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Delineating the effective use of 
self-supervised learning in single-cell 
genomics
 

Till Richter1,2, Mojtaba Bahrami1,3, Yufan Xia2, David S. Fischer1,4 & 
Fabian J. Theis    1,2,3 

Self-supervised learning (SSL) has emerged as a powerful method for 
extracting meaningful representations from vast, unlabelled datasets, 
transforming computer vision and natural language processing. In 
single-cell genomics (SCG), representation learning offers insights into 
the complex biological data, especially with emerging foundation models. 
However, identifying scenarios in SCG where SSL outperforms traditional 
learning methods remains a nuanced challenge. Furthermore, selecting 
the most effective pretext tasks within the SSL framework for SCG is a 
critical yet unresolved question. Here we address this gap by adapting 
and benchmarking SSL methods in SCG, including masked autoencoders 
with multiple masking strategies and contrastive learning methods. Models 
trained on over 20 million cells were examined across multiple downstream 
tasks, including cell-type prediction, gene-expression reconstruction, 
cross-modality prediction and data integration. Our empirical analyses 
underscore the nuanced role of SSL, namely, in transfer learning scenarios 
leveraging auxiliary data or analysing unseen datasets. Masked autoencoders 
excel over contrastive methods in SCG, diverging from computer vision trends. 
Moreover, our findings reveal the notable capabilities of SSL in zero-shot 
settings and its potential in cross-modality prediction and data integration. 
In summary, we study SSL methods in SCG on fully connected networks and 
benchmark their utility across key representation learning scenarios.

Single-cell genomics (SCG) has rapidly expanded into a big-data domain, 
primarily driven by advancements in single-cell RNA-sequencing tech-
nologies1. This expansion has shifted the focus from analysing data in 
isolated studies to using machine learning models for interpreting 
data within the context of existing datasets2. Recent efforts towards 
comprehensive atlases, such as the Human Cell Atlas3, underscore this 
development. However, larger datasets introduce additional methodo-
logical challenges, such as technical batch effects across studies and 

the variability in labelling quality4,5. Large-scale models have gained 
interest and emerged for their potential to address these issues6. Yet 
a gap remains in understanding their use cases and how to effectively 
leverage the emerging datasets comprising millions of cells7. The SCG 
field now not only requires computational power but also strategic use 
of methods that handle the complexities of big data. In this context, 
self-supervised learning (SSL) is a promising approach. SSL leverages 
pairwise relationships within data X for training, setting it them apart 
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applicability limits. This research contributes to a more informed and 
strategic use of SSL in SCG, particularly in advancing our understanding 
of complex biological datasets.

Results
SSL framework for SCG
We present an SSL framework to develop self-supervision methods 
and study different use cases in SCG. Central to our framework is the 
use of fully connected autoencoder architectures, selected for their 
ubiquitous application in SCG tasks38,39 and for minimizing architectural 
influences on our study, yet still large enough to capture underlying 
biological variations. In this framework, we integrate key SSL pretext 
tasks based on masked autoencoders45 and contrastive learning46,47 
to benchmark their performance. The framework operates in two 
stages. The first stage is pre-training, also called pretext task, where 
the model learns from unlabelled data. We call the resulting model 
‘zero-shot SSL’ for its zero-shot evaluation. The second stage is the 
optional fine-tuning. We call the resulting model the ‘SSL’ model, which 
is further trained to specific downstream tasks such as cell-type annota-
tion (Fig. 1a). The pretext task builds a rich data representation based 
on a comprehensive dataset. We chose the scTab dataset5 because of 
its extent and diversity. We used all 19,331 human protein-encoding 
genes from scTab to maximize generalizability, ensuring gene cover-
age for analyses of unseen datasets, regardless of their feature selec-
tions. Our SSL framework leverages masked autoencoder with random 
masking and gene programme (GP) masking strategies, along with our 
isolated masked autoencoder approaches gene programme to gene 
programme (GP to GP) and gene programme to transcription factor 
(GP to TF) masking, considering isolated sets of genes (Fig. 1b). The 
strategies entail leveraging different degrees of biological insight, from 
random masking with a minimal inductive bias to isolated masking 
that intensively utilizes known gene functions, emphasizing targeted 
biological relationships. For contrastive learning, we incorporate the 
negative-pair-free methods bootstrap your own latent (BYOL)46 and Bar-
low twins47, known for their effectiveness in computer vision (Fig. 1c), 
with negative binomial noise and masking as data augmentations. We 
benchmarked these strategies for their efficacy in improving down-
stream performance. Our SSL framework, including these strategies, is 
depicted in Fig. 1a, outlining its architecture and pivotal components. 
Detailed descriptions of the specific implementations and adaptations 
of these SSL methods for SCG are further elaborated in Methods.

