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Abstract

Courses of SARS-CoV-2 infections are highly variable, ranging from asymptomatic to lethal

COVID-19. Though research has shown that host genetic factors contribute to this variabil-

ity, cohort-based joint analyses of variants from the entire allelic spectrum in individuals with

confirmed SARS-CoV-2 infections are still lacking. Here, we present the results of whole

genome sequencing in 1,220 mainly vaccine-naïve individuals with confirmed SARS-CoV-2

infection, including 827 hospitalized COVID-19 cases. We observed the presence of
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autosomal-recessive or likely compound heterozygous monogenic disorders in six individu-

als, all of which were hospitalized and significantly younger than the rest of the cohort. We

did not observe any suggestive causal variants in or around the established risk gene TLR7.

Burden testing in the largest population subgroup (i.e., Europeans) suggested nominal

enrichments of rare variants in coding and non-coding regions of interferon immune

response genes in the overall analysis and male subgroup. Case-control analyses of more

common variants confirmed associations with previously reported risk loci, with the key

locus at 3p21 reaching genome-wide significance. Polygenic scores accurately captured

risk in an age-dependent manner. By enabling joint analyses of different types of variation

across the entire frequency spectrum, this data will continue to contribute to the elucidation

of COVID-19 etiology.

Author summary

After infection with SARS-CoV-2, symptoms vary widely. On average, individuals who

are older, males and those with certain comorbidities tend to be more severely affected by

COVID-19. Additionally, genetics of the infected individuals (host genetics) modulate the

severity of symptoms, but so far, most studies on COVID-19 host genetics have focused

either on common or on rare variants, but not both. In this study, we analyzed genetic

variants comprehensively by whole genome sequencing of 1,220 SARS-CoV-2 positive

individuals with varying degrees of COVID-19 severity. In our cohort, we replicate several

associations between common variants and COVID-19 severity, with a region on chro-

mosome 3 showing the largest effect size. We additionally show that common variants,

taken together, can help to predict COVID-19 severity, particularly in individuals younger

than 60 years. We also identified six individuals with moderate or severe COVID-19 who

had underlying rare genetic diseases, which creates interesting new hypotheses. Finally,

we observed an enrichment of rare variants in immune pathways in severe or moderate

COVID-19. This study provides comprehensive novel insights into COVID-19 host

genetics.

Introduction

Since late 2019, severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has

infected hundreds of millions of people worldwide. SARS-CoV-2 infections are clinically het-

erogeneous and can remain asymptomatic or become symptomatic, the latter being referred to

as Coronavirus Disease 2019 (COVID-19). COVID-19 mainly affects the respiratory tract and

can lead to severe pneumonia, but other organ systems may also be affected. Research has

shown that the clinical heterogeneity of COVID-19 can be explained in part by demographic

factors (e.g., advanced age and male sex [1]), and the presence of predisposing medical condi-

tions [2] or auto-antibodies [3]. In addition, epidemiological data have implicated host genetic

factors [4].

Through the work of large global consortia, such as the COVID-19 Host Genetics Initiative

(COVID-19 HGI) [5], the analyses of data from biobanks, and individual clinical studies, mul-

tiple host genetic loci that contribute to an individual’s risk for severe disease secondary to

SARS-CoV-2 infection have now been identified [6]. Specifically, genome-wide association
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studies (GWAS) have highlighted at least 71 loci at which common variants contribute to

infection susceptibility or COVID-19 severity [7–10]. These efforts have been complemented

by whole exome sequencing (WES) studies of severely affected individuals, which have led to

the identification of rare loss-of-function (LoF) variants in genes involved in the innate

immune response [11,12], some of which are known inborn errors of immunity or have subse-

quently been classified as such [13]. At the time of writing, the COVID-19 risk gene with the

most compelling evidence in terms of rare variants is the X-chromosomal toll-like receptor 7

gene (TLR7), for which LoF variants were initially detected in two pairs of previously healthy

young (aged 21–32 years) brothers with severe to fatal disease [14]. Subsequent candidate

gene-, machine learning-, and WES-based rare variant association approaches have generated

independent support for the role of TLR7 in severe COVID-19 in males [15–18], with recent

estimates suggesting the presence of a TLR7 deficiency in around 1–2% of male cases [15,19].

Besides TLR7, additional candidate genes have been suggested, e.g. 13 genes of the type I inter-

feron (IFN) immunity [11,12,20].

