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Detecting depression is a critical component of mental health diagnosis, and accurate assessment is
essential for effective treatment. This study introduces a novel, fully automated approach to predicting
depression severity using the E-DAIC dataset. We employ Large Language Models (LLMs) to extract
depression-related indicators from interview transcripts, utilizing the Patient Health Questionnaire-8
(PHQ-8) score to train the prediction model. Additionally, facial data extracted from video frames is
integrated with textual data to create a multimodal model for depression severity prediction. We
evaluate three approaches: text-based features, facial features, and a combination of both. Our
findings show the best results are achieved by enhancing text data with speech quality assessment,
with a mean absolute error of 2.85 and root mean square error of 4.02. This study underscores the
potential of automated depression detection, showing text-only models as robust and effective while
paving the way for multimodal analysis.

Depression, often termed a silent epidemic, impacts approximately 300
million individuals globally, profoundly affecting their thoughts, behaviors,
emotions, and overall well-being1. It is amajor public health challenge, with
an estimated 5% of adults suffering from this condition2,3. Depression does
not discriminate; it can affect anyone, regardless of background. Peoplewho
have experienced abuse, severe losses, or other stressful events are more
susceptible to developing depression. The consequences of untreated
depression can be severe, leading to impaired functioning in daily life,
strained relationships, and in the worst cases, suicide2. Despite the avail-
ability of effective psychotherapeutic and psychopharmacological treat-
ments,many individuals donot receive adequate support. For instance, over
75% of people in low- and middle-income countries lack access to the care
they need. Barriers to effective treatment include insufficient investment in
mental health services, a lack of trained healthcare providers, and the social
stigma associated with mental disorders2,4. As a consequence, a significant
number of individuals affected by depression may never receive adequate
diagnoses and therefore, treatment2. Diagnosing depression primarily relies
on clinical interviews and questionnaires such as the Patient Health Ques-
tionnaire (PHQ)5. This process can be time-consuming and susceptible to
confounding influences such as recall or rater biases, making false-positive

or false-negative results a possibility6. One of the major hurdles in depres-
sion treatment is the subjective nature of assessment, which can result in
inconsistent evaluations and potentially inaccurate diagnoses6. Thus, it is of
paramount importance to improve the understanding, diagnosis, and
treatment of depression to allow more effective and accessible clinical care.

Recent advancements in artificial intelligence (AI) have openedupnew
possibilities for tackling complex health challenges such as depression.
Among these innovations, large languagemodels (LLMs) likeGPT-4o7 have
showcased impressive capabilities in understanding and generating natural
language. By leveraging these models, we can extract subtle linguistic and
behavioral features indicative of depression from multimodal data sources,
such as text, audio, and video, providing more objective and reliable
assessments that overcome the drawbacks of conventional assessment
approaches. Looking to the future, the potential applications of LLMs in
mental health care extendbeyonddetection. Imagine anAI assistant capable
of automatically and continuouslymonitoring an individual’smental health
by analyzing their written, verbal, or video interaction with clinical practi-
tioners upon the patient’s consent. Such an assistant could provide early
warnings if signs of depression are detected, prompting individuals to seek
professional help sooner and increasing the chances of successful
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intervention. Moreover, such AI systems could offer personalized recom-
mendations for self-help and psychotherapeutic/psychopharmacological
treatment options. An AI assistant could suggest activities to foster beha-
vioral activation, provide cognitive restructuring exercises, facilitate
improved interpersonal relationships, and offer practical problem-solving
strategies. By delivering such interventions through an accessible and per-
sonalized platform, AI could empower individuals to take proactive steps in
managing their mental health, thereby complementing traditional ther-
apeutic approaches.

In recent years, several studies have explored the use of AI and mul-
timodal approaches for depression detection, laying a solid foundation for
future advancements. Research on social media-based depression detection
has been particularly prolific. Deshpande et al.8 utilized emotion AI and
sentiment analysis to detect depression on Twitter9 by analyzing a curated
list of depression-related words. Yazdavar et al.10 developed a semi-
supervised model that incorporated word usage patterns and topical pre-
ferences to identify clinical depression symptoms from Twitter posts.
Similarly, Trotzek et al.11 employed machine learning models, including
Convolutional Neural Networks (CNNs) on word embeddings, to detect
early depression symptoms from socialmediamessages. Expanding to other
platforms, Islam et al.12 analyzed user comments on Facebook13 using
decision trees for emotional and linguistic features and support vector
machines (SVMs) for temporal analysis. Orabi et al.14 proposed detecting
depression from Twitter data through optimized word embeddings and
deep learning models, including CNNs and recurrent neural networks
(RNNs). Cacheda et al.15 focused on early depression detection methods
using social media data, emphasizing linguistic and behavioral analysis.
Tadesse et al.16 utilized Natural Language Processing (NLP) and machine
learning to detect depression in Reddit posts17, relying on lexicons of words
commonly used by individuals with depression. Burdisso et al.18 introduced
a text classifier for early risk detection tasks such as depression detection
using incremental classification and explainable AI. Moreover, Guo et al.19

demonstrated improved depression detection capabilities in resource-
constrained settings by leveraging the strengths of pre-trained language
models and topic modeling techniques. Pérez et al.20 developed a semantic
pipeline to estimate depression severity from social media, using a multi-
class classification approach to differentiate severity levels. Their method,
which incorporates clinical symptoms from the BDI-II questionnaire21,
achieves state-of-the-art results on Reddit benchmark17. Additionally,
Nguyen et al.22 enhanceddepression detection by grounding theirmodels in
the PHQ-923 questionnaire’s symptoms, improving out-of-domain gen-
eralization on social media datasets. By integrating these clinically relevant
constraints, they enhanced model interpretability and maintained compe-
titive performance compared to standard BERT-based24 approaches. This
demonstrates the potential of symptom-based modeling to improve AI
applications in mental health diagnosis.

Besides social media, an invaluable dataset for AI research in depres-
sion detection is the distress analysis interview corpus Wizard-of-Oz
(DAIC-WOZ)25,26. It comprises audiovisual recordings of 142 participants
interacting with a human-controlled virtual agent, designed to diagnose
psychological distress conditions such as anxiety, depression, and PTSD.
The extended DAIC-WOZ dataset (E-DAIC) represents an expansion of
the original DAIC-WOZ dataset (DAIC), featuring a larger cohort of 275
participants who underwent semi-clinical interviews with a virtual inter-
viewer. The 20-minute interview sessions are converted into written tran-
scripts and supplemented with annotations of acoustic and visual cues. The
dataset ensures diverse representation and includes data from both human-
controlled and autonomous AI interviews, along with clinical annotations
like PTSD Checklist Civilian Version (PCL-C) and Patient Health
Questionnaire-8 (PHQ-8) scores25–27. Several studies have utilized text,
audio, video, or multimodal approaches to detect depression using the
DAIC or E-DAIC datasets. For instance, Gong et al.28 developed a topic
modeling approach that facilitated context-aware analysis of lengthy
interviews in the DAIC dataset by extracting relevant topics. Williamson
et al.29 discovered that analyzing an avatar’s speech patterns can be a

powerful way to identify depression, highlighting how the condition affects
communication.

