole-
cular data helps improving the prediction performance for incident DSPN,
with ΔAUROC> 0.1 compared to the clinical data-only model. Impor-
tantly, feature analysis shows multiple important signatures of incident
DSPN such as up-regulation of inflammatory cytokines and down-
regulation of SUMOylation process and essential fatty acids. These putative
biomarkers serve as useful resources for future investigation to identify
actionable biomarkers for interventions. These findings do not only help
identifying individuals at risk of developing the disease but also shed light
into the pathological mechanisms and important biomarkers that would
help improve patients’ life, further advancing precision medicine.

Methods
Population data
The population-based data in this study was obtained from the “Koopera-
tive Gesundheitsforschung in der Region Augsburg/Cooperative Health
Research in the Region of Augsburg” (KORA) platform24,25. Specifically,
data from the KORA F4 (2006–2008) and the KORA FF4 (2013–2014)
studies, both follow-up examinations of the population-based KORA
S4 study (1999–2001), were used. All examinations were carried out in
accordance with the Declaration of Helsinki, including written informed
consent from all participants. The KORA study was approved by the ethics
boardof theBavarianChamber of Physicians (Munich,Germany). The data
used in this study was obtained under a data sharing agreement with the
Board of Management of KORA and all data owners. Initially there were
1,161 KORA F4 participants aged 62–81 years in the age group with the
neuropathy examination module. We excluded 28 individuals with known
type 1 diabetes, diabetes forms other than type 2, or unclear glucose toler-
ance status. In total, we leveraged 1133 individuals.

DSPN assessment
We used the examination part of the Michigan Neuropathy Screening
Instrument (MNSI) score to assess the status of DSPN for all participants of
KORA F4 and KORA FF4, as described previously25. In the MNSI assess-
ment, we evaluated the appearance of feet (normal or any abnormalities
such as dry skin, calluses, infections, fissures, or other irregularities), foot
ulceration, ankle reflexes andvibrationperception threshold at the great toes
which was assessed with the Rydel-Seiffer graduated C 64Hz tuning fork26.
The normal limits for vibration perception threshold, adjusted for age, were
determined based on the method outlined by Martina et al. 27. The MNSI
score also included the bilateral examination of touch/pressure sensation
using a 10-g monofilament (Neuropen)28. Therefore, the total MNSI score
ranged from0 (indicating normal in all aspects) to amaximumof 10 points.
Considering the advanced age of the participants and the inclusion of the
monofilament examination, we defined distal sensorimotor polyneuro-
pathy (DSPN) as a score of equal or higher than 3 points29. Thus, partici-
pants with an MNSI score ≥ 3 in KORA F4 were considered as prevalent
DSPN cases, whereas participants without DSPN in KORA F4 (MNSI < 3)
but MNSI ≥ 3 in KORA FF4 were considered as incident cases. This defi-
nition meets the minimal diagnostic criteria for possible DSPN, as outlined
by the Toronto Diabetic Neuropathy Expert Group30.

Using this criterion, for prevalent DSPN analysis, among 1091 out of
1133 individuals havingMNSI scoring records, therewere 188 cases and903
controls. For incidentDSPNanalysis,weonly considered the 903 controls in
the KORAF4 and examined their progression of DSPN status in the KORA
FF4. Among these, we excluded 378 individuals that either did not parti-
cipate or lacked MNSI scoring records in the KORA FF4. For the incident
DSPN analysis, the remaining 521 participants were split into 131 DSPN
cases and 394 controls. For both predictions of prevalent and incident
DSPN, we only leveraged clinical and molecular features collected at the
early time point of KORA F4.

Data pre-processing
From theKORAF4 studywe obtained six types ofmolecular data, including
genomic (Affymetrix Axiom), transcriptomic (Illumina HumanHT 12v3
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Expression BeadChip), proteomic (SOMAscan), metabolomic (Metabo-
lon), methylomic (Illumina Methylation 450k) and a small panel of
inflammatory proteins (OLINK) data, besides clinical records. Each mole-
cular layer was standardised before downstream analysis by computing the
z-score, which accounts for different distributions and numerical scales of
features. Our analysis pipeline pre-processed the data in amodality-specific
manner, as shown below.

Processing of genomic data
Following microarray assay and initial imputation using the Haplotype
Reference Consortium (HRC) as reference genome, the genomic dataset had
3788 samples and 7,545,537 SNPs.We used PLINK v1.0731 for quality control
of the genotype data. In particular, we removed SNPs that had equal or higher
than 1% missing rate, less than 1% minor allele frequency (MAF) and sig-
nificant deviation from Hardy Weinberg Equilibrium (HWE, p < 1e−10).
We used the –annotate function in the MAGMA software32 to annotate the
SNPs to their associated genes, based on the gene location information from
the human genome GRCh37, considering SNPs that locate 2Mb upstream
and 500b downstream of the genes. Following that we discarded SNPs that
could not be annotated to a gene. We removed samples that had hetero-
zygosity rates deviating more than three standard deviations from the mean
across all samples. Finally, we filtered samples that had clinical records in the
KORA F4 study. Eventually, the pre-processed genomic dataset included
1083 samples and 3,167,521 SNPs. We transformed the categorical SNP data
into continuous alternative allele copy numbers (0, 1 or 2).

Processing of transcriptomic data
The initial data generation, quality control and transformation were per-
formed by the KORA study33,34. Specifically, the annotation of probes
sequences to known transcripts was based on an annotation file provided by
Illumina for HumanHT 12v3 BeadChip (using genome location of hg19).
Only probes with the label “good” during mapping (probe sequence map-
ped uniquely toUCSC transcript) were included in this study. Furthermore,
samples with less than 6000 detected probes were removed using Illumina’s
GenomeStudio. The data was log2 transformed and quantile-normalised
using Bioconductor package lumi35. The sampleswere clusteredusingR and
the outliers were removed.We obtained 993 samples and 48,804 transcripts
for our analysis. The technical variables including amplification plate, RIN
number and sample storage time were regressed out using the R package
limma17.

