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Abstract: Background: A limited number of studies have investigated the role of environmental
chemicals in the etiology of mild cognitive impairment (MCI). We performed a cross-sectional study
of the association between exposure to selected trace elements and the biomarkers of cognitive
decline. Methods: During 2019–2021, we recruited 128 newly diagnosed patients with MCI from
two Neurology Clinics in Northern Italy, i.e., Modena and Reggio Emilia. At baseline, we measured
serum and cerebrospinal fluid (CSF) concentrations of cadmium, copper, iron, manganese, and zinc
using inductively coupled plasma mass spectrometry. With immuno-enzymatic assays, we estimated
concentrations of β-amyloid 1-40, β-amyloid 1-42, Total Tau and phosphorylated Tau181 proteins,
neurofilament light chain (NfL), and the mini-mental state examination (MMSE) to assess cognitive
status. We used spline regression to explore the shape of the association between exposure and each
endpoint, adjusted for age at diagnosis, educational attainment, MMSE, and sex. Results: In analyses
between the serum and CSF concentrations of trace metals, we found monotonic positive correlations
between copper and zinc, while an inverse association was observed for cadmium. Serum cadmium
concentrations were inversely associated with amyloid ratio and positively associated with Tau
proteins. Serum iron concentrations showed the opposite trend, while copper, manganese, and zinc
displayed heterogeneous non-linear associations with amyloid ratio and Tau biomarkers. Regarding
CSF exposure biomarkers, only cadmium consistently showed an inverse association with amyloid
ratio, while iron was positively associated with Tau. Cadmium concentrations in CSF were not
appreciably associated with serum NfL levels, while we observed an inverted U-shaped association
with CSF NfL, similar to that observed for copper. In CSF, zinc was the only trace element positively
associated with NfL at high concentrations. Conclusions: In this cross-sectional study, high serum
cadmium concentrations were associated with selected biomarkers of cognitive impairment. Findings
for the other trace elements were difficult to interpret, showing complex and inconsistent associations
with the neurodegenerative endpoints examined.

Keywords: amyloid ratio; mild cognitive impairment; neurofilament light chain; Tau proteins;
trace elements
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1. Introduction

Dementia represents a significant public health challenge, as the population ages
globally. The global population of individuals living with dementia is expected to rise to
153 million by 2050 [1]. Emerging evidence suggests that not only genetic and lifestyle
factors, but also environmental exposures, including heavy metals and trace elements like
cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn), are involved in the
pathogenesis of cognitive decline and dementia [2]. While Cd is a non-essential metal with
no recognized biologic function, Cu, Fe, Mn, and Zn are essential nutrients that also have
potential neurotoxic effects, depending on the amount of exposure, the chemical species,
and other factors. Understanding the contribution of these trace elements to neurodegener-
ative processes is crucial for identifying modifiable risk factors and developing targeted
interventions.

Cd, a well-known environmental pollutant, has been associated with neurodegenera-
tion in epidemiologic studies [3–6], potentially due to its capacity to exacerbate oxidative
stress and inflammation in the central nervous system, as shown in laboratory studies [7–9].
Cu is a trace element involved in several physiological functions, including mitochondrial
energy production, oxidative stress regulation, and neurotransmitter synthesis as a cofactor
of enzymes such as superoxide dismutase and cytochrome c oxidase [10], though it could
also induce neurodegeneration through its toxic and pro-oxidant properties [11,12]. Zn
plays a pivotal role in maintaining synaptic plasticity and supporting neurogenesis. It is
concentrated in synaptic vesicles and is involved in modulating neurotransmitter release,
neuronal signaling, and enzymatic activity [13]. Both Cu and Zn, while being essential for
neuronal function, may be detrimental at high concentrations, contributing to amyloid beta
aggregation and Tau phosphorylation, the pathological features of Alzheimer’s disease
(AD). The same applies to essential elements like Fe and Mn, which at high levels of ex-
posure may be neurotoxic, affecting neurotransmitter synthesis and promoting oxidative
damage [14]. Fe is fundamental to several neurological processes, including neuronal
development, myelination, and neurotransmitter synthesis and catabolism. However, it
also promotes reactive oxygen species protein oxidation, lipid peroxidation, and nucleic
acid modification [15,16]. Mn serves as a cofactor for several key enzymes, including man-
ganese superoxide dismutase, which protects cells from oxidative damage by neutralizing
superoxide radicals. Mn is also involved in the synthesis of glutamine and glutamate,
neurotransmitters critical for brain function [17], but at higher levels Mn may induce neuro-
toxicity [18,19]. The impact of different trace elements can vary by the brain region affected
and is often dose dependent [20]. Fe, the most abundant trace element in the brain, tends
to accumulate in the substantia nigra, striatus, and hippocampus, while Zn accumulates in
the cortex, hippocampus, and amygdala. High Cu concentrations have been found in the
hippocampus and cortex [21], while chronic Mn mainly affects the basal ganglia [22].