Other studies have integrated multiple modalities for enhanced
depression detection. Nasir et al.30 explored multimodal features for
depression classification, and found that i-vector (identity vector)modeling,
a feature extraction technique, performed exceptionally well in audio ana-
lysis. Al Hanai et al.31 used long short-term memory (LSTM) networks to
detect depressionusingboth audio and textmodalities. Stepanov et al.32 took
a multimodal approach, fusing speech, language, and visual cues to predict
depression severity, as measured by PHQ-8 scores, using the DAIC dataset.
Fan et al.33 utilized a multi-scale temporal dilated CNN for depression
detection, incorporating both text and audio features. Yin et al.34 predicted
depression severity using a multimodal approach with bidirectional LSTM
networks. Shen et al.35 identified two key predictors of depression severity in
the DAIC dataset: spectral features extracted from audio recordings and
behavioral cues extracted from interview transcripts, both of which proved
to be strong indicators of depression severity. Prabhu et al.36 developed a
multimodal depression detection system combining facial expressions
(CNN-LSTM), text (LSTM), and audio (LSTM) features, leveraging transfer
learning and ensemble techniques for enhanced performance. The E-DAIC
dataset27 has been utilized in various studies as well. For instance, Makiuchi
et al.37 proposed a multimodal approach for depression detection, com-
bining text, audio, and facial features using deep learning techniques,
including VGG-1638 for speech, BERT for language, and ResNet-5039 for
visual features. Ray et al.40 introduced amulti-level attention-based network
for predicting depression severity, highlighting the importance of textual
information.

A significant limitation of prior research on text-based depression
detection using the DAIC or E-DAIC dataset is the reliance on manual
text preprocessing, feature extraction, and topic identification. This
labor-intensive approach underscores the need for more automated and
comprehensive methods. The current paper addresses these limitations
by presenting a novel, fully automated approach built on the E-DAIC
dataset, which leverages state-of-the-art LLMs to automate the extrac-
tion of depression-relevant features from interview transcripts. This
automation enables the efficient identification of language features
pertinent to depression, eliminating the need for manual processing. In
our previous work41, we demonstrated the power of LLMs in uncovering
valuable insights from textual data, leveraging the E-DAIC dataset to
explore the potential of automated feature extraction. Our study
revealed that LLMs can enhance the efficiency and accuracy of depres-
sion screening and diagnosis, by automating the analysis process and
minimizing the need for manual review. Building upon this foundation,
the current paper presents a novel approach that refines and expands our
previous work. We introduce alternative prompts to improve the
extraction of depression-related features from interview transcripts
using state-of-the-art LLMs. This refinement enables more accurate and
nuanced feature extraction, enhancing the automated analysis process.
We then use these extracted features to build a machine-learning model
that predicts PHQ-8 scores of individuals as a measure of depression
severity. Furthermore, we explore the incorporation of visual cues
extracted from video frames, including facial expressions, eye gaze, and
head pose, using bidirectional LSTM networks. By fusing both textual
and visual modalities, we construct a multimodal model for predicting
depression symptoms. Our approach enables a comprehensive evalua-
tion of the effectiveness of each modality, allowing us to identify which
data modality is more effective in detecting depression symptoms. We
evaluate the performance of each model using standard metrics to
compare their effectiveness and determine the relative strengths of
textual and visual features in detecting depression symptoms. Figure 1
provides a summary of our proposed approach.

The structure of the paper is outlined as follows: Section “Methods”
provides a detailed description of the proposed method, while Section
“Results and Discussion” presents and discusses the experimental
findings.
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Methods
In this section, we describe our proposed method for depression detection.
First, we detail the dataset used. Then, we consider the automated depres-
sion assessment based on textual data, including the feature extraction and
training process. Following this, we explain a speech quality assessment that
we suggest to potentially improve prediction accuracy. In Section “Visual
features for automated depression assessment”, we outline our method for
depression detection based on visual features. Finally, in Section “Multi-
modal features for automated depression assessment”, we present the
proposed multimodal approach, which combines both textual and visual
features for depression detection.

Dataset description
Expanding upon DAIC, the E-DAIC dataset offers a collection of semi-
clinical interviews facilitated by Ellie, a virtual interviewer, with accom-
panying transcripts and annotations of acoustic and visual cues. The virtual
interviewer can be controlled either by a human in a Wizard-of-Oz setting
or autonomously by AI, allowing for realistic simulation of clinical inter-
views. The dataset consists of 275 interview sessions, featuring a participant
pool of 170males and105 females,which are thendivided into three subsets:
a train set of 163 instances, a development set of 56 instances, and a test set of
56 instances. The test set is solely constituted from the data collected by the
autonomousAI. The dataset was carefully curated to ensure diverse speaker
representation,withdeliberate attentionpaid to age andgender distribution,
resulting in a dataset reflecting the broader population’s diversity. Details
regarding the size of each partition and speaker distribution over the par-
titions are given inTable 1. The providedvisual features have been extracted
using the OpenFace software42, and acoustic features have been extracted
using the openSMILE tool43. The dataset also includes automatic tran-
scription of the interactions using Google Cloud’s speech recognition ser-
vice, participants’ audio files, as well as PTSD andPHQ-8 scores. The PTSD
score ranges from 0 to 85, while the PHQ-8 score ranges from 0 to 24, with
higher scores indicating greater depression severity25–27. In the provided
development set, PHQ-8 scores range from 0 to 20, with PTSD severity
scores ranging from 17 to 72. The train set exhibits PHQ-8 scores ranging
from 0 to 23, with PTSD severity scores spanning from 17 to 85. Finally, in
the test set, PHQ-8 scores range from 0 to 22, while PTSD severity scores

range from19 to 77. Figure 3 shows thedistributionofPHQ-8 scores in each
set of the dataset.As observed in theplots, higherPHQ-8 scores are rare, and
the mean score in each set is below 10. This uneven distribution poses a
challenge formachine learningmodels trained on this data. Since themodel
is exposed to fewer high PHQ-8 scores during training, it struggles to
accurately predict the higher scores due to insufficient high-score examples.

It is important to note that the E-DAIC dataset used in this study
contains no protected health information (PHI). The dataset curators
removed all identifying details, such as names, dates, and locations, from the
audio recordings and transcriptions. Additionally, the facial features in the
dataset are not detailed enough to identify individuals. The dataset is pub-
licly available, and interested researchers can apply to receive access at
https://dcapswoz.ict.usc.edu/. Research investigators planning to use similar
methods on other datasets should be aware that they may encounter PHI
and take necessary measures to ensure compliance with relevant
regulations.

Textual features for automated depression assessment
This section explores textual features for automated depression assessment.
Based on the pipeline proposed in our previous work41, we extend our
approach to improve the assessment of depression from interview tran-
scripts. The proposed pipeline is depicted in Fig. 2. We begin by converting
interview audio recordings into text using automatic speech recognition,
followed by the application of LLMs to transform the transcripts and extract
features pertinent to depression. Finally, we train the model using PHQ-8
scores as the target variable. Through iterative performance evaluations and
prompt engineering, we refine the prompts utilized in the pipeline. Each
component of the pipeline will be thoroughly explained in the following
sections.

The E-DAIC dataset includes automated transcripts generated by
speech-to-text systems, which are often incomplete and inaccurate, result-
ing in the loss of crucial context and details. Through inspection of several
transcripts and by listening to the corresponding interview audios, we
observed that significant questions and responses are sometimes reduced to
simple ‘yes’ or ‘no’ answers, with the original question missing. Occasion-
ally, the question is included without the corresponding answer. Further-
more, the conversational flow is frequently disrupted, with key phrases
fragmented or essential background information missing. To address these
limitations, we utilized OpenAI’s Whisper44 automatic speech recognition
system to generate high-quality transcripts from raw interview recordings.
The Whisper ‘large’ model stands out due to its unique robustness prop-
erties and superior performance across various datasets. While it achieves a
word error rate (WER)of 2.7on theLibriSpeech test-cleandataset45, its zero-
shot capabilities allow it to outperformall benchmarkedLibriSpeechmodels
by significant margins on other datasets. Even the smallest zero-shot
Whisper model is competitive with the best-supervised models when
evaluated outside of the LibriSpeech test-clean framework. The best zero-
shot Whisper models not only closely match human accuracy and

Fig. 1 |Graphical abstract of the proposed framework. (1) E-DAIC dataset including transcripts and video recordings25. (2) Feature extractionwith Large LanguageModels
(LLMs) and OpenFace42. (3) Model training for PHQ-8 score prediction and performance evaluation.

