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SUMMARY
Precision medicine is still not considered as a standard of care in obesity treatment, despite a large hetero-
geneity in the metabolic phenotype of individuals with obesity. One of the strongest factors influencing the
variability in metabolic disease risk is adipose tissue (AT) dysfunction; however, there is little understanding
of the link between distinct cell populations, cell-type-specific transcriptional programs, and disease
severity. Here, we generated a comprehensive cellular map of subcutaneous and visceral AT of individuals
with metabolically healthy and unhealthy obesity. By combining single-nucleus RNA-sequencing data with
bulk transcriptomics and clinical parameters, we identified that mesothelial cells, adipocytes, and adipo-
cyte-progenitor cells exhibit the strongest correlation with metabolic disease. Furthermore, we uncovered
cell-specific transcriptional programs, such as the transitioning of mesothelial cells to a mesenchymal
phenotype, that are involved in uncoupling obesity frommetabolic disease. Together, these findings provide
valuable insights by revealing biological drivers of clinical endpoints.
INTRODUCTION

The global obesity pandemic is worsening in many parts of

the world resulting in an increased prevalence of associated

sequelae.1 Despite its strong association with the risk of

morbidity, marked interindividual differences in the manifesta-

tion of cardiometabolic disease exist, with a subset of individuals

with obesity being classified as metabolically healthy (metaboli-

cally healthy obesity [MHO]).2 Considering the absence of type 2

diabetes, hypertension, dyslipidemia, and cardiovascular dis-

ease in these individuals, it is important to understand which

cellular and molecular mechanisms define the metabolic hetero-

geneity in obesity.

Intra-abdominal adiposity is regarded as one of the strongest

predictors ofmetabolic health risk, which can be attributed to the

degree of adipose tissue (AT) dysfunction.3–7 An expansion of

adipocyte size can induce adipocyte stress-response transcrip-

tional programs and AT remodeling, being characterized on the

tissue level by changes in the cellular composition and tissue ar-

chitecture.8–10 Adding to the plasticity and heterogeneity of AT,

impairments in the metabolic flexibility of adipocytes strongly
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alter the secretory profile of AT which can induce dysregulations

in systemic energy homeostasis and enhance metabolic disease

development.8 Furthermore, the cellular landscape of AT is not

only highly sensitive to different metabolic and pathological

states but is also determined by the fat depot, gender, and

age.9 Considering the myriad functions of AT, any of these fac-

tors can affect the individual’s risk to develop disease and may

shape the heterogeneity among individuals with obesity.

Recent advances in single-cell and single-nucleus transcrip-

tomics technologies provided new insights into the multiple

layers of human AT heterogeneity, extending beyond the stan-

dard classification of AT-resident cell types.11–14 These studies

defined various cellular subpopulations in AT10,11,14 and enabled

a deep characterization of the cellular landscape of human AT in

response to obesity progression.11–13 However, the precise cell-

specificmechanisms in AT that can uncouple obesity frommeta-

bolic disease development have not been elucidated yet.

In this project, we generated the first transcriptional atlas

of human subcutaneous and visceral AT comparing people

with MHO and metabolically unhealthy obesity (MUO). Our

experimental design accounts for different aspects that
uary 4, 2025 ª 2024 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Adipose tissue of individuals with obesity is extensively remodeled in different health states in a depot-specific manner

(A) Cohort design and experimental plan.

(B–F) (B) BMI, (C) body fat, (D) euglycemic, hyperinsulinemic clamp glucose infusion rate (ClampGIR), (E) visceral, and (F) subcutaneous AT area distribution

between individuals with MHO (n = 32) and MUO (n = 45).

(legend continued on next page)
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influence AT function and metabolic health, such as adipose

topography, adiposity, and gender. Combining the cell-type-

specific information with bulk transcriptomics of AT samples,

and clinical parameters, we identified key players for unhealthy

AT remodeling and AT-specific predictors for metabolic

disease risk. Based on these datasets, future studies can identify

novel, cell-type-specific biomarkers to assess AT function, thus

providing a roadmap for more phenotype-tailored options in

obesity treatment.

RESULTS

AT of individuals with obesity is extensively remodeled
in different health states in a depot-specific manner
To study the involvement of AT function in metabolic disease, we

collected clinical parameters, and white subcutaneous and

visceral AT samples in a cohort of 77 men and women with

MHO and MUO and performed bulk- and single-nucleus (sn)

RNA sequencing (Figure 1A). Individuals with MHO had similar

body mass index (BMI) (Figure 1B), body fat content (Figure 1C),

body weight, and waist circumference compared to individuals

with MUO (Tables 1 and S1) but were characterized by signifi-

cantly better markers for insulin sensitivity (glucose infusion rate

during the steady state of an euglycemic-hyperinsulinemic clamp

(Figure 1D), fasting plasma glucose and insulin, oral glucose toler-

ance), lipid homeostasis (fatty acids, high-density lipoprotein

[HDL] cholesterol) and liver function tests (ALAT and ASAT, all

Table S1). As previously described,4 individuals with MUO

showeda striking increase in visceral AT (Figure 1E) area, whereas

the amount of subcutaneous AT was unchanged (Figure 1F).

The strong differences in intra-abdominal adiposity among the

study participants provided the ideal framework to investigate

mechanisms of unhealthy AT remodeling and their potential

role in disease development. Thus, we performed bulk RNA

sequencing of both depots from individuals with MHO and

MUO. Unexpectedly, despite a clear separation by systemic

metabolic parameters, the WAT transcriptome of MHO and

MUO did not separately cluster in the two-dimensional prin-

cipal-component analysis (PCA) space (Figures S1A and S1B).

In line with a large heterogeneity in the dataset, the metabolic-

health-associated differences in the bulk transcriptomic profile

were subtle, as validated by few differentially expressed genes
(G) Uniform manifold approximation and projection (UMAP) of 28,931 nuclei repre

broad cell types.

(H) Violin plot showing selected marker gene expression for visceral AT cell clus

(I) Bar plots showing relative cell-type proportions in visceral AT of individuals w

(J) UMAP of 19,186 nuclei representing subcutaneous AT of pooled 36 individua

(K) Violin plot showing selected marker gene expression for subcutaneous AT ce

(L) Bar plots showing relative cell-type proportions in subcutaneous AT of individ

(M and N) Violin plots showing estimated relative cell-type proportions from the b

individuals with MHO (n = 31, 29) and MUO (n = 43, 39) based on the marker ge

(O and P) Multi-cellular factor analysis summary for (O) visceral and (P) subcutan

pooled individuals as inferred by themodel. Percentage of explained variance (R2

ANOVA) with covariates (condition, sex) are shown for each latent factor in the

indicated in the lower panel.

Statistical significancewas analyzed byWilcoxon signed-rank test (B–F), two-taile

(Abbreviations: adipose tissue, AT; metabolically healthy obesity, MHO; metabo

APCs; mesothelial cells, MesoCs; endothelial cells, EndoCs; lymphatic endothelia

muscle cells, SMCs; neuronal like cells, NeurCs; and mast cells, MastCs).
with 2-fold change in visceral AT (n = 120, p < 0.01) and subcu-

taneous (n = 19, p < 0.01) AT comparing MUO against MHO

(Figures S1C and S1D).

As AT harbors the capacity to flexibly adapt its cellular

composition under physiological and pathological conditions,10

we hypothesized that transcriptional differences might be

masked by alterations in the cellular profile of AT. Thus, we per-

formed snRNA sequencing of pooled AT samples (Tables S2

and S3) from each depot of individuals with MHO and MUO.

We were able to retrieve 28,931 nuclei for visceral and

19,186 nuclei for subcutaneous AT after quality filtering and an-

notated all broad canonical cell populations present in AT

based on previously described markers11 (Figures 1G, 1H, 1J,

1K, S1E, and S1F). The cellular composition of visceral AT

was remarkably different comparing MHO with MUO, affecting

the abundance of almost every cell population (Figures 1G and

1I), whereas the cellular landscape of subcutaneous AT was

mostly unchanged (Figures 1J and 1L). The most prominent

changes were evident by an overrepresentation of the relative

proportion of mesothelial cells (MesoCs) in visceral AT of indi-

viduals with MHO (Figures 1G and 1I). Furthermore, the

fraction of visceral adipocytes was higher in MHO over MUO

(Figures 1G and 1I) indicative of maintained adipocyte

hyperplasia.

To preserve individual AT heterogeneity often masked by

pooling, we demultiplexed the snRNA-sequencing datasets

based on called SNPs (Figures S1G and S1H). We found that

the compositional differences of visceral AT between the con-

ditions remained consistent across the SNP-demultiplexed in-

dividuals, reinforcing the reliability of our dataset (Figure S1G).