We performed a cross-sectional study among patients with MCI to examine associa-
tions between the concentrations of Cd, Cu, Fe, Mn, and Zn in serum and cerebrospinal
fluid (CSF) and the biomarkers of cognitive decline, including amyloid Aβ1-42/1-40 ratio
(reflecting amyloid plaque deposition), Tau proteins (indicating neurodegeneration), and
neurofilament light chain (NfL, reflecting axonal injury) [23].

2. Methods
2.1. Study Population

We enrolled patients consecutively admitted to the neurology departments of Reggio
Emilia ASMN Hospital and Modena University Hospital from 2019 to 2021 with a diagnosis
of subjective cognitive decline (SCD) or MCI based on history and neuropsychological
assessment [24–26]. Detailed inclusion criteria were as follows: clinical diagnosis of MCI or
SCD based on history and neuropsychological assessment, including the mini-mental state
examination (MMSE), in accordance with the last edition of the Diagnostic and Statistical
Manual of Mental Disorders (DSM-5) criteria [27]; age at recruitment less than 70 years; onset
of reported cognitive impairment before the age of 65; ability to read and write in the
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Italian language for neuropsychological evaluation; presence of a caregiver available to
respond to questionnaires as part of the neuropsychological assessment. Exclusion criteria
were as follows: failure to provide consent or withdrawal of consent; diagnosis within the
last 2 years of stroke or other cerebrovascular disease; cranial trauma or other focal brain
injuries; inflammatory central nervous system disease; other neurodegenerative diseases
(Parkinson’s disease, Huntington’s, etc.); major psychiatric disorders; pregnancy. The
protocol of this study was approved by the Modena (AOU no. 2158/19) and Reggio Emilia
(AUSLRE no. 2019/0009686) Ethics Committees.

A flowchart of study exclusions is shown in Figure 1. Of the 147 enrolled patients,
we excluded two patients with other neurological diseases (e.g., neurosyphilis) and no
available serum sample. Of the 145 participants included in the analysis, we eventually
assayed trace element concentrations in 103 patients with serum samples. A CSF analysis
was performed in only 50 of them due to limited sample availability. Data on each patient’s
medical history, sociodemographic information, and lifestyle habits were collected through
their medical records and ad hoc project-designed questionnaires. For the purpose of
this study, analyses were performed in 89 MCI patients with serum samples and 45 MCI
patients with CSF samples.
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Figure 1. Study flowchart. Abbreviations: CSF, cerebrospinal fluid; SCD, subjective cognitive decline
(SCD).

Patients provided informed consent before undergoing a lumbar puncture to collect
CSF samples for diagnostic purposes. Subsequent approval for the use of these samples in
research was granted by the Modena Ethical Committee. We collected approximately 6 mL
of CSF from each patient under sterile conditions employing an ultraclean technique. Serum
samples were also obtained. We promptly stored the samples at −80 ◦C in polypropylene
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tubes to ensure preservation. Prior to analysis, we thawed the samples in a refrigerator
maintained at 4 ◦C. Once thawed, they were allowed to reach room temperature, subjected
to vortex mixing to ensure homogeneity, and subsequently analyzed.