Table 1 | Number of participants and duration of the interviews
included in the E-DAIC dataset25

Partition # Participants Duration [h:min:s]

Train 163 43:30:20

Development 56 14:47:31

Test 56 14:52:42

All 275 73:10:33
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robustness but also deliver a 55.2% average relative error reduction on
diverse speech recognition datasets44. By employing the Whisper ‘large’
model and reviewing several transcripts, we observed an improvement in
quality, with more context and information retained in the Whisper-
generated transcripts. This analysis builds on our previous study, where we
proposed this method to enhance the quality of E-DAIC dataset
transcripts41.

Despite Whisper’s advantages, our examination of several transcripts
revealed a few issues. During this inspection, we occasionally found that
some answers to questions were missing. Upon reviewing the interview
audio, we determined that this missing information was primarily due to
low audio quality, which rendered certain parts unrecognizable. Addition-
ally, we observed instances of word duplication in Whisper-generated
transcripts, such as repeated phrases like “That’s not true. That’s not true.
That’s not true...”. Similar duplication issues have also been noted by other
researchers46. To remain consistent with our automated approach, we opted
not tomanually correct these duplications. Instead,we relied onLLMs in the
subsequent transcript transformation step to help address these challenges
by extracting the most significant topics related to depression.

To prepare the transcripts for depression detection, we refine them to
make them clearer and more concise using a Clean-up Prompt: "This inter-
view involves a conversation with someone. Could you modify it by removing
questions that don’t have an answer? Keep inmind that responses such as ‘yes’
and ‘no’ are also acceptable.” As mentioned earlier, during our screening of
Whisper-generated transcripts, we noticed some questions were stated

without a corresponding answer. To address this,we developed thisClean-up
Prompt as an automated solution. Our aim was to investigate whether
removing questions that lacked answers could improve the performance of
our proposed depression detection model, as questions without answers
might confuse LLMs during the transcript transformation step. Next, we use
three specific prompts to extract crucial information related to depression
from the revised transcripts. These prompts help us identify key points and
summarize relevant information. The three prompts used in our analysis are:
• Prompt 1 (derived from our previous study41): “Your task is to read the

following text which is an interviewwith a person and to summarize the
key points that might be related to the depression of the person.”

• Prompt 2 (refined from our previous study41): “Your task is to read the
following text which is an interviewwith a person and to summarize the
key points thatmight be related to the depression of the person. Please be
concise and write your response from the first-person perspective, as if
you are the interviewee narrating about your own experiences.”

• Prompt 3 (newly designed): “Could you provide a summary of themain
points concerning the mental health of the interviewee from the
interview?”

We applied these prompts to the revised transcripts using GPT-3.5-
Turbo-0125, a state-of-the-art LLM developed by OpenAI47. Through
prompt engineering, we iteratively designed and refined the prompts. We
also utilized the GPT model to suggest alternative prompts, and by evalu-
ating the whole pipeline and validating the model’s predictions using error

Fig. 2 | Overview of the proposed framework for depression detection based on
textual data. (1) Data preprocessing using Whisper’s automatic speech
recognition44. (2) Transcript transformation via GPT-3.5-Turbo-012547. (3) Feature

extraction byDepRoBERTa49 and anLLM-driven question-basedmethod. (4) PHQ-
based depression severity prediction: model training, PHQ-8 score forecasting,
performance evaluation, and prompt engineering.
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metrics, specifically mean absolute error (MAE) on the test set, we selected
the three most effective prompts that are presented in this paper. Addi-
tionally, we conducted a separate experiment where we bypassed the revi-
sion step and directly applied the three mentioned prompts to the original
Whisper-generated transcripts, without applying the Clean-up Prompt.
This allowed us to compare the performance of the prompts on both refined
and raw transcripts.

Following the transformation and summarization of the interview
transcripts, we utilize a pre-trained language model to examine the pro-
cessed transcripts, as outlined in our previous research41. Specifically, we
employ a fine-tuned RoBERTa48 language model, known as
DepRoBERTa49,which is specificallydesigned fordepressiondetection.This
model is built uponRoBERTa-large48 andwas pre-trained onReddit17 posts
related to depression. The ‘deproberta-large-depression’ model has shown
exceptional performance in detecting depression levels in English social
media posts49. Notably, DepRoBERTa emerged as the top solution in the
Shared Task on Detecting Signs of Depression from Social Media Text at
LT-EDI-ACL2022 and is available on the Hugging Face model hub50. The
model can detect three different levels of depression: ‘not depression’,
‘moderate’, and ‘severe’ based on text data49.

To tailor the model to our dataset, we conducted fine-tuning of the
model with a low learning rate of 5 × 10−6. As the DepRoBERTamodel was
initially trained on a dataset with three classes, we categorized the trans-
formed transcripts into three labels based on their corresponding PHQ-8
scores to match the original model’s training data. The standard PHQ-8
score categories for depression diagnosis include mild symptoms (5–9),
moderate symptoms (10–14), moderately severe symptoms (15–19), and
severe symptoms (20–24), with scores below 5 indicating no depression5.
Given the imbalanced distribution of PHQ-8 scores in the E-DAIC dataset,
as illustrated in Fig. 3, particularly the scarcity of instances in themoderately
severe and severe groups, we devised a simplified categorization scheme to
address this imbalance. Specifically, scores of 14 or higher were categorized
as ‘severe’, scores between 7 and 13 (inclusive) were labeled as ‘moderate’,
and scores lower than 7 were designated as ‘not depression’. This scheme
was designed to ensure the fine-tunedDepRoBERTamodel had a sufficient
number of instances in each category, thereby improving themodel’s ability
to learn effectively from the data. This categorization was not intended for
clinical diagnosis but was crucial for balancing the dataset and avoiding the
issue of the model being skewed by the scarcity of severe depression
instances in the original E-DAIC dataset. Subsequently, we trained the
model on the labeled data, evaluating its performance on the development
set and implementing early stopping toprevent overfitting. Thismechanism

monitored the development loss at the end of each epoch. Specifically, we
tracked the best development loss observed, which was computed using the
cross-entropy loss function, and terminated the training if the development
loss didnot improve for three consecutive epochs. Followingfine-tuning,we
used the fine-tuned DepRoBERTa model to perform inference on the
transformed transcripts. Each transformed transcript was provided as input
to themodel, which then produced an output representing the probabilities
of the text belonging to each of the three depression classes: ‘not depression’,
‘moderate’, and ‘severe’. Theseprobabilities, rangingbetween0and1, served
as features extracted from the model. For example, when the text “I am
feeling verywell.”was input into themodel, the resulting outputmight be an
array suchas [0.966, 0.026, 0.008], corresponding to theprobabilities for ‘not
depression’, ‘moderate’, and ‘severe’ classes, respectively. This output indi-
cates a high probability of ‘not depression’ and very low probabilities for the
other two classes.

