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Abstract
The problem of phase retrieval has many applications in the field of optical
imaging. Motivated by imaging experiments with biological specimens, we
primarily consider the setting of low-dose illumination where Poisson noise
plays the dominant role. In this paper, we discuss gradient descent algorithms
based on different loss functions adapted to data affected by Poisson noise, in
particular in the low-dose regime. Starting from the maximum log-likelihood
function for the Poisson distribution, we investigate different regularizations
and approximations of the problem to design an algorithm that meets the
requirements that are faced in applications. In the course of this, we focus
on low-count measurements. Based on an improved version of a variance-
stabilizing transform for the Poisson distribution, we derive a decision rule
for the regularization parameter in an averaged amplitude-based loss function.
For all discussed loss functions, we study the convergence of the respective
gradient descent algorithms to stationary points and find constant step sizes
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that guarantee descent of the loss in each iteration. Numerical experiments in
the low-dose regime are performed to corroborate the theoretical observations.

Keywords: phase retrieval, Poisson noise, low-dose imaging, optimization,
gradient descent

1. Introduction

Phase retrieval is a fundamental problem particularly in diffraction imaging techniques, where
intensity measurements of several diffraction patterns of an object are recorded. In many
instances, these measurements are taken in the far-field distance. It can be shown that such
far-field intensity measurements are given by the squared absolute value of the Fourier trans-
form of the object. To make this more concrete suppose a detector with n pixels is placed in
the far-field distance. A discretized form of the signal at the detector plane is then given by the
discrete Fourier transform

n−1∑
j=0

xj exp

(
−2π i k j

n

)
= 〈x,uk〉,

with vectors uk = (exp(2π i k j/n))n−1
j=0 and x= (xj)

n−1
j=0 . The latter is a discrete representation

of the object which we would like to reconstruct. According to this model, the vector uk can be
related to the kth frequency, or equivalently, with the kth pixel of the detector. As mentioned
above, the detector itself measures only intensities, that is, it records only the squared modulus
of 〈x,uk〉. Consequently, we are faced with the challenging problem of reconstructing x from
data of the form |〈x,uk〉|2, k= 0, . . . ,n− 1.

It is known, however, that this data set does not contain enough information to make the
inverse problem uniquely solvable [1], i.e. it is not sufficient to probe the object x only by the
pure states uk, k= 0, . . . ,n− 1. To avoid these difficulties, we have to insert a certain amount
of redundancy into our data set. In order to introduce a sufficient portion of redundancy, one
replaces the set of measurement vectors uk by an over-complete system of vectors ak ∈ Cn, k=
1, . . . ,m with m� n, and measures |〈x,ak〉|2, k= 1, . . . ,m, instead of only |〈x,uk〉|2, k=
0, . . . ,n− 1. A prominent realization for this approach is the so-called far-field ptychography.
This method uses measurement vectors of the form ak,ℓ = (wj,ℓ exp(−2π i k j/n))n−1

j=0 with a

mask wj,ℓ, which is given as translates (wj−ℓmodn)
n−1
j=0 of a vector w= (wj)

n−1
j=0 with short sup-

port. The number of translates is arranged such that the object is scanned by the mask in a
way that for adjacent scanning positions the supports of the mask overlap with each other by
a certain fraction. We will not discuss ptychography further, instead we refer to [2–4].

Motivated by ptychography, we consider the following reconstruction problem. Given data
of the form

ŷi = |〈x,ai〉|2 , i = 1, . . . ,m, (1)

we have to reconstruct the vector x ∈ Cn. This is the phase retrieval problem in its mathem-
atical abstract form. The problem attracted a lot of attention during the last decades and a
number of fundamental contributions were made [5–8]. The first fundamental problem is that
of uniqueness. That is the question of how large m has to be in order to make the mapping
Cn → Cm, x 7→ (|〈x,ai〉|2)mi=1 injective. This problem was considered by several authors under
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different assumptions on x and on the vectors ai. We refer to the fundamental papers [6, 9] for
further discussion. Our focus lies on the reconstruction of the vector x given ŷi, i = 1, . . . ,m,
and we will consider this problem under specific assumptions on the data set, which are again
motivated by specific constraints in the experimental setup. Before going into the details of
those, let us first recall the reconstruction techniques based on a variational approach. The
variational method tries to recuperate x via a minimization

x= argminz L(z) , (2)

using a suitable loss functionL : Cn → R. For determining x, or at least a good approximation,
usually gradient descent methods are applied to the problem (2), i.e.

zk+1 = zk−µ∇L(zk) , k⩾ 0,

with learning rate µ> 0 and some appropriate initial vector z0. For the phase retrieval problem,
the loss function is of the form L(z) = ℓ ◦φ(z), with a suitable function ℓ : Rm → R and φ :
Cn → Rm, z 7→ (|〈ai,z〉|2)mi=1. Note also that the function φ usually makes the problem non-
convex.

A frequently used loss function for reconstruction of x is the least squares loss

L(z) =
m∑
i=1

(
|〈ai,z〉|2 − ŷi

)2
,

or some regularized variants of it. Gradient descent algorithms for the correspondingminimiza-
tion problemwhich applyWirtinger calculus were investigated to some extent. These methods,
now known as Wirtinger flow algorithms, were studied first by Candés, Li and Soltanolkotabi
in [10]. Different variants were further discussed by other authors [11–19]. These works
study the convergence of stochastic and non-stochastic gradient descent algorithms involving
Wirtinger derivatives for different loss functions in case of random (Gaussian) measurement
vectors ai. Apart from convergence guarantees for random measurements, [20] and [21] ana-
lyze convergence of gradient descent algorithms to stationary points of an amplitude-based
loss function for any type of measurement vectors, random or deterministic.