Processing of proteomic data
The SOMAscan proteomic data was obtained from the KORA F4 study,
including 1000 individuals and 1129 protein probes. One individual and 34
probes were removed due to low quality in accordance with the SomaLogic
pipeline. Many probes mapped to multiple proteins/UniProt IDs so we
transformed probe annotation into protein annotation. We also filtered for
samples that had clinical records. In total, the dataset included 397 indivi-
duals and 1160 proteins.

Processing of metabolomic data
The Metabolon metabolomic data obtained from the KORA F4 study
included 1768 individuals and 525 metabolites, after initial quality control
and transformation. Particularly, the data was log10 transformed and values
that lied more than four standard deviations from the mean were set to
missing. We additionally discarded metabolites that had more than 70%
missing values. For the remaining metabolites we imputed missing values
using k nearest neighbour algorithm. Furthermore, we discarded samples
that had standardised Mahalanobis distance larger than four and samples
that did not have clinical records. Finally, we leveraged 829 samples and 466
metabolites.

Processing of methylomic data
The Illumina 450kMethylationM-value datawas obtained from theKORA
F4, which had already undergone filtering for detection rate and data

normalisation.Theoriginal datahad 1727 samples and485,512methylation
probes. We leveraged the ChAMP pipeline for methylation data
processing36. Specifically, we excluded probes spanning SNP regions and
probes not associated to genes based on the Illumina annotation file. Then,
we imputed missing data using k nearest neighbour algorithm. Finally,
technical effects were regressed out using the ComBat function in the sva
package37. Only samples with clinical records were included in this study. In
total, we had 849 samples and 399,541 methylation probes for our analysis.

Processing of inflammatory protein data
The OLINK inflammation panel included 92 inflammatory proteins which
were measured in 1133 samples. We additionally removed 21 proteins due
to lowdetectionquality, as reported inour previous study29. In summary,we
used 71 proteins for our analysis.

Processing of clinical data
Clinical data obtained from the KORA F4 study included background
information, diabetes and comorbidity status, lifestyle, blood biochemistry
and medication usage for 1161 individuals24,25. Together with the filtering
mentioned in the “Population data” section, there were 1133 samples
remaining. Categorical variables were transformed using one hot encoding.
Subsequently, variables having >10% missing values were discarded. In
total, we leveraged 1133 individuals and 83 variables.

Data partitioning for modality-specific feature selection
Each sample that was lacking at least one data modality was leveraged for
modality-specific feature selection. For prevalentDSPNprediction included
710 genomic (141 cases and 569 controls), 621 transcriptomic (133 cases
and 488 controls), 67 proteomic (9 cases and 58 controls), 476metabolomic
(76 cases and 400 controls), 495methylomic (82 cases and413 controls) and
720 clinical (142 cases and 578 controls) samples. The incident DSPN
prediction leveraged 223 genomic (57 cases and 166 controls), 171 tran-
scriptomic (47 cases and 124 controls), 58 proteomic (13 cases and 45
controls), 160metabolomic (30 cases and130controls), 174methylomic (38
cases and 136 controls) and 242 clinical (63 cases and 179 controls) samples.
During gene set enrichment analysis, 100 stratified resampled splits were
created for each of the modality-specific dataset, except proteomics due to
limited sample size.We used 80% and 20%of samples for feature selection /
training and testing, respectively.

Data partitioning for final model training
Fullymulti-modal characterised samples were used for finalmodel training.
For prevalent DSPN prediction, this was 285 samples (31 cases and 254
controls), whilst for incident DSPN prediction, it was 242 samples (54 cases
and 188 controls). We created 100 stratified splits which leveraged 80%
samples for feature integration/training, and the remaining 20% for model
testing. We further partitioned the 80% training samples into stratified five
folds for cross-validation. The cross-validation performance was used as a
criterion for the FFS algorithm to select the optimal model. We never used
any test data for neither model training nor tuning of model parameters.

Gene set enrichment analysis
For the gene set enrichment analysis (GSEA), we leveraged the Bio-
conductor fgsea R-package38, which is a more computationally efficient
implementation compared to the original method18. For ranking genes, we
used the t-statistics of the differential expression analysis from the Bio-
conductor limmaR-package17, which estimated the univariate associationof
the genes to the phenotype using a linear model. For calculating the
enrichment score (ES), we used gene sets from the Reactome database39.
Finally, the p-values were adjusted for multiple hypothesis testing with false
discovery rate (FDR) < 20%, which is a lenient threshold allowing the
selection of featureswith lower effect size,whichmay addpredictive value in
multivariate models in later integration steps.

The mapping of biomolecules to Reactome was customised for each
data modality. For transcriptomic and proteomic data, we used the
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Reactome gene set annotation with Entrez IDs. For metabolomic data, we
used the Reactome metabolite set annotation based on ChEBI IDs.

For genomicdata,we leveraged theMAGMAsoftware32 to estimate the
gene effect and subsequently perform gene set analysis. First, we annotated
SNPs according to nearby genes (2 kb upstream and 0.5 kb downstream),
and consecutively used MAGMA to estimate the gene effect on the phe-
notype, taking into account the SNPs that were mapped to this gene.
MAGMAestimated the gene effect byfirst conductingprincipal component
analysis (PCA) using all SNPs linked to this gene, and afterwards used PCs
to train a linear regression model predicting the phenotype. Finally,
MAGMA computed the gene’s p-value with F-test, and converted these to
Z-values for the gene set analysis leveraging a linear regression model32.