To further enrich our feature vector beyond what the DepRoBERTa
model generated, we explored an additional approach to extract relevant
information from the transcripts. Our aim was to develop a more nuanced
and targeted set of features tailored to the unique characteristics of the
interviews. To achieve this, we used the GPT-3.5-Turbo-0125 model. We
provided the model with a selection of sample interviews from the dataset
and tasked it with designing questions that could differentiate responses
from individuals with andwithout depression. Themodel generated a set of
questions based on the provided transcripts. We then used these questions
to extract features basedoneach interview transcript. The 11questions listed
below were crafted to probe various aspects of depression, including emo-
tional and physical well-being, mood changes, sleep disturbances, con-
centration difficulties, and past diagnoses.
1. Have you felt emotionally and physically well lately?
2. Have you noticed significant changes in your mood, such as feeling

persistently sad, empty, or hopeless?
3. Have you experienced difficulties with your sleep, such as trouble

falling asleep, staying asleep, or waking up too early?
4. Are you finding it challenging to concentrate on tasks or make

decisions?
5. Have you lost interest or pleasure in activities you used to enjoy?
6. Have you ever been diagnosed with depression or experienced pro-

longed periods of feeling down or hopeless in the past?
7. Have you ever been diagnosed with PTSD (Post-Traumatic Stress

Disorder)?
8. Have you been experiencing any financial problems recently?
9. Do you find it challenging to socialize and prefer solitary activities,

indicating introverted tendencies?
10. Have you had thoughts of death or suicide, or have you made any

suicide attempts?
11. Have you ever served in the military?

Next, we crafted a custom prompt and posed the questions to the GPT
model, asking it to respond with one of the following answers: ‘YES’, ‘NO’,
‘To Some Extent’, or ‘Not Mentioned’. The prompt was formulated as
follows: “Can you answer these questions from this text, which is an
interview with a person, only with ‘YES’ or ‘NO’ or ‘To Some Extent’? If the
question or corresponding answer is not found, answer ‘Not Mentioned’.”
Themodel’s responses were then converted into a numerical feature vector,
where ‘YES’wasmapped to1, ‘NO’ to 0, and ‘ToSomeExtent’ to 0.5. In cases
where the model responded with ‘Not Mentioned’, we initially assigned a
value of NaN (Not a Number) and then substituted the mean value of the
respective question within each of the train, development, and test sets
separately.

In the subsequent step, we trained a support vector regression
(SVR)machine learningmodel, using the PHQ-8 scores as the outcome
variable. The model leverages the extracted features to predict PHQ-8
scores for each interview transcript. From the two feature extraction
steps described above, we obtained a 14-dimensional feature vector for
each interview: 3 features are derived from the fine-tuned

Fig. 3 | PHQ-8 score distribution in the E-DAIC25 dataset. The box plots show the
median (horizontal line within each box), the interquartile range (IQR; represented
by the edges of the box), andwhiskers extending to 1.5× IQR from the box edges. The
y-axis shows PHQ-8 scores ranging from 0 to 24.
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DepRoBERTa model while 11 features are from the LLM-driven
question-based feature extraction method. The SVR model uses a
linear kernel, with the hyperparameter C = 1.0. We trained the SVR
model exclusively on the train set and evaluated its performance on the
untouched development and test sets, ensuring direct comparability
with existing studies that use the same dataset configuration.

Additionally, to evaluate the impact of transcript transformation on
depression detection, we conducted an additional experiment where we
bypassed the transformation step entirely. In this analysis, we extracted
features directly from the raw interview transcripts generated by Whisper
using the fine-tunedDepRoBERTamodel.We assessed two configurations:
first, usingDepRoBERTa features in conjunctionwith features derived from
the question-based method, and second, using only the DepRoBERTa
features without question-based features. In both cases, the extracted fea-
tureswereused to train the SVRmodel forpredicting thePHQ-8 scores.The
goal was to determine whether using raw transcripts without transforma-
tion could achieve comparable performance.

To further validate the robustness of our model and ensure its gen-
eralizability, we also performed a nested cross-validation analysis on the
combined train and development sets. This additional evaluation involved
an outer fivefold cross-validation loop, coupledwith an inner fivefold cross-
validation loop for hyperparameter tuning. Specifically, the inner loop
utilized GridSearchCV from the Scikit-learn library51 to optimize para-
meters such as the kernel type, regularization parameter (C), and Kernel
coefficient (gamma) for non-linear kernels. By leveraging GridSearchCV,
we explored different hyperparameter combinations to identify the best
model configuration. This nested cross-validation approach allowed us to
assess themodel’s performancemore rigorously by leveragingmultiple folds
within the training data for both training and validation, while still keeping
the test set untouched for final evaluation. The results of these evaluations
are detailed in Section “Outcomes of Depression evaluation using tex-
tual data”.

The E-DAIC dataset poses a significant challenge due to the varying
audio quality of the interview recordings. Background noise, inconsistent
loudness levels, and other imperfections can degrade the accuracy of
automated speech recognition (ASR) systems, resulting in incomplete or
inaccurate transcripts and undermining the reliability of subsequent ana-
lyses. Even with advanced ASR systems likeWhisper, which were shown to
outperform conventional methods, limitations remain. To tackle this issue,
we introduce an approach that aims to enhance the accuracy of ourmethod.
For automatic speech quality assessment, we used the Python Package
NISQA52,53, which yields multidimensional audio quality predictions,
including overall speech quality as well as quality dimensions such as noi-
siness, coloration, discontinuity, and loudness52. To ensure the reliability of
our analysis, we applied the NISQA tool to all interview audios in the train,
development, and test sets. We set a threshold for acceptable speech quality
at 2.5, specifically for the overall speech quality score provided by NISQA,
which ranges from 1 to 554. This decision was made based on empirical

observations and testing of the dataset. We found that an overall speech
quality score of 2.5 or higher allowed us to include a sufficient number of
interviews while still maintaining a standard for acceptable audio fidelity.
Theoverall speechquality scores rangedas follows: in the train set, the scores
ranged from aminimumof 1.34 to amaximum of 3.99; in the development
set, fromaminimumof1.15 to amaximumof 4.09; and in the test set, froma
minimum of 1.23 to a maximum of 3.48. After the quality check, 49
interviews from the train set (30.1%), 21 from the development set (37.5%),
and 31 from the test set (55.4%) failed to meet the quality threshold. The
results based solely on data that match the speech quality requirement are
reported in the “Results” section.

Visual features for automated depression assessment
As previously mentioned, the E-DAIC dataset comprises audiovisual
recordings of semi-clinical interviews. Even though the publicly available
version of the E-DAIC dataset does not contain the original video files, it
provides visual features per video frame. The visual features that were
extracted using the OpenFace software42 can be categorized into the fol-
lowing groups:
• Action Units (AU): A subset of 18 AUs, along with their presence and

intensity. The Facial Action Coding System (FACS)55 is a system to
taxonomize facial expressions by coding the movements of facial
muscle groups into AUs. For instance, the activation of AU6 corre-
sponds to the raising of the cheeks.

• Head Pose: The three-dimensional position of the head relative to the
camera, as well as rotational data encompassing roll (rotation around
the head’s front-to-back axis), pitch (rotation around the head’s side-
to-side axis), and yaw (rotation around the head’s vertical axis)56,57.

• Eye-Gaze: The angle of the left and right eye gaze in radians58.

The E-DAIC dataset comprises a range of facial features, totaling 49,
including head pose, eye gaze, and AUs. For each AU, OpenFace yields a
variable indicating the presence of anAU in the respective video frame (0—
not present, 1—present; denoted by the suffix ‘_c’) as well as an intensity
variable providing a continuous output between 1 and 5 (denoted by the
suffix ‘_r’). Specifically, the E-DAIC dataset includes the following AUs:
AU1, AU2, AU4, AU5, AU6, AU7, AU9, AU10, AU12, AU14, AU15,
AU17, AU20, AU23, AU25, AU26, AU28, and AU45. For more informa-
tion regarding the description of each AU, refer to refs. 59,60.