Pre-training on auxiliary data boosts cell-type prediction
As a first use case for self-supervision in SCG, we asked whether analy-
ses on cell atlases or smaller datasets can benefit from self-supervised 
pre-training on auxiliary data. We answered this using three datasets: the 
Human Lung Cell Atlas (HLCA)4 (2,282,447 cells, 51 cell types), periph-
eral blood mononuclear cells (PBMCs) after severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) infection48 (422,220 cells, 30 
cell types), and the Tabula Sapiens Atlas (483,152 cells, 161 cell types)49. 
These datasets vary in size, biological context and complexity, providing 
a robust test bed for our models. We evaluated cell-type prediction with 
the macro F1 score, supplemented by the micro F1 score, to compare 
robustness against class imbalances. We evaluated gene-expression 
reconstruction with the weighted explained variance. For the PBMC 
and Tabula Sapiens datasets, the self-supervised pre-training on 
additional scTab data significantly improved cell-type prediction and 
gene-expression reconstruction (Fig. 1d and Supplementary Fig. 2): 
from [0.7013 ± 0.0077] to [0.7466 ± 0.0057] macro F1 in the PBMC 
dataset and from [0.2722 ± 0.0123] to [0.3085 ± 0.0040] macro F1 in 
the Tabula Sapiens dataset. In the Tabula Sapiens dataset, this improve-
ment is driven by strongly enhancing the classification of specific cell 
types, correctly classifying 6,881 of 7,717 type II pneumocytes instead 
of 2,441 (Fig. 1e; for other datasets, see Supplementary Fig. 1). For the 
PBMC dataset, this improvement is pronounced for underrepresented 

from supervised learning, which relies on data X with labels Y to guide 
the loss, and unsupervised learning, which depends solely on data X  
(refs. 8–10). It has proven powerful in other data-intensive domains, such 
as computer vision11,12 and natural language processing13,14, leveraging 
large unlabelled datasets. It is thus often the basis for foundation models15.

SSL has already begun to impact SCG on small and large scales. On 
small scales, specialized SSL methods have deployed contrastive losses, 
tailored with techniques such as multimodal learning16, graph-based 
strategies17 and clustering-based approaches18–20 to embed cells. The 
contrastive methods address unique data challenges in SCG, including 
batch effects and data sparsity18,19,21–27. Other specialized SSL methods 
predict blood cell traits28, identify subpopulations of T cells29, boost 
active learning30 and classify cell types on the whole mouse brain31, 
indicating the method’s versatility. However, a common limitation 
among these approaches is their application to relatively small data-
sets or specific problems, resulting in limited generalizability across 
downstream tasks. On large scales, foundation models are trained on 
large datasets and applied to a broad range of tasks. In SCG, they often 
deploy transformers trained in a supervised32,33 and self-supervised34–37 
fashion. While foundation models have demonstrated improvements 
through self-supervised pre-training34,35, disentangling the contribu-
tions of SSL, scaling laws or the transformer architecture remains dif-
ficult. This ongoing debate underscores the relevance of investigating 
SSL in non-transformer contexts, which are prevalent in SCG38,39. Recent 
studies in computer vision40,41 also suggest a nuanced perspective on 
the dominance of transformer architectures, indicating the value of 
exploring diverse architectural approaches for model development. 
The ambiguity mainly arises when comparing the performance of mod-
els with and without self-supervised pre-training14,42, suggesting a need 
for a more in-depth exploration of the role of SSL in SCG. Similar to SSL, 
semi-supervised learning combines unsupervised pre-training with 
supervised fine-tuning30, as opposed to self-supervised pre-training 
with optional fine-tuning in SSL. Both learning techniques are useful in 
transfer learning settings that are popular in SCG as reference mapping 
methods for single-cell datasets2,43.

To guide the effective usage of SSL in SCG, we need to address 
these ambiguities through systematic empirical validation. Such a 
study helps to determine the scenarios in which SSL can effectively 
contribute to SCG. First, this requires developing SSL methods based 
on first principles and tailoring them for single-cell applications. These 
SSL methods learn representations from data and differing pairwise 
relationships. To assess their impact on downstream performance, 
we benchmark our SSL methods and compare their performance with 
their supervised and unsupervised counterparts. Second, this study 
requires validation across downstream applications, addressing the 
method’s objective to learn data representations that are helpful across 
multiple tasks.

Our study aims to identify specific scenarios in SCG where SSL 
is helpful and to thoroughly analyse and evaluate SSL approaches 
in SCG. Utilizing the CELLxGENE44 census of scTab5 (scTab dataset), 
which comprises over 20 million cells, our study assesses the effec-
tiveness of SSL across multiple downstream tasks. On the basis of 
well-defined benchmark metrics for SSL in SCG, our empirical analysis 
primarily focuses on the cell-type prediction application, with valida-
tion in gene-expression reconstruction, cross-modality prediction 
and data integration. We find that SSL improves downstream perfor-
mance in transfer learning settings, that is, when analysing smaller 
datasets informed by insights from a larger auxiliary dataset and in 
scenarios involving unseen datasets. This improvement is especially 
notable in class-imbalance-sensitive metrics, indicating robustness 
improvements. However, our findings also reveal that self-supervised 
pre-training on the same dataset as the fine-tuning does not yield 
improvement compared with only supervised or unsupervised train-
ing. In summary, our study clarifies the roles and benefits of SSL in SCG, 
demonstrating its strengths in specific contexts while identifying its 
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cell types (Fig. 1f), also indicated by the stronger macro F1 improve-
ment versus micro F1 improvement. In contrast, the HLCA dataset pre-
sented a marginal performance improvement through self-supervised 
pre-training. Notably, SSL outperforms supervised learning if 
pre-trained on a large number of donors, highlighting the necessity  
of a rich pre-training dataset (Fig. 1g and Supplementary Fig. 6).

