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A B S T R A C T

Background: Little is known about the association between air pollution and self-perceived health (including both
health-related quality of life [HRQoL] and self-rated health [SRH]). The aim of this study was therefore to
explore whether long-term air pollution exposure is associated with worse self-perceived health, as measured by
different tools.
Methods: We used a land-use regression model to determine the annual average levels of particulate matter with a
diameter <10 μm (PM10), coarse particles (PMcoarse), fine particles (PM2.5), fine particle absorbances (PM2.5abs),
particle number concentration (PNC), ozone (O3), nitrogen dioxide (NO2), and nitrogen oxide (NOX) for geo-
coded residential addresses (2014–2015). Questionnaires and face-to-face interviews were used to collect HRQoL
(measured using the European Quality of Life 5 Dimensions [EQ-5D] index and the European Quality of Life
Visual Analogue Scale [EQ-VAS]) and SRH indicators (measured through two survey questions) (2018–2019)
from participants of the Cooperative Health Research in the Region of Augsburg (KORA)-Fit study in Germany.
We explored associations via generalized additive models, multinomial logistic regression, and logistic
regression.
Results: We included 2610 participants with a mean age of 64.0 years in this cross-sectional study, of which 1428
(54.7%) were female. Each interquartile range (IQR) increase in O3 was associated with a reduced EQ-5D index
value (% change of mean points and 95% confidence interval: -0.91% [-1.76; -0.06]). The average EQ-VAS score
declined between -1.57% and -0.96% with each IQR increase in PM10, PMcoarse, PM2.5abs, PNC, NO2, and NOX.
These pollutants were associated with increased occurrence of poor SRH, with odds ratios ranging from 1.24 to
2.67. PM2.5abs was linked to a higher likelihood of reporting a worse comparative SRH (2.59 [1.12; 5.99]). Body
mass index and self-perceived stress modified these associations.
Conclusions: Long-term air pollution exposure was associated with poor self-perceived health, presenting as lower
HRQoL and higher odds of poor SRH. Single-item indicators measuring self-perceived health status may work
better than multi-dimensional indicators.
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1. Introduction

Increasing epidemiological evidence suggests that exposure to
airborne particulate matter (PM) or gaseous air pollutants affects nearly
all human body organ systems (Thurston et al., 2017). Exposure to
ambient PM pollution was one of the top three risk factors accounting for
more than 1% of global disability-adjusted life-years in 2019 (GBD,
2019), and between 1990 and 2019, the number of global deaths and
disability-adjusted life-years attributable to exposure to ambient PM
with a diameter <2.5 μm (PM2.5) have increased by 102.3% and 67.7%,
respectively (Sang et al., 2022). According to the State of Global Air
(2024), air pollution accounted for 8.1 million premature deaths
worldwide in 2021, including 48% of global deaths from chronic
obstructive pulmonary disease, 28% from ischemic heart disease, and
27% from stroke (Health Effects Institute, 2024). Air pollution, however,
may also affect health without directly manifesting as morbidity or
mortality, instead resulting in feelings of malaise and a lower
self-perceived health status. Within the body, air pollution may
adversely affect health due to oxidative stress, inflammation, dysregu-
lation of the nervous system, and direct particle transfer into organ
systems (de Bont et al., 2022). When exposed to air pollution, people
may perceive an increase in headaches, dizziness, nausea, feeling ill, and
higher perceived psychological stress (Trushna et al., 2021; Zhao et al.,
2018). Even though there is a growing body of evidence supporting the
adverse health effects of air pollution, most studies are focused on
“objective” measures of health status, leaving a gap in the research using
“subjective” measures.

“Self-perceived health status” may include a wide range of constructs
representing different aspects of subjective overall health. Both health-
related quality of life (HRQoL) and the general concept of self-rated
health (SRH) are useful as they can capture a comprehensive summary
of health problems that may not be detected by standard medical
screening procedures (Anillo Arrieta et al., 2021; Ko and Boo, 2016;
Phyo et al., 2021). HRQoL is a multidimensional concept that focuses on
subjective overall well-being in the physical, mental, and social domains
of life (EuroQol-Group, 2023). One of the most commonly used mea-
sures of HRQoL is the standardized European Quality of Life 5 Di-
mensions questionnaire (EQ-5D), which is appropriate for evaluating
quality of life among the general population (EuroQol-Group, 2023) and
among patients in healthcare settings (AlSaeed et al., 2022; Chase et al.,
2022; Guillaumier et al., 2022; Mueller et al., 2021; Munyombwe et al.,
2021). HRQoL can also be assessed as “health utility,” defined as a
person’s preference for their overall health state, by transferring the
EQ-5D into an index value (EuroQol-Group, 2023). SRH can be assessed
using the European Quality of Life Visual Analogue Scale (EQ-VAS), and
a general assessment of SRH and age-comparative SRH (CSRH) which
are gathered using categorical questions (Huohvanainen et al., 2016).
SRH and CSRH are well-established predictors of mortality (Jylhä, 2009)
and chronic or severe diseases and can be used to provide a subjective
assessment of individual current physical and mental health
(Huohvanainen et al., 2016; van de Weijer et al., 2022).

A growing number of epidemiological studies have linked air
pollution to worse self-perceived health status. Air pollution effects on
HRQoL and/or SRH have been reported in China (Tan et al., 2023),
Korea (Shin et al., 2018), Japan (Yamazaki et al., 2005), Netherlands
(Klompmaker et al., 2019), Belgium (Hautekiet et al., 2022), Spain
(Moitra et al., 2022), and across Europe (Boudier et al., 2022). In most of
these studies, however, the constructs of self-perceived health status
varied across studies, and only one or two specific outcomes were
generally evaluated in each study. Furthermore, no literature exists on
the association between air pollution exposure and SRH measured using
the EQ-VAS. Without a study that collects HRQoL, SRH, and CSRH at the
same time, it is difficult to identify the most relevant self-perceived
health measure for analyzing the effect of air pollution effects on gen-
eral health status.

Previous studies have demonstrated that air pollution effects on

health are modified by various biological or social dimensions such as
age, sex/gender, and socioeconomic position (Hooper and Kaufman,
2018). The modification of air pollution on self-perceived health re-
mains inconclusive as one study found more pronounced effect estimates
in those with a higher socioeconomic level (educational background,
income level, and neighborhood) (Tan et al., 2023), while another study
indicated that air pollution exerted a larger effect on poor SRH in par-
ticipants who had lower education, who were experiencing financial
difficulties, or who lived in lower-income areas (Dzhambov et al., 2023).
Moreover, a previous study suggested that the effects of air pollution on
quality of life or SRH were stronger for men or those younger than 65
years (Shin et al., 2018). The effect of air pollution on poor SRH was
found to be modified by residential surrounding greenness in
Netherlands (Klompmaker et al., 2019). Aside from the objective mea-
sures of air quality, neighborhood reputation, the level of individual
knowledge and prior experiences suffering from air pollution are un-
observed latent variables that affect health risk perception, the psy-
chosocial determinants of health (Borbet et al., 2018; Cori et al., 2020;
King, 2015).