For methylomic data, we used the methylRRA method40 to perform
gene set enrichment analysis (GSEA) on theCpGprobes. First, this required
a differential expression analysis on the probes using the R package limma,
followed byusing the ranked list of p-values as input formethylRRA.To this
end,methylRRAcomputed ap-value for each gene leveraging the rankingof
all CpGs annotated to that gene by implementing Robust RankAggregation
algorithm41. Consequently, the p-values were transformed into z-scores and
were used for the GSEA to extract significant gene sets40.

In all cases, we included the full set of Reactome signalling pathways at
the lowest levels of pathway hierarchy to avoid redundancy, and at the time,
ensure full unbiased coverage (SupplementaryData 2). Furthermore, except
for the proteomic data, the GSEA was performed across the 100 stratified
splits accounting for heterogeneity.

Robust rank aggregation
We leveraged the implementation of Robust Rank Aggregation of Kolde
et al.41. The molecules/molecule sets were ranked according to p-values,
leading to a different ranked list per cross-validation/resampling run. Then,
the rank distribution of eachmolecule/molecule set across all lists was tested
against the random ranking distribution generated by permutationwith the
null hypothesis that there was no difference between the two distributions.
The p-values of the test were adjusted for multiple hypothesis testing by
multiplying the number of tested lists and additionally adjusted for the
number of testedmolecules/molecule sets by Benjamini-Hochbergmethod.

Extraction of leading-edge genes
Leading-edge genes in upregulated gene sets are all genes from the
beginning of the ranked gene list until the enrichment score (ES). In
contrast, in case of down-regulated gene sets, leading-edge genes are
from the ES to the end of the ranked gene list. Here, we leveraged 80% of
all data for each of the 100 stratified resamples, did GSEA, extracted the
leading edge molecules to train an elastic net model, and finally tested the
model prediction on the left out remaining 20% of samples. For aggre-
gating results of these 100 stratified resamples, we only considered pre-
dictive models (AUROC > 0.5), and leveraged a Robust Rank
Aggregation (RRA) algorithm41 with a false discovery rate (FDR) cutoff
of 5%, which delivered a union of leading-edge gene sets. Afterwards, a
GSEA was conducted on the union of leading-edge gene sets to extract
the final consensus significant gene sets and leading edge molecules,
which were subject to final model training.

Clinical feature selection
For select clinical variables, we leveraged elastic nets using the R package
caret with an 80% and 20% split for training and testing, respectively. We
used weighted log-loss as the performance metric for hyper parameter
tuning. The feature importance of the models was evaluated using the
magnitude of t-statistics. Features with zero t-statistic were omitted. Finally,
we used RRA with FDR cutoff of 5% to aggregate the important features
across the 100 bootstraps.

Iterative forward feature selection
The iterative forward feature selection (FFS) integrates multiple data
modalities. It is based on 100 independent runs of fivefold cross-validation.

We tuned elastic net’s hyperparameters alpha and lambda by grid search
of 20 alphas and lambdas in range [0,1], resulting in 400 parameter sets.
The chosen hyperparameter combination was the one having best mean
performance across 5-fold cross-validations. In each run, we randomly
sampled 80% of the dataset to perform five-fold cross-validation and
the performance was tested with the remaining 20% data. For each fold of
model training, elastic net models with weighted log-loss function to
overcome class imbalances were implemented. Within the inner loop, a
fivefold cross-validation selected the best data modality to add next. The
prediction performance of the model was tested by predicting on the outer
test set (20%samples). Thepredictionprobabilitieswere calibratedusing the
Platt scaling method. In each step, the model adds the next best data
modality based on increased performance until all data modalities are
included.

Extracting feature importance
We selected the optimal number of modalities based on their testing
AUROC distribution. For this, the chosen number of modalities had a
significant improvement in testing AUROC distribution compared to the
previous number, and no significant improvement could be observed in the
later complexities (Wilcoxon rank sum test, p < 0.05). After choosing the
optimal number of modalities, the important features in the 100 models of
that number of modalities were aggregated using RRA. Consecutively, we
used the selected features to train a final elastic net model on the whole
training dataset using the same settings as previous steps. The feature
importance of the final model was accessed by t-statistics of model
parameters.

Benchmarking of feature selection and integration methods
For feature selection, we compared GSEA with the conventional thresh-
olding methods. For feature integration, we benchmarked FFS, data con-
catenation and ensemble stacking approaches. Thus, in total there were six
combinations of methods to compare. For the thresholding method, we
implemented differential expression analysis using limma and selected
features having p-values < 0.05.

Regarding feature integration,we benchmarked the FFSwith ensemble
stacking and feature concatenation. The latter concatenated all features into
a single matrix before training the model. The ensemble stacking approach
leveraged 100 independent runs with stratified resampling. This is, we
generated 100 sets of stratified resamples, each consisting of 80% training
and 20% test set (i.e. outer loop). Within each 80% training set, we further
divided the data into 5-fold cross validation sets (i.e. inner loop). For each
iteration of the inner loop, we trained an elastic netmodel on four out of five
validation sets and made predictions on the remaining validation set. After
five iterations, we obtained the predictions of all samples for that inner loop
(corresponding to the 80% training set from the outer loop). We used this
together with the ground truth (80% outer train) to train an elastic net meta
model in the outer loop, and consecutively tested the predictive perfor-
mance on the remaining 20% test set. Importantly, the test sets were never
used for any parameter optimisation nor training, and only leveraged for
unbiased performance evaluation. This process was repeated for each data
modality. For the feature analysis we implemented robust rank aggregation
on the meta models of the ensemble stacking across 100 resamplings, then
extracted the individual feature importance.