In all practical relevant measurement scenarios, the data ŷi is corrupted by some sort of
noise. Hence, we are given perturbed values yi instead of ŷi. The perturbation may have many
sources such as thermal noise, read-out noise, background noise, among others [22]. The prob-
lem of a certain type of background noise was recently tackled by one of the authors in [23].
Here, we concentrate on the perturbationwhich is caused by the operationmode of the detector.
All modern detectors, such as CCD cameras, are ultimately counting devices. That means, the
measurement process can bemodeled as a counting process and can, therefore, mathematically
be formulated in terms of a Poisson distributed discrete random variable, viz.

yi ∼ Poisson
(
|〈ai,x〉|2

)
, i = 1, . . . ,m,

where |〈ai,x〉|2 is the ground-truth. This means that the probability that yi particles are coun-
ted at position i given the ground-truth |〈ai,x〉|2 is 1

yi!
exp(−|〈ai,x〉|2)(|〈ai,x〉|2)yi . In order to

incorporate the fact that the measurement process is a Poisson process into a variational recon-
struction method, it is necessary to adapt the loss function accordingly. We follow a maximum
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likelihood approach and replace the least squares loss function by the Poisson log-likelihood
loss which reads as

LP (z) =
m∑
i=1

|〈ai,z〉|2 − yi log
(
|〈ai,z〉|2

)
.

The minimization problem (2) for the Poisson likelihood loss LP was studied by many
authors, see for example [13, 24–28] and references therein.

Our motivation to reconsider the minimization problem (2) with Poisson log-likelihood
LP originates in specific diffraction imaging setups. For imaging biological tissue like cells,
viruses, etc it is generally not possible to work with a radiation beam of high intensity as such
exposurewould destroy the object instantaneously [29–31]. Therefore, it is essential to perform
the measurement with a beam of suitably low intensity, which in turn leads to a weak signal at
the detector. In realistic measurement scenarios, the counting rate can be in the range below 10
illumination particles per pixel, and at a number of pixels it can be even zero. This low-count
scenario leads to serious problems with respect to the gradient descent reconstruction process
as it causes a singularity in the gradient of LP. In order to take these problems into account, we
have to introduce a regularization technique which deals with these singularities. Algorithmic
approaches for solving phase retrieval problems with low-dose Poisson noisy data were also
considered in [32–35].

With this paper, we contribute a decision rule for a regularization parameter based on a heur-
istic motivated by a new improved variance stabilization approach. Furthermore, we provide
convergence guarantees which generalize the result of [20] and we extend this analysis to the
loss using the Poisson maximum log-likelihood function.

The outline of the paper is as follows. In section 2, we summarize the theory on Wirtinger
derivatives and some fundamental results on the convergence of the gradient descent algorithm
withWirtinger derivatives. Section 3 contains a discussion on the choice of loss function in the
optimization problem formulated for solving the phase retrieval problem with Poisson noisy
low-dose data. In section 4, we present a convergence analysis for the algorithms involving
the different loss functions. We provide numerical justification of our theoretical results and
corroborate our proposal of using the loss function derived via the improved variance stabiliz-
ation approach in section 5. In section 6, we summarize our results and conclude with a brief
outlook on further possible model adjustments.

2. Gradient descent with Wirtinger derivatives

We start with presenting some theory on the Wirtinger calculus. Consider a function

f(z) = u(x,y)+ i v(x,y) , z= x+ i y, x,y ∈ Rn,

with real-valued and differentiable functions u and v. Using conjugate variables z= x+ i y and
z̄= x− i y, the function f can be considered as a function of variables z and z̄. Since u and v
are differentiable, the function f(z, z̄) is holomorphic w.r.t. z for fixed z̄ and vice versa. The
Wirtinger calculus expresses the derivatives of f w.r.t. the real variables x and y in terms of the
conjugate variables z and z̄ treating them as independent. The Wirtinger derivatives of f are
given as

∂z f =
1
2
(∂x f − i∂y f) , ∂z̄ f =

1
2
(∂x f + i∂y f) .

4
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This implies the relation

∂z f= ∂z̄ f̄, and ∂z̄ f= ∂z f̄. (3)

The Wirtinger derivatives ∂zf and ∂z̄ f can also be expressed as

∂z f= ∂z f(z, z̄)
∣∣̄
z=const.

= [∂z1 f(z, z̄) , . . . ,∂zn f(z, z̄)]
∣∣̄
z=const.

,

∂z̄ f= ∂z̄ f(z, z̄)
∣∣
z=const.

= [∂z̄1 f(z, z̄) , . . . ,∂z̄n f(z, z̄)]
∣∣
z=const.

.

Consequently, the Wirtinger gradient and Wirtinger Hessian are given as

∇f(z) =
(

(∂z f)
∗

(∂z̄ f)
∗

)
, ∇2f(z) =

(
∂z (∂z f)

∗
∂z̄ (∂z f)

∗

∂z (∂z̄ f)
∗

∂z̄ (∂z̄ f)
∗

)
. (4)

In case that f is a real-valued function, i.e. f(z) = u(x,y), the relations in (3) provide

∂z̄ f = ∂z f, ∂z̄ (∂z̄ f)
∗
= ∂z (∂z f)

∗
, ∂z (∂z̄ f)

∗
= ∂z̄ (∂z f)

∗
.

It is more convenient to use the following simplified notation

∇z f := (∂z f)
∗
, ∇2

z,z f := ∂z (∂z f)
∗
, resp. ∇2

z,̄z f := ∂z (∂z̄ f)
∗
.

The second-order Taylor polynomial of f at a point z0 is

Pf (v,z0) = f(z0)+ (∇f(z0))∗
(

v
v

)
+

(
v
v

)∗

∇2f(z)

(
v
v

)
.

In case of a real-valued function f, the quadratic term of the Taylor polynomial Pf can be
expressed as (

v
v

)∗

∇2f(z)

(
v
v

)
= 2Re

(
v∗∇2

z,z f(z) v
)
+ 2Re

(
v∗∇2

z̄,z f(z) v̄
)
. (5)

In this paper, we focus on real-valued functions f. For minimizing such a function f, we
apply gradient descent

zk+1 = zk−µk∇z f(zk) (6)

with some appropriate initial vector z0 ∈ Cn. The parameter µk > 0 is called step size or learn-
ing rate. It can be chosen to be constant or adaptive, preferably such that descent in every
iteration is guaranteed, i.e. f(zk+1)⩽ f(zk) for all k⩾ 0. The proof of the following result can
be found in [21].