Using various measurement tools, our study’s objective was to
explore the associations between long-term air pollution and self-
perceived health status and identify which population groups are most
susceptible to the effects of air pollution.

2. Materials and methods

2.1. Study design and population

This study used data from the Cooperative Health Research in the
Region of Augsburg (KORA) cohort, implemented in Augsburg and two
adjacent districts in southern Germany since 1984 (Holle et al., 2005).
Since the start of the study, four cross-sectional surveys have been
conducted at 5-year intervals: S1 (1984–1985), S2 (1989/1990), S3
(1994–1995), and S4 (1999–2000). In 2018/2019, the follow-up study
KORA-Fit took place, for which all participants of the four surveys aged
54–75 years were invited to participate. After excluding those who were
unable to participate, 3059 participants (64.6% of the net sample)
finished a standardized interview and completed a questionnaire in the
study centre. For the present analysis, we only analyzed KORA-Fit par-
ticipants who were also participants in another subgroup study, Inte-
grating Gender into Environmental Health Research (INGER). In the
INGER project, sex/gender themes were integrated into environmental
health research through a newly developed questionnaire, which com-
bined biological and social information about gender/sex, as well as
environmental information about green spaces (Kraus et al., 2023). All
study methods were approved by the ethics board of the Bavarian
Chamber of Physicians (KORA-Fit EC No.17040) in adherence to the
declaration of Helsinki. All study participants gave written informed
consent before the survey.

2.2. Assessment of outcomes, exposures, and covariates

2.2.1. Health-related quality of life
HRQoL is often measured using standardized questionnaires (Karimi

and Brazier, 2016). Being one of the most widely used generic ques-
tionnaires, the EQ-5D includes two parts: the descriptive system covers
the five domains of mobility, self-care, usual activities, pain/discomfort,
and anxiety/depression, and the visual analogue scale, EQ-VAS
(EuroQol-Office, 2023). We used the five-level version of EQ-5D
(EQ-5D-5L) to determine the current HRQoL of individuals who
participated in KORA-Fit in 2018–2019. Each dimension has five
response levels (1–5 points), which were labeled “1 = no problems”, “2
= slight problems”, “3 = moderate problems”, “4 = severe problems”,
and “5 = unable or extreme problems”.

The EQ-5D can be transformed into an index value (EQ-5D index
value) using the aggregated German preferences developed by Ludwig
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et al. (Ludwig et al., 2018). Because these preferences emerged from
composite time-trade-off and discrete choice experimental data from a
population-based German adult sample, the score could also be seen as
an economic concept "health utility" and can therefore differ between
countries/regions (EuroQol-Office, 2023). In our study, the EQ-5D index
values ranged from -0.13 to 1.00, with a value below 0 equivalent to a
health state “worse than death”, a value of 0 equalling death, and a value
of 1 corresponding to perfect or full health. We also dichotomized the
5-point scales of each EQ-5D dimension as a binary variable by
considering the original response 1 as “0 = have no problems” and
combining responses 2–5 as “1 = any problems”.

2.2.2. Self-rated health
The general concept of SRH was measured via the EQ-VAS as part of

the EQ-5D (EuroQol-Office, 2023). It is a vertical analogue scale with a
range from 0 (the worst health you can imagine) to 100 (the best health
you can imagine) and was used to directly assess participants’ current
overall health status on the day of questionnaire completion. We also
evaluated the general concept of self-rated health by asking the ques-
tion, “How would you rate your current physical condition?”. Answers
were given on a 4-point Likert scale (1 = very good, 2 = good, 3 = less
good, 4 = poor), and then these variables were dichotomized as “good
SRH” (including the responses “very good” and “good”) and “poor SRH”
(including the responses “less good” and “poor”). When we use the
abbreviation term “SRH” below to refer to our outcome, we are referring
to this binary variable. CSRH was measured by asking the question,
“How would you rate your health compared to other people of your
age?”, with the three answer possibilities being “better”, “equal”, and
“worse”. An overview of the recoding of outcome variables can be found
in the supplementary data (Table S1).

2.2.3. Air pollution
Air pollutants at the residential addresses of participants were esti-

mated via land-use regression models with 50 × 50 m spatial resolution
from March 2014 and April 2015, mainly following the standardized
approach developed by the European Study of Cohorts for Air Pollution
Effects (ESCAPE) project (Beelen et al., 2013; Eeftens et al., 2012). The
details of the process have been previously reported (Wolf et al., 2017).
Briefly, three bi-weekly measurements were taken in different seasons
(warm, cold, and intermediate seasons) at 20 sites within the KORA
study area, involving twelve sites located within the city of Augsburg
and eight in the two adjacent districts of Augsburg and
Aichach-Friedberg. Throughout the whole study period, measurements
were additionally carried out at an urban background site as a reference
to adjust for temporal variations. Linear regression models were used to
calculate the annual mean concentration at the monitoring stations
using potential spatial predictor variables, including local land use,
traffic network, altitude, population, building density, and household
density. Based on participants’ home addresses, we calculated the resi-
dential annual average concentrations of air pollutants including parti-
cle number concentration (PNC) as an indicator for ultrafine particles
(UFP), PM in aerodynamic diameter <10 μm (PM10), <2.5 μm (PM2.5),
between 2.5 μm and 10 μm (PMcoarse), soot (PM2.5absorbance; a proxy of
elemental carbon related to traffic exhaust), ozone (O3), nitrogen diox-
ide (NO2) and nitrogen oxides (NOX). The performance of the land-use
regression model was validated by leave-one-out cross-validation and
the adjusted model explained variance (R2) ranged from 0.68 to 0.94,
suggesting a good model fit (Wolf et al., 2017).