To further extend our observation and increase statistical po-

wer, we deconvoluted the bulk RNA-sequencing dataset of

the whole cohort, using cell-type-specific markers identified

by snRNA sequencing. We again confirmed that changes

in the above-mentioned populations of visceral AT were

conserved (Figure 1M). Additionally, by deconvoluting the

bulk RNA-sequencing dataset of subcutaneous AT, we were

able to capture significant changes in the relative abundance

of several cell populations comparing MHO and MUO (Fig-

ure 1N). Most notably, the estimated relative abundance of ad-

ipocytes and adipocyte-progenitor cells (APCs) was higher in

MHO compared to MUO in subcutaneous AT (Figure 1N).
senting visceral AT from 41 pooled individuals with MHO and MUO colored by

ters.

ith MHO and MUO.

ls with MHO and MUO colored by broad cell types.

ll clusters.

uals with MHO and MUO.

ulk RNA-sequencing deconvolution of (M) visceral and (N) subcutaneous AT of

nes identified by snRNA sequencing.

eous AT showing the hierarchical clustering of latent factor scores across the

) by each indicated cell type and statistical associations (adjusted p values from

upper panel. Condition and status of each SNP-demultiplexed individual are

d unpaired t test (M–N) or one-way ANOVAwith Tukey post hoc tests (O and P).

lically unhealthy obesity, MUO; adipocytes, Adipo; adipocyte-progenitor cells,

l cells, LECs; macrophages, Macro; monocytes, Mono; pericytes, Peri; smooth
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Table 1. Summary of key clinical parameters characterizing individuals with MHO and MUO

Parameters MHO (n = 32) MUO (n = 45) FDR

Sex (female/male) 23/9 32/13 N/A

Adiponectin (mg/mL) 6.93 ± 3.39 3.24 ± 1.77 <0.0001

Age (years) 38.75 ± 10.98 47.09 ± 7.49 0.002

BMI (kg/m2) 46 ± 6.82 46.89 ± 8.12 0.65

Body fat (%) 44.72 ± 5.6 45.55 ± 6.48 0.74

Clamp GIR (mmol/kg/min) 89.38 ± 9.05 29.36 ± 12.5 <0.0001

FPG (mmol/L) 5.22 ± 0.19 5.67 ± 0.34 <0.0001

FPI (pmol/L) 28.74 ± 14.17 107.96 ± 30.32 <0.0001

Free fatty acids (mmol/L) 0.23 ± 0.15 0.47 ± 0.2 <0.0001

gGT (mkat/L) 0.4 ± 0.18 0.63 ± 0.34 0.0001

HbA1c (%) 5.28 ± 0.15 5.81 ± 0.37 <0.0001

Insulin stimulated glucose transport (pmol/mg/min) 5.02 ± 1.14 2.24 ± 0.71 <0.0001

Subcutaneous fat area (cm2) 932.13 ± 124.48 953.67 ± 161.15 0.81

Visceral fat area (cm2) 133.41 ± 24.07 343.78 ± 94.37 <0.0001

Waist circumference (cm) 141.63 ± 13.01 141.96 ± 15.31 0.91

Weight (kg) 134.99 ± 21.07 134.25 ± 27.85 0.81

Values are shown as mean ± SD. FDR was calculated based on Wilcoxon signed-rank test. (Abbreviations: body mass index, BMI; glucose infusion

rate, GIR; fasting plasma glucose, FPG; fasting plasma insulin, FPI; gamma-glutamyl transferase, gGT; and glycated hemoglobin A1c, HbA1c).
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In line with the subtle compositional differences in subcu-

taneous AT, correlating the estimated relative amount of adi-

pose populations with metabolic markers revealed that

visceral populations were strongly associated with metabolic

disease, (Figure S1I), whereas subcutaneous AT showed

weaker associations (Figure S1J). Specifically, in visceral AT,

MesoCs and adipocytes demonstrated robust positive corre-

lations with a favorable metabolic profile (Figure S1I). To

explore the single-nuclei datasets in an unsupervised manner,

we performed multi-cellular factor analysis (MOFA-cell15). We

restricted the analysis only to the well represented major cell

types across the SNP-demultiplexed individuals to capture

the principal source of variation (Figures 1O and 1P). For

visceral AT, results showed a clear conditional separation be-

tween MHO and MUO captured by all the factor scores (Fig-

ure S1K), but most strongly along latent factor 1 (Figure

S1L), which is predominantly driven by the transcriptional dif-

ferences in MesoCs and APCs (Figure 1O). In contrast to

visceral AT, the conditional separation of subcutaneous AT

was less pronounced, as captured by all factor scores (Fig-

ure S1M). Nevertheless, we still observed conditional separa-

tion between MHO and MUO (Figure S1N) along subcutane-

ous latent factor 2, mainly driven by the transcriptional

differences in adipocytes (Figure 1P). Overall, MesoCs and

APCs were able to individually explain more than 50% of the

transcriptional variability in the visceral AT snRNA-seq dataset

(Figure S1O), whereas adipocytes individually explained about

30% of the transcriptional variability in subcutaneous AT

(Figure S1P).

Together, we generated the first cellular-resolved map

capturing the transcriptional differences in visceral and subcu-

taneous AT of MHO and MUO, thereby identifying AT-specific

cell types that are most strongly associated with metabolic

health.
4 Cell Metabolism 37, 1–16, February 4, 2025
AT compositional changes in individuals with MUO are
predominantly independent of sex and adiposity
A significant amount of literature suggests that there is a sex

dimorphism in the susceptibility to develop metabolic disease

upon obesity progression.16 In line, MOFA-cell revealed that

latent factor 2 in visceral AT clearly separates the transcriptome

of women and men (Figure 1O). This factor was mainly driven by

APCs andmacrophages (Figure 1O), and the conditional separa-

tion by sex was only evident in MUO, not in MHO (Figures 2A and

2B). In subcutaneous AT, sex introduced even more variation in

the dataset than metabolic health (Figure 1P). Factor 1 was deci-

sive for the sex-dependent conditional separation in MHO (Fig-

ure S2A), which was driven by transcriptional differences in

APCs and EndoCs (Figure 1P), and adipocyte-driven factor 3

conditionally separated women andmenwithMUO (Figure S2B).

On a systemic level, stratifying plasma parameters by sex re-

vealed subtle difference in disease severity, with women in gen-

eral being more insulin sensitive (Figures 2C–2E), despite no dif-

ferences in overall adiposity (Figure S2C), waist circumference

(Figure S2D), or plasma lipid parameters and HbA1c levels

(Figures S2E–S2I). The subcutaneous AT volume was un-

changed (Figure 2F), whereas visceral AT volume (Figure 2G)

and body weight (Figure S2J) of men with MUO was significantly

higher compared with women with MUO. Interestingly, women

with MUO were significantly older than women with MHO (Fig-

ure S2K), which is in line with unfavorable AT distribution and

metabolic disease development in post-menopausal women.16

Given the strong sex-dependent conditional separation of in-

dividuals with MUO, we stratified the snRNA sequencing and de-

convoluted bulk RNA-sequencing datasets of MUO by sex

(Figures 2H–2M).

Despite subtle changes in the disease-induced alterations in

the cellular composition of visceral (Figures 2H, 2I, and S2L)

and subcutaneous AT (Figures 2J, 2K, and S2M) in the pooled
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Figure 2. AT compositional changes in visceral AT of MHUO are mostly independent of sex and adiposity

(A) Multi-cellular factor analysis showing the separation of MHO and MUO or male and female within MUO, respectively, along the visceral AT latent factors 1

and 2.

(B) Violin plot showing visceral AT latent factor 2 score distribution in male (_M) and female (_F) individuals with MHO and MUO.

(C–G) (C) Fasting plasma insulin (FPI), (D) glucose tolerance (gGT), (E) euglycemic, hyperinsulinemic clamp glucose infusion rate (ClampGIR), (F) subcutaneous,

and (G) visceral AT area distribution across female (_F) and male (_M) individuals with MHO or MUO.

(H and J) UMAPs representing (H) visceral and (J) subcutaneous AT (13,882 and 10,354 nuclei, respectively) of individuals with MUO (n = 23) colored by broad

cell types.

(I and K) Bar plots showing relative cell-type proportions in (I) visceral and (K) subcutaneous AT of individuals with MUO, split by sex.

(L and M) Violin plots showing estimated relative cell-type proportions from the bulk RNA-sequencing deconvolution of (L) visceral and (M) subcutaneous AT of

individuals with MUO (n = 43, 39), split by sex.

(N and P) UMAPs representing (N) visceral and (P) subcutaneous AT (14,349 and 10,117 nuclei, respectively) of metabolically healthy non-obese (MHNO) in-

dividuals and individuals with MHO (n = 13) colored by broad cell types.

(legend continued on next page)
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snRNA-sequencing dataset, the estimated proportion of cell

types derived from the deconvoluted bulk RNA-sequencing da-

tasets did not show statistically significant changes between

sexes (Figures 2L and 2M), suggesting that these alterations

are not conserved in a larger group of individuals.

Next, we aimed to investigate whether high adiposity per se,

without increased metabolic disease parameters, induces tissue

remodeling. Therefore, we performed snRNA sequencing on

pooled AT samples of each depot from an independent cohort

of non-obese, metabolically healthy (MHNO) individuals (clinical

data summary in Table S4), Interestingly, we could not findmajor

cellular compositional differences in visceral (Figures 2N and 2O)

or subcutaneous AT (Figures 2P and 2Q) when comparing the

composition of MHNO with MHO, reinforcing that healthy AT

expansion is strongly linked to preserved systemic nutrient ho-

meostasis despite obesity. The only differences we found in

both depots were a higher number of adipocytes in the obese

compared with non-obese group, but this did not reach statisti-

cal significance upon demultiplexing of the snRNA-seq datasets

(Figures S2N and S2O).

Together, MOFA-cell analysis revealed transcriptional differ-

ences in distinct cell types comparing women and men with

MUO, which might explain the sex-based dimorphism in the

severity of metabolic disease. However, the broad composi-

tional changes induced by unhealthy AT remodeling were mainly

independent of sex and adiposity.