Tailored pre-training yields strong zero-shot performance
The scenario in which SSL is typically evaluated in computer vision 
is the zero-shot setting, where the model’s ability to represent and 

distinguish unobserved classes is assessed using data representations 
obtained solely through self-supervised pre-training. The labels are 
predicted, for example, with k-nearest-neighbours (kNN) classification 
or by training a prediction head while freezing the encoder weights. 
This perspective is noteworthy in SCG, where datasets’ increasing 
volume and complexity often come with challenges in obtaining 
accurate and comprehensive labels4. The ability of zero-shot SSL to 
achieve up to a 0.6725 macro F1 score on the scTab test set stands out 
as a strong performance (Fig. 2a). Likewise, in the test cases of HLCA, 
PBMC and Tabula Sapiens, zero-shot SSL comes close to their fine-tuned 
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Fig. 1 | SSL on auxiliary data in SCG improves downstream performance.  
a, Overview of the SSL framework (Methods). The zero-shot SSL model is 
trained on scTab RNA-sequencing data using masked autoencoders (MAEs) and 
contrastive learning (CL). Its weights initialize the SSL model, which is fine-
tuned for downstream tasks (for example, cell-type prediction, gene-expression 
reconstruction). The non-SSL model is initialized randomly and fine-tuned only 
for downstream tasks. b, Masking strategies. Input features are either zeroed 
out (black) or left unchanged. The autoencoder (grey) predicts the masked 
features, and the loss is computed only on those. GP and TF masking is also shown 
(Methods). c, Contrastive learning. Input is augmented to create views. BYOL and 
Barlow twins are contrastive methods for data representation (Methods).  
d, Results from individual datasets. (1) Random model, (2) non-SSL model  
(for example, supervised for cell-type prediction, unsupervised for gene 
expression), (3) zero-shot SSL model, and (4) SSL model. Models are tested on  

PBMC, Tabula Sapiens and HLCA (Methods). Cell-type prediction is evaluated 
with macro/micro F1 scores (higher is better; see Supplementary Fig. 5 for loss 
curves); gene-expression reconstruction is evaluated with weighted explained 
variance (EV W, higher is better). The best performance is in bold. e, Relative cell 
prediction accuracy for the SSL and supervised models for cell types with the 
largest performance differences (see Supplementary Fig. 1 for other datasets).  
f, Macro F1 score differences between SSL and supervised models plotted against 
cell-type abundance, with the number of cell types for each abundance shown 
above (see Supplementary Fig. 1 for other datasets). g, Cell-type prediction 
performance of SSL models pre-trained on random scTab donor subsets and fine-
tuned on PBMC, compared with the supervised model trained on only PBMC. 
Shaded error bands represent 95% confidence intervals (mean ± s.e. × t-value at 
95% confidence). Results are from five random seeds (see Supplementary Fig. 6 
for other datasets).
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counterparts (Fig. 1d and Supplementary Fig. 1). The embedding 
from the zero-shot model illustrates this implicitly learned distinc-
tion of cell types (Fig. 2b). These findings highlight SSL’s potential in 
SCG to reduce the reliance on curated labels50 and propose adding 
self-supervised pre-trained model embeddings to biological analyses 
alongside principal component analysis (PCA), a practice exempli-
fied by platforms such as CELLxGENE44. However, our benchmarking 
of SSL methods revealed the sensitivity to the choice of pre-training 
strategy. Contrastive learning has proven effective in domains such as 
language or vision modelling10,46,47. It has further proved effective on 
smaller scales18,19,21–27 in SCG and worked in principle on large scales, as 
shown in ref. 51 and this benchmark. Still, our study finds that mask-
ing outperforms contrastive learning in large SCG tasks. This result 
highlights the challenges of applying these methods as generalizable 

pretext tasks for single-cell data. Conversely, masked autoencoders 
performed better: the random masking strategy consistently ranked 
among the top performers across different tasks (Fig. 2a). Notably, 
in the specific context of gene-expression reconstruction, the GP to 
TF isolated masking showed superior performance compared with 
other methods (Supplementary Figs. 1 and 2). This finding highlights 
the potential of tailored masking strategies in capturing the nuanced 
biological variations inherent in SCG data.

The efficacy of SSL depends on its context
While the previous evaluations focused on carefully curated and 
widely used benchmarks, we also set out to investigate SSL’s nuanced 
behaviour in analysing in-distribution versus unseen data settings. If 
the supervised and SSL model are provided access to the same data, 
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Fig. 2 | SSL enables high zero-shot performance and higher accuracy on unseen 
datasets. a, Benchmark result of cell-type prediction on the scTab holdout test 
set using kNN classification (Methods). We compare: (1) baseline methods of 
kNN classification on a randomly initialized model, on the PCA embeddings, 
and deploying GeneFormer34 in a zero-shot setting; (2) our zero-shot SSL 
methods, pre-trained on the scTab training data; (3) our SSL methods; and (4) 
the supervised model. b, t-distributed stochastic neighbor embedding (t-SNE) 
visualization of the baseline PCA embedding, and the embedding obtained from 
the zero-shot SSL model and the supervised model. c, Classification performance 