2.2.4. Covariates
For our analysis, we operationalized sex dichotomously with the

categories “female” and “male" without further distinguishing between
biological sex and socially constructed gender identity. Participants
indicated their sex through self-report. Other demographic and social
characteristics (age, living with a partner, pension, individual socio-
economic status [SES], self-perception of residential greenness) were

obtained via a face-to-face interview. SES was calculated based on a
system developed by Mielck A (Mielck, 2000) from the three charac-
teristics, including the level of education, employment status, and in-
dividual income, with higher values indicating a higher socioeconomic
level. We also collected data about lifestyle-related behavior, including
physical activity, alcohol consumption, and smoking status.
Self-efficacy, or one’s ability to plan and execute actions effectively and
successfully, was assessed using the general self-efficacy short scale via a
self-administered questionnaire (Beierlein et al., 2013). Participants
were also invited to complete the 10-item perceived stress scale, which
aimed to rate their subjective perception of stress, with a higher score
indicating greater perceived stress (Cohen et al., 1983).

Physical examinations were carried out to obtain anthropometric
data, including height, weight, waist circumstance, and hip circum-
stance. These measurements were used to calculate body mass index
(BMI, kg/m2) and waist-to-hip ratio. Residential greenness was assessed
using two variables related to greenness: self-perception of residential
greenness and normalized difference vegetation index (NDVI). Self-
perception of residential greenness was estimated by asking partici-
pants how green their neighborhood is in terms of every type of green
space (from green strips along the street to gardens and parks). Answers
included "very green", "a little green", "hardly green", and "not green at
all". Due to the small sample size, the last three answers were combined
and grouped under "hardly green". According to our previous study, the
NDVI within a 300m buffer of participant residential addresses was
calculated using the cloud-free Sentinel-2 satellite images, with a reso-
lution of 10 m (Niedermayer et al., 2024). Each NDVI map of the
Augsburg area was built with two pictures, and the negative pixels of the
NDVI map were excluded before assignment to home addresses
(Niedermayer et al., 2024). We used the mean NDVI data between the
years 2018 and 2019 to match the KORA-Fit data.

2.3. Statistical analyses

2.3.1. Regression models
Participants with missing data on any outcome variable were

excluded from analysis. Generalized additive models with fixed effects
were used to test for associations between each individual air pollutant
and EQ-5D index values and EQ-VAS scores. Binary logistic regression
was used to assess whether each individual air pollutant was associated
with the odds of reporting poor SRH as compared to good SRH. Multi-
nomial logistic regression was used to measure whether each individual
air pollutant was associated with the likelihood of reporting equal or
worse CSRH, as compared to better CRSH. We also examined the asso-
ciations between air pollution exposures and the five dichotomized di-
mensions of EQ-5D using binary logistic regression. We were able to
generate reliable coefficient estimations using maximum likelihood
estimation based on the asymptotic properties of logistic regression with
a large sample size. By doing this, small-sample biases are alleviated,
and robust results are ensured.

Potential covariates were identified based on the disjunctive cause
criterion (VanderWeele, 2019) and the guidance of the World Health
Organization (WHO, 2020). Starting with the full list of potential
covariates, we used a stepwise forward regression method reducing the
Bayesian Information Criterion to select our final list of covariates
separately for each outcome variable. First, we included sex and age in
the minimum model. Next, we included SES, additional socioeconomic
variables, lifestyle variables, and BMI for selection. Based on the results
of this selection process, we included all confounders separately selected
for each outcome variable into one main model containing age, sex, SES,
living with a partner, BMI, physical activity, and smoking status. Apart
from the covariates in the main model, extended model 1 was further
adjusted for the percentage of households with low income (<1250
euro) and degree of urbanization, and extended model 2 for self-efficacy
and perceived stress, to control potential confounding.

Effect estimates are expressed as the percentage changes (% change)
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of the mean of continuous outcomes (EQ-5D index value and EQ-VAS) or
the absolute change of EQ-VAS only, and odds ratios (ORs) for cate-
gorical outcomes (SRH, CSRH, and five dichotomized dimensions of EQ-
5D) together with their 95% confidence intervals (CIs) per interquartile
range (IQR) increase in air pollutant concentration. A positive “%
change” indicates that a participant perceives their health status to be
better, whereas a higher OR value means a person perceives their health
status to be worse.

2.3.2. Sensitivity analyses and effect modification
As sensitivity analysis, in order to further identify the potential bias

introduced by confounders and colliders, we firstly drew the Directed
Acyclic Graphs (DAGs) using the web-version of program “DAGitty”
(http://www.dagitty.net/) (Niedermayer et al., 2024). We developed
another main adjustment model to test the robustness of our results.
Secondly, regarding the continuous outcomes (EQ-5D index value and
EQ-VAS), we tested the regression models for potential hetero-
scedasticity using the “glam” R package including a single global test to
assess the linear model assumptions, and the results indicated that the
assumptions of homoscedasticity were acceptable. Thirdly, we tested the
linearity of the exposure-response relationship for these two continuous
outcomes by including air pollutant concentrations as penalized splines
into generalized additive models using the “mgcv” R package. In testing
for multicollinearity, we found that all models had variance inflation
factors less than 2. Fourthly, we further tested the robustness of our
results by conducting two-pollutant models for all pollutant pairs for
which Spearman’s correlation coefficient was less than 0.7, the
threshold for high correlation (U.S. EPA, 2019). Finally, we additionally
included the “residential duration” in the adjustment model to account
for the potential movement of addresses.

By adding an interaction term to the main model, we then investi-
gated the effect modification of variables that have been categorized: sex
(female, male), age (<65.0 years, ≥65.0 years), BMI (<30.0 kg/m2,
≥30.0 kg/m2), self-perception of residential greenness (very green,
hardly green), SES tertiles (1.0–12.0 points, ≥12.0–16.5 points, ≥16.5
points), and three continuous variables, including NDVI (<0.43, ≥0.43),
self-efficacy score (<4.02, ≥4.02) and perceived stress scale score
(<13.59, ≥13.59), which were dichotomized using their mean values as
the threshold. All statistical analyses were performed using R software
(version 3.6.2), with a two-tailed P-value of <0.05 being considered
statistically significant.

3. Results

3.1. Baseline characteristics

Of 3743 eligible participants of both the KORA-Fit and INGER
studies, we included 2610 subjects who completed the standardized
interview and the questionnaire (Fig. S1). As shown in Table 1, partic-
ipants had a mean age of 64.0 years at the time of the survey and 1428
(54.7%) were females. 2066 (79.8%) participants lived with a partner.
The mean values of BMI and SES at study entry were 28.0 kg/m2 and
14.9 points, respectively. The baseline characteristics of participants
varied widely across EQ-5D index value and SRH groups. In general,
participants with a higher EQ-5D index value or who reported good SRH
were younger, were more likely to be male, be non-smokers, be physi-
cally active, live in a very green environment, have a higher level of SES,
have higher self-efficacy, consume more alcohol, have a lower BMI, and
have lower perceived stress than participants with a lower EQ-5D index
value or with poor SRH.