Adipocyte function is strongly associated with
metabolic health
Adipocytes are among the first responders to nutritional cues and

metabolic flexibility of adipocytes is crucial for AT function.17

Furthermore, recent studies have begun to dissect adipocyte het-

erogeneitywithin a single adipose depot, suggesting that they can

be stratified into several distinct subpopulations.11–13,18

In line with previous data,4 we found that the maximal and

mean adipocyte size was significantly higher in the metabolically

unhealthy group (Figure 3A). Furthermore, we identified a

marked cellular heterogeneity of adipocytes, which is demon-

strated by clustering of visceral adipocytes into five populations

(vAdipo1-5) (Figures 3B and 3C). By performing a detailed com-

parison of the gene signature of the five subclusters with previ-

ously defined adipocyte subpopulations, we found that Adipo1

(leptin [LEP]), Adipo2 (perilipin [PLIN]), and Adipo3 (serum amy-

loid A1 [SAA1]) (Figure 3B), correspond to the three white adipo-

cyte subtypes identified by B€ackdahl et al.13 (Figure S3A). These

subclusters showed an enrichment of inflammatory (Adipo1

[LEP], Figure S3B), lipid-metabolic (Adipo2 [PLIN], Figure S3C),

and adipogenic (Adipo3 [SAA1], Figure S3D) pathways. Two

adipocyte subpopulations were unique to the visceral depot,

namely vAdipo4 (fibroblast growth factor 14 [FGF14]) and vA-

dipo5 (fms-like tyrosin linase 1 [FLT1]) (Figures 3B and 3C), which

were characterized by an upregulation of pathways involved in

focal adhesion (Figure S3E) and angiogenic pathways (Fig-
(O and Q) Bar plots showing relative cell-type proportions in (O) visceral and (Q)

Statistical significance was analyzed by one-way (B) and two-way ANOVA (C–G

viations: adipose tissue, AT; metabolically healthy obesity, MHO; metabolically u

Adipo; adipocyte-progenitor cells, APCs; mesothelial cells, MesoCs; endothel

monocytes, Mono; pericytes, Peri; smooth muscle cells, SMCs; neuronal like ce
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ure S3F), respectively. Unexpectedly, the systemic health state

did not affect the prevalence of any visceral adipocyte subpop-

ulation (Figures 3D and S3G–S3I).

To further compare Adipo1-5 with previously published data-

sets, we projected our visceral subclusters onto the dataset of

Emont et al.11 We noted that most adipocyte subpopulations

were predicted to be hAd2 in visceral AT (Figure S5J), which

were described as visceral-specific basal adipocytes.11 To

investigate similarities of the two datasets on a more holistic

level, we compared adipocyte-specific enriched pathways and

found that vAdipo4 (FGF14) corresponded to the thermogenic,

axon-guidance-enriched hAd6 population, and vAdipo5 showed

a stronger enrichment of antigen-presenting pathways like hAd2

(Figure S3K).11

To examine the coherence in how adipocytes respond to

metabolic health conditions, we performed pseudobulk analysis

using SNP-demultiplexed individuals and visualized visceral ad-

ipocytes in the two-dimensional PCA space. In contrast to the

lack of conditional separation in the bulk RNA-sequencing

data, the snRNA-seq data revealed a clear separation between

visceral adipocytes from healthy and diseased conditions (Fig-

ure 3E). In linewith numerous studies, which reported that adipo-

cyte hypertrophy induces metabolic inflexibility (as reviewed in

e.g., Bl€uher19), we found a decreased abundance of transcripts

encoding for metabolic pathways (Figure 3F) and a significant

enrichment of genes involved in hypoxia-related pathways (Fig-

ure 3G) when comparing metabolically unhealthy over healthy

visceral adipocytes.

Next, we focused our analysis on adipocytes from the

subcutaneous AT depots. Re-clustering of subcutaneous

adipocytes led to the identification of two depot-specific popu-

lations, sAdipo4 (early growth response 1 [EGR1]) and sAdipo5

(neuronal-related cell adhesion molecule [NRCAM]), whereas

Adipo1–3 were conserved among visceral and subcutaneous

AT (Figures 3H, 3I, and S4A). Interestingly, the relative proportion

of sAdipo5 (NRCAM) was strongly and consistently higher in

subcutaneous AT of MUO compared with MHO (Figures 3J,

3K, S4B, and S4C). The subcutaneous-specific adipocyte sub-

populations were characterized by the enrichment of genes

involved in inflammation-related pathways (sAdipo4 [EGR1], Fig-

ure S4D), and growth-related pathways, such as mitogen-acti-

vated protein kinase (MAPK) signaling (sAdipo5 [NRCAM], Fig-

ure 3L). By comparing adipocytes of the Emont et al. dataset

with our subcutaneous adipocyte subclusters, we noted

that most of the adipocyte subpopulations were predicted to

be hAd1 (Figure S4E), which represent subcutaneous-specific

basal adipocytes.11 More detailed analysis revealed that

sAdipo4 (EGR1) shared similarities with the gene signature of

hAd1, and sAdipo5 (NRCAM) and sAdipo3 (SAA1) exhibited an

enrichment of pathways involved unsaturated fatty acid synthe-

sis like hAd4 (Figure S4F).11

In line with the disease-dependent transcriptional alterations

in visceral adipocytes, we found that the transcriptome of
subcutaneous AT of MHNO and MHO.

) with Tukey post hoc tests or by two-tailed unpaired t test (L and M). (Abbre-

nhealthy obesity, MUO; metabolically non-healthy obese, MHNO; adipocytes,

ial cells, EndoCs; lymphatic endothelial cells, LECs; macrophages, Macro;

lls, NeurCs; and mast cells, MastCs).
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Figure 3. Adipocyte function is strongly associated with metabolic health

(A) Maximal and mean visceral adipocyte size distribution in individuals with MHO and MUO.

(B) UMAP of 4,375 nuclei representing visceral adipocytes of individuals with MHO and MUO.

(C) Dot plot showing expression of marker genes used for annotating visceral adipocyte subpopulations.

(D) Bar plots showing relative proportions of visceral adipocyte subpopulations in MHO and MUO.

(E) PCA of pseudobulk data from SNP-demultiplexed individuals showing cluster formation of visceral adipocytes between MHO and MUO, split by sex.

(F and G) Top significant (F) downregulated and (G) upregulated WikiPathways in visceral adipocytes of individuals with MUO vs. MHO.

(H) UMAP of 2,614 nuclei representing subcutaneous adipocytes of individuals with MHO and MUO.

(I) Dot plot showing expression of marker genes used for annotating subcutaneous adipocyte subpopulations.

(J) Bar plots showing relative proportions of subcutaneous adipocyte subpopulations in MHO and MUO.

(K) Violin plots showing relative subcutaneous adipocyte subtype proportions of SNP-demultiplexed individuals with MHO and MUO.

(L) Most significantly enriched WikiPathways of subcutaneous adipocyte subpopulation 5 (sAdipo5 [NRCAM]) based on top marker genes.

(M) PCA of pseudobulk data from SNP-demultiplexed individuals showing cluster formation of subcutaneous adipocytes between MHO and MUO, split by sex.

(N) Top significant upregulated WikiPathways in subcutaneous adipocytes of individuals with MUO vs. MHO.

Statistical significance was analyzed by two-tailed unpaired t test (A and K). (Abbreviations: visceral adipocytes, vAdipo and subcutaneous adipocytes, sAdipo).
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Figure 4. snRNA sequencing uncovers awoman-specific, highly secretory anti-adipogenic progenitor population thatmight recruit adaptive
immune cells to visceral AT

(A) UMAP of 6,233 nuclei representing visceral APCs of individuals split by MHO and MUO.

(B) Dot plot showing expression of marker genes used for annotating visceral APC subpopulations.

(C) Bar plots showing relative proportions of visceral APCs in MHO and MUO, split by sex.

(D) Violin plots showing relative visceral APC subtype proportions of SNP-demultiplexed individuals with MHO and MUO, split by sex.

(E) Feature plots showing expression of PPARG, DPP4, and ZNF804B in visceral APCs.

(F) RNA-scope based staining showing in situ hybridization of probes for ZNF804B in visceral AT of a woman with MUO.

(G) Dot plot showing expression (indicated by color) of cytokines in visceral APCs.

(H and I) (H) Circle plot and (I) heatmap showing predicted differential strength of cell-cell interactions for the indicated sub populations with color indicating

increased (red) or decreased (blue) signaling in visceral AT of MUO vs. MHO.

(J) PCA of pseudobulk data from SNP-demultiplexed individuals showing cluster formation of visceral APCs between MHO and MUO, split by sex.

(legend continued on next page)
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subcutaneous adipocytes derived from the snRNA-seq datasets

is clearly separable between MHO and MUO (Figure 3M). Inter-

estingly, we found that the transcript abundance of genes map-

ping to insulin signaling pathways was increased in subcutane-

ous adipocytes of MUO (Figure 3N).

Taken together, we confirmed that different adipocyte states/

subpopulations exist, with only one subcutaneous adipocyte

subcluster being enriched in the disease state. Furthermore,

we illustrated that visceral adipocyte subpopulations consis-

tently transition from a metabolically active to a hypoxic

phenotype.

snRNA sequencing uncovers a woman-specific, highly
secretory anti-adipogenic progenitor population that
might recruit adaptive immune cells to visceral AT
Adipocyte hypertrophy and AT remodeling in MUO individuals is

facilitated by the interaction of different cell populations in their

respective niche.17 Among them, APCs serve as a source of

new adipocytes upon obesity progression, andmore recent pub-

lications reported that they can control the pro-inflammatory

phenotype of AT under disease conditions (as reviewed in, e.g.,

Ferrero et al.20).