2.2. Biomarkers of Neurodegeneration

The CSF amyloid beta ratio (Aβ1-42/1-40), Total Tau, and phosphorylated Tau 181
(p-Tau181) were assessed with the Lumipulse™ fully automated system using CLEIA
(Fujirebio Inc., Ghent, Belgium) following manufacturer instructions. Lumipulse® G β-
Amyloid1-42, Lumipulse® G β-Amyloid1-40, Lumipulse® G Total Tau, and Lumipulse® G
p-Tau181 Chemiluminescent Enzyme ImmunoAssays kits (Fujirebio Inc., Ghent, Belgium)
were employed. Specific laboratory cut-offs were as follows: amyloid ratio > 0.069 pg/mL,
Total Tau < 400 pg/mL, and p-Tau181 < 56.5 pg/mL. Serum and CSF concentrations of
NfL were determined using Ella™ microfluidic platform (Bio-Techne, Minneapolis, MN,
USA), as previously described [28,29]. Briefly, after 1:2 manual dilution according to the
manufacturer’s recommended procedures, samples were loaded into cartridges coated with
a capture antibody. Samples were read in triplicate, evaluating intra-assay and inter-assay
variability. All analytical procedures were performed by biologists who were blinded to
clinical information.

2.3. Trace Element (Cd, Cu, Fe, Mn, Zn) Determination

We transferred a 1 mL aliquot of serum and 1 mL of CSF in polypropylene tubes.
Samples were transported in a frozen state on dry ice to the laboratory at the Helmoltz
Zentrum in Munich where they were maintained in a frozen condition until analysis.
We used inductively coupled plasma atomic emission spectrometry (Optima 7300 DV
system, Perkin Elmer, Rodgau-Jügesheim, Germany) for Cu, Fe, Mn, and Zn determinations
(Schramel 1988), introducing samples with the use of a peristaltic pump connected with a
Seaspray nebulizer and a cyclon spray chamber. The measured spectral element lines were
Cu: 324.754 nm, Fe: 259.941 nm, Mn: 257.611 nm, and Zn: 213.857 nm. We set RF power to
1400 W, plasma gas at 13 L Ar/min; the nebulizer gas was approximately 0.6 L Ar/min
after daily optimization. Since Cd levels were very low, we used inductively coupled
plasma sector field mass spectrometry (ICP-sf-MS, “Element 2” from Thermo-Scientific,
Bremen, Germany) to analyze 111 Cd [30]. As part of routine quality control, every ten
measurements included three blank determinations and a control assessment using a
certified standard for all analyzed elements. The final measurements were calculated
using a computerized laboratory data management system, which integrated sample
measurements with calibration curves, blank determinations, and control standards to
ensure accuracy and reliability.

2.4. Data Analysis

For data analyses, we used the following routines of Stata statistical software (Stata/MP
18, Stata Corp., College Station, TX, USA, 2024): ‘margins’, ‘mkspline’, ‘regress’, ‘winsor’,
‘xbcrsplinei’, and ‘vioplot’. Of the characteristics reported in Table 1, we created categorical
variables for age (<65 and ≥65 years), educational attainment, and body mass index (BMI)
(underweight, <18.5 kg/m2; normal weight, 18.5–24.9 kg/m2; overweight/obese, 25 or
more). There were no missing data for covariates, with the exception of BMI (19%) and
marital status (12%); the latter covariates were not included in multivariable regression
models because they had minimal effects on exposure–outcome associations.

We used crude and multivariable models to assess associations between trace element
concentrations in serum and CSF, with the latter analysis being adjusted for age, sex,
educational attainment, and MMSE as potential confounders. We analyzed the associations
between trace element concentrations and NfL, amyloid ratio, Total Tau, and p-Tau181. We
estimated associations using linear fit models with marginal statistics and restricted cubic
spline regression models with knots at three fixed percentiles, i.e., 10th, 50th, and 90th of
trace element concentrations [31,32].
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Table 1. Characteristics of the study population (only mild cognitive impairment (MCI) participants)
according to availability of cerebrospinal fluid (CSF) samples.