3.2. Outcomes and exposures

Table 2 shows that the mean levels for the EQ-5D index value and
EQ-VAS were 0.9 ± 0.1 and 79.2 ± 14.7, respectively. Most participants
reported having at least slight problems in the dimension of pain/

discomfort (62.0%). 16.7% of participants reported poor SRH and 8.3%
reported worse CSRH. A moderate positive correlation was found be-
tween the EQ-5D index value and EQ-VAS (Spearman correlation coef-
ficient rho = 0.5), and a weak positive correlation was found between
SRH and CSRH (Kendall correlation coefficient tau = 0.3). As higher
SRH and CSRH values were coded as meaning worse health, we observed
a moderate negative correlation between SRH and both the EQ-5D index
value and the EQ-VAS (both rho and tau were -0.4) and a weak negative
correlation between CSRH with HRQoL measures (coefficients were -0.3
and -0.4). As for different dimensions of EQ-5D-5L, both the EQ-5D
index value and the EQ-VAS score had weak to moderate negative cor-
relations with the five EQ-5D dimensions, aside from a strong negative
correlation between EQ-5D index value and “pain/discomfort” (tau =

-0.7). SRH and CSRH only had weak positive correlations with the five
dimensions since higher codes indicate having problems in the five di-
mensions (Table 2).

Descriptive statistics of average annual air pollution concentrations
are displayed in Table 3. During the study period, the annual average
levels of PM2.5, PM10, and NO2 were within the European Union air
quality standard limits (PM2.5: 25 μg/m3; PM10 and NO2: 40 μg/m3) but
exceeded the air quality guidelines set by the WHO (PM2.5: 5 μg/m3;
PM10 and NO2: 10 μg/m3). Most air pollutants were moderately to
strongly positively correlated with each other, with the highest corre-
lation being found for NOx and PNC (rho = 0.9). O3 was weakly posi-
tively correlated with PM10 (rho = 0.1) and PMcoarse (rho = 0.2), but
negatively correlated with PM2.5, PM2.5abs, PNC, NO2, and NOx (rho
ranged from -0.2 to -0.1).

3.3. Regression results

3.3.1. Health-related quality of life
Regression results for the EQ-5D index value and EQ-VAS are shown

in Fig. 1 and Table S2 (supplementary materials). In the main model, we
found adverse associations between the EQ-5D index value and most air
pollutants, particularly for O3 (% change: -0.91% [95% CI: -1.76;
-0.06]). After adjustment for additional covariates, associations were
strengthened for O3 in extended model 1 and for PM2.5abs in extended
model 2 (Fig. S2). We found that each IQR increase in air pollutant
concentration was associated with decreased EQ-VAS for PM10 (-1.38%
[-2.37; -0.38]), PMcoarse (-1.25% [-2.28; -0.23]), PM2.5abs (-1.57%
[-2.69; -0.45]), PNC (-0.89% [-1.68; -0.10]), NO2 (-1.30% [-2.36;
-0.23]), and NOX (-0.96% [-1.83; -0.10]). Most of these associations
were attenuated in extended model 1 but remained robust in extended
model 2 (Fig. S2). Details of the absolute changes in EQ-VAS are avail-
able in Table S3.

In our analysis of dichotomized EQ-5D-5L dimensions, the dimension
"usual activities" had the strongest associations with increasing air
pollution, though not all associations were statistically significant
(Table S4, Fig. S3). Participants had higher odds of reporting difficulties
in their usual activities when exposed to higher concentrations of PM10
(OR: 3.46 [95% CI: 1.32; 9.10]), PM2.5abs (1.65 [0.96; 2.84], PNC (1.53
[1.07; 2.19]), and NOX (1.31 [0.98; 1.75]). Those exposed to higher
levels of PM2.5abs had higher odds of reporting pain/discomfort, and
those exposed to higher levels of PM2.5 had higher odds of reporting
difficulties with self-care. For the other two dimensions, we observed
only some null tendencies towards increased odds of having problems.

3.3.2. Self-rated health
The long-term effects of air pollution on poor SRH are presented in

Fig. 2 and Table S5. In the main model, we consistently observed
increased odds of reporting poor SRH with increased exposure to PM10
(2.67 [1.07; 6.67]), PMcoarse (1.70 [1.14; 2.54]), PM2.5abs (1.60 [0.96;
2.67]), PNC (1.42 [1.01; 1.99]), NO2 (1.24 [0.98; 1.58]) and NOX (1.36
[1.04; 1.79]). Aside from PMcoarse and O3, most of these associations
slightly decreased in the extended model 1, with the extended model 2
similarly leading to lower estimates (Fig. S4).
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Table 1
Descriptive analysis of KORA-Fit & INGER studies (N = 2610).

Missing
(%)

Overall EQ-5D index valuea SRHb

Low (n = 806) High (n = 1804) P-
valuec

Poor (n = 437) Good (n = 2173) P-
valuec

Mean ± SD/No.
(%)

Mean ± SD/No.
(%)

Mean ± SD/No.
(%)

Mean ± SD/No.
(%)

Age, years 0 (0.0) 64.0 ± 5.4 64.3 ± 5.4 63.8 ± 5.5 0.047 63.9 ± 5.4 64.0 ± 5.5 0.881

Sex
0 (0.0) ​ ​ ​ <0.001 ​ ​ 0.002

Female ​ 1428
(54.7)

508 (63.0) 920 (51.0) ​ 269 (61.6) 1159 (53.3) ​

Male ​ 1182
(45.3)

298 (37.0) 884 (49.0) ​ 168 (38.4) 1014 (46.7) ​

Living with a partner 0 (0.0) ​ ​ ​ <0.001 ​ ​ <0.001
Yes ​ 2066

(79.2)
576 (71.5) 1490 (82.6) ​ 311 (71.2) 1755 (80.8) ​

No ​ 544 (20.8) 230 (28.5) 314 (17.4) ​ 126 (28.8) 418 (19.2) ​
Pension 1 (0.0) ​ ​ ​ <0.001 ​ ​ <0.001

Yes ​ 136 (5.2) 85 (10.6) 51 (2.8) ​ 54 (12.4) 82 (3.8) ​
No ​ 2473

(94.8)
720 (89.4) 1753 (97.2) ​ 383 (87.6) 2090 (96.2) ​

Residential durations, years 0 (0.0) 19.1 ± 9.7 19.0 ± 9.8 19.1 ± 9.7 0.746 19.1 ± 9.7 19.1 ± 9.7 0.997