Proposition 1. Let b ∈ R, f : Cn → [b,∞), be a twice Wirtinger differentiable function with
a uniformly bounded Hessian, i.e.(

v
v

)∗

∇2f(z)

(
v
v

)
⩽ L

∥∥∥∥( v
v

)∥∥∥∥2
2

for all z,v ∈ Cn, with a constant L> 0 independent of z. Let the sequence (zk)k⩾0 be generated
by the update (6) with an arbitrary initialization z0 ∈ Cn. If 0< µ⩽ L−1, then

f(zk)− f(zk+1)⩾ µ‖∇z f (zk+1)‖22
for all k⩾ 0. Then, if f has compact sublevel sets Ls( f) = {z ∈ Cn : f(z)⩽ s}, the Wirtinger
flow algorithm (6) is guaranteed to converge to a stationary point of f.

5
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We now specify the requirements of this result to loss functions which are relevant in our
context. As mentioned above, the loss functions we are going to consider are given as a com-
position ℓ ◦φ with a smooth function ℓ : R→ R and φ : Cn → [0,∞), φ(z) = |〈a,z〉|2. For
such functions, we obtain the following bound on the Hessian.

Lemma 2. Let ℓ : R→ R be twice differentiable and φ : Cn → [0,∞), φ(z) = |〈a,z〉|2 with
a ∈ Cn. Then(

v
v

)∗

∇2 (ℓ ◦φ)(z)
(

v
v

)
⩽
(
2ℓ ′ ′

(
|〈a,z〉|2

)
|〈a,z〉|2

+ℓ ′
(
|〈a,z〉|2

))
‖a‖22

∥∥∥∥( v
v

)∥∥∥∥2
2

for all z,v ∈ Cn.

Proof. The Wirtinger derivative of (ℓ ◦φ)(z,z) = ℓ(zTaa∗z) is

∂z (ℓ ◦φ)(z,z) = ∂z (ℓ ◦φ)(z,z) |̄z=const.= ℓ ′
(
zTaa∗z

)
zTaa∗

= ℓ ′
(
|〈a,z〉|2

)
z∗aa∗.

For the second derivatives we obtain

∂z (∂z (ℓ ◦φ)(z,z))∗ = ∂z

(
ℓ ′
(
|〈a,z〉|2

)
aa∗z

)
= ℓ ′ ′

(
|〈a,z〉|2

)
|〈a,z〉|2 aa∗

+ ℓ ′
(
|〈a,z〉|2

)
aa∗,

and analogously

∂z̄ (∂z (ℓ ◦φ)(z,z))∗ = ∂z̄

(
ℓ ′
(
|〈a,z〉|2

)
aa∗z

)
= ℓ ′ ′

(
|〈a,z〉|2

)
〈a,z〉2 aaT.

In view of (5) we get(
v
v

)∗

∇2 (ℓ ◦φ)(z)
(

v
v

)
= 2

(
ℓ ′ ′
(
|〈a,z〉|2

)
|〈a,z〉|2 + ℓ ′

(
|〈a,z〉|2

))
|〈a,v〉|2

+ 2Re
(
ℓ ′ ′
(
|〈a,z〉|2

)
〈a,z〉2 〈a,v〉2

)
⩽ 2

(
2ℓ ′ ′

(
|〈a,z〉|2

)
|〈a,z〉|2 + ℓ ′

(
|〈a,z〉|2

))
|〈a,v〉|2

⩽
(
2ℓ ′ ′

(
|〈a,z〉|2

)
|〈a,z〉|2 + ℓ ′

(
|〈a,z〉|2

))
×‖a‖22

∥∥∥∥( v
v

)∥∥∥∥2
2

,

where we used Re(α2β2)⩽ |α|2 |β|2 for α,β ∈ C.

In order to apply the convergence result of proposition 1, we need to bound 2ℓ ′ ′ (x) x+
ℓ ′ (x) by a constant independent of x ∈ [0,∞) and we have to show that the level sets of ℓ ◦φ
are compact. The compactness of the level sets will be addressed in the following lemma.

Lemma 3. Let f : Cn → R, z 7→
∑m

i=1 |〈ai,z〉|
2 with ai ∈ Cn, i = 1, . . . ,m. Denote with A the

matrix with rows a∗i , i = 1, . . . ,m. For any z0 ∈ Cn, f restricted to z0 + range(A∗) has compact
level sets.

6
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Proof. Consider any z ∈ z0 + range(A∗). We use that
∑m

i=1 |〈ai,z〉|
2
= ‖Az‖22. It is z0 = ẑ0 + z̃0

with ẑ0 ∈ ker(A) and z̃0 ∈ range(A∗). The vector z̃= z− ẑ0 is the orthogonal projection of z
onto the range of A∗. As z̃ is orthogonal to the kernel of A, it is ‖Az̃‖22 ⩾ σ2

min ‖z̃‖
2
2, where σmin

denotes the smallest non-zero singular value of A. Then, as ‖Az‖22 = ‖Az̃‖22, we can continue
to bound

‖Az‖22 ⩾ σ2
min ‖z̃‖

2
2 ⩾ σ2

min

(
‖z‖22 −‖ẑ0‖22

)
.

Since σmin and ‖ẑ0‖22 are constant for all z ∈ z0 + range(A∗), this shows that ‖Az‖22 is bounded
from below by a scaled and shifted version of ‖z‖22 for all z ∈ z0 + range(A∗). As z 7→ ‖z‖22 has
compact level sets, f has compact level sets on z0 + range(A∗).

Remark 4. With lemma 3 we obtain that
∑m

i=1 ℓi(|〈ai,z〉|
2
) has compact level sets on z0 +

range(A∗) if the functions ℓi : [0,∞)→ R, i = 1, . . . ,m, are continuous, bounded from below,
and satisfy ℓi(t)→∞ for t→∞.