The proposed architecture for predicting PHQ-8 scores from video
data is depicted in Fig. 4. The E-DAIC dataset provides pre-extracted fea-
tures from OpenFace42, including head pose, eye gaze, and AUs for each
video frame, totaling n = 49 features (6 head pose features, 8 eye gaze fea-
tures, 17 AU intensities, and 18 AU occurrences). These pre-extracted
features serve as inputs to themodel. As shown inFig. 4, themodel leverages
a bidirectional LSTM network architecture61 to capture temporal depen-
dencies in sequential data62. The architecture consists of three layers of
bidirectional LSTM units with 64 hidden units each. Additionally,

Fig. 4 |Overview of the proposed framework for depression detection using visual data. (1) Visual feature extractionmodule usingOpenFace42. (2) Bidirectional sequence
analysis module with Bi-LSTM layers. (3) Attention-based prediction module for PHQ-8 score estimation.
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OpenFace outputs an extraction confidence score per video frame, ranging
from0 to 1. Tomitigate the impact of noisy or incomplete data on themodel
performance, we excluded video frames with a confidence score below 0.90
from further analysis. To accommodate variable-length video frames, we
applied padding with zero to equalize all frames to the same length. To
prevent overfitting during training, we applied a dropout rate of 0.3 as a
regularization technique. Furthermore, we incorporated an attention
mechanism consisting of a single attention layer to dynamically weigh the
importance of each input feature based on its relevance to the predic-
tion task.

We trained the proposed LSTM model exclusively on the train set,
exploring various feature combinations as input, such as head pose features,
eye gaze features, AU intensities, and AU occurrences. This also included
combinations of two, three, or all feature types, such as AU intensities with
head pose and eye gaze. Using the Adam optimizer with a learning rate of
0.1, the model was trained over 20 epochs to minimize mean squared error
(MSE) loss. For evaluation, the development and test sets were left untou-
ched, ensuring that performance assessments via root mean square error
(RMSE) and MAE metrics allow for direct comparability with existing
studies employing the same dataset configuration.

Multimodal features for automated depression assessment
To harness the complementary strengths of visual and textual features, we
conducted a third experiment in which we combined our two previous
prediction pipelines (Sections “Dataset description” and “Textual features for
automated depression assessments”). Specifically, we fused the outputs of the
DepRoBERTa model, the features extracted by the LLM-driven question-
basedmethod, and the visual features extracted by the LSTMmodel, thereby
creating a unified feature space that captures both nonverbal behavioral
patterns and linguistic cuespotentially indicativeofdepression.Theproposed
multimodal framework is depicted in Fig. 5. Among the LSTM models
trained on different combinations of visual features as mentioned in the
previous section, we identified the optimal model for feature extraction. This
modelwas thenused toextract128-dimensional representations for eachdata
sample. To reduce the dimensionality of these representations, we applied
principal component analysis (PCA) with a fixed number of 10 output
components. The resulting PCA-transformed LSTM features were then
merged with the textual features. Following dimensionality reduction, we
employed a feature selection technique using SelectKBest from the Scikit-
learn library51 with the F-regression score function to identify the top 10
features most strongly associated with PHQ-8 scores. The combined feature
set, pairedwithPHQ-8 scores as the target variable, served as input to train an
SVR model with a radial basis function (RBF) kernel. To optimize the SVR

hyperparameters, we utilized GridSearchCV51 with fivefold cross-validation,
using only the training set while reserving the development and test sets for
final evaluation. This approach allowed us to keep the development and test
sets untouched, ensuring an unbiased evaluation of ourmodel’s performance
and facilitating a direct comparison with other studies. Specifically, we
explored the following parameters:
• Regularization parameter (C): 0.1, 1, 10, and 100
• Kernel coefficient (gamma): ‘scale’, ‘auto’, 0.1, 1, and 10
• Epsilon parameter (epsilon): 0.1, 0.2, 0.5, and 1

Finally, we evaluated the performance of the SVR model using RMSE
and MAE metrics on both the development and test sets.

Moreover, to assess the resilience and adaptability of our multimodal
model, we performed a nested cross-validation analysis on themerged train
and development sets. This approach involved an external fivefold cross-
validation loop for assessment, pairedwith an internal fivefold loop focused
on hyperparameter optimization. Inside the internal loop, we leveraged
GridSearchCV51 to fine-tune key hyperparameters, including the regular-
ization parameter, kernel coefficient, and epsilon for the SVR model. Fur-
thermore, we applied PCA and SelectKBest to streamline the feature set
prior to training.

Results and discussion
Outcomes of depression evaluation using textual data
Theprediction results of our different approaches for depression assessment
based on the E-DAIC interview transcripts are listed in Table 2. To ensure
comparability with existing methods, we included results from previous
studies using theDAICandE-DAICdatasets,manyofwhichparticipated in
the 2016, 2017, or 2019AVECchallenges27.We focused on studies that used
the PHQ-8 score as the target variable. To highlight one of ourmain goals—
providing a fully automated processing pipeline—wedistinguished between
fully automated approaches and those requiring manual processing.
Therefore, the table’s final column specifies whether each study underwent
automated processing of transcripts and extraction of relevant features.

All proposed methods employed transcript transformation using
GPT-3.5-Turbo-0125 and a fine-tuned DepRoBERTa model combined
with our question-based feature extractionmethod.We experimented with
various prompts (1, 2, and 3) applied to both the original Whisper-
generated transcripts and revised transcripts using the Clean-up prompt.
Each prompt is described in the Section “Textual features for automated
depression assessment”. In the proposed methods Pr1+ Revised,
Pr2+Revised, and Pr3+Revised, we used revised transcripts and applied
prompts 1, 2, and 3, respectively. In the proposedmethods Pr1+Whisper,
Pr2+Whisper, and Pr3+Whisper, we used the original Whisper-

Fig. 5 | Overview of the multimodal depression detection framework. (1) Feature
extraction and fusion, combining 3 DepRoBERTa49 textual features, 11 question-
based features, and 128 visual features, followed by PCA and fusion into a 24-

dimensional representation. (2) Depression severity prediction using an SVRmodel
to estimate PHQ-8 scores with performance evaluation.

https://doi.org/10.1038/s44184-024-00112-8 Article

npj Mental Health Research |            (2024) 3:66 7

www.nature.com/npjmentalhealth


generated transcripts and applied prompts 1, 2, and 3, respectively. Addi-
tionally, Pr3+Whisper+AudioQual integrated speechquality assessment
into the Pr3+Whisper pipeline, analyzing only interviews with acceptable
speech quality. This speech quality assessment was performed on all train,
development, and test sets, and only interviews of acceptable speech quality
were utilized for further analysis.

Our results demonstrated that Pr3+Whisper achieved the best per-
formance amongmethodswithout speechquality assessment, with anMAE
of 3.17 and RMSE of 4.51 on the development set, and anMAE of 4.22 and
RMSE of 5.07 on the test set.However, the best overall results were obtained
usingPr3+Whisper+AudioQual,with anMAEof 2.85 andRMSEof 4.02
on the development set, and an MAE of 3.86 and RMSE of 4.66 on the test
set. As shown in Table 2, Gong et al.28 achieved better results on the
development set with an MAE of 2.77 and RMSE of 3.54, though their
method involved substantial manual processing, including cleaning tran-
scripts, extracting topics, and creating interview questions, which compli-
cates direct comparison. Additionally, Ray et al.40 and Williamson et al.29

achieved better RMSE on the development set compared to Pr3+Whisper,
however, their approaches also included manual processing at various
stages.