To analyze APC heterogeneity and function under MHO and

MUO, we re-clustered the APCs, allowing us to stratify them

into fivedifferent visceral (Figures4Aand4B) and four subcutane-

ous populations (Figures S5A and S5B), all of which express

platelet-derivedgrowth factor receptor alpha (PDGFRA) and lam-

inin subunit alpha 2 (LAMA2) (Figures S5C and S5D). Based on

the published markers,10 we defined them as fibro-adipogenic

progenitors (FAPs), anti-adipogenic progenitors (AAPs), and

two distinct committed preadipocyte populations (CPAs1 and

CPAs2; Figures S5E and S5F). In visceral AT, AAPs were further

clustered into two subpopulations, AAPs1 (EPHA3+ZNF804B�),

and AAPs2 (EPHA3+ ZNF804B+; Figures 4A and 4B). The abun-

dance of subcutaneous APC subpopulations was unchanged

among the groups (Figures S5G and S5H), whereas many of the

visceral APC subpopulations showed dependency on metabolic

health status, sex, or both (Figures 4C and 4D). In detail, CPAs1

(flavin-containing monooxygenase 2 [FMO2]) were decreased in

visceral AT of MUO (Figures 4C and 4D). In contrast, the relative

abundance of CPAs2 (intercellular adhesion molecule 1

[ICAM1]) was increased in men with MUO, but not in

women, which inversly correlated with the abundance of FAPs

(Figures 4C and 4D). Both CPAs highly expressed adipogenic

genes like peroxisome proliferator-activated receptor gamma

(PPARG, Figure 4E), in line with their advanced commitment

along the adipogenic trajectory, and FAPs expressed the stem

cell marker dipeptidyl-peptidase 4 (DPP4, Figure 4E). The most

prominent changes were reflected by an increase in a visceral-

specific subpopulation defined as AAPs2 in MUO (Figures 4C

and4D), whichwas characterized by the expression of zinc finger

protein 804B (ZNF804B) (Figure 4E).WedetectedZNF804B-pos-
(K) Top significant downregulated WikiPathways in visceral APCs of MUO femal

(L) UMAP of 3,710 nuclei representing visceral immune cells of individuals colore

(M) Bar plots showing relative proportions of visceral immune cell subpopulation

Statistical significance was analyzed by two-way ANOVA with Tukey post hoc

progenitors, AAPs; fibro-adipogenic progenitors, FAPs; committed pre-adipocyte

associated macrophages, LAMs; monocytes, Mono; dendritic cells, DCs; natura
itive cells within the crown-like structures of visceral AT of a

womanwithMUO (Figure 4F). Interestingly, the increased relative

abundance of AAPs2 (ZNF804B) was strongly sex dependent as

wecouldnotdetect this progenitorpopulation inmenwithobesity

of any group (Figures 4C and 4D). Furthermore, ZNF804B was

captured among the significantly differentially expressed

genes comparing visceral APCs of women and men with MUO

(Figure S6A), and as one of the strongest markers separating

sexes in MUO in MOFA-cell visceral AT factor 2. Transcriptional

signature analysis of AAPs2 (ZNF804B) revealed that they

selectively expressed several cytokines (Figure 4G). In line,

ligand-receptor interaction analysis confirmed that AAPs2 had

a high secretory capacity and interacted with other APC

subpopulations and immune cells (Figure 4H). These interac-

tions were notably enriched in visceral AT of MUO (Figures 4H

and 4I), which was mainly mediated by an increase in path-

ways that affect immune cell recruitment or extra-cellular

matrix composition (like PTPRC, THBS1, and LAMA3 signaling,

Figure S6B).

We next investigated whether AAPs2 could inhibit adipogene-

sis in a sex-specific way. The transcriptional signature of APCs is

clearly separating men and women with MUO (Figure 4J), and

adipogenic pathways such as PPARG signaling are globally

downregulated in APCs of women with MUO compared with

men with MUO (Figure 4K). Additionally, the predicted interac-

tion of AAPs2 with immune cells as well as their high expression

of genes encoding for cytokines prompted us to investigate if the

abundance of this population correlates with the number of im-

mune cells in visceral AT. Re-clustering the visceral immune

cell populations (Figures 4L and S6C) revealed that the relative

abundance of T regulatory cells (Tregs), B cells, and dendritic

cells (DCs) was higher in visceral AT of MUO compared with

MHO (Figures 4L, 4M, S6C, and S6D). Interestingly, this enrich-

ment of adaptive immune cells was only present inMUOwomen,

but not men (Figures 4M and S6E), which corresponded to the

presence of AAPs2 (ZNF804B). Additionally, PVMs and LAMs

were overrepresented in men with MUO compared with women

with MUO, consistent with an overall increase in macrophage

numbers as validated by immunohistochemistry (Figure S6F).

In contrast to visceral AT, the immune cell subtypes in subcu-

taneous AT did not change in response to metabolic health or

sex (Figures S6G–S6J).

Taken together, we describe a so far unrecognized potential

crosstalk between an inflammatory, visceral-specific AAP popu-

lation and adaptive immune cells in women with MUO.

Transitioning of MesoCs along the epithelial to
mesenchymal state strongly correlates with metabolic
health
MesoCs have so far been regarded as an inert cell population,

which forms a protective layer surrounding AT in the visceral

compartment.21 However, more recent studies revealed a great
e vs. male.

d split by MHO and MUO.

s in MHO and MUO, split by sex.

tests (D). (Abbreviations: adipocyte-progenitor cells, APCs; anti-adipogenic

s, CPAs; perivascular macrophages, PVMs; M2-macrophages, M2-Mac; lipid-

l killer cells, NK; and T regulatory cells, Tregs).
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cellular heterogeneity of MesoCs11,12 and pointed to a potential

transition of MesoCs to the mesenchymal state.14

In line, we noted that MesoCs of the broad clustering

separated into two distinct populations, of which one was char-

acterized by the expression of BCHE (Figure 5A), while both

populations expressed the MesoC marker KRT19 (Figure 5B).

The BCHE-positive mesothelial subpopulation showed a

dual gene expression signature, as indicated by the increased

expression of genes involved in mesenchymal programs

(such as CDON and BCHE; Figure S7A); thus, we defined

them as mesenchymal MesoCs (meMesoCs). Interestingly, we

found a notably stronger enrichment of meMesoCs in MHO

over MUO compared with classical MesoCs (cMesoCs) by

deconvoluting the bulk dataset (Figure 5C). In line, stratifying

the MesoCs in these two broad populations revealed that

meMesoCs showed a stronger positive correlation with several

systemic parameters of metabolic health (Figure S7B). Next, we

examined the anatomical location of these cells by in situ hy-

bridization using RNA-scope. There, BCHE-positive cells were

mainly located at the boundaries of AT lobules but can also

be partly found interspersed in AT, surrounding adipocytes

(Figure 5D).

Considering the high similarities of meMesoCs with APCs, we

compared the transcriptional signature of the MesoCs with

previously published datasets of visceral AT.11,12,14 MesoCs

exclusively expressed mesothelial markers (Figure S7C), with

meMesoCs also expressingmesenchymalmarkers (Figure S5D).

APCs lacked expression of MesoCs markers KRT19, TM4SF1,

and EZR, distinguishing meMesoCs from classical adipogenic

progenitors (Figure S7D).

Re-clustering of cMesoCs and meMesoCs revealed six

different subpopulations that flexibly change in their abundance

comparingMHOwith MUO (Figures 5E and 5F). All MesoCs sub-

clusters, besides MesoCs6, expressed the mesothelial markers

KRT19, TM4SF1, and EZR, but to varying extents (Figures S7E

and S7F). Furthermore, reference mapping revealed that

MesoCs subclusters aligned with previously identified MesoC

sub populations, such as hMes1 and hMes2 of the Emont et al.

dataset (Figure S7G). Interestingly, MesoCs6 (fibronectin 1

[FN1]) was almost devoid of mesothelial markers (Figure S7H,

Massier et al.12) but showed an enrichment of the APC marker

genesPDGFRA and FN1 (Figure 5F), in agreement with a gradual
Figure 5. Transitioning of mesothelial cells along the epithelial to mes

(A and B) Feature plot showing expression of (A) BCHE and (B) KRT19 in viscera

(C) Violin plots showing estimated relative proportions of classical mesothelial ce

RNA-sequencing deconvolution of visceral AT of individuals with MHO (n = 31) a

(D) RNA-scope staining showing BCHE-positive cells in visceral AT of a woman

(E) UMAP of 5,310 nuclei representing visceral MesoCs of individuals split by MH

(F) Dot plot showing expression of markers genes used for annotating mesotheli

(G) Bar plots showing relative proportions of visceral MesoCs subpopulations in

(H) Violin plots showing relative MesoCs subtype proportions of SNP-demultiple

(I) Feature plot showing expression of ITLN1 in visceral AT.

(J) Plasma Ometin1 level distribution between individuals with MHO (n = 32) and

(K) Spearman correlation plot showing positive and negative correlations between

sequencing data and indicated clinical parameters. Color scale represents Spe

asterisks. (*p < 0.05, **p < 0.01, ***p < 0.001).

(L) PCA of pseudobulk data from SNP-demultiplexed individuals showing cluste

(M and N) Top significant (M) upregulated and (N) downregulated WikiPathways

Statistical significance was analyzed by two-tailed unpaired t test (C, H, and J), o

cells, MesoCs; classical mesothelial cells, cMesoCs; and mesenchymal mesothe
increase in stem cell markers along the epithelial to mesen-

chymal transition (EMT). Based on the expression of marker

genes, MesoCs1 (keratin 19 [KRT19]), MesoCs3 (cluster of

differentiation 55 [CD55]), and MesoCs4 (peroxisome prolifera-

tor-activated receptor gamma [PPARG]) represent cMesoCs

(Figure S7I), and MesoCs2 (butyrylcholinesterase [BCHE]) and

MesoCs5 (intelectin 1 [ITLN1]) correspond to meMesoC

(Figure S7I).