To date, most investigations of host genetic factors in SARS-CoV-2 infections have ana-

lyzed either common variants (mainly through genome-wide array-based genotyping followed

by imputation) [7,8,10,21–27] or rare variants in protein-coding regions (mostly through WES

in either clinical cohorts [11,15,17,18,20,28,29]; or families [14,30,31]). However, these

approaches fail to cover a substantial fraction of the total genetic variability (such as rare vari-

ants in non-coding regions), and are rarely combined on the same individual genomes,

thereby precluding joint analyses of variants along the entire allelic spectrum. These issues can

be resolved via whole genome sequencing (WGS). To date, however, WGS has rarely been

applied in this field because of its relatively high costs and its full potential in COVID-19 has

yet to be explored [22,29].

By building on the German COVID-19 Omics Initiative (DeCOI) [32], we established a

national consortium to investigate the host genetics of COVID-19 (S1 Table). WGS data of

1,220 individuals with reported SARS-CoV-2 infection and variable disease outcomes were

used to characterize genetic risk factors related to COVID-19 severity. We investigated the

presence of: (i) potentially causal rare variants within the TLR7 locus, including adjacent non-

coding regions, and in additional 13 candidate genes; (ii) monogenic conditions that might

increase the risk for severe COVID-19; and (iii) immune-relevant gene sets (in both coding

and non-coding regions) that are enriched for functionally-relevant rare variation. Further-

more, we investigated the polygenic architecture of severe COVID-19 in age-stratified groups.

These analyses comprehensively characterize the joint contribution of variants of the entire

allelic spectrum to severe COVID-19.

Results

The DeCOI cohort

Following quality control (see Methods), the DeCOI cohort comprised 1,220 individuals from

across the entire phenotypic spectrum of SARS-CoV-2 infections (Figs 1A–1C and S1). The

average age of the cohort was 56.2 years (range: 1–100 years), and 490 participants were female

(40.2%). Based on the available phenotypic information, 393 individuals were classified as hav-

ing had mild SARS-CoV-2 infections (“ambulatory mild”, World Health Organization ordinal

scale for COVID-19 severity (WHO score, [33]) 1–3), 482 individuals were classified as having

been hospitalized without the need for high-flow oxygen or mechanical ventilation (“hospital-

ized moderate”, WHO 4–5), and 345 individuals were classified as having either required at

least high-flow oxygen or mechanical ventilation, or having had lethal COVID-19 (“hospital-

ized severe”, WHO 6–10). Consistent with available epidemiological evidence, both the
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average age and the proportion of male individuals increased with increasing COVID-19

severity (Fig 1B and 1C and S2 Table).

The European subcohort, DeCOIEUR, comprised 1,017 individuals (WHO 1–3: n = 362;

WHO 4–5: n = 383; WHO 6–10: n = 272, S2 Fig). Again, the average age and proportion of

male individuals increased with COVID-19 severity (Fig 1B and 1C and S2 Table). For associa-

tion analyses in DeCOIEUR, we created two case-control definitions: (i) “extreme” (Ex / cases:

hospitalized severe, n = 272 / controls: ambulatory mild, n = 362), and (ii) “all_hospitalized”

(B1 / cases: hospitalized moderate and hospitalized severe, n = 655 / controls: ambulatory

mild, n = 362), with B1 being in accordance with the case control definition of the COVID-19

HGI and Ex representing the analysis along the phenotypic extremes.

Fig 1. The DeCOI and the DeCOIEUR cohort. (A) Individuals in the DeCOI cohort are classified into three phenotypes based on WHO definition. In addition,

the cohort was subsetted to an unrelated cohort of the European population (DeCOIEUR) for association analyses. Based on the phenotypes, case-control

definitions were established within DeCOIEUR. (B) Composition of the DeCOI cohort according to sex (inner circle), phenotype (color coded, middle circle), and

population (outer circle). Shaded intervals in the outer circle represent non-European individuals. (C) Age distribution of individuals from the DeCOI cohort

(n = 1,220) and the European subcohort (DeCOIEUR; n = 1,017), as stratified according to severity (color coded). In both subcohorts, the average age increases

with disease course severity. Numbers indicate individuals in the respective group. (D) Phenotype distribution of individuals harboring ClinVar-annotated

variants, as grouped according to disorder class. Autosomal recessive patterns of inheritance (AR/likely compound-heterozygous (CH), n = 6 diseases in six

individuals) are displayed in the upper panel, and autosomal dominant inheritance patterns (AD, n = 79 diseases in 77 individuals) are displayed in the lower

panel.