3. Phase retrieval as an optimization problem

As discussed above, our aim is to reconstruct an (approximate) solution to the phase retrieval
problem (1) under certain assumptions on the random nature of the measurement process. Our
focus lies on those cases where the measurement process can be modeled as a Poisson distrib-
uted random process. In order to associate this assumption with a variational reconstruction
method, we use the maximum (log-) likelihood estimation.

3.1. Poisson log-likelihood loss

In order to maximize the (log-) likelihood function for the Poisson distributed random vari-
able yi with ground-truth |〈ai,x〉|2, we have to determine z such that

∑m
i=1(yi log(|〈ai,z〉|2)−

|〈ai,z〉|2) is maximal. This is equivalent to determining argminzLP(z) with

LP (z) =
m∑
i=1

|〈ai,z〉|2 − yi log
(
|〈ai,z〉|2

)
. (7)

Asmentioned earlier, we are interested inmeasurement scenarios where we can have no counts
at certain pixels. In those cases we need to consider the value |〈ai,z〉|2 = 0, which leads to sin-
gularities in the loss functionLP. A simple strategy to deal with them is shifting the logarithmic
term by a positive constant εP > 0, i.e.

LP,εP (z) =
m∑
i=1

|〈ai,z〉|2 − yi log
(
|〈ai,z〉|2 + εP

)
. (8)

The corresponding gradient descent update rule with constant step size reads as

zk+1 = zk−µ
m∑
i=1

(
1− yi

|〈ai,zk〉|2 + εP

)
〈ai,zk〉ai.

A suitable choice of the parameter is, however, not obvious. In this regard, one could for
example study a discrepancy principle similar to [36, 37]. We, instead, propose to consider an
approximation of the Poisson loss (8). An appropriate approximation is discussed in the next
section.

7
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3.2. Gaussian log-likelihood and variance stabilization

Recall that the maximum log-likelihood loss function for a Gaussian distributed random vari-
able yi with distribution N (|〈ai,x〉|2,σ2

i ), i = 1, . . . ,m, is given as

L(z) =
m∑
i=1

1
2σ2

i

(
|〈ai,z〉|2 − yi

)2
. (9)

Often, this loss is used for image reconstruction even if the underlying process is a counting
process, i.e. the random variable is Poisson distributed. This can be justified in cases for which
the variance parameter λ in the Poisson distribution Poisson(λ) is sufficiently large. In this
situation, the central limit theorem shows that Poisson(λ) can be approximated by a Gaussian
distributionN (λ,λ). However, in a low-dose scenario this approximation is no longer suitable.

Another approach to approximate a Poisson random variable by aGaussian random variable
is the so-called variance stabilization method [38–41]. This method transforms the Poissonian
data such that the resulting random variable has approximately constant variance. The rationale
of this method is as follows. Let λ> 0 and X∼ Poisson(λ). Assume f : R⩾0 → R is a suffi-
ciently smooth function. Then, its first order Taylor approximation around the variance λ is
f(t)≈ f(λ)+ (t−λ)f ′(λ), and, hence,V( f(X))≈ V(X) ( f ′(λ))2. In order to obtain an approx-
imate constant variance, set the right-hand side of the latter relation equal to σ2. This leads
to f(t) = 2σ

√
t. The approach goes back to [38, 39] and was modified by Anscombe in [41]

using a fifth order Taylor approximation in order to handle cases where the variance λ is rather
small. Anscombe considered the shifted square-root transform f(t) =

√
t+ c. Following the

same arguments as above, one arrives at

V
(√

X+ c
)
≈ (λ+ c) ·V

[
1+

1
2
· X−λ√

λ+ c
− 1

8
·
(
X−λ√
λ+ c

)2

+
1
16

·
(
X−λ√
λ+ c

)3

− 5
128

·
(
X−λ√
λ+ c

)4

+
7

256
·
(
X−λ√
λ+ c

)5
]

≈ 1
4
·

(
1+

3
8 − c

λ
+

32c2 − 52c+ 17
32λ2

)
,

which suggests to choose c= 3/8 to achieve V(X)≈ 1/4.
However, neither the simple square-root transform nor the Anscombe transform performs

well when λ ∈ [0,2], hence, we aim for a better suited variance-stabilizing transform of square-
root type f(t) =

√
t+ c. We determine the parameter c> 0 such that V(

√
X+ c ) = 1/4 by

considering

V
(√

X+ c
)
= E(X)+ c−

[
E
(√

X+ c
)]2

= λ+ c−

( ∞∑
k=0

√
k+ c · exp(−λ)λk

k!

)2

,

and obtain an approximately optimal value for c by setting this equal to 1/4. By this method,
we obtain, e.g. for λ= 1 the optimal value c≈ 0.12 and for λ= 2 the value c≈ 0.27.

8
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Figure 1. Variance-stabilizing transforms.

To cover not only one optimal choice of c for one specific value of λ, we propose to consider
an averaging transform

f(t) =
1
2

(√
t+ c1 +

√
t+ c2

)
(10)

with c1,c2 ⩾ 0. An example for such a transform is the Tukey–Freeman transform [42]

f(t) =
1
2

(√
t+

√
t+ 1

)
(11)

that is known to perform well for small λ. We advance this idea with using c1 = 0.12 and
c2 = 0.27 in an experiment dominated by 1 and 2 counts. This is justified as for measurements
of this size it is very likely that the underlying ground-truth is close to 1 or 2. The performance
of this transform compared to the square-root and the Anscombe transform can be studied in
figure 1.

By means of figure 1 we note that for λ close to 0 the square-root transform f(t) =
√
tmight

be preferred over the other variance-stabilizing transforms. Also by the method described
above we find that for λ→ 0 the optimal choice is c close to 0.