Furthermore, we noted that only specificmesothelial subtypes

were positively associated withmetabolic health (Figures 5G and

5H). The fraction of MesoCs4 (PPARG) was significantly higher

and MesoCs6 (FN1) trended to be higher in MUO (Figures 5G,

5H, and S7J). In contrast, the relative proportions of MesoCs2

(BCHE) and MesoCs5 (ITLN1) were increased in MHO (Fig-

ure 5G), which reached significance for MesoCs5 (ITLN1) upon

demultiplexing of the dataset (Figure 5H). Additionally, many

marker genes of MesoCs2 (BCHE) and MesoCs5 (ITLN1), such

as BCHE, CDON, DPP4, WT1, and ITLN1, were upregulated in

MesoCs in MHO and were also captured by MOFA-cell in

visceral AT factor 1 driving the conditional separation (Fig-

ure S7K). Given that ITLN1, which encodes Omentin1, repre-

sents a well-described adipokine,22 we aimed to investigate

whether the health-dependent changes in the abundance of

MesoCs5 (ITLN1) might have systemic effects. ITLN1was exclu-

sively expressed by MesoCs within visceral AT (Figure 5I), and

not present in subcutaneous AT (Figure S7L), recapitulating the

previously described depot-specific expression pattern of

ITLN1.23 Furthermore, plasmaOmentin1 levels were significantly

higher in MHO compared withMUO (Figure 5J), establishing it as

promising marker for visceral AT functionality.

Next, we investigated the marker gene expression of the

mesothelial subpopulations in the bulk RNA-sequencing data-

set. We identified that the expression of MesoCs1 (KRT19),

MesoCs2 (BCHE), and MesoCs5 (ITLN1) markers was positively

correlating with clinical parameters of metabolic health

(Figures 5K and S8A). This association was not evident for

marker genes of MesoCs3 (CD55), MesoCs4 (PPARG), and

MesoCs6 (FN1) (Figure S8B). To further investigate the depen-

dency of MesoCs subclusters and metabolic sequalae, we uti-

lized an independent dataset of visceral AT of individuals at the

time of bariatric surgery and 2-years post-surgery (n = 44)

achieving at least 25% of BMI loss (clinical data summary in
enchymal state strongly correlates with metabolic health

l AT.

lls (cMesoCs) and mesenchymal mesothelial cells (meMesoCs) from the bulk

nd MUO (n = 43).

with MHO.

O and MUO.

al sub populations in visceral AT.

MHO and MUO.

xed individuals with MHO and MUO in visceral AT.

MUO (n = 45).

MesoCs1, MesoCs2, and MesoCs5 marker gene expression in the bulk RNA-

arman correlation coefficient values. Significant correlations are indicated by

r formation of visceral MesoCs between MHO and MUO, split by sex.

in visceral MesoCs of individuals with MUO vs. MHO.

r Spearman correlation test (K). (Abbreviations: adipose tissue, AT; mesothelial

lial cells, meMesoCs).
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Table S5). Analysis of bulk RNA-sequencing data of this cohort

revealed that several MesoCs1 (KRT19), MesoCs2 (BCHE),

and MesoCs5 (ITLN1) markers were significantly increased

post-bariatric surgery weight loss (Figure S8C), whereas

markers for other MesoC subtypes remained unchanged

(Figure S8D).

Furthermore, MesoCs showed conditional separation in pseu-

dobulk analysis comparing MHO and MUO (Figure 5L), confirm-

ing that they undergo major transcriptional changes in depen-

dence on health status. Upregulated genes of MesoCs in

visceral AT of MUO were enriched for inflammatory pathways

(Figure 5M), whereas the hedgehog signaling pathway and

PDGFR signaling were increased in MesoCs under healthy con-

ditions (Figure 5N). These data suggest that MesoCs might un-

dergo a switch from a mesenchymal to an inflammatory pheno-

type under disease conditions, providing additional evidence for

an improtant function of MesoCs in visceral AT remodeling.

DISCUSSION

AT plasticity is orchestrated by the abundance and interaction of

various cell types in specialized niches, and a decrease in this

cellular flexibility ignites tissue dysfunction.10 Furthermore,

each anatomical adipose depot displays a distinct pattern of

cell composition, functionality, and disease propensity and

uniquely responds to metabolically demanding conditions.24

By using snRNA sequencing in combination with deconvolution

of bulk RNA-sequencing datasets and unsupervised MOFA-cell,

we generated a map representative of cellular maladaptions in

obesity and identified cell types that are strongly associated

with metabolic sequelae. Overall, dissecting AT at a single-nu-

cleus resolution was superior to bulk transcriptomics in identi-

fying AT-specific signatures that correlate with clinical parame-

ters of the metabolic syndrome. Furthermore, these datasets

admitted the identification of several visceral AT populations

and transcriptional programs, which were strongly associated

with the disease state.

Multiple mechanisms for the paradoxical retainment of meta-

bolic health in obesity have been discussed, among them, low

visceral fat mass and maintained AT function have been pro-

posed as confounding factors.2,4,25,26 Unhealthy AT distribution

can be observed in multiple clinically manifested disease

that are associated with metabolic abnormalities, e.g., lipodys-

trophy, lipodystrophy-like conditions, and Cushing’s disease.3

Genome-wide association study (GWAS) studies showed

that metabolic-health-associated genes are enriched in adipo-

cytes,27 linking adipocyte dysfunction to disease. Furthermore,

the overexpression of the adipokine adiponectin28 or AT-derived

mitochondrial protein mitoNEET29 in genetically obese mice can

mimic the phenotype of human MHO, providing additional evi-

dence that AT function is a confounding factor for metabolic

health. Whereas MHO should not be considered a condition

that does not require treatment, as it might represent a transient

phenotype,2 it offers a unique opportunity to study the relation-

ship between AT dysfunction and severity of metabolic disease

in humans.

Adipocyte heterogeneity within a single depot is a recent

concept that has been introduced by findings from single-nu-

cleus studies.30 Collectively, studies have shown that the pro-
12 Cell Metabolism 37, 1–16, February 4, 2025
portion of lipogenic adipocyte subpopulations was negatively

associated with BMI11,13 and T2D,11 aligning with enhanced

in vivo insulin sensitivity of isolated lipogenic adipocytes13 and

increased lipogenesis in subcutaneous adipocytes of individuals

with MHO.31 Other adipocyte subpopulations (AdipoLEP and

hAd5) were positively associated with T2D,11,12 suggesting that

specific adipocyte subtypes have an inverse association with

the metabolic health state. In our dataset, MUO was character-

ized by an overall lower number of adipocytes in both adipose

depots, and subsequent adipocyte hypertrophy. On the subclus-

ter level, we identified three common10 and two depot-specific

adipocyte populations in visceral and subcutaneous AT. The

visceral-specific vAdipo4 (FGF14) corresponds to previously

identified thermogenic adipocytes hAd6, reinforcing that human

visceral AT may be prone to browning.11 Whereas the amount of

distinct visceral adipocyte subpopulations was unchanged,

visceral adipocytes of MUO were characterized by a shift from

ametabolic to a hypoxic phenotype. In subcutaneous AT, adipo-

cytes represented the cell type, which was most strongly linked

to metabolic health. We identified a distinct inflammatory subcu-

taneous subpopulation (sAdipo5 [NRCAM]), marked byNRCAM,

which was significantly overrepresented in MUO. A similar

NRCAM-positive adipocyte population has previously been

associated with clinical conditions, as shown by a positive corre-

lation between the marker gene for this population and LDL

levels.11

In addition to the intrinsic development of the metabolic inflex-

ibility in adipocytes, impairments in the adipogenic capacity is a

hallmark of adipocyte dysfunction.32 In line with previous single-

nucleus studies showing that the abundance of distinct progen-

itor populationswas strongly associatedwithmetabolic health,12

we found that CPAs1 (FMO2) were reduced in visceral AT of

MUO compared with MHO. Strikingly, the abundance of several

other visceral APCs subpopulations showed a strong sex dimor-

phism, and transcriptional differences in APCs were the greatest

discriminant of men and women in visceral AT under MUO. We

identified a visceral-specific ephrin type-A receptor 3 (EPHA3)-

positive AAP population (Emont et al.11 AAPs2 [ZNF804B]),

which was strongly present in women with MUO, but almost un-

detectable in any other group. AAPs have been shown to sup-

press adipocyte formation through paracrine mechanisms,33,34

which was in conjunction with the reduced expression of adipo-

genic pathways in visceral APCs and the lower relative abun-

dance of CPAs2 (ICAM1), when we compared women with

men with MUO. Furthermore, based on the high expression of

cytokines in AAPs2 and positive relationship of AAPs2 with

adaptive immune cells, we surmise that AAPs2 can either

directly restrict adipogenesis by interaction with other APCs in

their niche, or secondary to the recruitment of adaptive immune

cells. Previously published data showed that APCs secrete

CCL5, which triggered the infiltration of T cells into AT in the early

stages of obesity.35 Additionally, the expression of CCL5 in

visceral AT or isolated APCs of humans showed a positive rela-

tionship with BMI.35 Furthermore, obese female mice showed

improved metabolic health compared with obese males, with

more regulatory T cells, fewer visceral AT macrophages and

higher insulin sensitivity.35 This aligns with our findings, where

women with MUO had better metabolic profiles, more adaptive

immune cells, and lower macrophage counts in visceral AT
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than men. Together, our results suggests that sex has a strong

impact on the metabolic-health-dependent changes in APCs,

most prominently shown by the selective presence of one

visceral-specific, adipogenesis-regulatory cell type in women

with MUO. The potential interplay between APCs, adaptive im-

mune cells, andmacrophagesmay partially explain the observed

sexual dimorphism in AT function and the progression of meta-

bolic disorders.