Statistics and reproducibility
The multiomic datasets were preprocessed by the KORA study using cus-
tomised softwarementioned above. The development of the computational
framework and the statistical analyses were conducted using the R packages
and independent software detailed above. To reproduced the analysis
results, one canobtain thedata fromhttps://www.helmholtz-munich.de/en/
epi/cohort/kora/kora-studienzentrum, following a data sharing agreement
with the KORA study. Details about sample sizes, types of data and code
availability could be found in “Methods”, “Data availability” and “Code
availability”.
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Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
We leveraged the population-based KORA study including participants
aged 62–81 years with clinical examination of DSPN from the F4
(2006–2008) andFF4 (2013–2014) surveys (“Methods”). The earlier F4 time
point surveyed 1091 individuals of whom 622 were followed up at the later
FF4 time point. We used the established Michigan Neuropathy Screening
Instrument (MNSI) to assess and define the DSPN status as described in
previous studies25,29. Using MNSI, we identified 188 DSPN cases and 903
controls at F4, and 131 controls who developed DSPN between F4 and FF4

(Supp. Tables S1 and S2). The first machine learning task was to predict
DSPN prevalence at F4 (Fig. 1a). The second task was to predict whether
controls at F4 will develop incident DSPN during the period from F4 to
FF4 (Fig. 1a).

Datamodalities included in this studywere genomics, transcriptomics,
proteomics, metabolomics, methylomics, clinical attributes and a panel of
inflammatory proteins. The modalities vary greatly in number of features,
ranging from 91 clinical attributes to >7.5 million single nucleotide poly-
morphisms (SNPs; Fig. 1b). After data type-specific processing (“Meth-
ods”), the number of features was drastically reduced, e.g., only
approximately 42% of the assayed SNPs were used for subsequent analyses
(“Methods”; Fig. 1b). Participants in KORA were sparsely characterised
with varying overlaps of data modalities (Fig. 1c).

Fig. 1 | Workflow of interpretable multimodal framework for feature prior-
itisation, DSPN classification and disease incidence prediction. a Distribution of
samples across time points (KORA F4 and FF4), disease status (case or control) at
baseline (KORA F4) and follow-up (KORA FF4) and prediction tasks. Both models
were trained on the same set of F4 features but different labels and a subset of
samples. b Number of features stratified according to data modalities. In grey are
removed features after pre-processing. c Number of samples characterised within
each data modality and their overlaps in KORA F4. d Fully characterised samples in
KORA F4 were exclusively leveraged for g the second and final training step, whilst
the remaining sparse samples were used for e prior feature prioritisation: All
molecular features were shortlisted based on differential expression analysis (DEA),

gene set enrichment analysis (GSEA) and their leading-edge genes (“Methods”),
whilst clinical features were ranked according to feature importance of elastic net
models. f Features for the final training step were selected based on rank aggregation
(“Methods”). g The final training set contained 54 DSPN cases and 188 controls in
KORA F4. In the second step, elastic net models determined the optimal number of
modalities, features and combination of modalities. These models implemented
forward feature selection in a nested cross-validation, using weighted log loss to
account for class imbalance, andfinally 100 stratified resampling during training and
rank aggregation (“Methods”), thus returning h the refined and final model further
subject to functional analysis for gaining insights in DSPN pathophysiology.
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The two-step feature selection and integrationmachine learning
framework
The IMMLframework is basedona two-step approach: (i) Extensive feature
engineering and selection process (Fig. 1d–f; Fig. S1; “Methods”), and (ii)
final model training (Fig. 1g, h). For enriching biological signals and
reducing feature space, we used 849 sampleswhichwere lacking at least one
data modality, whilst the remaining completely characterised 242 samples
were exclusively used for the final model training. Both subsets of data for
feature selection and model training and testing were subject to PCA ana-
lysis using clinical information to ensure there was no potential bias in
sample selection (Supp. Fig. S2).

For the first step, i.e. feature engineering and selection processes, we
prioritised predictive and biologically relevant biomolecules regardless of
their effect sizes (“Methods”). We observed that GSEA-based methods
significantly outperformed threshold-basedmethods (Wilcoxon Rank Sum
test, p-value = 3.758e−12; Supp. Fig. S3). Therefore, we implemented dif-
ferential expression analysis (DEA)17 followed by GSEA18 to extract a list of
molecule sets corresponding to signalling pathways that may be pivotal in
DSPN development. This process was repeatedly performed to account for
variability (“Methods”)41. Finally, we extracted the leading-edge molecules,
i.e. those that drive the enrichment ofmolecule sets18.We obtained between
zero and 25 significantly enriched molecule sets per data modality (Suppl.
Fig. S4 and S6; Supp. Table S3, Supplementary Data 1), from which we
extracted up to 727 leading-edge features (Suppl. Figs. S1, S5 and S7). In
addition, for clinical feature selection, we trained elastic net models and
leveraged rank aggregation to retrieve 13 predictive clinical features
(“Methods”; Fig. 1e, f; Suppl. Fig. S1).

For the second step, i.e. final model training and multimodal data
integration, we leveraged the short-listed features from the analyses above.
The final model was trained with an embedded feature selection whilst
balancing number ofmodalities.We benchmarked three feature integration
methods, i.e. forward feature selection (FFS), ensemble and concatenationof
all features together (Suppl. Fig. S3a; “Methods”), and observed best per-
formance with GSEA-FFS followed by GSEA-ensemble stacking (Suppl.
Fig. S3b). When comparing the performance of the FFS and ensemble
stacking methods using all modalities and with GSEA as the feature selec-
tion approach, the FFS algorithm achieved marginally higher predictive
performance (Suppl. Fig. S8a). Both methods retained inflammatory pro-
teins as the most predictive features, however, the GSEA-FFS was further
able to detect clinically relevant signals from other modalities (Suppl.
Fig. S8b). Therefore, we implemented an iterative FFS algorithm with
resampled cross-validation (“Methods”).