on unseen datasets: (I, Human Brain Atlas, tail of hippocampus (HiT) - caudal 
hippocampus - CA4-DGC52; II, Human Brain Atlas, all non-neuronal cells52;  
III, single-cell analysis of prenatal and postnatal human cortical development53; 
IV, circulating immune cells after CV19 infection, vaccination and HC54; V, human, 
great apes study55) measuring the macro F1 score of a random baseline, a zero-
shot SSL model, the supervised model and an SSL model, all trained on scTab 
without exposure to any unseen dataset. The box plots show the median (centre), 
25th and 75th percentiles (box bounds) and whiskers extend to the minima and 
maxima within 1.5 times the interquartile range (seaborn default).
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their performance is remarkably similar (Fig. 2a). This finding is nota-
ble across cell-type annotation and gene-expression reconstruction. 
Extending to unseen datasets, we evaluated the supervised and SSL 
models on five datasets52–55 published after the CELLxGENE44 census of 
scTab (Methods). In this setting, self-supervised pre-training improves 
performance (Fig. 2c and Supplementary Fig. 2), for example, from 
[0.0877 ± 0.0215] to [0.1797 ± 0.0450] macro F1 for cell-type predic-
tion in the great apes study55. So, while inside the distribution (Fig. 2a), 
supervised and self-supervised learning perform similarly, this find-
ing offers another dimension of SSL’s utility: when analysing unseen 
datasets, where generalization is crucial, SSL shows its advantages.

Help cross-modality prediction with SSL
Having benchmarked the utility of SSL on transcriptomics, we extended 
our study to multiomics56, asking whether SSL can leverage auxiliary 
data from one modality to enhance multimodal downstream tasks, 
here focusing on cross-modality prediction (Fig. 3a). The NeurIPS mul-
tiomics dataset57, a rich multi-donor, multi-site and multimodal bone 
marrow dataset containing coupled gene expression and proteomics 
counts from CITE-seq58 experiments, provided a suitable test bed. The 
models obtain RNA-sequencing counts as input and predict protein 
counts. The SSL models are additionally pre-trained on RNA-sequencing 
data from the auxiliary scTab and the NeurIPS multiome dataset. When 
pre-trained on scTab, SSL significantly outperforms its supervised 
counterpart (P < 0.01) and the baseline method totalVI59 (P < 0.01; 
Fig. 3b,d). The Pearson correlation between predicted and true pro-
tein counts improved from [0.8809 ± 0.0013] for the unsupervised 
model to [0.8943 ± 0.011] for the self-supervised model. Notably, the 
improvement is smaller if pre-trained on the same data, to a Pearson 
correlation of [0.8824 ± 0.0037]. This finding highlights the advan-
tage of self-supervision in cases where one modality is more abundant.  
This effect is reproducible on other modalities, as verified by predicting 

the assay for transposase-accessible chromatin with sequencing 
(ATAC-Seq) from RNA counts in the NeurIPS multiome dataset57 (Fig. 3c), 
proving the robust advantage of self-supervision on auxiliary data.

Self-supervised pre-training enhances data integration
Integrating single-cell datasets for joint analysis is difficult due to 
batch effects, for example, experimental conditions or confounding 
factors, posing unique challenges to atlasing efforts4. Large-scale mod-
els in SCG have already been deployed to address this challenge32,34. 
To clarify the role of SSL in these efforts, we set out to integrate three 
datasets included in scTab: the molecular cell atlas of the human lung 
(65,662 cells, 45 cell types)60, the molecular atlas of lung develop-
ment of LungMap (46,500 cells, 28 cell types)61 and the molecular 
single-cell lung atlas of lethal coronavirus disease 2019 (COVID-19; 
116,313 cells, 30 cell types)62. The datasets vary in cell-type compo-
sition and donor health or disease states, providing a challenging 
environment for this task. The single-cell integration benchmarking 
(scIB) metrics63 evaluate the data integration performance, indicat-
ing how well batch effects are corrected while conserving biological 
variability (Fig. 4a). The score aggregates five batch correction metrics 
(PCR batch, batch ASW, graph iLISI, graph connectivity and kBET) and 
nine biological conservation metrics (NMI cluster/label, ARI cluster/
label, cell-type ASW, isolated label F1, isolated label silhouette, graph 
cLISI, cell cycle conservation, HVG conservation and trajectory con-
servation) that cover cell identity labels and variance beyond that. We 
fine-tuned the unsupervised and SSL models using gene-expression 
reconstruction on these three datasets. To improve data integration 
performance and model comparison, we added batch covariates to 
all models56. This led to the SSL-shallow model, which fine-tunes the 
last encoder layer of the zero-shot SSL model with batch covariates. 
PCA and scVI38 embeddings serve as baselines for data integration. 
The scIB metrics indicate that self-supervised pre-training improves 
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Fig. 3 | Self-supervised pre-training on auxiliary data improves cross-modality 
prediction. a, Scheme of cross-modality prediction training. The SSL models 
are pre-trained with masked autoencoders on RNA-sequencing data (1) of the 
downstream NeurIPS multiome dataset or (2) of the auxiliary scTab dataset. 
The SSL model, initialized with the pre-trained weights, and the unsupervised 
model, randomly initialized, predict the protein counts from the RNA counts. The 
baseline totalVI model learns a joint distribution of RNA and protein counts. In 
inference, all models predict the protein counts from a holdout test set.  