Besides being the protective barrier of visceral AT, MesoCs

can secrete chemokines, contributing to development of AT

inflammation.21,36 Correlating cell type abundance and marker

gene expression with clinical parameters, and MOFA-cell anal-

ysis revealed distinct mesothelial subtypes (meMesoCs) as key

factors linking AT composition with metabolic health. Further-

more, data from our study points to the direction that visceral

AT MesoCs can adopt different phenotypes along the epithelial

to mesenchymal landscape, which is strongly influenced by sys-

temic health conditions. Early reports on potential adipogenic-

properties of these cells have been controversial, with data of

lineage-tracing models proposing that MesoCs are a source of

adipocytes,37 which was questioned by later studies showing

the markers used in these studies were not specific.38 Only

recently, there is a regained interest in MesoCs as potential con-

tributors to the pool of adipocyte precursors, with a study

showing that distinct human mesothelial subpopulations were

enriched in markers for EMT.14 During EMT, epithelial cells

lose their apical-basal polarity and cell-cell adhesive properties,

adopting a migratory, mesenchymal cell phenotype.39 This cell-

identity switch has been well described in the context of cancer

development, embryogenesis, and wound healing,39 but there is

so far no direct evidence of MesoCs undergoing EMT in AT.

Although a precise mechanism responsible for MesoC plasticity

cannot be determined in our study, we surmise that under

healthy conditions, the environmental-niche and/or cell-intrinsic

factors may promote EMT in MesoCs. This might guarantee a

steady supply of newly differentiated adipocytes from the tissue

surroundings and prevent AT dysfunction.

Personalized treatment options represent the standard of

care for many metabolic diseases, such as cancer,40 but are still

not applied in obesity treatment. Furthermore, although the BMI

is a simple and clinically easily applicable surrogate for

adiposity, studies showed that obesity defined by this metric

is heterogeneous and that individuals with similar BMI or body

weight have remarkable differences in health risk.41 In this

study, we used MHO as a human model to screen cellular

confounders of the metabolic heterogeneity among obese.

Thereby, our study extends on previous datasets by clearly

stratifying individuals based on the degree of metabolic disease.

We identified several visceral-specific cell populations that were

associated with the metabolic syndrome, like MesoCs, adipo-

cytes and APCs. In line with the enlarged visceral depot

volume in MUO, our dataset reinforces that AT distribution

and function is intimately linked to human health. Furthermore,

adipocyte-specific transcriptional analysis revealed that both

visceral and subcutaneous adipocytes distinguish between

MHO and MUO.

Together, we generated the first dataset for single-cell tran-

scriptomics of visceral and subcutaneous AT under clearly

defined metabolic health conditions. This resource provides a
unique opportunity to study AT subpopulations that are involved

in tissue dysfunction and investigate disease-related pathways

and can be used to find novel visceral-specific biomarkers to

monitor the transition from MHO to MUO and vice versa.

Limitations of the study
The snRNA-sequencing data of this study was only generated

on pooled samples and demultiplexed with bioinformatic ap-

proaches based on called SNPs. This approach does not allow

us to perform any association tests with clinical data at the

cell-type level due to missing genetics information at the indi-

vidual level. Furthermore, the cell-type abundance is an esti-

mate and does not reflect true proportions in the AT depot.

Future studies should focus on the physiological function of

the newly defined cell types (such as AAP2s [ZNF804B] and

meMesoCs) and investigate if they are causally involved in

driving metabolic disease. Additionally, this study did not strat-

ify individuals according to age, which is a strong confounder

for metabolic disease development. Another limitation is that

we did not have the chance to sample the biopsies longitudi-

nally, which prevented us from predicting if a transition from

an MHO to MUO state or vice versa could indeed be associ-

ated with compositional differences of the discussed cell pop-

ulations. Furthermore, we cannot rule out that a bias toward

distinct nuclei (depending on size or abundance) for snRNA-

sequencing experiments exists. Lastly, although the whole

cohort compromised a relatively large number of individuals,

the sample size became quite small after stratifying by sex

and might be underpowered.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to the lead

contact, Prof. Christian Wolfrum (christian-wolfrum@ethz.ch).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Bulk RNA and snRNA-sequencing data reported in this study cannot be

deposited in a public repository due to restrictions by patient consent,

but they are available from the lead contact upon request.

d This paper does not report original code.

d Analysis code and web application links to explore the datasets are

available on GitHub (https://github.com/WolfrumLab/MHUO/).

d Original data for generating all graphs in the manuscripts are provided in

Data S1 (unprocessed data underlying the display items in the manu-

script, related to Figures 1, 2, 3, 4, 5, and S1–S8).

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
ACKNOWLEDGMENTS

We are grateful to the study participants. We thank M.R. Schön, D. G€artner, T.

Lohmann, andM. Dressler for contributing adipose tissue biopsies. We appre-

ciate the feedback from B. Noyvert and A. King on the quality control of bulk

transcriptomics data. We also thank Functional Genomics Center Zurich for

providing the computational infrastructure for all bioinformatics analyses.

This work was supported by the German Research Foundation (Deutsche For-

schungsgemeinschaft CRC 1052, project number 209933838, subproject B1

to M.B.) and Swiss National Science Foundation (SNSF 185011 and SNSF
Cell Metabolism 37, 1–16, February 4, 2025 13

mailto:christian-wolfrum@ethz.ch
https://github.com/WolfrumLab/MHUO/


ll
OPEN ACCESS Article

Please cite this article in press as: Reinisch et al., Unveiling adipose populations linked to metabolic health in obesity, Cell Metabolism (2024), https://
doi.org/10.1016/j.cmet.2024.11.006
215605 to C.W.). I.R. was supported by the Austrian Science Fund FWF

(Schroedinger stipend J4760).

AUTHOR CONTRIBUTIONS

I.R. and A.G. contributed equally. I.R., A.G., M.B., and C.W. conceptualized the

study. A.D., A.H., and M.B. provided adipose tissue samples and clinical data.

W.S. and H.D. made bulk RNA-sequencing libraries. I.R. made single-nuclei

RNA-sequencing libraries and performed histological assays. A.G., I.R., and

F.N. analyzed the data. A.G., P.L., and F.N. developed the interactive web ap-

plications. M.B. and C.W. supervised the study. I.R., A.G., and C.W. wrote the

manuscript. All authors contributed to editing and reviewing the manuscript.

DECLARATION OF INTERESTS

M.B. received honoraria as a consultant and speaker from Amgen,

AstraZeneca., Bayer, Boehringer-Ingelheim, Lilly, Novo Nordisk, and Sanofi.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include

the following:

d KEY RESOURCES TABLE

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
B Study design of clinical cohorts

d METHOD DETAILS

B Bulk RNA sequencing

B snRNA-sequencing

B Correlation analysis with clinical parameters

B RNA-scope based stainings

B Statistical analysis

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

cmet.2024.11.006.

Received: February 9, 2024

Revised: August 6, 2024

Accepted: November 10, 2024

Published: December 17, 2024

REFERENCES

1. Bl€uher,M. (2019).Obesity:global epidemiologyandpathogenesis.Nat.Rev.

Endocrinol. 15, 288–298. https://doi.org/10.1038/s41574-019-0176-8.

2. Bl€uher, M. (2020). Metabolically healthy obesity. Endocr. Rev. 41,

405–420. https://doi.org/10.1210/endrev/bnaa004.

3. Stefan, N. (2020). Causes, consequences, and treatment of metabolically

unhealthy fat distribution. Lancet Diabetes Endocrinol. 8, 616–627. https://

doi.org/10.1016/S2213-8587(20)30110-8.

4. Klöting, N., Fasshauer, M., Dietrich, A., Kovacs, P., Schön, M.R., Kern, M.,

Stumvoll, M., and Bl€uher, M. (2010). Insulin-sensitive obesity. Am. J.

Physiol. Endocrinol. Metab. 299, E506–E515. https://doi.org/10.1152/aj-

pendo.00586.2009.

5. Karpe, F., and Pinnick, K.E. (2015). Biology of upper-body and lower-body

adipose tissue—link to whole-body phenotypes. Nat. Rev. Endocrinol. 11,

90–100. https://doi.org/10.1038/nrendo.2014.185.

6. Lee, M.-J., Wu, Y., and Fried, S.K. (2013). Adipose tissue heterogeneity:

implication of depot differences in adipose tissue for obesity complica-

tions. Mol. Aspects Med. 34, 1–11. https://doi.org/10.1016/j.mam.2012.

10.001.

7. Di Angelantonio, E., Di Angelantonio, E., Bhupathiraju, S.N., Wormser, D.,

Gao, P., Kaptoge, S., Berrington de Gonzalez, A., Cairns, B.J., Huxley, R.,

Jackson, C.L., et al. (2016). Body-mass index and all-cause mortality:

individual-participant-data meta-analysis of 239 prospective studies in
14 Cell Metabolism 37, 1–16, February 4, 2025
four continents. Lancet 388, 776–786. https://doi.org/10.1016/S0140-

6736(16)30175-1.