MCI Participants
(n = 128)

MCI with Serum TE Analysis
(n = 89)

MCI with CSF TE Analysis
(n = 45)

Median
(IQR)

Median
(IQR)

Median
(IQR)

Sex (n, %)
Males 53 (41.4) 36 (40.5) 20 (44.4)

Females 75 (58.6) 53 (59.5) 25 (55.6)
Age at diagnosis (years) 61 (56–65) 61 (56–65) 61 (56–64)
Age in categories (n, %)

<65 years 90 (70.3) 60 (67.4) 35 (77.8)
≥65 years 38 (29.7) 29 (32.6) 10 (22.2)

Education (years) 11 (8–13) 11 (8–13) 12 (8–13)
Education in categories (n, %)

Elementary school 11 (8.6) 10 (11.2) 5 (11.1)
Middle school 46 (35.9) 33 (37.1) 12 (26.7)
High school 48 (37.5) 30 (33.7) 18 (40.0)

College or more 23 (18.0) 16 (18.0) 10 (22.2)
Marital status (n, %)

Single 9 (7.0) 4 (4.5) 3 (6.7)
Married/unmarried 83 (64.8) 61 (68.5) 32 (71.1)
Separated/divorced 13 (10.2) 9 (10.1) 2 (4.4)

Widowed 8 (6.3) 6 (6.7) 4 (8.9)
Missing 15 (11.7) 9 (10.1) 4 (8.9)

BMI in categories (n, %)
<18.5 kg/m2 4 (3.1) 3 (3.4) 2 (4.4)

18.5–24.9 kg/m2 42 (32.8) 24 (27.0) 11 (24.4)
≥25.0 kg/m2 58 (45.3) 46 (51.7) 25 (55.6)

Missing 24 (18.6) 16 (18.0) 7 (15.6)
MMSE score 27 (25–29) 27 (25–29) 27 (25–29)

Abbreviations: BMI, body mass index; LP, lumbar puncture; MMSE, mini-mental state examination; NfL, neurofil-
ament light chain protein; p-Tau181, Tau protein phosphorylated at threonine 181; TE, trace element.

3. Results

Table 1 shows the baseline characteristics of the study population. We originally
recruited 145 patients, including 128 MCI. In total, 42% of MCI patients were males, with a
median age at enrollment corresponding to 61 years (IQR 56–65). Of the 89 MCI patients
with serum trace element data, 45 also had CSF available. No substantial differences in pop-
ulation characteristics were observed between those with (1) only serum and (2) both serum
and CSF. We found no appreciable differences in education or MMSE scores. Most patients
were less than 65 years old, obtained a high school diploma, were married/partnered, and
were overweight or obese.

Table 2 shows serum and CSF trace elements and NfL concentrations along with CSF
Total Tau, p-Tau181, and amyloid ratio.

The highest concentrations in serum and CSF occurred in the following order: Fe > Cu
> Zn > Mn > Cd. Limited differences were instead observed for serum and CSF levels of
the trace elements investigated according to sex (Figure 2).
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Table 2. Distribution of neurofilament light chain (NfL) and trace elements in serum and cere-
brospinal fluid (CSF) among patients with mild cognitive impairment (MCI). Values are median and
interquartile ranges (IQR).