https://doi.org/10.1371/journal.ppat.1012786.g001
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Targeted analysis of variants at the TLR7 locus

Given that some monogenic disorders are likely to impact the course of COVID-19 disease

[34], the multi-ethnic DeCOI cohort was analyzed for the presence of known monogenic dis-

eases. We first queried for variants that may cause TLR7 deficiency, since at the time of writing,

this represents the most robustly established monogenic cause of severe COVID-19, particu-

larly in young men [14,15,19]. Within the coding sequence of TLR7, three known variants

were identified (S5 Table). Each of these variants had low REVEL/CADD scores. Carriers were

observed in all phenotypic categories, which is consistent with the normal functional charac-

teristics of these three variants, as described elsewhere [15]. Within non-coding regions with

evidence for regulatory function (see Methods), 23 variants with an MAF < 1% were identified

across all phenotypic groups (S5 Table). The most notable variant was rs192357402, which was

observed in 3/199 severely affected males of European-ancestry but was not detected in 391

males of European-ancestry with non-severe disease (p = 0.038, Fisher’s exact test). This find-

ing was not replicated in 672 males of European ancestry in an independent dataset from the

Biobank Quebec COVID-19 Cohort (Methods, 1/113 severe vs. 2/559 non-severe; p = 0.42,

S6 Table). Based on coverage data in the DeCOI cohort VCF, a search was also conducted in

males for evidence of deletions within a region spanning approximately 200kb centered

around TLR7. While 57 individuals were found to have short stretches of missing coverage,

visual inspection provided no evidence that these were true deletions.

Analysis of 13 genes previously implicated in severe COVID-19

Previously, deleterious variants in 13 genes of the type I interferon (IFN) immunity were

implicated in life-threatening COVID-19 pneumonia [11]. We queried these genes for variants

predicted to be loss-of-function (pLoF), as well as for missense variants previously demon-

strated to be LoF or strongly hypomorphic (see Methods). Six heterozygous pLoF variants in

the genes UNC93B1, IRF7, IRF3, IFNAR1 and IFNAR2 and two heterozygous missense vari-

ants in IRF3 and IRF7 (S7 Table) were identified. Interestingly, one moderately affected male

aged 25–34 years carried two of these variants (IFNAR2/pLoF and IRF3/missense). The carri-

ers of these variants were 46.1±15.8 years old on average (p = 0.13, Student’s t-test, comparison

against the remainder of the DeCOI cohort), three of the seven individuals were female. Only

one individual was severely affected, three were moderately and three were mildly affected,

which indicates that the phenotype of these individuals is not more severe than expected by

chance (expected number of individuals by random chance: 2.0 severe, 2.8 moderate and 2.2

mild). No homozygous or potentially compound heterozygous variants that passed our filter

criteria were identified. Systematic testing for joint association of variants within the 13 genes

of the type I IFN immunity can be found below.

Targeted analysis of monogenic disorders

Next, the DeCOI cohort was queried for the presence of established causes of monogenic dis-

eases, as based on variants reported in ClinVar. Autosomal-recessive (AR), autosomal-domi-

nant (AD) and X-linked (XL) patterns of inheritance were considered (see Methods).

Established homozygous variants causing monogenic disorders were found in 4 out of 1,220

individuals, and likely compound-heterozygous variants were identified in two individuals

(jointly 0.5%, Table 1). All six individuals were male and hospitalized (3/6 with a fatal course).

Notably, the six individuals were significantly younger on average than the remainder of the

DeCOI cohort (mean±SD = 38±14.5yrs; p = 0.027, Student’s t-test; S3 Fig). Heterozygous vari-

ants with established associations to dominantly inherited monogenic diseases, and that are

annotated as “pathogenic” or “likely pathogenic” in ClinVar, were present in 77 out of 1,220
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DeCOI individuals (6.4%). The associated diseases covered a broad range of categories, with

endocrine, hematologic, and ophthalmologic disorders being the most commonly represented

(Fig 1D). Overall, carriers of heterozygous (likely) pathogenic ClinVar variants did not differ

significantly from the rest of the DeCOI cohort with respect to sex, age, or severity of COVID-

19 (S3 Fig). No hemizygous or homozygous variants on the X-chromosome were identified

that are annotated as “pathogenic” or “likely pathogenic” in ClinVar.