SES
9 (0.3) 14.9 ± 5.0 13.9 ± 4.7 15.3 ± 5.1 <0.001 13.7 ± 4.7 15.1 ± 5.0 <0.001

SES (tertiles)
9 (0.3) ​ ​ ​ <0.001 ​ ​ 0.001

1.0–12.0 ​ 664 (25.5) 248 (31.0) 416 (23.1) ​ 139 (32.0) 525 (24.2) ​
≥12.0–16.5 ​ 1048

(40.3)
344 (43.0) 704 (39.1) ​ 178 (40.9) 870 (40.2) ​

≥16.5 ​ 889 (34.2) 209 (26.1) 680 (37.8) ​ 118 (27.1) 771 (35.6) ​
Self-perception of residential
greenness

0 (0.0) ​ ​ ​ <0.001 ​ ​ 0.001

Very green ​ 2062
(79.5)

598 (74.7) 1464 (81.7) ​ 320 (73.6) 1742 (80.7) ​

Hardly green ​ 532 (20.5) 203 (25.3) 329 (18.4) ​ 115 (26.4) 417 (19.3) ​
NDVI 1 (0.0) 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 0.022 0.4 ± 0.1 0.4 ± 0.1 0.055

Physical activity
0 (0.0) ​ ​ ​ <0.001 ​ ​ <0.001

Very active ​ 1017
(39.0)

256 (31.8) 761 (42.2) ​ 105 (24.0) 912 (42.0) ​

Moderately active ​ 885 (33.9) 271 (33.6) 614 (34.0) ​ 143 (32.7) 742 (34.2) ​
Little active ​ 320 (12.3) 115 (14.3) 205 (11.4) ​ 70 (16.0) 250 (11.5) ​
Inactive ​ 388 (14.9) 164 (20.4) 224 (12.4) ​ 119 (27.2) 269 (12.4) ​

Alcohol consumption, g/day 1 (0.0) 14.8 ±

19.6
12.9 ± 19.0 15.6 ± 19.8 0.001 12.9 ± 20.0 15.1 ± 19.5 0.030

Alcohol consumption (category, g/
day)

1 (0.0) ​ ​ ​ <0.001 ​ ​ 0.003

None ​ 675 (25.9) 258 (32.1) 417 (23.1) ​ 141 (32.3) 534 (24.6) ​
≥0-40 ​ 1261

(48.3)
463 (57.5) 1158 (64.2) ​ 254 (58.1) 1367 (62.9) ​

≥40-80 ​ 280 (10.7) 73 (9.1) 207 (11.5) ​ 34 (7.8) 246 (11.3) ​
≥80 ​ 33 (1.3) 11 (1.4) 22 (1.2) ​ 8 (1.8) 25 (1.2) ​

Smoking status 4 (0.2) ​ ​ ​ 0.057 ​ ​ 0.007
Non-smoker ​ 1186

(45.4)
349 (43.5) 837 (46.4) ​ 175 (40.1) 1011 (46.6) ​

Ex-smokers ​ 1075
(41.2)

329 (41.0) 746 (41.4) ​ 186 (42.7) 889 (41.0) ​

Current smokers ​ 345 (13.2) 125 (15.6) 220 (12.2) ​ 75 (17.2) 270 (12.4) ​
BMI, kg/m2 0 (0.0) 28.0 ± 5.2 29.2 ± 6.1 27.5 ± 4.7 <0.001 30.0 ± 6.3 27.6 ± 4.9 <0.001

Waist-Hip-Ratio
0 (0.0) 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.861 0.9 ± 0.1 0.9 ± 0.1 0.012

Self-efficacy
75 (2.9) 4.0 ± 0.6 3.9 ± 0.6 4.1 ± 0.5 <0.001 3.86 ± 0.7 4.1 ± 0.6 <0.001

Perceived stress
124 (4.8) 14.3 ± 5.6 17.0 ± 5.8 13.1 ± 5.0 <0.001 18.0 ± 6.0 13.5 ± 5.2 <0.001

Abbreviations: EQ-5D-5L, European Quality of Life 5-dimensional questionnaire; EQ-5D index, index of EQ-5D-5L questionnaire; EQ-VAS, EuroQol group’s visual
analog scale; SRH, self-rated health; CSRH, comparative self-rated health; NDVI, normalized difference vegetation index; BMI, body mass index; SES, socioeconomic
status; Self-efficacy, General Self-Efficacy Short Scale; Perceived stress, Perceived stress scale.
Note: Continuous variables are presented as means ± standard deviations (SDs), as well as their ranges (minimum, maximal), and categorical variables are presented
as total numbers (percentages).

a Population was divided into groups according to the mean value of the EQ-5D index value (cutoff value = 0.90).
b Population was divided into groups according to the recorded SRH (poor/good).
c P-value was calculated by using the Kruskal-Wallis test or the Chi-square test.
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In the case of CSRH, we found a tendency for decreased odds of equal
CSRH when compared with better CSRH with increasing exposure to air
pollution (Fig. 3, Fig. S5, Table S6). We also generally found increasing

odds of worse CSRH compared to better CSRH with increasing exposure
to air pollution, but there was no consistent pattern across pollutants.
Each IQR increase in PM2.5abs was associated with increased odds of
reporting worse CSRH (2.59 [1.12; 5.99]), with similar trends being
found for PMcoarse, PM2.5, and NO2. All these effects were attenuated in
the two extended models (Figs. S6–S7).

3.4. Sensitivity analyses

Given that the DAG plot (Fig. S8) shows that BMI and physical ac-
tivity might be theoretical mediators in the causal pathway, we updated
the main adjustment model excluding these two variables. However, as
it is shown in Table S7 and Figs S9 – S12, the exclusion did not greatly
alter the estimated effects. This supports the robustness of our findings
regardless of the inclusion of physical activity and BMI, reducing con-
cerns about over-adjustment. Figs. S13 and S14 show the exposure-
response relationships of two continuous outcomes (EQ-5D index
value and EQ-VAS) with the different air pollutants. Overall, most as-
sociations exhibited a generally linear trend, though associations be-
tween PM2.5 and O3 and the EQ-5D index showed several fluctuations. In
two-pollutant models, most associations were consistent with those of
the main analysis (Table S8). Further adjustments to the residential
duration did not cause great changes in our results (Table S9).

3.5. Effect modification

Effect modification was solely performed for EQ-VAS because this
outcome had the strongest association with air pollution in the main
analysis. Results presented in Fig. 4 show that BMI and perceived stress
modified the association between air pollution and EQ-VAS. Participants
with a BMI below 30.0 kg/m2 exhibited a stronger association between
air pollution and EQ-VAS as compared to those with a BMI at or above
30.0 kg/m2. Furthermore, participants with higher perceived stress
(scale score ≥13.59) showed stronger effects compared to those with
lower stress. We did not observe any considerable modification for other
covariates (sex, age, self-perception of residential greenness, NDVI, and
self-efficacy) (Table S10).