To select the machine learning algorithm for DSPN prediction, we
compared the predictive performance of elastic net, random forest and
support vectormachine, the latter leveraged linear and radial kernels (Suppl.
Fig. S9). For thiswe performed 100matched resampleswith forward feature
selection. Elastic net outperformed the other three machine learning algo-
rithms in both prevalent DSPN (Suppl. Fig. S9a–d) and incident DSPN
predictions (Suppl. Fig. S9e–h). Best performances in prevalent DSPN
(AUROCs of 0.737) and incident DSPN (AUROCs of 0.708) predictions
were observed at 1-modality and 3-modality models, respectively. Notably,
none of the other machine learning algorithms reached AUROC higher
than 0.700 at any number of modalities.

For each iteration of resampling, the most predictive combination of
modalitieswere selected basedon cross-validation (Fig. 1g, h; Suppl. Fig. S1).
Analysis of the final model returned predictive modality combinations,
which became subject to functional analysis for DSPN classification and
incidence prediction in the following sections.

Clinical data can sufficiently stratify individuals with and
without DSPN
In a clinical setting, all suspected DSPN patients are thoroughly clinically
characterised and neurologically evaluated. Therefore, our FFS algorithm
used KORA clinical attributes as baseline input, and consecutively, evaluated
the gained performance by adding more molecular modalities to classify

DSPN (Fig. 2a). Metabolite and protein features were the most frequently
added across 100 iterations, while transcripts were usually added last
(Fig. 2a). However, the baseline clinical model significantly outperformed
any more complex model (Wilcoxon rank sum test, p < 2.22e−16; Fig. 2b, c;
Suppl. Figs. S10a and S11). The clinical model had a median area under the
receiver operating curve (AUROC; “Methods”) value of 0.752 with an
interquartile range (IQR) of 0.686–0.821 and 95% confidence interval (CI) of
0.733–0.770, whilst the best performing model with molecular data only
achieved a median AUROC of 0.583 with IQR of 0.539–0.627. This sug-
gested that clinical variables alone are sufficient to stratify individuals with
and without DSPN.

To further dissect the predictive component of clinical attributes, we
extracted the most important clinical features from 100 resampled and
cross-validated models. For this, we leveraged robust rank aggregation
(RRA; FDR < 5%), andused thesewithin thefinalmodel (“Methods”). After
computing t-statistics of model parameters, four variables had non-zero t-
statistics, including age, waist circumference, height andwhether the patient
had neurological illnesses (self-reported during interview; Fig. 2d). The
principal component analysis (PCA) of these four clinical variables
empowered the segregations of cases and controls (Fig. 2e). When we fur-
ther stratified the prediction probabilities to individual samples and ranked
them according to mean probability, most cases were ranked higher than
controls, although there were a few outliers (Fig. 2f). Values of age, waist
circumference and height were significantly higher in cases compared to
controls (p < 0.05, Wilcoxon Rank Sum test) while having neurological
illnesses was significantly enriched in DSPN cases (p < 0.05, Fisher’s Exact
test; Fig. 2g; Suppl. Fig. S12).

Molecular data improves DSPN incidence prediction
DSPN incidence prediction was strongly enhanced by integrating clinical
andmolecular data. In contrast to clinical baselinemodels (Suppl. Fig. S13a,
b), we observed a strong benefit in leveraging molecular modalities for
predicting whether participants of the KORA F4 cohort will develop DSPN
or not within the next 6.5 ± 0.2 years (Fig. 3a, b; Suppl. Fig. S13c). The
baseline DSPN incidence model achieved a median AUROC of 0.603 with
an IQR of 0.543–0.676 and 95% CI of 0.588–0.624. This was significantly
outperformed by adding either one or two additional molecular data
modalities (Fig. 3a, b; Suppl. Figs. S10b and S14), i.e. median AUROC of
0.678 with an IQR of 0.612–0.752 and 95% CI of 0.652–0.692 and AUROC
of 0.700 with IQR of 0.651–0.774 and 95% CI of 0.686–0.722, respectively
(Wilcoxon rank sum test, p = 1.9e−16 and p = 2.9e−11, respectively). In
essence, molecular features significantly enhanced DSPN incidence pre-
diction.Weobserved that inflammatory proteinswere >80% thefirst picked
molecular layer, followed by metabolites, whilst SNPs seemed to carry the
least predictive information (Fig. 3a). The performance tended to saturate at
3-modalitymodels as addingmoremodalities did not significantly improve
the performance anymore (Wilcoxon rank sum test, p = 0.95), i.e.
4-modality models had a median AUROC of 0.714 with an IQR of
0.640–0.774 and 95% CI of 0.684–0.720 (Fig. 3b). We observed similar
results and a saturation of performance at 3-modalities, when not enforcing
clinical attributes as baselinemodality, whichwere still selected in 57% of all
3-modality models (Suppl. Fig. S15). In essence, prediction of DSPN inci-
dence strongly benefited from adding two or more molecular modalities,
and saturated at the 3-modality models.

For feature importance analysis of the final model, we selected
3-modality models (“Methods”). The prediction probabilities of incident
cases were significantly higher compared to controls (Wilcoxon rank sum
test, p < 2e-16; Fig. 3c). We obtained 26 features with non-zero t-statistics
including 17 inflammatory proteins, four metabolites, three transcripts
and two clinical variables (Fig. 3d; “Methods”). Most of the predictive
power stemmed from inflammatory proteins, whilst two transcripts
(CDC42 and SP3) and two metabolites (caprate and linolenate) displayed
the largest t-statistic magnitude (Suppl. Fig. S16). PCA analysis on these
26 features illustrated that they enable the prediction of DSPN inci-
dence (Fig. 3e).
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When stratifying the prediction probabilities of the 3-modalitymodels
into individual samples and ranking thembased on theirmeans,most of the
incident DSPN cases were concentrated in higher probability regions, in
contrast to controls (Fig. 3f). Furthermore, higher prediction probability
also corresponded to higher concentrations of many model-important
inflammatory proteins and lower concentrations of caprate (Fig. 3g). Inci-
dent DSPN cases were significantly enriched for low physical activity
(Fisher’s exact test, p = 0.003; Suppl. Fig. S17). In essence, levels of inflam-
matory proteins andmetaboliteswere significantly different betweenpeople
transitioning toDSPN compared to thosewho did not (Wilcoxon rank sum
tests, p < 0.05; Suppl. Fig. S17), highlighting the important role of molecular
features to predict DSPN incidence.