CSF (n = 45)
Median (IQR)

Serum (n = 89)
Median (IQR)

NfL (pg/mL) 934.0
(665.0–1653.0)

19.5
(12.7–35.0)

Amyloid ratio 0.088
(0.050–0.094) -

Total Tau (pg/mL) 442.0
(215.0–774.0) -

p-Tau181 (pg/mL) 46.1
(25.8–116.6) -

Cadmium (µg/L) 0.01
(0.01–0.02)

0.05
(0.03–0.12)

Copper (µg/L) 19.50
(11.00–30.50)

869
(766–974)

Iron (µg/L) 28.50
(9.82–42.50)

864
(694–1070)

Manganese (µg/L) 0.57
(0.38–0.94)

2.74
(1.55–3.50)

Zinc (µg/L) 19.10
(10.90–30.30)

741
(650–856)
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Figure 2. Violin plots distribution of trace element concentrations in serum and cerebrospinal fluid
(CSF) according to sex (M, males; F, females). MCI, serum n = 89; CSF n = 45. Abbreviations: Cd,
cadmium; Cu, copper; Fe, iron; MCI, mild cognitive impairment; Mn, manganese; NfL, neurofilament
light chain; SCD, subjective cognitive decline; Zn, zinc.

Among 45 patients with data on serum and CSF, we compared serum and CSF concen-
trations for each of the trace elements. In spline regression analyses among MCI patients,
we observed a positive linear association between serum and CSF concentrations of Cu
and Zn, and an inverse association for Cd. There was a positive association between Fe
concentrations in serum and CSF up to a threshold of 1000 µg/L, beyond which the rela-
tion plateaued. For Mn, there was a slight inverted U-shaped association, with a positive
monotonic relation between the serum and CSF matrices until 3.0 µg/L and a slight inverse
association above that value (Figure 3).
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Figure 3. Spline regression analysis of the association between trace element concentration in serum
and cerebrospinal fluid among patients with mild cognitive impairment. The solid line indicates the
multivariable analysis; the shaded area represents upper and lower confidence interval limits. The
dashed line represents association assuming linearity. Diamonds represent individual observations
(n = 45). Abbreviations: Cd, cadmium; CSF, cerebrospinal fluid; Cu, copper; Fe, iron; Mn, manganese;
NfL, neurofilament light chain; Zn, zinc.

When we examined the association between the trace element concentrations and
each study endpoint, in serum, we found little association of Cd and Cu concentrations
with NfL, whereas we observed non-linear associations of Fe, Mn, and Zn with NfL. For
Fe, we observed an inverse association until 1000 µg/L after which the effect plateaued.
For Mn and Zn, we found a U-shaped relation, with an inflection point at 3.0 µg/L and
800 µg/L, respectively (Figure 4A). In CSF, Cd and Cu showed an inverse U-shaped
association with NfL concentrations, while Fe showed a monotonic inverse association. For
Mn and Zn, the association was almost flat at the lowest exposure levels, while there was an
inverse association for Mn above 1.0 µg/L and a positive association for Zn above 20 µg/L
(Figure 4B). When comparing associations between trace elements and NfL concentrations
across matrices (serum vs. CSF), the associations were substantially similar.
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Figure 4. Spline regression analysis of the association between trace element concentration in serum
(dark blue) and cerebrospinal fluid (CSF-light blue) with serum (A) and CSF neurofilament light
(NfL) concentrations (B) among patients with mild cognitive impairment. The solid line indicates
the multivariable analysis; the shaded area represents the upper and lower confidence interval
limits. The dashed line represents the association assuming linearity. Diamonds represent individual
observations (serum n = 89; CSF n = 45). Abbreviations: Cd, cadmium; Cu, copper; Fe, iron; MMSE,
mini-mental state examination; Mn, manganese; Zn, zinc.