Gene- and gene-set-based collapsing analyses

Next, the analyses were expanded to study joint effects of rare variants across: (i) single genes,

and (ii) sets of genes with presumed importance to COVID-19 (see Methods, S3 and S4

Tables). For this purpose, variants were selected on the basis of allele frequency and predicted

functional effect, and all variants were collapsed across a gene or a gene-set. Association testing

was then performed with logistic regression, including polygenic score based on common vari-

ants as one covariate in addition to principal components (PC) and age-/sex-derived measures

(see Methods for more details). Results of the gene-based collapsing analyses are shown in S8

Table for analysis Ex, and S9 Table for analysis B1. Some nominally significant results were

observed. However, these did not withstand correction for multiple testing, and their number

was not larger than would be expected by chance (S4 Fig).

Table 1. Characteristics of carriers of homozygous or likely compound heterozygous disease variants in the DeCOI cohort.

Gene Variant / Genotype Monogenic disease Sex, age

range

COVID-19

severity

Monogenic

disease

previously

reported

Additional information Population

background

BBS1 Homozygous splice variant:

chr11_66523577_G_A;

c.951+1G>A;p.?

Bardet-Biedl

syndrome 1

Male,

35–44

years

Fatal

(WHO 10)

no Clinically intellectual development

disorder, blindness, and seizures

AMR

AGXT Homozygous frameshift variant:

chr2_240868890_A_AC;

p.Lys12GlnfsTer156

Primary

Hyperoxaluria

Type 1

Male,

25–34

years

Fatal

(WHO 10)

yes Post renal and liver transplant status

(no details available concerning

immunosuppressive therapy)

EUR

SERPIN1C Homozygous missense variant:

chr1_173914743_G_A;

p.Pro73Leu

Antithrombin

Budapest 3

Male,

35–44

years

Moderate

(WHO 4)

not available - SAS

AIRE Homozygous nonsense variant:

chr21_44289773_C_T;

p.Arg257Ter

Polyglandular

autoimmune

syndrome

Male,

15–24

years

Severe

(WHO 6)

yes - AMR

HBB Likely compound heterozygous

variants:

Intron variant

chr11_5225832_G_C;

NM_000518.5:c.316-106C>G

Nonsense variant

chr11_5226774_G_A;

p.Gln40Ter

Beta-

thalassemia major

Male,

35–44

years

Moderate

(WHO 4)

not available - EUR

PAH Likely compound heterozygous

variants:

Missense variant

chr12_102843676_T_C;

p.Glu390Gly

Missense variant

chr12_102855313_C_G;

p.Val177Leu

Mild

Phenylketonuria

(PKU)

Male,

55–64

years

Fatal

(WHO 10)

no Heart disease and diabetes mellitus

type 2

AMR

Abbreviations: AMR: Admixed American; EUR: European; SAS: South Asian. Note that the genomic position is given in GRCh38 coordinates.

https://doi.org/10.1371/journal.ppat.1012786.t001
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The gene-set analyses were performed on the case-control definitions Ex and B1 overall,

and then as stratified according to sex (male/female) and age (younger than 60 years/older or

equal 60 years). In total, 14 nominally significant phenotype / gene-set / mask combinations

were identified, all of which were observed in either the overall phenotypes (Ex_all/B1_all) or

the male subcohort (Ex_male; B1_male; Fig 2 and S10 Table). None of the other stratifications

(female or age-stratified) yielded any significant enrichment. Nominally, the most significant

enrichment was found among severe COVID-19 patients in genes of the innate immune sys-

tem, for the functional masks (FM) that included predicted loss-of-function (pLoF) (B1_all:

p = 5.85x10-03; beta = 0.27, SE = 0.099) and pLoF+missense (Ex_all: p = 7.04x10-03; beta = 0.11,

SE = 0.042). Among the non-coding variants, a nominally significant depletion of 3’UTR vari-

ants with high CADD scores (CADD�10) was observed in both gene sets related to IFN-

response (Ex_male/IFN_response_COVID-19/UTR3_CADD: p = 0.019; n = 31 genes), and

the subset of 13 genes with a priori evidence for an involvement in severe COVID-19 (Ex_all/

Zhang et al./UTR3_CADD: p = 0.029). In the gene-based analyses that did not include individ-

ual PRS as a covariate, highly correlated results were generated (S4 Fig).