Increased inflammation, reduced levels of SUMOylation and
essential fatty acids as important signatures of incident DSPN
For gaining further insights into the prediction of incident DSPN, we
investigated predictive features in the context of the initial GSEA-based
feature selection.To this end,we created anetwork of features connecting all
molecular layers by shared signalling pathways (“Methods”; Fig. 4a; Suppl.
Fig. S7). For this, all biomolecules were connected to any other leading-edge
molecule according to Reactome39. We identified two large subnetworks of
15 predictive features containing nine inflammatory proteins, three tran-
scripts (CD42, SP3 and ITSN1) and three metabolites (caprate, linolenate
and adrenate; Fig. 4a).

Inflammation is an important signature of incident DSPN prediction,
which is evident by the increased frequency of functional important
inflammatory proteins in the identified large subnetwork (Fig. 4a). To gain
further understanding of their role, we performed GSEA on the proteomic
training data focusing on gene sets involving inflammation. Binding of
chemokines to their receptors was significantly upregulated (Fig. 4b;
adjusted p-value = 0.008), as well as signalling of G protein-coupled
receptors (GPCR; Suppl. Fig. S18; adjusted p-values < 0.2).

Transcriptomic modality encompassed consistently significant gene sets.
In particular, downregulation of SUMOylation-related signalling pathways
were consistently observed in both feature selection and training sets (adjusted
p-values < 0.2; Fig. 4c; Suppl. Fig. S18). These included SUMOylation of
proteins involved in DNA replication and DNA damage response and repair.
In addition, the gene set involved in transport ofmature RNA fromnucleus to
cytoplasm was significantly downregulated (Fig. 4c; Suppl. Fig. S18).

Interestingly, all metabolites in the subnetwork were fatty acids (Fig. 4a)
and all were significantly downregulated, i.e. caprate, linolenate and adrenate.
As a result, GPCR pathways related to fatty acids activity were significantly
downregulated (Fig. 4d; Suppl. Fig. S18; adjusted p-values < 0.2). Other sig-
nificant metabolomic pathways included the downregulation of fatty acid-
related signalling and synthesis, secretion and inactivation of glucagon-like
peptide-1 (GLP-1; Suppl. Fig. S18), and upregulation of transport of organic
anions (Suppl. Fig. S18).

Overall, functional analysis of the predictive features revealed mole-
cular signatures of incident DSPN. Particularly, the up-regulation of several
inflammatory proteins and downregulation of SUMOylation-related tran-
scripts and essential fatty acids are the most significant patterns.

Discussion
DSPN is a complex disease attributed to multiple and heterogeneous risk
factors7. Thus, integration of sparse multimodal data is a prerequisite for a
deeper understanding of the disease pathophysiology. In order to address
this, here we present the IMML framework, which allows prediction of
prevalent and incident DSPN status based on clinical and molecular char-
acterisation. We achieved good performance for both prediction tasks, i.e.
AUROC > 0.7. Furthermore, the IMML two-step approach empowered the
analysis of sparse clinical and molecular data, which is common in bio-
medical research. Utilising the modality-specific non-overlapping samples
for feature selection increased the number of accessible samples and
reproducibility of molecular patterns across different datasets.

Fig. 2 | The clinical model can sufficiently stratify DSPN prevalence.
a Classification of DSPN first leverages clinical attributes, and cumulatively adds
molecular modalities with forward feature selection (“Methods”). Here shown for
100 cross-validated models. b Test set performance of DSPN classification lever-
aging between one to seven data modalities. Error bars of the boxplot indicate 95%
CI. cPrediction probabilities of samples in the 100 left-out test sets leveraging clinical
features only, stratified into true labels (case and control). d Feature importance of

the final model based on clinical attributes alone applied to training and feature
selection set (“Methods”). ePCA leveraging the fourmost important clinical features
shown in panel d to stratify cases from control. f Distribution of the test prediction
probability of all samples of 100 resampled and cross-validated models.
g Normalised values of the four most important clinical features. The order of
samples corresponds to panel (f).
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The analysis of prevalentDSPN (classification of case-control in the F4
population) suggested that the clinical model (using only clinical variables)
outperformed the concatenated models (using clinical+molecular vari-
ables) in prediction. Then, feature analysis of the clinical model suggested
that age, height, neurological illness and waist circumference were the most
important factors that influence the prediction of prevalent DSPN. Age and
height have been reported to be associated with prevalent DSPN42. The
neurological comorbidity status of patients is not used to classify DSPN yet,
however, there might be an intrinsic neurological mechanism that links
DSPN to other neurological illnesses. Finally, waist circumference is
strongly correlatedwith BMI, which has been reported to be a risk factor for
developing DSPN43. From a clinical perspective it is worth mentioning that
only waist circumference represents a modifiable risk factor which
emphasises the role of obesity prevention and treatment also in the context
of DSPN. In summary, for prevalent DSPN, our analysis is confirmatory of
previous studies with respect to these clinical variables. However, here we
report the clinical variables in the context of a comprehensive multi-
modality analysis of DSPN prevalence, thus adding another layer of infor-
mation to the model.

In the case of incidentDSPNprediction, themolecular variables added
prediction value as they helped improve the prediction performance (higher
AUROC values) compared to the clinical model alone. Feature analysis

detected multiple important and potentially actionable biomarkers such as
inflammatory proteins, SUMOylation-related transcripts and essential fatty
acids. Although the association between inflammatory proteins and inci-
dent DSPN has been reported before25,29, there are as yet no data from
population-based studies such as ours implicating SUMOylation-related
transcripts and essential fatty acids in the development of DSPN so that
these findings are novel and merit further investigation in other cohorts.
Additionally, none of these biomarkers and pathways has been reported
before in the context of our novel multi-modality analysis of DSPN
incidence.