Returning back to the discussion on suitable loss functions, we can use any of the presented
variance-stabilizing transforms f and consider the loss

L(z) =
m∑
i=1

2
(
g
(
|〈ai,z〉|2

)
− f(yi)

)2
,

which represents the log-likelihood function for a Gaussian distribution N
(
g
(
|〈ai,z〉|2

)
, 14
)
,

with function g satisfying g(X) = E( f(X)).
If we consider a transform f(t) =

√
t+ c with c⩾ 0 that stabilizes the variance of a Poisson

random variable around 1/4, the mean of the transformed random variable is approximately

E
(√

X+ c
)
=

√
E(X+ c)−V

(√
X+ c

)
≈
√

E(X)+ c− 1
4
. (12)

Hence, we would work with a loss function

L(z) =
m∑
i=1

2

(√
|〈ai,z〉|2 + c− 1

4
−
√
yi+ c

)2

. (13)

9
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A variant of this type of loss function is the amplitude loss

L(z) =
m∑
i=1

2

(√
|〈ai,z〉|2 + εA−

√
yi

)2

, (14)

with εA > 0, which has attracted interest recently in the phase retrieval community, see [20,
21]. This loss function is motivated by the Gaussian model involving a square-root trans-
form. However, this formulation disregards the relation (12) but uses the coarse approximation
E
(√

X
)
≈
√

E(X) .
A loss function based on the maximum likelihood model for a Gaussian distribution using

the Anscombe transform, i.e. with c= 3/8, was considered before, e.g. in [43], and stud-
ied for mixed Poisson-Gaussian noise in [44]. These works also used the approximation
E
(√

X+ 3/8
)
≈
√
E(X+ 3/8) instead of (12).

While a loss function (13) fits very well the problem setting we want to consider, apply-
ing a gradient descent method to this loss function is problematic if c⩽ 1/4. The con-
sidered function is not well-defined for z with |〈ai,z〉|2 ∈ [0,1/4− c), and not differentiable at
|〈ai,z〉|2 = 1/4− c. Hence, we need to regularize again to counteract this issue. We decide to
also utilize the coarse approximation E

(√
X+ c

)
≈
√
E(X+ c) and consider

L(z) =
m∑
i=1

2

(√
|〈ai,z〉|2 + c−

√
yi+ c

)2

. (15)

The idea of adapting the expectation of the distribution accordingly is also not reflected
in works as, e.g. [16]. The intention of those approaches is to smoothen the loss function.
We, additionally, aim at formulating the loss such that it is close to the Poissonian model.
However, in an experiment with too low illumination dose, resulting in ground-truth values
much smaller than 1, the variance after variance-stabilizing transform is rather close to 0.
Hence, the approximation (12) is not good for an extreme low-dose experiment and, thus, we
abstain from subtracting 1/4 in the mean approximation and prefer using (15).

More generally, we can also use an averaging transform (10), with values c1,c2 ⩾ 0, for
variance stabilization. For the same reasons as before, we use the coarse approximation

E
(√

X+ c1 +
√
X+ c2

)
≈
√

E(X)+ c1 +
√

E(X)+ c2 ,

and consider loss functions of the form

L(z) =
m∑
i=1

1
2

(√
|〈ai,z〉|2 + c1 +

√
|〈ai,z〉|2 + c2 −

√
yi+ c1 −

√
yi+ c2

)2

.

All discussed variance-stabilizing transforms result in a variance approximately equal to
1/4 only for distribution parameters λ> 0. Hence, it might not be advisable to use the loss
functions resulting from the variance-stabilizing transforms in case of ground-truth values
equal or close to 0. In an experiment, the ground-truth values are not known. However, if
yi = 0, it is likely that the corresponding ground-truth is close to 0 and we wish to avoid
variance-stabilizing transforms for these instances. Note that for yi = 0 no regularization is
required in the exact Poisson log-likelihood model as the loss function reduces to the term
|〈ai,z〉|2. Therefore, we propose to consider

10
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L0 (z) =
m∑
i=1

1yi=0 · |〈ai,z〉|2

+1yi>0 ·
1
2

(√
|〈ai,z〉|2 + c1 +

√
|〈ai,z〉|2 + c2 −Ci

)2

, (16)

with c2 ⩾ c1 > 0,Ci ⩾ 0, i = 1, . . . ,m, if one is working with low-dose data dominated by zero
measurements.

4. Convergence analysis of gradient descent algorithms for phase retrieval

In the following, we analyze the convergence of gradient descent algorithms for optimization
problems using the loss functions discussed in sections 3.1 and 3.2.

Firstly, we state a convergence guarantee for a gradient descent algorithm according to the
Poisson log-likelihood loss.

Theorem 5. Let εP > 0 and LP,εP(z) =
∑m

i=1 |〈ai,z〉|
2 − yi log

(
|〈ai,z〉|2 + εP

)
. Let M be the

matrix with rows
√
1+ yi

8εP
· a∗i , i = 1, . . . ,m, and choose µ⩽ ‖M‖−2. Then, the sequence

(zk)k⩾0 ⊂ Cn defined by

zk+1 = zk−µ ·
m∑
i=1

(
1− yi

|〈ai,zk〉|2 + εP

)
〈ai,zk〉ai

converges to a stationary point of LP,εP .

Proof. We shall apply proposition 1. Since LP,εP(z) =
∑m

i=1 ℓi ◦φ(z) with ℓi : [0,∞)→
R, t 7→ t− yi log(t+ εP) and φ(z) = |〈ai,z〉|2, we compute

2 · ℓ ′ ′i (t) · t+ ℓ ′i (t) = 2 · yi

(t+ εP)
2 · t+ 1− yi

t+ εP

= 1+
yi (t− εP)

(t+ εP)
2 ⩽ 1+

yi
8εP

,

where we used that s−εP
(s+εP)2

⩽ 1
8εP

for every s ∈ R and any fixed εP > 0. With lemma 2 and this
bound, we obtain(

v
v

)∗

∇2LP,εP (z)

(
v
v

)
⩽ 2 ·

m∑
i=1

∣∣∣∣〈√1+
yi
8εP

· ai,v
〉∣∣∣∣2

⩽ 2‖M‖2 ‖v‖22 = ‖M‖2
∥∥∥∥( v

v

)∥∥∥∥2
2

for all z,v ∈ Cn. It remains to show that LP,εP has compact sublevel sets on the subspace
z0 + range(A∗), which contains all possibly attainable iterates of the algorithm. This fol-
lows from lemma 3 and remark 4. Clearly, all functions ℓi are continuous and bounded from
below. Further, we can find k1 > 0 and k2 ∈ R with ℓi(t)⩾ k1 · t+ k2 for all t ∈ [0,∞), hence
ℓi(t)→∞ for t→∞. Then, using proposition 1, we conclude that the considered gradient
descent algorithm converges to a stationary point of the loss LP,εP .