Single variant association analyses

After analyzing lower frequency variants, we next investigated more common variants. Using

WGS genotype calls, GWAS were performed for phenotypes Ex and B1, respectively (Figs 3

and S5). Interestingly, despite the relatively low sample size of the Ex case-control definition,

association reached genome-wide significance for variants at the established key risk locus

Fig 2. Effect sizes of nominally significant gene-set based tests in the DeCOIEUR cohort. Gene-sets and the corresponding functional masks (S4 Table) that

were tested are given on the y-axis. On the x-axis, effect size estimates (betas) are shown as markers with error bars indicating the standard errors of betas. Note

that phenotypes are color-coded, and the markers outlined in black indicate analyses that only included males. Nominally significant findings were only

obtained in the overall analyses and male sub-stratification. None was observed in female-only or age-stratified analyses. A list of genes that were included in

each gene-set can be found in S3 Table.

https://doi.org/10.1371/journal.ppat.1012786.g002
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Fig 3. Analysis of common variants within the DeCOIEUR cohort. (A) and (B): Manhattan plots of association analyses of single variants (MAF>0.5%) in

DeCOIEUR (n = 1,017 individuals), for phenotype Ex (272 severely affected individuals vs. 362 mild controls) and B1 (655 hospitalized individuals vs. 362

non-hospitalized controls), respectively. Genomic inflation factors were 1.04 (Ex) and 1.00 (B1). Among the strongest associations is the well-established risk

locus at 3p21.31. Panels (C) and (D) show the distribution of individual polygenic risk scores (PRS) among cases (orange or yellow) and controls (gray) of Ex

(C) or B1 (D) overall (density plots in the left parts) or when stratified according to age below or above 60 years (box plots in the right parts). The elements

of the box plots correspond to the following values: thick line: median, box: 25th and 75th percentile, whiskers: largest / smallest value not further away from

the box than 1.5 times the interquartile range, points: values outside of the range of the whiskers. *: p<0.05, ***: p<0.001; Wald test followed by Bonferroni

correction. MAF: Minor Allele Frequency.

https://doi.org/10.1371/journal.ppat.1012786.g003
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3p21.31. In analysis Ex, 177 variants with p<1x10-05 were observed at 19 loci, the majority of

which (n = 128) mapped to the 3p21.31 region (S11 Table). The variant with the strongest evi-

dence of association was rs73064425 (chr3:45859597:C:T, p = 9.00x10-10; beta = 1.44,

SE = 0.23). In Europeans, this variant is in perfect LD with all previously reported lead variants

(i.e., rs11385942 [9], rs10490770 [35], and rs35044562 [36]). No additional support for any of

the 49 variants outside 3p21.31 was found in data from the WGS-based summary statistics

from GenOMICC [22] or the array-based GWAS of the COVID-19 HGI (release 7, without

GenOMICC [10], S11 Table). At established risk loci for SARS-CoV-2 related traits (n = 71)

[7–10], nominal significance was observed for the reported lead variants at 11 loci (Tables 2

and S12), whereby a minor overlap of samples between COVID-HGI and DeCOI (<0.04%)

must be kept in mind. No significant association was found for two variants that were reported

to be associated with severe COVID-19 in previous independent German cohorts (i.e., rs5443

(p = 0.72 (Ex) and p = 0.14 (B1)); and rs5010528 (p = 0.41 (Ex) and p = 0.77 (B1))) [37,38].

Finally, the DeCOIEUR cohort was stratified according to age or sex, and the better-powered

Ex analysis was repeated for different substrata. No variants in any of the stratified analyses

reached genome-wide significance (S6 Fig and S13 Table).

Autozygosity

To investigate a possible effect of autozygosity on disease severity, inbreeding coefficients were

calculated as a measure for autozygosity within the DeCOIEUR cohort, with no prior filtering

of variant frequency. For phenotype Ex, no significant differences in autozygosity levels were

observed. Significantly increased inbreeding coefficients were observed in cases of phenotype

B1 (cases: mean±sd: 0.002±0.01; controls: 0.001±0.005; p = 0.023, one-sided Wilcoxon test;

S7 Fig). This result was mainly driven by a small subset of individuals with inbreeding coeffi-

cients above 0.02 (FI>0.02: 3.51% in cases, 0.83% in controls; FI>0.05: 0.76% vs. 0.15%;

FI>0.1: 0.55% vs. 0.0%), who largely overlapped with samples that were located outside of the

central European-ancestry cluster on the PC plot (S8 Fig). When the first 10 PCs were added

Table 2. Previously reported risk loci for COVID-19 with nominal significance in DeCOIEUR.