Feature analysis suggested the crucial role of subclinical inflammation
in the development of DSPN. We found that 18 out of the 27 most
important incidentDSPNfeatureswere inflammatoryproteins.Ourfinding
was consistent with previous studies showing the predictive value of pro-
inflammatory cytokines in DSPN25,29. One cytokine (IL-6), five chemokines
(CXCL9, CXCL10, CCL13, CCL19 and CCL20) and five soluble forms of
transmembrane proteins (CDCP1, SLAMF1, TNFRSF9, TNFRSF11B and
CD5) were upregulated at baseline in patients with incident DSPN, sug-
gesting a proinflammatory process which could be observed before DSPN
onset25,29. CXCL9 and CXCL10 have been shown to directly impact neu-
rotoxic effects29. In addition, nerve-derived chemokines may play a role in
attracting immune cells to further damage stressed neurons29. In accordance

Fig. 3 | Predicting DSPN incidence benefits from molecular data. a Each model
starts with clinical attributes at baseline, and consecutively increases the number of
modalities by adding the nextmolecularmodalitywith feed forward selection for 100
cross-validated models (“Methods”). b Performance of all model complexities to
predict patient trajectories. Error bars of the boxplot indicate 95% CI. c Prediction
probabilities of samples in the 100 left-out testing sets using the optimal mode of the
corresponding iterations, stratified into true labels (case and control). d Important

features of the final model. x-axis represents the signed model important scores (t-
statistics) of the features in the training set, y-axis represents their t-statistics in the
feature selection set. e PCA leveraging themost important features of the finalmodel
in panel (d). f Waterfall plot of prediction probability of all samples across 100
resampling steps. g Normalised values of the important features in panel (d) stra-
tified by individual samples and ordered according to panel (f). Features belonging to
the same data modality are grouped together.
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with the upregulation of these proteins, signalling pathways downstream of
GPCR signalling, specifically involving chemokine-induced inflammation,
were also significantly up-regulated. Subclinical inflammation is an estab-
lished hallmark of DSPN, as people affected by the disease often have ele-
vated levels of pro-inflammatory cytokines that are associated with nerve
damage25,29,44,45. It has been hypothesised that a cross-talk of innate and
adaptive immune cells contributes toDSPN29, which is further supportedby
our study, but requires further mechanistic validation.

Remarkably, inflammatory effects were observed in the blood samples
prior to disease onset. Thus, the predictive pro-inflammatory cytokines,
chemokines and transmembrane proteins observed in this study could
represent modifiable risk factors and therefore therapeutic targets for dis-
ease prevention. For example, salicylate was reported in many studies to
have inhibitory effects on production of cytokines and chemokines46. In
addition, novel treatment approaches targeting IL-1beta-related mechan-
isms have been demonstrated to reduce subclinical inflammation and have
beneficial effects on cardiometabolic risk47,48, and may be generalisable for
DSPN. Beyond pharmacological approaches to attenuate subclinical
inflammation, it is important to emphasise that subclinical inflammation is
triggered by a range of othermodifiable risk factors such as high-calorie diet,
certain nutrients, physical inactivity, obesity, psychosocial stress and sleep
disturbances so that lifestyle changes represent another option for
intervention49.

The transcriptomic layer also gained attention as one of the most
important predictors of DSPN. Particularly, significant down-regulation of
the small ubiquitin-relatedmodifier (SUMO)pathwaywas consistentwith a
recent study50, which demonstrated SUMOposttranslational modifications
are involved in glycolysis. Furthermore, the tricarboxylic acid (TCA) cycle
plays a crucial role inmaintaining importantmetabolic processes in sensory
neurons, and deficiency of SUMO activity causes damaging effects which
may specifically contribute to DSPN pathogenesis50. Although this enrich-
ment analysis has tobe interpretedwith cautiondue to the small sample size,
it is noteworthy that oxidative stress and inflammation have been proposed
as mediators linking hyperglycaemia and impaired SUMOylation in dia-
betic polyneuropathy and that aberrant SUMOylation has also been

implicated in the aetiology of neurodegenerative diseases51. Thus, this
finding extends the aforementioned results on inflammation, corroborates
other studies and may point towards another mechanism how DSPN risk
could be targeted by addressing modifiable risk factors leading to inflam-
mation and oxidative stress.

Three fatty acids were identified as potential biomarkers of incident
DSPN, i.e. caprate, linolenate and adrenate. Capric acid, also known as
decanoid acid, binds to the α-amino-3-hydroxy-5-methyl-4-iso-
xazolepropionic acid (AMPA) receptor, a glutamate receptor that mediates
synaptic transmission in the brain. Capric acid has antioxidative effects
in neuronal cells52 and has been implicated in the amelioration of several
neurological diseases53 so that further studies of the potential role
of decreased capric acid levels for the development of DSPN appear pro-
mising. Adrenic acid-derived epoxy fatty acids have anti-nociceptive
properties and can reduce inflammatory pain54 so that a link between lower
levels and higher risk of DSPN appears biologically plausible. Linolenic acid
and adrenic acid, or all-cis-7,10,13,16-docosatetraenoic acid, are also
essential polyunsaturated fatty acids (PUFA), which are precursors of more
potent derivatives such as arachidonic (omega-6, ARA) and docosahex-
aenoic (omega-3, DHA) acids, which serve as either building blocks of
cell membrane or substrates for the synthesis of inflammation-related
compounds and are involved in neural development processes55,56. Fur-
thermore, DHA reduces pro-inflammatory cytokines and induces anti-
inflammation cytokines, which is consistent with the observed patterns
of inflammatory proteins in our datasets55. In addition, certain groups
of GPCR called free fatty acid receptors (FFAR), such as GPR40/FFAR1
and GPR120/FFAR4, are activated by PUFAs and medium-chain fatty
acids (MCFA), such as capric acid, to regulate many cellular processes, i.e.
insulin secretion, inflammation, neural cognitive and sensory function57.
Overall, caprate, linolenate and adrenate have not been linked to DSPN in
detailed investigations but nevertheless highlight the possibility that
they should be modifiable risk factors that could be modulated by specific
dietary interventions or dietary supplements. Importantly, experimental
results suggested that PUFA might be a potential agent to treat DSPN58,59,
subject to future studies focussing on high-risk individuals assessing the