4. Discussion

Our cross-sectional study found that higher long-term exposure to air
pollution was associated with worse HRQoL and worse SRH in German
adults aged 54 and over. Additionally, effect modification was observed
for BMI and perceived stress level. We found that the one-item mea-
surements of self-perceived health status (EQ-VAS and SRH) may show
higher sensitivity to air pollution compared to the multi-dimensional

Table 2
Results of correlation analysis for outcomes of interest.

Missing
(%)

Mean
(SD)/n
(%)

Correlation coefficients

EQ-5D
index
value

EQ-
VAS

SRH CSRH

EQ-5D index
value

0 (0.0) 0.9 ±

0.1
1.0 – – –

EQ-VAS 0 (0.0) 79.2
± 14.7

0.5a,d 1.0 – –

SRH 0 (0.0) – − 0.4b,d − 0.4b,d 1.0 –
Good – 2173

(83.3)
– – – –

Poor – 437
(16.7)

– – – –

CSRH 42 (1.6) – − 0.3b,d − 0.4b,d 0.3b,d 1.0
Better – 1287

(50.1)
– – – –

Equal – 1069
(41.6)

– – – –

Worse – 212
(8.3)

– – – –

EQ-5D-5L
Dimension
(dichotomized)

0 (0.0) – – – – –

Mobility, yes% – 727
(27.9)

− 0.5b,d − 0.3b,c 0.4b,d 0.3b,d

Self-care, yes% – 85
(3.3)

− 0.2b − 0.2b 0.3b,d 0.2b

Usual activities,
yes%

– 366
(14.0)

− 0.5b − 0.3b 0.4b,d 0.3b

Pain/
discomfort, yes
%

– 1617
(62.0)

− 0.7b,d − 0.4b,d 0.3b,c 0.2b,c

Anxiety/
depression, yes
%

– 709
(27.2)

− 0.4b,c − 0.3b 0.3b,c 0.2b

Abbreviations: SD, standard deviation; EQ-5D index value, the index of Euro-
pean Quality of Life 5-dimensional questionnaire; EQ-VAS, EuroQol group’s
visual analog scale; SRH, self-rated health; CSRH, comparative self-rated health.
Note.

a The correlation coefficients (rho) were calculated by Spearman correlation
analysis.

b The correlation coefficients (tau) were calculated by Kendall correlation
analysis.

c P < 0.10.
d P < 0.05.

Table 3
Distribution of ambient air pollutant concentrations.

Mean (SD) Min P25 Median P75 Max IQR Spearman correlation coefficients

PM10 PMcoarse PM2.5 PM2.5abs PNC O3 NO2 NOX

PM10 (μg/m3) 16.4 (1.4) 13.2 15.2 16.1 17.2 22.3 2.0 1.0 ​ ​ ​ ​ ​ ​ ​
PMcoarse (μg/m3) 4.8 (1.0) 2.5 4.1 4.7 5.5 8.3 1.4 0.8 1.0 ​ ​ ​ ​ ​ ​
PM2.5 (μg/m3) 11.7 (1.0) 8.3 11.1 11.8 12.4 14.3 1.4 0.5 0.5 1.0 ​ ​ ​ ​ ​
PM2.5abs (10− 5/m) 1.2 (0.2) 0.8 1.0 1.2 1.3 1.9 0.3 0.8a 0.8b 0.6 1.0 ​ ​ ​ ​
PNC (103/cm3) 7.1 (1.8) 3.2 6.1 7.1 8.0 14.6 1.9 0.8a 0.7 0.6 0.8 1.0 ​ ​ ​
O3 (μg/m3) 39.1 (2.4) 32.1 37.3 39.2 40.9 46.0 3.5 0.1 0.2 − 0.2b − 0.1 0.0 1.0 ​ ​
NO2 (μg/m3) 13.6 (4.2) 6.9 10.3 12.9 16.5 28.9 6.2 0.7 0.8b 0.7 0.9b 0.8 − 0.1 1.0 ​
NOX (μg/m3) 21.3 (7.0) 3.8 17.0 22.0 25.5 47.2 8.4 0.7 0.7 0.8b 0.7 0.9b − 0.1a 0.8 1.0

Abbreviations: SD, standard deviation; P25, 25th percentile; P75, 75th percentile; IQR, Inter-quartile range; PM10, particulate matter (PM) with an aerodynamic
diameter <10 μm (μg/m3); PMcoarse, coarse particulate matter; PM2.5, PM < 2.5 μm (μg/m3); PM2.5abs, the absorbance of PM2.5; PNC, particle number concentration;
O3, Ozone (μg/m3); NO2, Nitrogen dioxide (μg/m3); NOX, Nitrogen oxide (μg/m3).
Note.
The correlation coefficients (rho) were calculated by Spearman correlation analysis.

a P < 0.10.
b P < 0.05.
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measure (EQ-5D index value).
There is an increasing number of studies on the long-term health

effects of air pollution. However, only two identified studies to date have
assessed HRQoL using the EQ-5D (Shin et al., 2018; Tan et al., 2023).
Measuring HRQoL with the three-level version of the EQ-5D (EQ-5D-3L),
Tan et al. found that per 1 μg/m3 increase in long-term exposures to
PM2.5 and PM10, the EQ-5D-3L index value among their study population
in Shandong decreased by 0.002 and 0.001, respectively (Tan et al.,
2023). In a study in South Korea, Shin et al. dichotomized the EQ-5D-3L
index values based on a fourth quartile cut-off, defining participants
above the fourth quartile as having poor quality of life. They found that
poor quality of life was associated with increased exposures to PM10 and
NO2, particularly in younger people (<65.0 years) (Shin et al., 2018).
Another study used the Short Form-36 Health Survey (SF-36) Physical
and Mental Component Summary scores to assess HRQoL (Boudier et al.,
2022). This European population-based study reported that higher
PM2.5, PM10, and NO2 concentrations were associated with lower Mental
Component Summary scores, but no consistent association was found for
Physical Component Summary scores (Boudier et al., 2022).