b,c, Cross-modality prediction performance for two tasks: predicting the 
normalized counts of 134 proteins (b) and the TF-IDF transformed ATAC-seq 
counts of 116,490 genes (c); both given coupled RNA counts. Shown is the Pearson 
correlation between predicted and true counts. The box plots show the median 
(centre), 25th and 75th percentiles (box bounds), and whiskers extend to the 
minima and maxima within 1.5 times the interquartile range (seaborn default). 
Results are from five experiments at random seeds. d, Scatter plot of predicted 
log counts against true log counts for exemplary proteins with correlation.
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the data integration performance (Fig. 4b) with a total scIB score of  
[0.5638 ± 0.0089] (SSL shallow) and [0.5571 ± 0.0080] (SSL) com-
pared with [0.5354 ± 0.0110] (unsupervised). The SSL-shallow model 
performed best, hinting at a meaningful data representation learned 
through the self-supervision algorithms, underscored by the compa-
rable performance of the specialized data integration method scVI38.  
This finding supports the advantage of leveraging auxiliary data 
through SSL and showcases the effectiveness of minimal fine-tuning 
compared with unsupervised learning.

Discussion
We analysed the application of SSL in SGC to guide its effective usage, 
leading us to adapt and benchmark several SSL techniques tailored 
for SCG. Our empirical study illuminates the context in which SSL 
can excel, especially when leveraging insights from vast, auxiliary 
datasets for smaller dataset tasks and in unseen dataset scenarios. 
We also demonstrated that SSL shows parity with supervised methods 
where both access the same data and that the zero-shot SSL model 
comes close to that performance. Our insights contribute to a more 
nuanced understanding of SSL’s applications in SCG. By rigorously 
testing these methods on an expansive dataset encompassing over 
20 million cells, we offer a robust, empirically grounded perspective on 
SSL in SCG, paving the way for more informed, data-driven approaches 
to studying complex biological systems. In the context of large-scale 
and foundation models34–36, this understanding could help design 
pre-training and select pretext tasks. For broad applicability within 
SCG, we address diverse, meaningful tasks, including cell-type pre-
diction, gene-expression reconstruction, cross-modality prediction 
and data integration. By demonstrating that SSL’s advantages emerge 
predominantly in scenarios involving transfer learning tasks through 
auxiliary data or distributional shifts, we offer a pragmatic lens through 
which the SCG community can view SSL—not as a universal solution 
but as a strategic tool tailored for specific challenges. This insight 
is particularly relevant as SCG moves towards larger data analyses, 
analysing cell atlases and leveraging the consortia of millions of cells 
in foundation models. The adaptability and robustness of SSL, as evi-
denced in our empirical analysis, are crucial in this context to leverage 
large datasets. Our approach thus shows an example in SCG for the 
contextual application of SSL, guiding researchers to leverage this 
methodology where it most effectively addresses the field’s unique 
data challenges.

The benchmark of SSL methods provides a clear recommenda-
tion for practitioners regarding which approach is advantageous in 
the aforementioned settings. As a primary approach, we recommend 

masked pre-training with a random masking strategy due to its robust-
ness and versatility across various tasks, which is central to founda-
tion models. However, when focusing on specific problems, more 
tailored techniques might be beneficial. For instance, cell-type-specific 
tasks such as zero-shot cell-type prediction may benefit from masking 
gene programmes associated with cell types. Tasks prioritizing cell–
cell interactions over subcellular resolutions may prefer contrastive 
methods, such as Barlow twins, which also showed strong zero-shot 
performance. These recommendations provide a strategic framework 
for applying SSL methods in SCG, ensuring researchers can select the 
most appropriate SSL method.

Future work on SSL in SCG may follow up on our findings. First, we 
identified several scenarios where SSL can improve performance across 
downstream tasks. These scenarios can serve as a baseline for future 
work, such as adding further downstream applications or developing 
SSL methods. Second, the remarkable performance improvement 
through SSL pre-training on auxiliary data promises further applica-
tions in which the data or data modality are scarce. Our solution can 
potentially improve analysis performance in applications such as 
dynamics modelling, where datasets with temporal resolutions are 
limited in size and availability, or in smaller applications with very 
small datasets. Third, the findings of this work are in the context of fully 
connected neural networks. Some conclusions may not generalize to 
other architectures, such as transformers. Extending the investigation 
to another base architecture is an interesting direction. Still, practi-
tioners might consider pre-training their chosen model with SSL on 
auxiliary data, in particular masked autoencoders, as our benchmark 
suggests. Models natively equipped with self-supervised pre-training 
on auxiliary datasets, such as scGPT35 or Nicheformer37, can be a good 
starting point for practical purposes.

Finally, our study clarifies the scenarios in which SSL pre-training 
can improve performance in SCG. Namely, SSL excels in transfer learn-
ing tasks by leveraging auxiliary data and distributional shift scenarios. 
In the context of foundation models, we illuminate methodological 
innovations stemming from the SSL pre-training. For the broader 
computational biology community, we have shown that self-supervised 
pre-training on atlas-level data can help to improve performance on 
smaller datasets of biological or medical relevance that are commonly 
more difficult to scale.