For Cd, we found an inverse association with amyloid ratio, and a positive association
with total Tau and p-Tau181. On the contrary, an opposite pattern emerged for Fe, since
its serum concentrations were positively associated with amyloid ratio and inversely
associated with Tau proteins. Some discrepancies were observed in the association between
Cu and the neurodegeneration biomarkers. In fact, Cu was positively associated with
amyloid ratio until 800 µg/L after which an inverse relation emerged. Similarly, there
was a U-shaped association with Total Tau and p-Tau181, showing an inverse and then
a positive association at the same inflection point. Mn concentrations showed an inverse
U-shaped association with amyloid ratio, while being inversely, although not linearly,
associated with Tau proteins. Zn concentrations were positively associated with amyloid
ratio, while demonstrating a U-shaped association with total Tau and an inverse association
with p-Tau181, but only until 800 µg/L. Above this value, the association with amyloid
ratio flattened, and the association with Total and p-Tau181 became positive. In CSF, Cd
concentrations were inversely associated with amyloid ratio, and there was a slight inverse
U-shaped association with Tau protein biomarkers. Cu, Mn, and Zn also showed a U-
shaped association with amyloid ratio, while showing an inverse U-shaped association with
Tau proteins, with inflection points at 20, 0.75, and 25 µg/L, respectively. Fe concentrations
were positively and monotonically associated with Total Tau, showing an inverse U-shaped
association with p-Tau181, and showing no association with amyloid ratio (Figure 5).
Finally, according to the laboratory cut-off values of the neurodegeneration biomarkers
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used for AD, Cd in serum was the only element found to be inversely associated with
amyloid ratio and positively associated with Tau proteins, while higher concentrations of
Zn and Cu in serum were positively associated with Total Tau and p-Tau181, respectively.
When considering CSF trace element concentrations, none of the elements demonstrated
a clear association with amyloid ratio. When considering Total Tau, we found a positive
association above 400 pg/mL for all elements, with a linear association for the full range of
exposure only for Fe. We observed similar associations for p-Tau181, although the slopes of
the spline curves were considerably less steep.
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Figure 5. Spline regression analysis of the association between trace element concentration in serum
(dark green) and cerebrospinal fluid (CSF—light green) with CSF concentration of amyloid ratio (A),
Total Tau (B) and phosphorylated Tau (p-Tau181) protein (C) among patients with mild cognitive
impairment. The solid line indicates the multivariable analysis; the shaded area represents the
upper and lower confidence interval limits. The dashed line represents the association assuming
linearity. Diamonds represent individual observations (serum n = 89; CSF n = 45). Red lines represent
laboratory cut-offs (>0.069 for amyloid ratio; <400 pg/mL for Total Tau; <56.5 pg/mL for p-Tau181).
Abbreviations: Cd, cadmium; Cu, copper; Fe, iron; MMSE, mini-mental state examination; Mn,
manganese; Zn, zinc.

4. Discussion

In this cross-sectional study among patients with MCI, some trace elements measured
in serum and CSF were positively associated with the biomarkers of neurodegeneration.
Most associations were non-linear. Cd in particular was positively associated with neurode-
generation biomarkers, with the exception of NfL, consistent with an ongoing neurodegen-
erative process. Other trace elements displayed inconsistent and heterogeneous non-linear
relations with amyloid and Tau biomarkers, while Mn was the only trace element shown to
have a U-shaped association with NfL.

As for the associations between serum and CSF concentrations of trace metals, we
found monotonic positive correlations only for Cu and Zn. The inverse or non-linear
associations between the concentrations of some elements by matrix (serum vs. CSF) can
be attributed to several factors, including altered blood-CSF barrier permeability and the
dynamics of the transport of metals across the blood–brain barrier [33–35]. For instance,
in the case of Fe, homeostatic mechanisms may occur when serum metal concentrations
increase without a corresponding rise in CSF. Therefore, when serum metal concentrations
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rise, the blood–brain barrier may become more restrictive, preventing excess metals from
entering the CSF. In addition, neurons and glial cells can actively regulate metal home-
ostasis through specific transporters and channels, thereby preventing accumulation in
CSF [36]. Conversely, the inverse association we observed for Cd between serum and CSF
concentrations was unexpected and intriguing, since most of the epidemiological studies
conducted to date used urinary levels and biomarkers of exposure [37,38]. Evidence about
whether the CSF content may reflect the blood concentrations of this trace element is scarce
and some epidemiological studies have raised concerns about the reliability of CSF as a
biomarker of exposure [39]. In a previous study, a positive and relatively strong correlation
was found between the serum and CSF concentrations of Cd in children, hypothesizing
that this trace element exhibits the capacity to access the brain via the nasal mucosa or
olfactory pathways, which are not yet fully developed in young children [33]. Our results
may differ from those in previous studies due to the different physiological mechanisms
in populations of different ages. Cd’s affinity for sulfhydryl groups in serum proteins
could lead to a scenario where higher serum concentrations do not correspond to increased
concentrations in CSF, hypothesizing a protective role of serum against Cd toxicity [7].