In terms of the general SRH, there is sparse evidence regarding the
long-term effect of air pollution on EQ-VAS. In China, Li et al. found a
positive association between annual air pollution (PM10, NO2, and O3)
and worse SRH among 5172 individuals aged >60.0 years from 123
Chinese cities (Li et al., 2023). Another study in China consistently
observed that a higher air pollution index was associated with a greater
likelihood of having poor SRH among 7358 residents aged ≥65 years
from 171 Chinese cities (Sun and Gu, 2008). Supporting evidence has
also been found in European populations, including a cross-sectional

study of 16,455 participants aged ≥15 years in Belgium (Hautekiet
et al., 2022), a study including 354,827 Dutch citizens aged ≥19 years
(Klompmaker et al., 2019), and an analysis of over 500,000 residents
aged 37–73 years from the UK Biobank (Mutz et al., 2021). In general,
these studies observed the detrimental effect of air pollution on
self-perceived health status, in agreement with our results. Until now,
however, there has been no evidence linking long-term air pollution
with CSRH.

Several biological mechanisms may explain our findings. Self-
perceived health is a measurement of both overall subjective physical
and mental well-being (EuroQol-Group, 2023). Within the body,
long-term air pollution exposure is connected to a variety of diseases (de
Bont et al., 2022; Hansel et al., 2016) by producing reactive oxygen
species and causing endothelial dysfunction, which may be related to
worse HRQoL (Akor et al., 2020; Phyo et al., 2021), poor SRH (Farkas
et al., 2009; Ko and Boo, 2016), and worse CSRH (Dong et al., 2018;
Verhoeven et al., 2021). Air pollution toxicity can also damage the
central nervous system or cause neurodegenerative diseases by altering
miRNAs, telomeres, gene expression, and signaling pathways (Costa
et al., 2020; van der Meulen et al., 2018). These neurodegenerative
diseases may further worsen HRQoL. Air pollution also affects the sub-
jective experience of physical and mental health. For example, people
living in areas with higher chronic air pollution exposure may be more
stressed and fearful of getting sick (Zhu and Lu, 2023). This high sub-
jective stress in response to ambient air pollution may be related to the
abnormal secretion of hormones (e.g., dopamine) (Pereyra-Muñoz et al.,
2006), metabolism of neurotransmitters (e.g., serotonin) (Zhao et al.,
2018), and stimulation of hippocampal pro-inflammatory cytokine

Fig. 1. Results of the main model of linear regression for the associations between air pollutants and EQ-5D index value and EQ-VAS.
Abbreviations: EQ-5D index value, the index of European Quality of Life 5-dimensional questionnaire; EQ-VAS, EQ visual analogue scale; IQR, interquartile range;
PM10, particulate matter (PM) with an aerodynamic diameter <10 μm (μg/m3); PMcoarse, coarse particulate matter; PM2.5, PM < 2.5 μm (μg/m3); PM2.5abs, the
absorbance of PM2.5; PNC, particle number concentration; O3, Ozone (μg/m3); NO2, Nitrogen dioxide (μg/m3); NOX, Nitrogen oxide (μg/m3). Note: Estimates
represented as the percentage changes in EQ-5D index value/EQ-VAS mean for IQR increase in annual exposures to air pollutants (1.95 μg/m2 for PM10, 1.40 μg/m2

for PMcoarse, 1.39 μg/m2 for PM2.5, 0.28 [10− 5/m] for PM2.5abs, 1.92 [103/cm3] for PNC, 3.54 μg/m2 for O3, 6.20 μg/m2 for NO2 and 8.41 μg/m2 for NOX).
The plots were developed based on the main model, which was adjusted for age at the survey, sex, socioeconomic status (SES), living with a partner, physical activity,
and smoking status.
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production (Fonken et al., 2011). Moreover, individuals exposed to
higher air pollution are more likely to experience headaches, dizziness,
nausea, and feelings of ill health, ultimately affecting their mental
well-being (Zhao et al., 2018). Other symptoms related to air pollution
exposure (shortness of breath, cough, wheezing, and phlegm) are also
likely to interrupt the performance of daily activities and work
(D’Oliveira et al., 2023), while also resulting in lower physical capacity
and worse self-perceived health (Lopez-Campos et al., 2013). In addi-
tion, health risk perception is the psychosocial determinant of health
and could also be affected by personal perceptions of air quality (Borbet
et al., 2018), neighborhood stigma (King, 2015), and individual’s
knowledge of air pollution (Cori et al., 2020). As there are fewer studies
of the clear specific mechanisms linking air pollution to self-reported
health status, more research is needed to validate our findings due to
the complex etiology of mental and subjective health outcomes.

Our results related to the association between various sizes of PM and
self-perceived health status were somewhat unclear in comparison to
other air pollutants. First, the associations between worse self-perceived
health status and PM10, PMcoarse, and PM2.5 gradually disappeared as
their particle sizes decreased. This may be because the size fraction of
PM plays a significant role in determining its health effects because PM
deposits in different parts of the respiratory system and enters the cir-
culatory system depending on its aerodynamic diameters (Zhang et al.,
2022). Larger particles lodge in the upper airways, which may cause
more obvious symptoms that affect self-perceived health more signifi-
cantly. Smaller particle sizes and deeper deposit locations are less likely
to result in immediate and noticeable symptoms, which may explain
why we did not find an association between PM2.5 and self-perceived
health. Second, PNC contributes most to UFP, which, due to their
small size, can diffuse into the most distal lung regions and additionally
penetrate all organ systems including the central nervous system

(Calderón-Garcidueñas and Ayala, 2022; Oberdörster et al., 2007). This
is unlikely to be the scenario for ambient PM2.5 as it mainly affects the
respiratory and cardiovascular systems (Henning, 2023), and this
inconsistency may also be reflected in self-perceived health outcomes.
Apart from their size, UFPs are more toxic than larger PMs as they have a
larger relative surface area and are highly reactive, meaning that they
can absorb more hazardous metals and toxic organic compounds (Kwon
et al., 2020). In summary, our mixed results for PM suggest that
large-scale scientific studies are needed to determine the effects of PM2.5
on self-perceived health status in more detail.

Within our study, ‘one-item’ measures (EQ-VAS and SRH) were more
affected by air pollution than multi-dimensional measures (EQ-5D index
value). In the EQ-VAS and SRH, respondents’ perceptions of health on
the day of the survey are presented straightforwardly, whereas the EQ-
5D rates specific dimensions based on a certain weight (coefficient). In
general, the EQ-VAS provides more granular information but is less
focused on impairments in specific dimensions of health than the EQ-5D
(EuroQol-Office, 2023). As a result, the EQ-VAS may be more sensitive
when used in a general population sample than the EQ-5D. In addition,
our less pronounced results for poor CSRH as compared to our results for
poor SRH may be explained by a lack of clarity as to which people the
participants were comparing themselves with, and detecting air pollu-
tion effects would be challenging if participants compared themselves to
people in the same residential area since they would be exposed to air
pollution at the same levels. As a result, worse CSRH might be under-
estimated. There were wider intervals of worse CSRH for PM2.5abs than
for other air pollutants, likely due to the relatively narrow range of
annual PM2.5abs levels and the gap in sample sizes across the three cat-
egories of CSRH.