8. Ghaben, A.L., and Scherer, P.E. (2019). Adipogenesis and metabolic

health. Nat. Rev. Mol. Cell Biol. 20, 242–258. https://doi.org/10.1038/

s41580-018-0093-z.

9. Sakers, A., De Siqueira, M.K., Seale, P., and Villanueva, C.J. (2022).

Adipose-tissue plasticity in health and disease. Cell 185, 419–446.

https://doi.org/10.1016/j.cell.2021.12.016.

10. Maniyadath, B., Zhang, Q., Gupta, R.K., and Mandrup, S. (2023). Adipose

tissue at single-cell resolution. Cell Metab. 35, 386–413. https://doi.org/

10.1016/j.cmet.2023.02.002.

11. Emont, M.P., Jacobs, C., Essene, A.L., Pant, D., Tenen, D., Colleluori, G.,

Di Vincenzo, A., Jørgensen, A.M., Dashti, H., Stefek, A., et al. (2022). A sin-

gle-cell atlas of human and mouse white adipose tissue. Nature 603,

926–933. https://doi.org/10.1038/s41586-022-04518-2.

12. Massier, L., Jalkanen, J., Elmastas, M., Zhong, J., Wang, T., Nono

Nankam, P.A., Frendo-Cumbo, S., B€ackdahl, J., Subramanian, N.,

Sekine, T., et al. (2023). An integrated single cell and spatial transcriptomic

map of human white adipose tissue. Nat. Commun. 14, 1438. https://doi.

org/10.1038/s41467-023-36983-2.

13. B€ackdahl, J., Franzén, L., Massier, L., Li, Q., Jalkanen, J., Gao, H.,

Andersson, A., Bhalla, N., Thorell, A., Rydén, M., et al. (2021). Spatial map-

ping reveals human adipocyte subpopulations with distinct sensitivities to

insulin. Cell Metab. 33, 1869–1882.e6. https://doi.org/10.1016/j.cmet.

2021.07.018.

14. Ferrero, R., Rainer, P.Y., Rumpler, M., Russeil, J., Zachara, M., Pezoldt, J.,

van Mierlo, G., Gardeux, V., Saelens, W., Alpern, D., et al. (2024). A human

omentum-specific mesothelial-like stromal population inhibits adipogene-

sis through IGFBP2 secretion. Cell Metab. 36, 1566–1585.e9. https://doi.

org/10.1016/j.cmet.2024.04.017.

15. Ramirez Flores, R.O.R., Lanzer, J.D., Dimitrov, D., Velten, B., and Saez-

Rodriguez, J. (2023). Multicellular factor analysis of single-cell data for a

tissue-centric understanding of disease. eLife 12, 1–27. https://doi.org/

10.7554/eLife.93161.

16. Palmer, B.F., and Clegg, D.J. (2015). The sexual dimorphism of obesity.

Mol. Cell. Endocrinol. 402, 113–119. https://doi.org/10.1016/j.mce.2014.

11.029.

17. Hagberg, C.E., and Spalding, K.L. (2024). White adipocyte dysfunction

and obesity-associated pathologies in humans. Nat. Rev. Mol. Cell Biol.

25, 270–289. https://doi.org/10.1038/s41580-023-00680-1.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study design of clinical cohorts
Leipzig Obesity BioBank (https://www.helmholtz-munich.de/en/hi-mag/cohort/leipzig-obesity-bio-bank-lobb) is a comprehensive

collection of human body fluids, AT samples and related clinical parameters, designed to enhance our understanding of obesity

and its associated disorders across three different cohorts. Samples of omental visceral and abdominal subcutaneous AT were

collected during elective laparoscopic abdominal surgery as previously described58 and immediately frozen in liquid nitrogen and

stored at -80oC. Measurements of body composition and metabolic parameters were performed as previously described.4 In short,

all patients had been examined in supine position in a single 1.5-T MRI system (Achieva XR, Philips Healthcare, Best, Netherlands) us-

ing the integrated whole-body coil for signal reception. The essential image series for fat quantification was a simple dual-echo

gradient-echo pulse sequence with echo times matching opposed-phase and in-phase conditions using the following parameters:

50 transverse slices (two stacks covering the abdominopelvic region between diaphragm and pubic symphysis), slice thickness

10 mm thick, interslice gap 0.5 mm, echo times 2.3 ms and 4.6 ms, repetition time 76 ms, flip angle 70�, field of view 530 mm 3

530 mm, acquisition matrix 216 3 177 and reconstruction matrix 480 3 480. Adipocyte cell size, as well as macrophage count and

diameter, were analyzed using supervised automated analysis with CellSens software. The obtainedmean adipocyte diameter ± stan-

dard error was computed in adipocyte volume using the Hirsh and Gallian formula.59 Adipocyte volume was calculated as described

previously.60 Adipose tissue sampleswere collected in 37�CPBSbuffer, and adipocyteswere isolated by collagenase (1mg/ml) diges-

tion. For the determination of glucose transport, isolated adipocytes from the different fat depotswere stimulatedwith 100nM insulin for

30 min and then incubated for 30 min with 3 mM [U-14C] glucose. Immediately after incubation, adipocytes were fixed with osmic acid

and incubated for 48 h at 37�C, and radioactivity was quantified after the cells had been decolorized. Glucose transport data were

normalized for cell number. To determine adipocyte number and cell size distribution, 200ml aliquots of adipocytes were fixed with os-

mic acid, incubated for 48 h at 37�C, and counted in a Coulter counter (Multisizer III; Beckman Coulter, Krefeld, Germany).

The study was performed in agreement with the Declaration of Helsinki and approved by the Ethics Committee of the University of

Leipzig (approval numbers 159-12-21052012, 017-12-23012012). Samples were only collected from adult male and female individ-

uals who have provided written informed consent. Sample exclusion criteria included chronic substance or alcohol abuse, smoking

within the last year leading up to surgery, terminal malignant disorders, uncontrolled thyroid disorders and Cushing’s disease.

TheMHO/MUO cohort included 32 insulin-sensitive individuals (IS; 71.8% female; age: 38.75 ± 10.98 years; BMI: 46 ± 6.82 kg/m2;

FPG: 5.22 ± 0.19 mmol/l; FPI: 28.74 ± 14.17 pmol/l) and 45 insulin-resistant individuals (IR; 71.1% female; age: 47.09 ± 7.49 years;

BMI: 46.89 ± 8.12 kg/m2; FPG: 5.67 ± 0.34mmol/l; FPI: 107.96 ± 30.32 pmol/l) with obesity (Table S1), of whomwe performed snRNA

sequencing on pooled AT samples of 41 visceral and 36 subcutaneous depots (Tables S2 andS3). The study participants with obesity

were stratified into metabolically healthy and unhealthy groups according to previously published parameters.4,61

From the cross-sectional study cohort, only metabolically healthy non-obese (MHNO) male individuals were considered who had

undergone surgery at the Leipzig University Hospital. Visceral AT samples were collected from six MHNO individuals (age: 58.32 ±

18.02 years; BMI: 27.99 ± 5.35 kg/m2; FPG: 5.05 ± 0.66 mmol/l; FPI: 14.58 ± 12.01 pmol/l; HOMA-IR: 0.45 ± 0.34) and subcutaneous

AT samples were collected from four MHNO individuals (age: 68.25 ± 8.51 years; BMI: 26.44 ± 2.16 kg/m2; FPG: 5.72 ± 0.48 mmol/l;

FPI: 9.47 ± 7.97 pmol/l; HOMA-IR: 0.35 ± 0.29) for performing pooled snRNA sequencing (Table S4).

From the bariatric surgery cohort, only individuals with a BMI loss of more than 25% were considered for bulk RNA-sequencing.

Visceral AT samples were collected from 44 individuals (73% female; age before surgery: 44.93 ± 9.56 years; BMI before surgery:

55.57 ± 10.4 kg/m2; weight before surgery: 160.9 ± 29.63 kg) undergoing two-step bariatric surgery, with sleeve gastrectomy as

the first step (t0) and Roux-en-Y gastric bypass as the second step (t1).58 After both surgeries, on average, individuals lost

33.32 ± 6.3 kg/m2 of BMI and 54.51 ± 16.13 kg of weight (Table S5). All individuals received personalized dietary recommendations

during their regular visits to the obesity management center.

METHOD DETAILS

Bulk RNA sequencing
Library preparation and sequencing

rRNA-depleted RNA-sequencing data were prepared on the basis of the SMARTseq protocol.62,63 Briefly, isolated RNA was treated

with DNaseI and reverse transcribed using an oligo(dT) and a template switch oligo. cDNA was amplified using ISPCR primers and
e2 Cell Metabolism 37, 1–16.e1–e4, February 4, 2025
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tagmentated with Tn5 using the Nextera DNA Flex kit (Illumina, San Diego, CA). All libraries were sequenced on a Novaseq 6000 in-

strument at Functional Genomics Center Zurich.

Preprocessing and quantification

Only samples with 3 million total reads were used for downstream analyses resulting into 74 visceral AT samples and 68 subcutane-

ous AT samples with MHO and MUO. The raw reads were first cleaned by removing adapter sequences and poly-x sequences

(> 9 nt used for detection) using fastp (version 0.20.0).42 Reads with length <18nt after trimming were additionally filtered out.