Recent findings have highlighted a potential role of some trace elements such as
Cd, a heavy metal potentially linked to an excess risk of many diseases [40] including
cardiovascular disorders [41–43] and neurodevelopmental disorders [44], in the etiology of
different forms of dementia, particularly that are induced by AD [45,46]. Conversely, little
evidence is available for MCI, long recognized as a precursor of dementia [47]. Therefore,
understanding the environmental and biological factors contributing to MCI progression
is essential for developing preventive strategies for dementia [48]. The studies of Cd’s
neurotoxic effects have indicated that even low-level exposure can lead to impairments in
cognitive performance among older adults [49–51]. Several studies have also indicated that
Cd has the ability to induce oxidative stress and neuroinflammation, which can disrupt
neuronal function and lead to cognitive decline [52,53]. Cd accumulation might also
exacerbate some pathological features of AD, such as a reduction in β-amyloid degrading
enzymes leading to increased β-amyloid accumulation [54]. In our study, among the trace
elements measured in serum, Cd was the only element associated with adverse effects on
neurodegeneration biomarkers, as highlighted by the associations found upon exceeding
the standard laboratory values of amyloid ratio and Tau proteins. This association emerged
at exposure concentrations believed not to be unusually high, given that the median serum
Cd concentrations in our study were lower than those measured in the National Health
Nutrition Examination Survey [55] or in the Beaver Dam Offspring Study cohort, which
found comparable associations between serum Cd and amyloid ratio or Tau proteins [56].
Hence, our results appear to be even more relevant if considering that we observed adverse
associations at lower concentrations than previous reports. However, the results for CSF
concentrations did not reflect the same associations found for serum Cd, a discrepancy that
warrants further investigation.

Fe is the most abundant transition metal and the most investigated in relation to
AD. Through Fenton chemistry, Fe can catalyze the formation of reactive oxygen species
(ROS), leading to detrimental processes for neuronal integrity, such as lipid peroxidation
and protein oxidation [57]. For Fe, we observed an inverse relation between serum and
CSF concentrations and neurodegeneration biomarkers, with the exception of a positive
association between Fe and total Tau in CSF. The latter result is consistent with previous
results highlighting a positive relation between brain Fe deposition and atrophy, cognitive
decline, and Tau aggregation in elderly individuals [58–60]. A recent systematic review
highlighted that lower Fe in blood and greater ferritin in CSF were found among AD
patients compared with healthy subjects [61]. In this study, we did not perform Fe speciation
analysis, thus we could not ascribe distinct associations to different Fe compounds.

Zn and Cu are nutritionally essential trace elements that play significant roles in brain
function, but they may also have neurotoxic properties at high concentrations. Particularly
in the case of Cu, it operates as a catalyst of redox reactions and, in the context of dementia
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and AD, it has been shown to interact with β-amyloid peptides, promoting oxidative
damage to neuronal membranes and facilitating their aggregation [62,63]. Moreover, Cu
is known to promote Tau protein hyperphosphorylation and it has been linked to the
activation of inflammatory pathways, further compounding oxidative stress and neuronal
injury [11,64]. While being essential for synaptic plasticity and cognitive function at low
concentrations and capable of β-amyloid-induced toxicity suppression, at high levels Zn
binds β-amyloid, thereby enhancing fibrillary aggregation and leading to neurodegenera-
tion [65,66]. We found evidence of some detrimental effects of these two trace metals in
relation only to Tau proteins at the highest concentrations in serum, consistent with a previ-
ous case–control study finding a positive correlation of non-ceruloplasmin serum Cu with
CSF total Tau levels [67]. A previous meta-analysis indicated that serum concentrations of
Zn were lower among AD patients compared with healthy subjects, even though there was
high heterogeneity between studies [68].