We detected significant modification effects for the association be-
tween air pollution and EQ-VAS, with the effect modification being most
apparent for BMI, with the detrimental impacts of ambient air pollution
being stronger among those with a lower BMI. A similar higher sus-
ceptibility to air pollution among those with lower BMI was also found
for cardiovascular and cerebrovascular diseases (Zhang et al., 2011). In
contrast to our results, a previous study measured HRQoL using the
EQ-5D-3L index value and revealed a stronger adverse health effect of
air pollution in those with higher BMI (Tan et al., 2023). A higher sus-
ceptibility to air pollution among study participants with other diseases
(type 2 diabetes, high blood pressure, and brain tumours) was also found
among those with higher BMI (Jørgensen et al., 2016; Li et al., 2021; Liu
et al., 2016). Exposed to short-term PM, overweight or obese people
release a smaller amount of extracellular vesicles (particles released by
cells in response to stimuli) which is associated with a lower risk of
narrowing of the coronary arteries (Rota et al., 2020). A potential
explanation for the attenuated effect of BMI is the obesity paradox,
which suggests that obese people of advanced age have a better prog-
nosis for chronic diseases due to their persistent low-grade inflamma-
tion, which is less likely to lead to chronic illnesses (Blum et al., 2011;
Rota et al., 2020). Validating this finding will require further research.

Previous research has also found that people with a higher stress
level appeared to be more vulnerable to air pollution (Schwartz et al.,
2011). We also found that the perceived stress modified the association
between air pollutants and EQ-VAS, with stronger adverse effects on
EQ-VAS being found in the higher perceived stress group. Psychosocial
stress increases vulnerability to the health effects of environmental
hazards (Mehta et al., 2015). A higher self-perceived stress level might
damage general feelings of optimism or promote pessimism about the
future, worsening dynamic feelings of health (Smith et al., 2004).
However, a cross-sectional study in the Arab-American community
found no evidence of effect modification of perceived stress (Suleiman
et al., 2021). As there is limited conclusive evidence accounting for
comorbidity or stress-related vulnerability, more in-depth studies are
required regarding their modification effects.

There are several strengths in the present study. First, this study was
conducted based on the KORA-Fit cohort, a well-characterized study

Fig. 2. Results of the main model of logistic regression for the association
between air pollutants and the odds of reporting poor SRH.
Abbreviations: SRH, self-rated health; IQR, interquartile range; OR, odds ratio;
95% CI, 95% confidence interval; PM10, particulate matter (PM) with an
aerodynamic diameter <10 μm (μg/m3); PM coarse, coarse particulate matter;
PM2.5, PM < 2.5 μm (μg/m3); PM2.5abs, the absorbance of PM2.5; PNC, particle
number concentration; O3, Ozone (μg/m3); NO2, Nitrogen dioxide (μg/m3);
NOX, Nitrogen oxide (μg/m3). Note: With those reported “good SRH” as
reference group, estimates represented as ORs (with 95% CIs) of poor SRH for
IQR increase in annual exposures to air pollutants (1.95 μg/m2 for PM10, 1.40
μg/m2 for PMcoarse, 1.39 μg/m2 for PM2.5, 0.28 [10− 5/m] for PM2.5abs, 1.92
[103/cm3] for PNC, 3.54 μg/m2 for O3, 6.20 μg/m2 for NO2 and 8.41 μg/m2 for
NOX).
The plot was developed based on the main model, which was adjusted for age at
the survey, sex, socioeconomic status (SES), living with a partner, physical
activity, and smoking status.
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with standardized and comprehensive information regarding subject
characteristics and outcomes, which enhanced the reliability of our re-
sults. Second, our study examined the potential effect of eight commonly
measured air pollutants, after checking for potential multicollinearity.
This enables us to conclude consistent patterns across various air pol-
lutants and to explore potential differences in sources and aerosol
properties.

Our study also has some limitations. First, using spatial models, we
estimated the annual average concentrations of air pollutants for 2014/
2015, while outcome data were collected in 2018/2019. Yet, we believe
these exposure estimates are valid since previous studies have shown
that spatial variation in exposure over time is stable for historical spatial
contrasts (de Hoogh et al., 2018; Wang et al., 2013). Second, we focused
only on self-perceived ‘physical’ health states by asking the participants
two SRH-related questions, rather than assessing ‘general’ health status.
In part, this could be compensated by using the EQ-5D-5L instrument,
which measures the self-perceived health from both physical and mental
health (anxiety/depression) perspectives. Our use of EQ-VAS also helps
to determine general health (EuroQol-Office, 2023). Third, our data may
not be generalizable to other populations since KORA-Fit participants
were mainly of European descent. Finally, the cross-sectional design
prevented us from assessing the causality between self-perceived health
status and air pollution.

5. Conclusions

Worse HRQoL (assessed with the EQ-5D index value and EQ-VAS),
poor SRH, and worse CSRH were associated with increasing exposure
to air pollution. These associations were modified by BMI and perceived
stress level. In studies of the effects of air pollution, a single-item SRH
indicator may be more suitable for assessing self-perceived health status

among older people than multidimensional indicators.
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Fig. 3. Results of the main model of multinominal regression for the association of air pollution with the odds of reporting equal CSRH or worse CSRH.
Abbreviations: CSRH, comparative self-rated health; OR, odds ratio; 95% CI, 95% confidence interval; IQR, interquartile range; PM10, particulate matter (PM) with
an aerodynamic diameter <10 μm (μg/m3); PMcoarse, coarse particulate matter; PM2.5, PM < 2.5 μm (μg/m3); PM2.5abs, the absorbance of PM2.5; PNC, particle number
concentration; O3, Ozone (μg/m3); NO2, Nitrogen dioxide (μg/m3); NOX, Nitrogen oxide (μg/m3). Note: With those reported “better CSRH” as reference group,
estimates represented as ORs (with 95% CIs) of equal CSRH or worse CSRH for IQR increase in annual exposures to air pollutants (1.95 μg/m2 for PM10, 1.40 μg/m2

for PMcoarse, 1.39 μg/m2 for PM2.5, 0.28 [10− 5/m] for PM2.5abs, 1.92 [103/cm3] for PNC, 3.54 μg/m2 for O3, 6.20 μg/m2 for NO2 and 8.41 μg/m2 for NOX).
The plots were developed based on the main model, which was adjusted for age at the survey, sex, socioeconomic status (SES), living with a partner, physical activity,
and smoking status.
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