On the test set, Gong et al.28, Ray et al.40, and Fang et al.63 reported
superior results compared to Pr3+Whisper, with MAEs of 3.96, 4.02, and
3.61, and RMSEs of 4.99, 4.73, and 4.76, respectively. Ray et al.40 manually
cleaned the transcripts, although the extent of this cleaning was not fully
detailed. Fang et al.63 did not specify whether their results were based on the
test or development set; we assumed they used the test set. They manually
segregated segments where the participant was speaking from the rest of the
interview and standardized oral expressions by expanding abbreviations
while preserving tone markers such as ‘umm’ or ‘hmm’. Due to these
manual processing steps and their use of the DAIC dataset, which differs in
participant numbers and PHQ-8 score distribution from the E-DAIC
dataset, direct comparisons are challenging.

We selected Pr3+Whisper as a baseline for integrating speech quality
assessment because it achieved the best performance compared to other
methods. The resulting model, Pr3+Whisper+AudioQual, out-
performed all previous studies on the test set, including those involving
manual transcript processing. Notably, only Gong et al.28 surpassed our
results on the development set, and Fang et al.63 achieved betterMAEon the
test set. However, both approaches involved manual processing and used
the DAIC dataset, making direct comparisons challenging, as
mentioned above.

In contrast to previous studies, our approach stands out for its auto-
mated pipeline, eliminating the need for manual processing and transcript
cleaning. This distinction is crucial, as manual interventions can introduce
variability and bias, compromising the model’s generalizability. By lever-
aging Pr3+Whisper and integrating speech quality assessment, we
achieved superior performance on the test set without relying on manual
processing. This automated approach not only streamlines the process but
also ensures consistency and reproducibility. Our results demonstrate the
importance of high-quality input data as low-quality audio can compromise
the model’s performance, leading to inaccurate judgments. Consequently,
rigorous quality assessments are essential to ensure reliable predictions,
particularly for individuals with high PHQ-8 scores who may otherwise be
misclassified as having low scores, resulting in potential missed depression
diagnoses.

In an additional experiment where we bypassed the transcript
transformation step, the results demonstrated a substantial decline in
model performance. When both DepRoBERTa and question-based
features were used, we observed an MAE of 4.31 and RMSE of 5.58 on
the development set, and anMAE of 4.91 and RMSE of 6.22 on the test
set. Without the question-based features, the performance worsened
further, with an MAE of 4.69 and RMSE of 5.96 on the development
set, and an MAE of 5.55 and RMSE of 7.11 on the test set. In contrast,
our best-performing model without speech quality assessment

Table 2 | Performance comparison of PHQ-8 score prediction models using textual features from DAIC (or E-DAIC) dataset

Method Dataset MAE (deva) RMSE (dev) MAE (test) RMSE (test) Auto Proc

Williamson et al.29 DAIC 3.34 4.46 – – No

Gong et al.28 DAIC 2.77 3.54 3.96 4.99 No

Yang et al.65,b DAIC 3.52 4.52 – – No

Stepanov et al.32 DAIC – – 4.88 5.83 No

Ray et al.40 E-DAIC – 4.37 4.02 4.73 No

Oureshi et al.77 DAIC 3.78 – – – No

Niu et al.78 DAIC 3.73 4.80 – – No

Fang et al.63 DAIC – – 3.61 4.76 No

Rohanian et al.79 DAIC – – 4.98 6.05 Yes

Makiuchi et al.37 E-DAIC – – 4.22 6.88 Yes

Al Hanai et al.31 DAIC 5.18 6.38 – – Yes

Qureshi et al.69 DAIC 3.74 4.80 – – Yes

Sadeghi et al.41 E-DAIC 3.65 5.27 4.26 5.36 Yes

Pr1+Revised E-DAIC 4.15 5.28 4.73 6.02 Yes

Pr2+Revised E-DAIC 3.87 5.15 4.50 5.61 Yes

Pr3+Revised E-DAIC 3.79 4.93 4.36 5.42 Yes

Pr1+Whisper E-DAIC 3.99 5.26 4.65 5.95 Yes

Pr2+Whisper E-DAIC 3.90 5.10 5.00 6.23 Yes

Pr3+Whisper E-DAIC 3.17 4.51 4.22 5.07 Yes

Pr3+Whisper+ AudioQual E-DAIC 2.85 4.02 3.86 4.66 Yes

The best-performing results of this study and previous results that outperformed our results are highlighted in bold. ‘–’ indicates that the respectivemetricswere not reported in the publication. “Auto Proc”
indicates whether each processing step was performed automatically (Yes) or involved manual processing for at least one step (No).
aDevelopment.
bThis study reported separate results for males and females, which we averaged for comparison.
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(Pr3+Whisper with transcript transformation) achieved sig-
nificantly lower error rates. These results indicate that transcript
transformation using the GPT model significantly enhances the
extraction of depression-related features, thereby improving the
DepRoBERTa model’s accuracy. The marked decline in performance
when using raw transcripts highlights the crucial role of this trans-
formation step in optimizing feature extraction and achieving higher
prediction accuracy.

To further assess the robustness of our best-performingmodelwithout
speech quality assessment, we applied the nested cross-validation procedure
described in Section “Methods” to thePr3+Whispermethod.This analysis
combined the train and development sets (219 samples) while leaving the
test set untouched for final evaluation. The nested cross-validation yielded a
mean MAE of 3.39 and a mean RMSE of 4.50 on the development set. The
final model selected through this process (C = 10, epsilon = 0.1, gamma =
0.1, kernel = RBF) achieved anMAEof 4.52and anRMSEof 5.47 on the test
set. In comparison, the original evaluation of the Pr3+Whisper method
without nested cross-validation showed better performance on the test set.
This indicates that while nested cross-validation provided a more rigorous
approach with additional hyperparameter tuning, it did not necessarily
enhance the model’s generalization on unseen test data. The original
Pr3+Whisper approachappeared tomaintain a better balance between the
development and test set performance. Furthermore, it is worth noting that
the results from the nested cross-validation analysis cannot be directly
comparedwith other studies, as those studies exclusively trainedon the train
set and evaluated on untouched development and test sets, which is more
aligned with the original Pr3+Whisper evaluation strategy.

Outcomes of depression evaluation using visual data
Table 3 presents a comparison of our proposed method with previous
studies that utilized visual features from the DAIC or E-DAIC datasets to
predict PHQ-8 scores. Notably, we achieved the best results regarding the
MAE on the test set by combining AU intensities, head pose, and eye gaze
features, which are reported as LSTM-AU+pose+gaze in the table. This
combination includes a total of 31 features (6 head pose features, 8 eye gaze
features, and 17 AU intensities), resulting in an MAE of 4.22 and RMSE of
4.98, outperforming other feature combinations, such as using only AU
intensities. Although Fang et al.63 reported a lower MAE of 4.12, as men-
tioned earlier, a direct comparison is challenging due to differences in
datasets and evaluation sets. On the development set, our study yielded an
MAE of 4.74 and an RMSE of 5.66. Notable exceptions to our results are
several studies that achieved better scores. Yang et al. (2016) achieved an
MAE of 3.19 and RMSE of 4.2964. Yang et al. obtained an RMSE of 5.4065.
Additionally, Sun et al.66, Song et al.67, andDu et al.68 achievedMAEsof 4.60,
4.37, and 4.61, respectively.However, these studies, whichutilized theDAIC
dataset, are not directly comparable to our study due to the differences in
datasets.