Fig. 4 | Enrichment of inflammatory cytokines- and essential fatty acids-related
pathways as important signatures of DSPN progression. a Sub-network of
important features to predict development of DSPN. Each node is a feature coloured
according to its datamodality. Edges are the number of sharedmolecule sets between
two nodes. The important features in the final model are highlighted and labelled in
black. Below are examples of enrichedmolecule sets associatedwithb inflammation-

related proteins, c transcripts and dmetabolites: b The upregulation of “Chemokine
receptors bind chemokine” gene set. c SUMOylation of DNA replication proteins.
d G alpha (q) signalling events. Molecules are ranked in decreasing order of t-
statistics, with ticks representing molecules that belong to the examined mole-
cule set.
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potential preventive and therapeutic properties of dietary fatty acids in this
context.

One strengthofour study’s design is theutilisationof population-based
prospective data from a large cohort (KORA F4). The KORA cohort con-
tains repeated assessment of DSPN status using identical examination
methods at two timepoints, which allows studying both prevalent and
incidentDSPN.The fact that themean follow-up timewas 6.5 years and that
we do not have data on DSPN diagnosis between both studies means that
our data cannot be extrapolated to considerably shorter or longer time-
periods than 6.5 years. It is possible that different variables may be more
powerful for short-term or very long-term prediction of DSPNwhich needs
to be addressed in future studies. Furthermore, we presented an innovative
machine learning framework to model incidence of DSPN by integrating
multi-omic and clinical data. Previous efforts either focused on classifying
the disease in a cross-sectional context, lacked multi-omics integration
strategies or exhibited limitations of univariate statistical analyses29,60–64. In
our study, themulti-omic data integration added significant information to
boost predictive performance. Strikingly, our findings were observed in
blood instead of biopsies containing neuronal cells which would be more
tissue-specific for DSPN but are not accessible in large epidemiological
cohort studies. Results of this study highlighted the utility of a less invasive
blood-based assay to study complex diseases such as DSPN in clinical
practice. Although the prediction performance could be improved further
by increasing the quantity and quality of data collection andmore advanced
machine learning development, we believe that using such a model could
both be valuable in clinical practice and for the design of future intervention
studies.On the one hand, the early identification of people at elevated risk of
DSPN could lead to an intensification of (pharmacological and non-phar-
macological) risk factor treatment in these people. On the other hand, our
model could be used for an enrichment of high-risk individuals in future
intervention trials which could reduce required sample size and therefore
the costs to assess novel prevention and treatment options. In the long run,
our results indicate potentially actionable biomarkers that could be targeted
by novel therapy concepts.

One limitation of this study is that our IMMLrelies substantially on the
availability of prior biological knowledge and functional annotation of
biomolecules, which thereby reduces the number of evaluated features and
may introduce a bias. That being said, incorporating biological knowledge
during feature selection increased interpretability, reduced multiple
hypothesis testing and utilised cumulatively low-effect size features, overall
boosting themodel performance. It is our belief that IMML achieves a good
balance betweenpredictive power and interpretableDSPNsignature, which
thereby increases clinical translatability. In addition, validationwith external
cohorts is currently not feasible due to the uniqueness of the KORAdataset,
i.e. deep molecular and longitudinal phenotypic DSPN characterisation,
which empowered this study.

One aspect that wewere unable to claim are causal relationships due to
the inherent limitations of theKora study design. This is neither addressable
in the cross-sectional studies, nor in the prospective segment of our analysis,
which concentrates on the occurrence of diabetic sensorimotor poly-
neuropathy (DSPN), however, the latter sheds light on the temporal asso-
ciations between risk factors and the onset ofDSPN.Todelve into the aspect
of causality, alternative methodologies are warranted, such as Mendelian
randomisation studies conducted in human cohorts or investigations uti-
lising animal models and in vitro studies employing pertinent cell culture
models of neurotoxicity. Our findings concerning incident DSPN offer
promising candidates for such inquiries subject to further studies.

In summary, we presented the IMML framework which allows
studying multifactorial diseases, here exemplified with DSPN. Leveraging
IMML, we were able to stratify individuals according to prevalent DSPN
status using only clinical variables. More importantly, IMML showed that
molecular data is essential to predict the incidence of DSPN, and patholo-
gical signatures are detectable in blood samples 6–7 years before disease
onset. IMML is capable of integrating sparse multimodal data, and is gen-
eralisable to other cohorts and comorbidities. In essence, IMML simplifies

the integration and interpretation, thus giving insights in the disease
pathophysiology of DSPN, and may navigate the next generation of diag-
nostic, prevention and treatment strategies of DSPN.

Data availability
The KORA F4/FF4 cohort dataset is not publicly available due to data
protection agreements to protect patient confidentiality. However, data
access for research purposes can be requested via the KORA platform at
https://helmholtz-muenchen.managed-otrs.com/external/. Data of the
results shown in the main figures is in Supplementary Data 3.

Code availability
The analysis code of this paper is available at https://github.com/phngbh/
DSPN 65. The developed IMML framework is available at https://github.
com/phngbh/IMML 66.
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