11
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Our main conclusion of theorem 5 is that the step size which guarantees convergence must
be of the order of the regularization parameter εP. If we are interested in affecting the problem
with only a small regularization parameter, this involves choosing a small step size, but using
a constant small step size in all iterations results in slow convergence.

In [13], a convergence analysis for a similar algorithm is presented. In contrast to our theory
on convergence to stationary points, the authors of [13] state a guarantee for convergence to the
ground-truth solution. However, while this guarantee only holds in case of a good initialization
and is only applicable for measurement vectors ai being Gaussian random vectors, our result
holds independently of the quality of the initialization and for arbitrary measurement systems
and, hence, is more relevant for applications.

We proceed with a convergence analysis for the gradient descent algorithms based on the
class of loss functions considered in section 3.2.

Theorem 6. Let

Lavg (z) =
m∑
i=1

1
2

(√
|〈ai,z〉|2 + c1 +

√
|〈ai,z〉|2 + c2 −Ci

)2

, (17)

with constants c2 ⩾ c1 > 0, Ci ⩾ 0, i = 1, . . . ,m. For arbitrary z0 ∈ Cn define a sequence
(zk)k⩾1 by

zk+1 = zk−µ · 1
2

m∑
i=1

(√
|〈ai,zk〉|2 + c1 +

√
|〈ai,zk〉|2 + c2 −Ci

)
·

×

 1√
|〈ai,zk〉|2 + c1

+
1√

|〈ai,zk〉|2 + c2

〈ai,zk〉ai.

Then, (zk)k⩾0 ⊂ Cn converges to a stationary point of the loss function Lavg provided µ⩽
2
((

3+
√
c2/c1

)
‖A‖2

)−1
, where A denotes the matrix with rows a∗i , i = 1, . . . ,m.

Proof. We proceed as in the proof of theorem 5. A bound for the Hessian of Lavg is found by

using lemma 2 with ℓi : [0,∞)→ [0,∞), t 7→ 1
2 (
√
t+ c1 +

√
t+ c2 −Ci)

2. We have

ℓ ′ (t) =
1
2

(√
t+ c1 +

√
t+ c2 −Ci

)
·
(

1√
t+ c1

+
1√
t+ c2

)
=

1
2

[
2+

√
t+ c1√
t+ c2

+

√
t+ c2√
t+ c1

−Ci ·
(

1√
t+ c1

+
1√
t+ c2

)]
,

which leads to

ℓ ′ ′(t) =
1
4

(
1√
t+ c1

+
1√
t+ c2

)2

− 1
4

(√
t+ c1 +

√
t+ c2 −Ci

)
·

(
1

(t+ c1)
3
2

+
1

(t+ c2)
3
2

)

=
1
4

[
2√

t+ c1
√
t+ c2

−
√
t+ c1

(t+ c2)
3
2

−
√
t+ c2

(t+ c1)
3
2

+Ci ·

(
1

(t+ c1)
3
2

+
1

(t+ c2)
3
2

)]
⩽ 1

4
Ci ·

(
1

(t+ c1)
3
2

+
1

(t+ c2)
3
2

)
.

12
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For the bound of the second derivative we have used that 2
αβ ⩽ α

β3 +
β
α3 for α,β ∈ R. Thus,

we arrive at

2 tℓ ′ ′ (t)+ ℓ ′ (t) ⩽ 1
2
Ci ·

(
t

(t+ c1)
3
2

+
t

(t+ c2)
3
2

)

+
1
2

[
2+

√
t+ c1√
t+ c2

+

√
t+ c2√
t+ c1

−Ci ·
(

1√
t+ c1

+
1√
t+ c2

)]
=

1
2

[
−Ci ·

(
c1√
t+ c1

+
c2√
t+ c2

)
+ 2+ 1+

√
c2
c1

]
⩽ 1

2

(
3+

√
c2
c1

)
,

and, consequently,(
v
v

)∗

∇2Lavg (z)

(
v
v

)
⩽

m∑
i=1

(
3+

√
c2
c1

)
|〈ai,v〉|2

⩽ 1
2

(
3+

√
c2
c1

)
‖A‖2

∥∥∥∥( v
v

)∥∥∥∥2
2

for all z,v ∈ Cn. This suggests choosing µ= 2
((

3+
√
c2/c1

)
‖A‖2

)−1
.

The function Lavg restricted to z0 + range(A∗) has compact level sets by lemma 3 and
remark 4, as all functions ℓi are continuous, bounded from below, and satisfy ℓi(t)→∞ for
t→∞. By proposition 1, the gradient descent algorithm converges to a stationary point of the
loss function Lavg.

By this result, we also obtain a rule for the step size when using a gradient descent algorithm
for a loss (13) or (14).

Corollary 7. Convergence to a stationary point of a loss function (14) for some regularization
parameter εA > 0 can be achieved by the corresponding gradient descent algorithm using a

step size µ⩽
(
2‖A‖2

)−1
.

This is the same result as theorem A.1 in [20], which means that we generalized the con-
vergence guarantee of [20] for the amplitude loss to the class of loss functions (17).

The important difference of this result to the convergence guarantee for the Poisson log-
likelihood loss, as stated in theorem 5, is that the bound on the step size necessary for conver-
gence is independent of a potentially small regularization parameter.