Outcomes of depression evaluation using multimodal data
Table 4 illustrates the results of our multimodal method alongside previous
studies that have considered text and video-based features for predicting
PHQ-8 scores on the DAIC or E-DAIC datasets. As shown in the table, we
conducted two analyses. The first analysis is based on the best-performing
text-based model without incorporating speech quality assessment. The
second analysis includes speech quality assessment and is based on themost
successful model in this regard. We refer to these methods as LSTM-
AU+ pose+ gaze+ Pr3+Whisper and LSTM-AU+ pose+ gaze+
Pr3+Whisper+AudioQual, respectively. Using the LSTM-AU+
pose+ gaze+ Pr3+Whispermethod, we achieved anMAEof 3.31 and an
RMSE of 4.65 on the development set, and anMAE of 4.16 and an RMSE of
4.99 on the test set. With the LSTM-AU+ pose+ gaze+ Pr3+
Whisper+AudioQual method, the MAE was 3.01 on the development set
and3.76on the test set,while theRMSEwas4.18on thedevelopment set and
4.53 on the test set. These results outperform our video-only approach
(LSTM-AU+ pose+ gaze) on both the development and test sets.

However, compared to the text-based methods, the multimodal models
show worse performance on the development set but achieve slightly better
error metrics on the test set. Notably, we compare the LSTM-
AU+ pose+ gaze+ Pr3+Whisper model with the Pr3+Whisper
method and the LSTM-AU+ pose+ gaze+ Pr3+Whisper+AudioQual
model with the Pr3+Whisper+AudioQual method. This ensures a fair
comparison, as the text-based components are consistentwithin eachpair of
methods.

The exploration of both video and text modalities simultaneously has
been relatively limited in previous studies. As shown in Table 4, Ray et al.40

Table 4 | Performance comparison of PHQ-8 score prediction
models using textual and visual features from the DAIC (or E-
DAIC) dataset

Method Dataset MAE
(deva)

RMSE
(dev)

MAE
(test)

RMSE
(test)

Ray et al.40 E-DAIC – 4.64 – –

Qureshi et al.69 DAIC – – 3.65 5.11

Fang et al.63 DAIC – – 3.36 4.48

LSTM-AU+pose
+gaze+

Pr3+Whisper E-DAIC 3.31 4.65 4.16 4.99

LSTM-AU+pose
+gaze+

Pr3+Whisper
+AudioQual

E-DAIC 3.01 4.18 3.76 4.53

The best-performing results of this study and previous results that outperformed our results are
highlighted in bold. ‘–’ indicates that the respective metrics were not reported in the publication.
aDevelopment.

Table 3 | Performance comparison of PHQ-8 score prediction
models using visual features from DAIC (or E-DAIC) dataset

Method Dataset MAE
(deva)

RMSE
(dev)

MAE
(test)

RMSE
(test)

Nasir et al.30 DAIC 6.48 7.86 – –

Valstar et al.80 DAIC 5.88 7.13 6.12 6.97

Yang et al.642 DAIC 3.19 4.29 – –

Williamson et al.29 DAIC 5.33 6.45 – –

Yang et al.65, b DAIC 4.75 5.40 – –

Sun et al.66 DAIC 4.60 5.90 – –

Dang et al.81 DAIC 5.33 6.67 – –

Ringeval et al.82 DAIC – – 6.12 6.97

Stepanov et al.32 DAIC – – 5.36 6.72

Song et al.67 DAIC 4.37 5.84 – –

Ringeval et al.27 E-DAIC – 7.02 – 10.00

Du et al.68 DAIC 4.61 5.78 – –

Makiuchi et al.37 E-DAIC – 5.74 – –

Ray et al.40 E-DAIC – 5.70 – –

Qureshi et al.69 DAIC – – 5.06 6.53

Gupta et al.83 DAIC – – 5.30 6.26

Fang et al.63 DAIC – – 4.12 5.44

LSTM-
AU+ pose+ gaze

E-DAIC 4.74 5.66 4.22 4.98

The best-performing results of this study and previous results that outperformed our results are
highlighted in bold. ‘–’ indicates that the respective metrics were not reported in the publication.
aDevelopment.
bThis study reported separate results for males and females, which we averaged for comparison.
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only reported an RMSE of 4.64 on the development set of the E-DAIC
dataset without providing additional error metrics. In addition, Qureshi
et al.69 achieved an MAE of 3.65 and RMSE of 5.11 on the test set of the
DAIC dataset, while Fang et al.63 reported an MAE of 3.36 and RMSE of
4.48. However, due to the variability in datasets, comparison with these two
mentioned studies becomes challenging. Similarly, Qureshi et al.69 also
observed that integrating text and video modalities did not necessarily lead
to the best results and found that relying solely on the text modality yielded
superior results.

In an effort to rigorously validate the robustness of our best-performing
model, excluding speech quality assessment, we conducted nested cross-
validation on the LSTM-AU+pose+gaze+Pr3+Whisper approach. The
nested cross-validation process resulted in ameanMAE of 3.42 and amean
RMSE of 4.54 on the development set. The final model selected from this

procedure (C = 10, epsilon = 1, gamma = 0.1, kernel = RBF) achieved an
MAE of 4.22 and an RMSE of 5.08 on the test set. Notably, the original
evaluation of the LSTM-AU+ pose+ gaze+ Pr3+Whisper method
without nested cross-validation demonstrated superior performance on the
test set. This difference suggests that while nested cross-validation provides
thorough hyperparameter optimization, it may lead to slight overfitting,
reducing generalization to the test set. The original model, with a consistent
train-test split, likely better captured the dataset’s structure, leading tomore
stable test performance.

To further illustrate the performance of our multimodal approach,
Fig. 6 presents the distribution ofMAE scores across the train, development,
and test sets using the LSTM-AU+ pose+ gaze+ Pr3+Whisper+
AudioQualmethod. The plot reveals that themedianMAE is highest for the
test set, followed by the train set, and then the development set. This indi-
cates thatwhile themodel generalizes reasonablywell, it faces slightly greater
challenges when applied to the test set. The train set exhibits a narrower
range of MAE scores, indicating more stable performance during training.
In contrast, the wider distributions in the development and test sets suggest
that themodel experiences greater variability in its predictions on new data.
Since errors in the train set are not substantially lower than in the other sets,
it indicates that the model is not overfitting. This balance suggests that the
modelmaintains goodgeneralizationwithoutbeingoverly optimized for the
training data. Additionally, the broader range and presence of outliers in the
development and test sets imply that certain data points are more chal-
lenging for the model to predict accurately. A major factor contributing to
this variability is the distribution of PHQ-8 scores within the dataset, as
shown in Fig. 3. High PHQ-8 scores are relatively rare, leading to an
imbalance across the sets. This scarcity of samples with severe depression
scores makes it more challenging for the model to predict higher PHQ-8
scores accurately, thereby increasing error variability. Differences in input
feature quality and the inherent complexity of certain samples contribute to
prediction errors. Additionally, the scarcity of high-score instances hinders
the model’s ability to generalize, highlighting the need for strategies to
address data imbalances.

After assessing the model’s performance across different sets, it was
also essential to identify which features had the most influence on the
predictions. To this end, we performed a SHapley Additive exPlanations
(SHAP)70 analysis to highlight the most impactful features. As shown in
Fig. 7, this analysis illustrates the relative importance of both text-based
and visual features in predicting PHQ-8 scores, focusing on the top 10

Fig. 7 | SHAP analysis of the top 10 features in the
multimodal approach. ‘Q’ labels indicate questions
extracted via the LLM-driven method. ‘Not
depression,’ ‘Moderate depression,’ and ‘Severe
depression’ are DepRoBERTa-derived indicators.
‘LSTM extracted 1’ is the first component of a 128-
dimensional feature vector from the visual modality
using the LSTM model.