With regard to Mn, while necessary for several enzymatic functions, it can be neu-
rotoxic at elevated levels. Recent reviews suggested that Mn exposure may disrupt iron
homeostasis, and its accumulation contributes to oxidative stress and mitochondrial dys-
function [69,70]. The competition between Mn and other trace metals for transport mech-
anisms in the brain can exacerbate these effects, leading to the further dysregulation of
metal homeostasis and neurotoxicity [71]. In a previous study, Mn was slightly positively
associated with the risk of cognitive dysfunction among people over 60 years old [72].
However, a 2017 meta-analysis reported a decrease in serum Mn concentrations among
individuals with cognitive impairment including AD and MCI subjects compared with
healthy controls [73]. In our study, Mn was not associated with neurodegeneration, being
inversely and positively associated with Tau proteins and amyloid ratio, respectively.

While some studies in the literature reported the association between trace metals and
classical biomarkers of AD pathology used in clinical practice, few studies investigated
their associations with NfLs. NfLs are among the most promising biomarkers for detecting
neuroaxonal damage across a broad spectrum of neurological disorders. Its concentrations
in CSF and blood serve as reliable indicators of neuronal injury and degeneration, reflecting
the extent of underlying neural pathology [28,74]. Elevated NfL concentrations have been
consistently associated with various forms of dementia, including AD and frontotemporal
dementia [75]. In a recent study, Cd in serum was found to be positively associated with
NfL concentrations [56], similar to what was observed in our study, where Cd in serum was
slightly positively associated only with NfL in CSF at the highest levels. No associations
were reported for Cd in CSF. Cu, Fe, Mn, and Zn were positively associated with NfL in CSF
in the only study conducted to date [76]. However, we found evidence of inverse or null
associations for Cu, Fe, and Zn with NfL. Mn in serum was the only trace metal found to be
associated through a U-shaped pattern with NfL in both serum and CSF, suggesting that,
while essential, it can exhibit neurotoxic effects when present in non-optimal concentrations.

To our knowledge, this study represents the first ever conducted among cognitively
impaired subjects with deficits occurring at relatively young ages (<65 years), and one of the
few to investigate the association between trace metals and neurodegeneration biomarkers,
including NfL. In addition, the use of non-linear dose analysis allowed a comprehensive
assessment of the patterns of association. Finally, a CSF analysis of trace metals provides
unique insights into the pathophysiological processes that occur in the central nervous
system allowing the direct assessment of the brain’s biochemical environment. Some study
limitations must be outlined. First, given the study’s cross-sectional design, associations
may not be causal. Ideally, we would have collected longitudinal data among disease-free
individuals on the progression to dementia to determine temporality. Misclassification
would be minimal if the baseline concentrations of metals reflected the patient’s habitual
exposure during the years prior to disease onset. We are also currently collecting longitudi-
nal data on the progression to dementia of the individuals of this cohort to better assess
temporal relations. Secondly, metal concentrations measured at a single time point may
have contributed to the misclassification of exposure, especially if the relevant time window
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for exposure was years earlier. The half-lives of the metals examined in this study range
from some hours to several years, depending on the sample matrix; thus, we made the
strong assumption that the concentrations measured at baseline in our study population
were reflective of what patients were exposed to before the onset of MCI. In addition,
whole blood might have provided a better reflection of long-term metal status in the body
compared with serum, which can be influenced by recent dietary intake. Third, few data
are available on pharmacokinetic properties of each metal in CSF; therefore, the stability of
some metals in this matrix is uncertain. Fourth, our study population was relatively small,
which reduced the precision of our effect estimates and could affect the generalizability of
our findings. Finally, we could not rule out potential unmeasured or residual confounding,
which may have affected the validity of the observed associations.
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