Corollary 8. A loss function using the Tukey–Freeman transform (11) for variance stabiliza-
tion would be of the form

L(z) =
m∑
i=1

1
2

(√
|〈ai,z〉|2 + ε +

√
|〈ai,z〉|2 + 1 −√

yi−
√
yi+ 1

)2

,

with ε> 0 to avoid the singularity in the derivative. By theorem 6, we conclude that a gradient

descent algorithm using this loss function requires a step size µ⩽ 2
((

3+
√

1/ε
)
‖A‖2

)−1

for guaranteed convergence.
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Figure 2. Distribution of measurements for a low-dose and a higher-dose experiment.

This means that for this type of variance-stabilizing transform we face the same problem
as for the Poisson log-likelihood loss.

Also for the loss L0 finally proposed by us we can use the same fixed step size and can
guarantee convergence to a stationary point of the loss function.

Corollary 9. Convergence to a stationary point of loss L0 defined in (16) can be achieved by

the corresponding gradient descent algorithmwith a step size µ⩽ 2
((

3+
√
c2/c1

)
‖A‖2

)−1
.

5. Numerical experiments

We corroborate our theoretical consideration with numerical experiments on the reconstruc-
tion of an object from simulated low-dose Poissonian phase retrieval measurements. Our
simulations are based on a test object x ∈ Cn and complex Gaussian measurement vectors
ai ∈ Cn, i = 1, . . . ,m. In the initial subsections, we work with n= 256 and m= 10n, whereas
in section 5.4, we give a more detailed analysis for different object dimensions n and over-
sampling ratios m

n .

We normalize the measurements such that
∑m

i=1 |〈ai,x〉|
2
= 1 and understand a noiseless

value |〈ai,x〉|2 as the probability that photons arrive at the ith detector pixel. We choose a dose
d ∈ N and work with measurements

yi ∼ Poisson
(
d · |〈ai,x〉|2

)
, i = 1, . . . ,m.

Unless reported otherwise, we experiment with doses d ∈ {500,1000,1500, . . . ,3000}. The
histograms in figure 2 show exemplary realizations of measurement distributions for d= 500
and d= 3000. The lowest dose corresponds to a signal-to-noise ratio

SNR := ‖
(
d · | 〈ai,x〉 |2

)m
i=1

‖2
/
‖
(
yi− d · |〈ai,x〉|2

)m
i=1

‖2

of approximately 0.64, the highest dose corresponds to SNR≈ 1.44.
All considered algorithms are initialized by the result of a few iterations of the power

method proposed in [10]. Further, the algorithms are stopped at the latest after 1000 itera-
tions or as soon as a stopping criterion is met, which requires the respective loss function to
drop by less than 10−6 within one iteration. Our trials showed that this enabled the algorithms
to saturate at a local minimum in the majority of cases.
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Figure 3. Performance of the Poisson flow with regularization parameter εP ∈{
10−3,0.1,0.25,0.5,1

}
. For each dose, the experiments were repeated 20 times and

averages of the reconstruction results are shown.

The performance of the various investigated algorithms is compared in terms of the relative
reconstruction error minθ∈(0,2π]

∥∥x− eiθxT
∥∥
2

/
‖x‖2, where x is the ground-truth and xT is the

reconstruction result obtained after T iterations of the respective algorithm.

5.1. Gradient descent with Poisson log-likelihood

First, we compare the performance of the gradient descent algorithm using the Poisson log-
likelihood loss (8) for different regularization parameters εP. The respective algorithm is
named ‘Poisson flow’ (PF).

Figure 3 depicts the performance of the discussed algorithms for this experiment in terms of
the relative reconstruction error. This experiment shows that the performance of the algorithm
clearly depends on the choice of the regularization parameter εP. While in a higher-dose exper-
iment the algorithm is not very sensible to the parameter selection, a low-dose experiment
requires knowledge about a good choice for εP.

We would like to comment here that, alternatively to (8), we could also work with the loss

L(z) =
m∑
i=1

|〈ai,z〉|2 − (yi+ ε) log
(
|〈ai,z〉|2 + ε

)
.

The corresponding method can be understood as unbiased since this loss is minimized by z sat-
isfying |〈ai,z〉|2 = yi, i = 1, . . . ,m. Hence, this method would be less sensible to the selection
of ε. However, we found in our numerical analysis that the corresponding algorithm performs
worse than the algorithm using loss (8) with a good parameter εP. Moreover, the problem that
the recommended step size is parameter dependent remains.

5.2. Gradient descent with Gaussian log-likelihood after improved variance stabilization

Further, we compare the Poisson flow with the gradient descent algorithm using the Gaussian
log-likelihood loss with the proposed improved variance stabilization transform. The algorithm
we label here as ‘Flow with improved variance stabilization’ (FIVS) works with the loss func-
tion (16)with c1 = 0.12, c2 = 0.27, andCi =

√
yi+ c1 +

√
yi+ c2, i = 1, . . . ,m, and algorithm
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Figure 4. Performance of the gradient descent algorithms for the proposed loss func-
tions based on the improved variance stabilization approach. The gray lines correspond
to the Poisson flow as in figure 3. The plot shows averages over 20 trials.

‘Flow with improved variance stabilization without adaption for zero measurements’ (FIVS-
WA) uses loss (17) with the same parameters.

The plot of the relative reconstruction errors for different doses in figure 4 indicates that
the FIVS algorithm, using the suggested loss function with the improved variance-stabilizing
transform including the Poisson log-likelihood adaption to zero measurements, performs in
all instances comparably to the Poisson flow with the respective close to optimal choice of
regularization parameter. If one is aware of an optimal parameter selection, it is reasonable
to apply the Poisson flow. However, if no decision rule is available, FIVS is an advisable
alternative.

Note that the proposed adaption (16) of the loss for zero measurements is essential for
a low-dose experiment dominated by zero measurements. Consequently, we focus solely on
FIVS (with the adaption for zero measurements) in the following.

5.3. Wirtinger flow and truncated Wirtinger flow

Next, we compare the performance of FIVS with two approaches suggested in the literature
that do not use a variance stabilization and do not require a choice of a regularization parameter
as in the Poisson flow.