Methods
Data curation
Preprocessing. All datasets used in this study underwent a commonly 
used preprocessing pipeline in SCG. This involved normalization to 
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10,000 counts per cell and log1p transformation to mitigate technical 
variations and facilitate more meaningful biological comparisons. This 
uniform preprocessing approach ensured that our models were trained 
and evaluated on data closely reflecting the underlying biological reali-
ties while minimizing technical noise.

scTab dataset. The core dataset for our study stems from scTab5 and is 
derived from the CELLxGENE44 census version 2023-05-15, a long-term 
supported release hosted by CELLxGENE. This dataset represents 
a substantial collection of human single-cell RNA-sequencing data, 
encompassing 22.2 million cells spanning 164 unique cell types, 5,052 
unique donors and 56 different tissues. To ensure the reproducibility 
of dataset creation, scTab applied stringent criteria for inclusion, 
focusing on primary data from 10x-based sequencing protocols and 
ensuring a broad representation across cell types and donors. The 
scTab data are divided into training, validation and test sets based on 
donors, avoiding label leakage and ensuring each set contains unique 
donors. This donor-based splitting approach allowed us to maintain a 
proportional representation of cells across the sets. It ensured that each 
cell type was represented in the training and testing phases. It further 
presented a challenging test split with unseen donors. The final split 
resulted in 15.2 million cells for training, 3.5 million for validation and 
3.4 million for testing.

Single-cell atlases. We further considered smaller, focused datasets 
to test whether access to the auxiliary data gives an advantage. These 
datasets are subsets of the CELLxGENE44 census of scTab5 (scTab data-
set), tailored to specific applications, and consist of the Human Lung 
Cell Atlas (HLCA)4 (available at cellxgene.cziscience.com/e/9f222629-
9e39-47d0-b83f-e08d610c7479.cxg; 775,790 cells after filtering,  
51 cell types, 540,732 training, 117,541 validation, 117,517 test sam-
ples), peripheral blood mononuclear cells (PBMCs) after SARS-CoV-2 
infection48 (available at cellxgene.cziscience.com/e/2a498ace-872a-
4935-984b-1afa70fd9886.cxg; 78,354 cells after filtering, 30 cell types, 
78,354 training, 33,761 validation, 189,756 test samples), and the Tabula 
Sapiens Atlas (available at cellxgene.cziscience.com/e/53d208b0-
2cfd-4366-9866-c3c6114081bc.cxg; 335,861 cells after filtering, 161 
cell types, 223,337 training, 54,908 validation, 57,616 test samples)49. 
The division into training, validation and test sets is derived from their 
allocation within the scTab dataset to prevent data leakage. Note that 
the training, validation and test sets of the PBMC, Tabula Sapiens and 
HLCA datasets are also part of the corresponding splits of the full 
scTab dataset.

Unseen datasets. To evaluate our models’ performance in unseen data 
analysis scenarios, we incorporated five unseen datasets published 
after the CELLxGENE census version of scTab: (1) all non-neuronal cells 
from the Human Brain Atlas52 (available at cellxgene.cziscience.com/e/
b165f033-9dec-468a-9248-802fc6902a74.cxg) (2) dissection, tail of 
hippocampus (HiT) - caudal hippocampus - CA4-DGC from the Human 
Brain Atlas52 (available at cellxgene.cziscience.com/e/9f499d32-400d-
4c42-ac9a-fb1481844fee.cxg), (3) the single-cell analysis of prenatal and 
postnatal human cortical development53 (available at cellxgene.czisci-
ence.com/e/1a38e762-2465-418f-b81c-6a4bce261c34.cxg), (4) circulat-
ing immune cells—CV19 infection, vaccination and HC54 (available at 
cellxgene.cziscience.com/e/242c6e7f-9016-4048-af70-d631f5eea188.
cxg), and (v) human, great apes study55 (available at cellxgene.czisci-
ence.com/e/2bdd3a2c-2ff4-4314-adf3-8a06b797a33a.cxg). The unseen 
datasets were filtered for the genes used in scTab; missing genes were 
zero-padded. The datasets were then normalized to 10,000 counts per 
cell and log1p transformed. The full datasets were used as the test split, 
that is, no samples were used for training.

NeurIPS multiome dataset. Our study included the NeurIPS mul-
tiome dataset57, a multimodal bone marrow dataset that integrates 

gene-expression counts with proteomics data. While distinct in its 
multi-omic nature, this dataset underwent similar preprocessing steps 
to our other datasets, ensuring consistency across all analyses. We split 
the dataset into training, validation and test sets using an 80/10/10 
random split. We chose 2,000 highly variable genes using Scanpy64 as 
a standard preprocessing step for this dataset.

Self-supervision methods
Overview. SSL is the concept that data, along with their inherent pair-
wise relationships, are sufficient for learning meaningful data represen-
tations, even in the absence of explicit labels. While supervised learning 
relies on paired observations and labels (X, Y), SSL thus depends on 
only the input X and an inter-sample relationship (X, G), where G is 
constructed through a data augmentation that sustains the semantic 
information of X8. Thereby, the method distils signal from noise65, a 
crucial aspect for managing challenges such as class imbalances in 
large, real-world datasets66. In single-cell data, this means distiling the 
signal of the cellular omics and removing noise sources such as batch 
effects or inconsistent labelling.

In the context of SCG, SSL harnesses these capabilities to navigate 
the complexities of vast, unlabelled datasets replete with intricate 
biological interdependencies. The framework is structured into two 
distinct phases: pre-training and fine-tuning. During the pre-training 
phase, the model employs contrastive learning or denoising methods 
to learn a data representation. This representation, characterized 
by its broad applicability, is then utilized in one of two ways. First, 
as a zero-shot SSL model, it can be directly applied to a downstream 
task without further label-dependent training. Alternatively, as an 
SSL model, it undergoes fine-tuning to enhance performance on spe-
cific tasks. This fine-tuning capitalizes on the rich data representa-
tion acquired during pre-training, adjusting and optimizing it for the 
desired application. The fine-tuning phase of SSL, therefore, is not only 
about refining the pre-training but also about strategically leveraging 
the pre-established data mappings for task-specific optimizations.