Sequence pseudo alignment of the resulting high-quality reads to the Human reference genome (build GRCh38.p13) and quanti-

fication of gene level expression (genemodel definition fromGENCODE release 32) was carried out using Kallisto v0.46.1.43 Samples

with counts exceeding 20million were subsequently down-sampled. Down-sampled raw counts were homoscedastically normalized

with respect to the library size using the variance stabilizing transformation from theR packageDESeq2 v1.44.0.44 Normalized counts

were adjusted for exon mapping rate using the R package limma v3.60.2 for quality control.45

For the bariatric surgery cohort, visceral AT samples were processed in the same way as described above.

Differential expression

To detect differentially expressed genes we used the generalized linear model approach implemented in the R package DESeq2

v1.44.044 to the raw counts using exon mapping rate as a covariate. Genes showing altered expression with p-value < 0.01 and |

log2 FC| > 1 were considered significant. Differentially expressed genes of the subcutaneous and visceral AT are provided as sup-

plementary table (Table S6).

snRNA-sequencing
Nuclei isolation

Frozen tissues were thawn, carefully minced in lysis Buffer (10mMTris-Hcl, 146mMNaCl, 21mMMgCl2, 1mMCaCl2, 0.1%CHAPs

pH=7.4) and grinded by using a tight douncer (Thermo Fisher Scientific, Waltham, MA, United States) on ice. Homogenized tissue

was filtered through a 40 mmsieve (Corning, Massachusetts, United States), centrifuged at 500 x g for 5min at 4 �C to pellet the nuclei

and resuspended in buffer supplemented with 1%BSA and 0.2 U/mL RNAase inhibitor (Takara Bio, Kusatsu, Japan). The nuclei qual-

ity, which was defined by a round morphology and no blebbing of nuclei, was inspected by light microscopy.

10X library preparation and sequencing

10X-based libraries were generated following manufacture’s protocol (10X Genomics, Pleasanton, CA, United States) for each com-

bination of metabolic health status and sex by pooling the nuclei together (for visceral AT: MHO_W: n= 11, MHO_M: n= 7, MUO_W:

n= 15, MUO_M: n= 8, MHNO=6, for subcutaneous AT: MHO_W: n= 17, MHO_M: n= 5, MUO_W: n= 10, MUO_M: n= 4, MHNO= 4).

Briefly, 1000 nuclei/mL suspension was loaded to 10X chromium with a 3’ V3.1 kit. All libraries were sequenced on a Novaseq6000

instrument (Illumina, Eindhoven, Netherlands) at health 2030 genome center.

snRNA-seq data analysis

TheCell Ranger v.7.1.0 pipeline46 was used for sample demultiplexing, read alignment against reference genome assembly GRCh38,

cell barcode processing and unique molecular identifier (UMI) counting (expected nuclei count was set to 10,000 for visAT samples).

The R package Seurat v4.4.047,48 was used to process and analyse filtered feature-barcode count matrices. scDblFinder49 was

applied to identify and remove doublets. For quality control, nuclei with unique feature counts < 250 (visAT) / 300 (scAT)

or > 4000 (visAT) / 5000 (scAT), UMI counts > 20,000 and mitochondrial gene counts > 5% were discarded from downstream ana-

lyses. For each AT depot, samples were normalized via sctransform and integrated using canonical correlation analysis method of

Seurat.47,48 Louvain algorithmwas applied to cluster filtered, normalized, and integrated nuclei based on first 30 PCs. Cluster marker

genes were identified based on differential gene expression analysis (Wilcoxon rank-sum test with |log2 fold-change| > 0.25 and

adjusted p-value < 0.01). Clusters were then annotated into broad cell types based on known markers from literature.11 For each

broad cell type, differential gene expression analysis (Wilcoxon rank-sum test with |log2 fold-change| > 0.25 and adjusted

p-value < 0.05) was performed between different conditions using the FindMarkers function from Seurat.47,48 WikiPathways enrich-

ment of the differentially expressed genes was performed using the R package enrichR v3.264 and enriched terms were visualized

using the R package SCpubr v2.0.2.50 Top marker genes, differentially expressed genes for different broad cell types are provided in

the supplementary file (Tables S7 and S8).

Adipocytes, MesoCs, APCs and immune cells were selected for each AT depot separately and re-clustered following the same

pipeline as mentioned above to identify the different cellular sub types using first 20 PCs. Subcluster marker genes were identified

based on differential gene expression analysis (Wilcoxon rank-sum test with |log2 fold-change| > 0.25 and adjusted p-value < 0.01).

Subclusters were annotated based on the knownmarkers from literature10–13 and topmarker genes.WikiPathways enrichment of the

marker genes was performed for each adipocyte subpopulation using the R package enrichR v3.264 and enriched terms were visu-

alized using the R package SCpubr v2.0.2.50 Marker genes for different cell subpopulations are provided in the supplemental infor-

mation (Tables S9, S10, S11, and S12).

The cell-cell interaction analysis in the snRNA samples were analyzed using the R package CellChat v1.6.51 Only visceral APC and

immune cell subpopulations were considered for the cell-cell interaction analysis.

snRNA-seq data comparison with published datasets

To compare with the Emont et al. dataset,11 we used a reference mapping approach to integrate our snRNA-seq datasets separately

for each AT depot. We selected only Caucasian individuals from the Emont et al. dataset for this comparison. For each AT depot, we

identified anchor cells between our snRNA-seq datasets and the depot-specific reference dataset in a shared low-dimensional space
Cell Metabolism 37, 1–16.e1–e4, February 4, 2025 e3
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based on overlapping high-variable features. These anchor cells were then used to project our snRNA-seq datasets onto the refer-

ence, transferring cell type labels and metadata to the query dataset. For other published datasets,10,12–14,33 either individual marker

genes were visualized, or enrichment scores were calculated for gene signature in our snRNA-seq datasets using Seurat. Gene

enrichment scores were visualized using the R package SCpubr v2.0.2.50

Deconvolution of bulk RNA-seq data

Deconvolution of the bulk RNA-sequencing data from both subcutaneous and visceral AT was performed using the R package

BisqueRNA v1.0.5,52 with the corresponding depot-specific snRNA-sequencing data as the reference. Exon mapping rate-adjusted

normalized counts were used for the bulk data.

SNP-based demultiplexing

To perform SNP-calling and demultiplexing on the pooled samples, cellsnp-lite (version 1.2.3)53 was first used to call SNP on a cell-

level using the 1000 Genomes-based reference variant call file for hg38 at a resolution of 7.4 million SNPs. SNPs with <20 counts and

a <10% minor allele frequency were filtered out, as per the developer recommendations. Finally, the tool vireo (version 0.5.8)54 was

used to demultiplex the pooled data using the cellsnp-lite-derived genotype information.

Pseudobulk analysis

For each broad cell type, raw gene counts were aggregated across nuclei per SNP-demultiplexed individual to generate pseudobulk

data. For adipocytes, APCs andMesoCs, pseudobulk count matrices were normalized using the trimmed-mean onM valuesmethod

in the R package edgeR v4.2.55 Normalized pseudobulk data was used for principal component analysis.

Multi-cellular factor analysis (MOFA-cell)

Unsupervised multi-cellular factor analysis was to capture sample variability across broad cell types, identifying significant associ-

ations with metabolic health status and sex. This analysis was separately conducted for each AT depot on the pseudobulk data of

SNP-demultiplexed individuals using the R package MOFAcellulaR v0.0.0.9.15 Only broad cell types with a minimum of 10 cells per

SNP-demultiplexed individual were included in the analysis. Low expressed genes (< 10 counts per individual or detected in < 25%of

all individuals) were filtered out from each pseudobulk profile for quality control. Filtered pseudobulk expression profileswere normal-

ized using the trimmed-mean on M values.

For each cell type, the highly variable genes were detected across all samples. Background genes were excluded based on the

prior knowledge of cell type specific markers. Filtered highly variable genes per cell types were used as input to train the model using

the R packageMOFA2 v1.8.56,57 The trainedmodel represented sample variability across eight and seven well represented cell types

in visceral and subcutaneous AT, respectively through six latent factors.

Sample variability was visualized via UMAP representation in a two-dimensional space based on latent factor scores. Statistically

significant associations between latent factor scores andmetabolic health status or sex were determined using ANOVA. Significantly

associated latent factors were further explored and visualized to interpret the model.

Correlation analysis with clinical parameters
Clinical parameter correlation analyses were performed using the corr.test function from the R package psych v2.4.3, with multiple

testing correction. Non-parametric Kendall and Spearman correlation coefficients were computed for estimated cell type proportions

from bulk RNA-seq deconvolution and exon mapping rate-adjusted expressions of genes of interest, respectively.

RNA-scope based stainings
RNAscope Multiplex Fluorescent V2 assay (Bio-techne, Cat. No. 323110) was performed according to the manufacturer’s instruc-

tions. Briefly, 5 mm thin visceral AT sections were deparaffinized and rehydrated, before antigen retrieval was performed by treating

the sections with protease III and boiling them at 98-104ºC for 15minutes in the target-retrieval buffer supplied by themanufacturers.

Sections were incubated overnight with the indicated probes (Hs 3plex positive control, 3Plex negative control, Hs-BCHE-C1, Hs-

ZNF804B-C1). The channels were revealedwith TSAOPAL 570, and TSAOpal 650. Tissueswere counterstainedwith DAPI, mounted

with Prolong Gold Antifade Mountant, and were imaged by fluorescence microscopy after signal amplification and secondary anti-

body incubation.

Statistical analysis
Statistical analyses were performed using GraphPadPrism (version 10) or R v4.4 via RStudio (2023.9.1.494). Statistical significances

were determined as described in the figure legends.
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