We denote with ‘Wirtinger flow’ (WF), as common in the literature, the algorithm using
the loss (9) with constant variance σ2

i = 1/4. This is the first variant of a Wirtinger gradient
descent algorithm and was proposed in [10]. Further, we study the ‘truncated Wirtinger flow’
(TWF) as described in [13], based on a truncation principle for the Poisson maximum log-
likelihood loss. For this method, we did not tune the required parameters but used the numbers
suggested by the authors.

From the results shown in figure 5 we conclude that neither of these two methods can keep
up with the proposed method (FIVS) in a low-dose setting.

5.4. Amplitude flow

Interpreting the reconstruction results reported up to here, we have to note that we are in the
low-dose regime and cannot expect very small reconstruction errors without much redundancy
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Figure 5. Performance of the gradient descent algorithm for the proposed loss function
based on the improved variance stabilization approach (FIVS) versus the Wirtinger flow
algorithm [10] and the truncated Wirtinger flow [13]. The plot shows averages over 20
trials.

in the data, i.e. a large amount ofmeasurements. Furthermore, we have tomind that for drawing
more measurements, the dose per measurement needs to be reduced accordingly in a low-dose
experiment because more measurements cause more damage. To explore the trade-off between
the oversampling ratio (m/n) and the illumination dose used per object pixel (d/n) in more
detail, we extend the analysis to a larger range of oversampling-dose-pairings.

In these experiments, we compare the proposed algorithm, FIVS, with the gradient descent
algorithm for the loss (14) for various choices of regularization parameters εA. We refer to
this algorithm as ‘amplitude flow’ (AF). While our proposed method is a variant of amplitude
flow with a parameter choice based on the heuristics of the improved variance stabilization,
we aim to decide whether this parameter rule is indeed reasonable in a range of applications.
The experiments are summarized in the plots shown in figure 6.

It can be recognized that for a very low-dose experiment or in case of a small oversampling
ratio the AF with a different parameter choice than in FIVS can be favorable. The experiments
suggest that in extreme cases with a small oversampling ratio the parameter εA should be
chosen rather large. However, no definite rule on the choice of parameter can be deduced from
this empirical study. This argues in favor of the proposed FIVS method, i.e. the algorithm
using the loss function built on the heuristics motivated by the improved variance stabilization
transform.

5.5. Discussion of the step size selection

For the Wirtinger flow algorithm using the Gaussian log-likelihood loss we do not find a con-
stant step size that guarantees a decrease of the loss function in each iteration as for the other
loss functions discussed in this paper. We can choose an iteratively adapted step size, based
on an analysis similar to the proof ideas used over all this paper, where it is not possible to
eliminate the dependence on the iterates. However, this implementation is computationally
expensive and makes the choice of this loss function less attractive. For the experiments, we
used the computationally more efficient step size proposed in [45]. For all other algorithms,
we use the step sizes proposed by the respective theoretical results, i.e. theorems 5 and 6.
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Figure 6. The plot displays the best performing method per oversampling-dose-pairing,
represented by the respective assigned color. Performance is measured in terms of rel-
ative reconstruction error after the described stopping criterion on the respective loss
is satisfied. The results are averages over five trials. For all three experiments for dif-
ferent object dimensions n, the proposed method FIVS showed the best performance in
a majority of combinations of oversampling ratios m

n and doses ratios d
n . In the cases

where AF with a certain parameter choice εA obtained better reconstruction results, we
observe the tendency that a smaller oversampling ratio requires a larger value for εA.
Nevertheless, no clear decision rule can be derived for the regularization parameter of
the amplitude flow, whereas FIVS, a method based on a heuristic determining the para-
meter choice, demonstrates good performance in a wide range of cases.

Li et al[34] suggest to use a step size based on an approximation of the Hessian using
observed Fisher information for the Poisson log-likelihood loss. This step size is claimed to
accelerate the convergence as it is larger than the step size involving the inverse of the factor
1+ yi/(8εP). However, in comparison to the step size derived in theorem 5, the Fisher inform-
ation based step size solves a line search in each iteration, which results in computational
expense. Here, we face a trade-off between having a constant step size, independent of the
approximate obtained in each iteration, that guarantees convergence or having a step size rule
that can be made independent of εP by performing a step size optimization in each iteration.
Due to the computational advantage, our interest lies rather in the constant step size. In our
numerical experiments we found that for larger regularization parameters εP the step size pro-
posed by [34], as contrasted with our step size rule, does not guarantee descent of the loss in
each iteration.While for εP → 0 our step size rule becomes impractical, the iteration dependent
step size becomes more useful as it does not decrease on the order of εP. On the other hand, our
experiments showed that it is not reasonable to work with an extremely small regularization
parameter εP.

We conclude that using the constant step size in combination with εP large enough seems
to be reasonable. Other than that, we would like to emphasize again that this trade-off problem
can be avoided when using the Gaussian log-likelihood with a good variance stabilization as
suggested here.

6. Conclusion

In this paper, we studied gradient descent algorithms for suitable regularizations and approx-
imations of the Poisson log-likelihood problem. Motivated by the nature of low-dose imaging
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experiments, we designed a method that allows for improved treatment of zero measurements
and other small counts. For this and all other discussed algorithms, we provided a convergence
analysis including a step size rule.

In terms of applying such methods to real-world data, a next step is to incorporate a suitable
regularization term in the optimization problem, for example of the type discussed in [46] or
[47]. The optimal choice for the regularization term depends highly on the type of object under
consideration. It is future work to find a reasonable problem formulation for objects such as,
for example, viruses that shall be imaged using low-dose illumination. A possible follow-up
work on this paper would be to extend the convergence analysis to algorithms involving such
regularization attempts.

During the preparation of this manuscript, one of the authors continued the research on low-
dose Poisson phase retrieval, especially in the very extreme regime of only 0 and 1 counts.
In this extreme setting, the newly developed algorithms presented in [48] outperform the
algorithms discussed in this work. However, in a moderately low-dose scenario as studied in
the present paper, the optimization approach using the maximum likelihood loss and approx-
imations thereof are our method of choice.
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