Core principles and strategies. The choice of self-supervised pre- 
training, that is, learning the inter-sample relationship, is critical  
to obtaining a meaningful data representation as it gives rise to 
the signal-to-noise distinction in the dataset. Our SSL framework is 
designed around two primary pre-training strategies: masked auto
encoders and contrastive learning, both adapted to meet the unique 
demands of SCG.

Masked autoencoders. This approach follows the concept of self- 
prediction, where a significant portion of input features (genes in SCG) 
are masked (that is, set to zero), and the model is trained to reconstruct 
these missing parts9,45,67. It thus sets focus on inter-feature depend-
encies. We implemented various masking strategies. (1) In random 
masking, 50% of genes are randomly chosen and masked with different 
choices in each iteration. (2) In GP masking, sets of genes known for 
biological functions are masked such that n% of genes are masked and 
reconstructed. The C8 cell-type signature gene sets from the Human 
MSigDB Collections68–70 were used. Next, we introduce isolated masked 
autoencoders, in which all genes but a defined set are masked, and only 
this set is reconstructed. (3) For this, we present a GP to TF isolated 
masking. This masking predicts the expression value of the transcrip-
tion factor known to correspond to a gene programme. This connection 
is given in the TFT transcription factor targets subset of C3 regulatory 
target gene sets from the Human MSigDB Collections71,72. (4) Last, we 
present a GP to GP isolated masking. In this strategy, a gene programme 
is kept unmasked and used to predict only itself. The gene programmes 
for this strategy also stem from the C8 cell-type signature gene sets 
from the Human MSigDB Collections. These strategies are tailored 
to capture specific gene interactions and relationships, making them 
particularly suited for the intricate nature of single-cell data.
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Contrastive learning. Unlike self-prediction, contrastive learning 
focuses on understanding relationships between different samples, 
thus focusing on inter-sample dependencies. This method minimizes 
distances between similar samples and maximizes distances between 
dissimilar ones in the embedded space. Contrastive methods are typi-
cally distinguished by their strategy to avoid representation collapse, 
the trivial solution to contrastive losses of constant representations9,10. 
BYOL is an example of architectural regularization through its teacher–
student network. Barlow twins is an example of an information maxi-
mization method that avoids collapse by maximizing the information 
content of the embedding. We incorporated BYOL and Barlow twins in 
our framework to benchmark two schools of thought. We used a combi-
nation of negative binomial noise and masking as data augmentation, 
simulating the expected noise profiles in SCG data.

Zero-shot SSL concept. A key concept in our study is the differentiation 
between the zero-shot SSL and SSL models. The zero-shot SSL model 
represents the initial phase of pre-training, where the model learns 
from the data without any label guidance through self-supervision 
algorithms. This model, even without fine-tuning, can provide mean-
ingful insights into data, as demonstrated in various downstream tasks. 
The SSL model, in contrast, undergoes an additional fine-tuning phase 
tailored to specific downstream applications. This distinction allows 
us to explore the full spectrum of SSL’s capabilities, from a generalized 
understanding of data to specialized, task-specific optimizations.

In summary, our self-supervision methods in SCG are defined by a 
nuanced application of masked autoencoders and contrastive learning 
adapted to the field’s specific challenges. The zero-shot SSL concept 
plays a central role in our approach, highlighting the potential of SSL to 
derive meaningful insights from large-scale, unlabelled datasets. This 
methodological framework sets the stage for a detailed exploration 
and benchmarking of SSL’s impact on various SCG tasks, as detailed 
in the following sections of our study.

Downstream applications in SCG
Cell-type annotation. Cell-type annotation in SCG is a classification 
task where data samples, represented as vectors of RNA-sequencing 
counts, are assigned to distinct cellular identities. Although seemingly 
straightforward, this task is complicated by the noise and heteroge-
neity inherent in large-scale datasets. We utilize the scTab dataset as 
the primary basis for our cell-type annotation analysis. We employ 
various SSL methods and compare their effectiveness against super-
vised approaches. We train the classifier using a cross-entropy loss. We 
evaluate cell-type annotation performance by kNN (k = 5) classification 
using the scTab validation set as neighbours of the test sample. The 
validation set is sufficiently large and diverse, making it a simple and 
scalable alternative to the training set for this purpose. This choice is 
driven to have the same evaluation, including for the zero-shot SSL 
model that does not have a prediction head. Our evaluation metrics 
focus on the macro F1 score, reflecting the models’ ability to handle 
class imbalances, supplemented by the micro F1 score, offering an 
additional comparative perspective to class imbalances. Exemplary 
loss curves for this training are shown in Supplementary Fig. 5 and a 
list of hyperparameters is shown in Supplementary Table 1.