Fig. 6 | Mean absolute error (MAE) score distribution in the train, development,
and test sets for the proposed multimodal approach. The box plots display the
median (horizontal linewithin each box), the interquartile range (IQR; the bounds of
the box), and whiskers extending to 1.5× IQR from the box edges. Each point
represents the MAE for an individual sample, providing a detailed view of the
sample-level variability within each dataset. The y-axis reflects the MAE values,
where lower scores indicate better performance.
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selected features for the multimodal model. The results indicate that the
most influential features are ‘Notdepression’ and ‘Severe depression,’both
extracted by theDepRoBERTamodel. As seen in the plot, higher values of
the ‘Not depression’ feature are associated with lower predicted PHQ-8
scores, whereas higher values of the ‘Severe depression’ and ‘Moderate
depression’ features result in higher predicted scores. This suggests that
themodel correctly interprets stronger indicators of depression as leading
to higher severity scores. Among the text-based features derived from our
LLM-driven question-based method, the feature ‘Q10,’ related to the
question on suicidal thoughts, is particularly impactful. The SHAP ana-
lysis shows that when the value of this feature increases, the predicted
PHQ-8 score also rises, indicating its strong association with higher
depression severity.Additionally, the features labeled ‘Q1,’ ‘Q2,’ and soon,
correspond to the responses to each respective question in our feature
extraction process, with ‘Q1’ derived from the first question, ‘Q2’ from the
second, and so forth. Notably, the only feature extracted from the visual
modality (‘LSTMextracted 1’) appears at the bottomof the list, suggesting
that visual features have a much lower impact on the model’s predictions
compared to textual features. This observation aligns with the earlier
feature selection process, where 9 out of the top 10 features were text-
based, with only one derived from visual data. These findings underscore
that, within our multimodal framework, text-based features are far more
influential in predicting depression severity, while visual features con-
tribute to a lesser extent.

Toward more effective multimodal depression detection: limita-
tions, insights, and future directions
As discussed in the previous section, our multimodal models demonstrate
better performance on the test set compared to text-only approaches, while
text-only models perform better on the development set. Additionally, the
multimodal models outperform the video-only approach on both the
development and test sets. To better understand this pattern, it is insightful
to examine the performance of the video-only approach. As shown in Table
3, the video-only model achieves better error metrics on the test set com-
pared to the development set. In contrast, Table 2 reveals that for all text-
based models, the error metrics are consistently better on the development
set than on the test set. This suggests that integrating text and video enables
themultimodalmodel to achieve better performance on the test set than the
text-only model, although the improvements are marginal. One possible
explanation for the performance difference between the development and
test sets across different data typesmay be related to the collection process of
theE-DAICdataset. The test set consists exclusively of interviews conducted
by an autonomous AI interviewer, whereas the development set includes a
mix of interviews controlled by both a human (Wizard-of-Oz) and the AI25.
This distinction could introduce a distribution shift, affecting how the
models perform across the two sets. The presence of a human interviewer in
the development set may result in richer and more engaging interview
transcripts, thereby enabling text-based models to perform better on the
development set.Conversely, the autonomousAI in the test setmight lead to
less expressive or less detailed responses, diminishing the effectiveness of
text-based features.

Despite the multimodal approach showing better performance on the
test set compared to text-only models, the improvements remain modest.
Feature importance analysis highlights that text data is a crucial component
in themodel’s predictive power. Text data, especially fromsources like social
media posts, therapy transcripts, and personal journals, often contains
explicit and detailed information about emotional states and thought pro-
cesses. Symptoms of depression, such as hopelessness, worthlessness, and
self-deprecating thoughts, are often directly articulated in language, pro-
viding clear indicators for detection models71–73. However, integrating text
and video data in a multimodal approach introduces additional complex-
ities. Aligning and combining information from different modalities
requires sophisticated techniques for temporal synchronization, feature
scaling, and data fusion, whichmay not always be optimal. This integration
can introduce noise and redundancy, where conflicting information from

one modality can adversely affect overall model performance. These chal-
lenges help explain why text-based models often outperform video-based
and multimodal models in our study. In contrast, video data presents
additional challenges74.Non-verbal cues, such as facial expressions andbody
language, may vary greatly among individuals and situations, making them
difficult to interpret accurately. Moreover, facial expressions might not
always reflect true emotional states; for instance, someone could smile while
discussing distressing experiences. Extracting meaningful features from
video involves complex tasks such as facial expression analysis, gesture
recognition, and emotional state detection, which can be error-prone due to
variations in lighting, camera angles, and individual differences in
expressiveness74,75. Additionally, the robustness of video-based models can
be compromised by the noisy and variable nature of video data, whichmay
contain irrelevant or redundant information. The strengths of LLMs lie in
their ability to identify the most relevant parts of interview transcripts
related to depression or mental health. However, such methods have yet to
be effectively applied to video data. One suggestion for future work is to
leverage state-of-the-art LLMs to first identify the most critical segments of
an interview related to depression from text data. Subsequently, these key
segments could bemapped to the corresponding video frames, allowing the
analysis to focus only on specific video portions. This targeted approach
could reduce noise and improve the effectiveness of multimodal models.

In addition to these challenges, a notable limitation of the E-DAIC
dataset is the relatively small number of samples with high PHQ-8 scores.
This means that when the model is trained on such limited high-score
samples, its performance on the test set, especially with high PHQ-8 score
samples not sufficiently represented during training, can be suboptimal. To
maintain comparability with previous studies, we intentionally did not alter
the dataset structure using techniques like oversampling or undersampling.
Future research could benefit from collecting more balanced datasets that
include a representative number of high PHQ-8 score samples, allowing
models to be trained and evaluated more effectively across all levels of
depression severity. Such balanced datasets could help improve model
performance and generalizability by providing a clearer understanding of
varying depressive symptoms. To address these limitations, we are con-
ducting a randomized-controlled trial76 within the Collaborative Research
Center (CRC 1483) “EmpkinS” (Empatho-Kinesthetic Sensor Technology
—Sensor Techniques andData AnalysisMethods for Empatho-Kinesthetic
Modeling and Condition Monitoring). This trial aims to establish a com-
prehensive dataset with balanced samples representing various levels of
depressive symptoms: none, mild, moderate, and severe. The dataset will
comprise extensive video, audio, and biosignal recordings, including elec-
tromyography (EMG) to measure muscle activity, electrocardiography
(ECG) to monitor heart activity, and respiratory signals (RSP) to track
breathing patterns. Our objective is to analyze these multimodal data
streams to better understand the links between body language, physical
behavior, and depressive symptoms. The insights gained from this research
could contribute to the development of more accurate depression detection
models, ultimately supporting more effective and personalized mental
health interventions.

Beyond addressing the technical challenges and opportunities in
multimodal depression detection, it is vital to consider the broader impli-
cations of integrating AI technologies into healthcare. Our study illustrates
the potential of AI tools in detecting depression through a publicly available,
anonymized dataset. The findings emphasize the capability of LLMs and
visual cues in identifying depressive symptoms. However, it is important to
recognize the limitations of these tools and approach their integration into
clinical practice carefully. While AI can enhance screening processes and
support healthcare professionals, it is not meant to replace human judg-
ment. Thus, considering the ethical implications and potential biases of
incorporating AI technology into healthcare is essential.

Data availability
The dataset used in this study is available upon request at https://dcapswoz.
ict.usc.edu/.
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