Gene-expression reconstruction. Gene-expression reconstruc-
tion, the process of reconstructing counts from the transcriptome, 
still presents challenges due to the inherent noise and dispersion in 
RNA-sequencing data. The popular scVI model38 inspires our approach 
and diverges in its use of input data. While scVI uses raw counts as input 
and models them as a negative binomial distribution, our method 
employs normalized data for consistency with other downstream 
tasks. Nonetheless, similar to scVI, we predict the parameters of the 
negative binomial distribution. This strategy of modelling distribu-
tion parameters rather than direct RNA-sequencing count prediction 

enhanced reconstruction accuracy in our experiments. We opt for 
a non-variational, fully connected autoencoder framework consist-
ent with our cell-type prediction approach. Performance evaluation 
encompasses MSE and uniform and weighted explained variance. We 
reported the weighted explained variance to best reflect the actual 
reconstruction efficacy, accounting for class imbalances. We include 
the MSE and uniform explained variance in our framework as sup-
plementary evaluation, and they were used in our experiments. The 
hyperparameters used are shown in Supplementary Table 1.

Cross-modality prediction. Cross-modality prediction is the task of 
predicting one modality from another. Such a task could potentially aug-
ment cellular data by a different modality, offering another perspective. 
For pre-training, we used masking (1) on the auxiliary scTab dataset and 
(2) on the downstream task dataset. For fine-tuning, we included two 
studies, both using normalized and log1p transformed RNA-sequencing 
counts as originating modalities. First, we predicted all 134 normalized 
and log1p transformed protein counts (proteomics) available in the 
NeurIPS CITE-seq dataset57. We trained the models in a random training, 
validation and test split using coupled RNA and proteomics counts.  
Second, we predicted all 116,490 TF-IDF (term frequency-inverse docu-
ment frequency)73-normalized ATAC counts available in the NeurIPS 
multiome dataset57. Again, we trained the models in a random train-
ing, validation and test split using the coupled RNA and ATAC counts. 
Hyperparameters are shown in Supplementary Table 1.

Data integration. Data integration is an effort to study a set of related 
SCG datasets, possibly curated from various donors with different 
pipelines and in different settings that create batch effects and techni-
cal artefacts. The scIB63 integration benchmarking is a well-established 
analysis to determine how well the relevant and meaningful biological 
signals are preserved in any model data representation while remov-
ing the unwanted batch effects resulting in a mixed representation of 
various datasets. Accordingly, the scIB pipeline measures two metrics, 
including the bio conservation and batch correction metrics, each con-
sisting of several evaluations through different methods. The hyper-
parameters for data integration are shown in Supplementary Table 1.

Contrastive method choice. This benchmark developed contras-
tive methods based on BYOL and Barlow twins, two well-performing 
negative-pair-free methods. This choice is motivated by their reliance 
solely on data augmentations rather than sampling negative pairs in 
a large and heterogeneous dataset and their proven performance46,47. 
Other reasonable choices include simple Siamese networks74, which 
were excluded due to repeatedly observed training instability in our 
setting, and SimCLR12, which was not pursued further as BYOL and 
Barlow twins showed superior performance in previous benchmarks. 
While VICReg11 is promising by design, we focused on BYOL and Barlow 
twins due to their robustness. As contrastive learning methods gener-
ally performed worse than masking approaches, we prioritized them 
for thorough investigation.

Batch effect. Batch effects were not explicitly corrected when working 
with large datasets, such as scTab, covering 249 datasets. Including 
many datasets seems to reduce the relative impact of such effects on 
the overall variation. When working with fewer datasets, such as in the 
data integration experiments covering three datasets, a batch covariate 
needs to be included to avoid strong batch effects.

Computational resources. The experiments for this work were con-
ducted on a graphics processing unit (GPU) server with the following 
specifications:

•	 GPU: 16x Tesla V100 GPUs with 32 GB random access memory 
(RAM) per card
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•	 GPU: 2x Tesla V100 GPUs with 16 GB RAM per card
•	 GPU: 8x A100-SXM4 GPUs with 40 GB RAM per card

All pre-training methods were trained on a single GPU for 2 days 
with early stopping, using up to 160 GB of system memory at a batch 
size of 8,192. For practitioners with limited GPU memory, smaller batch 
sizes can reduce memory usage. For example, a batch size of 2 uses 
under 1 GB of VRAM but greatly increases training time (>200 h per 
epoch on scTab). All fine-tuning methods were trained on a single GPU 
for 1 day with early stopping. All models were checked for convergence 
in the validation metrics.

Terminology. In this paper, we use the following terminology:

We use the above table’s terminology throughout the paper to 
distinguish between architecture, method and model. This distinction 
clarifies how different methods impact models that share similar archi-
tectures. For example, scGPT trains a transformer architecture using SSL.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The scTab data are available with instructions in the corresponding 
publication5. The smaller datasets are publicly available on CELLx-
GENE44 and subsets of the scTab datasets (HLCA, Dataset ID 148; PBMC, 
Dataset ID 87; Tabula Sapiens, Dataset ID 41). The unseen datasets are 
sourced from CELLxGENE44 with instructions in the corresponding 
publications52–55. The NeurIPS multiome dataset is publicly available 
from NCBI GEO under accession GSE194122 with instructions in the 
corresponding publication57.

Code availability
The code is available at github.com/theislab/ssl_in_scg and on Zenodo 
at https://doi.org/10.5281/zenodo.13358872 (ref. 75). A lean version 
for masked pre-training on adatas fitting into memory is available at 
github.com/theislab/sc_mae.
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