Chr Pos ID Ref/Alt Extreme

(272 casesa, 362 controls)1
All_Hospitalized COVID-19

(655 casesb, 362 controls)

Candidate gene(s) Ref (PMID)

beta SE P-value beta SE P-value

1 9067157 rs2478868 A/C 0.34 0.15 0.025 0.36 0.12 0.0021 SLC2A5 37198478

1 77501822 rs71658797 T/A 0.51 0.26 0.050 0.59 0.20 0.0041 AK5 37198478

1 155197995 rs41264915 A/G -0.78 0.25 0.0015 -0.75 0.19 0.00011 THBS3, MUC1 35922517

3 45818159 rs17713054 G/A 1.39 0.23 0.0000000021 0.84 0.19 0.0000091 LZTFL1, CXCR6 32558485

4 25312372 rs16877005 A/G 0.74 0.37 0.048 0.49 0.27 0.075 PI4K2B 37674002

4 167824478 rs1073165 A/G 0.29 0.14 0.0361 0.075 0.11 0.51 DDX60 37198478

10 112972548 rs7897438 C/A -0.33 0.18 0.061 -0.28 0.14 0.044 TCF7L2 37674002

11 34482745 rs61882275 G/A -0.37 0.15 0.012 -0.39 0.12 0.00079 ELF5 35255492

19 10305768 rs73510898 G/A 0.71 0.27 0.010 0.55 0.21 0.0092 ZGLP1, RAVER1, ICAM5 3525549233307546

19 10414696 rs142770866 G/A 0.53 0.27 0.051 0.47 0.21 0.028 PDE4A 37198478

19 48867352 rs4801778 G/T -0.41 0.19 0.032 -0.35 0.15 0.020 PLEKHA4, TULP2 34237774

Bold if nominally significant in the respective analysis.
aWHO-scores 6–10.
bWHO-scores 4–10, corresponding to the B1 phenotype definition of COVID-19 HGI. Abbreviations: Chr: Chromosome; Pos: Position in GRCh38 coordinates; ID: rs-

ID of the SNP; Ref: Reference allele; Alt: Alternative allele;SE: Standard error; Ref (PMID): Reference given as PubMed ID.

https://doi.org/10.1371/journal.ppat.1012786.t002
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as covariates to a logistic regression in order to capture population substructure, the above

results became non-significant (p = 0.55, Wald test). Prior filtering of variants with MAF <1%

rendered the difference between cases and controls non-significant (p = 0.068, one-sided Wil-

coxon test).

Polygenic risk scoring

Next, analyses were performed to investigate whether the aggregated effect of common vari-

ants in PRS was significantly increased in cases compared to controls in Ex and B1, and

whether the effect differed across age groups. Using PRS generated for individuals within the

DeCOIEUR cohort on the basis of the GenOMICC study [22], a significantly larger PRS was

observed in cases compared to controls for both phenotypes (p<0.001, Wald test followed by

Bonferroni correction of p-values). Upon age stratification (younger than 60 years/older or

equal 60 years), this result became even more pronounced, with higher mean PRS values being

observed in younger cases than in older cases (Fig 3 and S14 Table;<60 years: p(Ex)<0.001, p

(B1)<0.001;�60 years: p(Ex) = 0.009, p(B1) = 0.035, Wald test followed by Bonferroni).

Analyses were then performed to determine whether the inclusion of PRS improved the

approximation of the present data by logistic regression models. For this purpose, two logistic

regression models were fitted: 1) with covariates only (namely sex, age, age2, age*sex and the

first 10 PCs derived from common variants); and 2) with the same covariates and PRS. When

PRS were added, a significant increase in Nagelkerke’s R2 was observed (Ex: from 0.466 to

0.504; p = 1.34x10-7; B1: from 0.403 to 0.424, p = 1.85x10-6, likelihood-ratio test). Analyses

were then performed to test whether the addition of PRS to the covariates improved the pre-

diction of hospitalization or a severe disease course. The dataset was split at random 1,000

times into test and training sets, and logistic regression models were fitted to the training set

(see Methods). Areas Under the Curves of the Receiver Operating Characteristic curves (AUR-

OCs) were then determined on the test sets. In 1,000 splits, AUROCs were higher (on average)

for the model that included PRS, and the median increase of AUROCs was 0.022 (minimum:

-0.200, maximum: 0.263) for the hospitalization (B1) and 0.056 (minimum: 0.033, maximum:

0.078) for the extreme (Ex) case-control definition.

Discussion

The present report introduces the DeCOI cohort as one of only a few WGS datasets of 1,000 or

more SARS-CoV-2 positive individuals worldwide. While we did not detect any causal variant

in or around the established risk gene TLR7, the analyses identified carrier status for six auto-

somal-recessive monogenic disorders in young males who had been hospitalized due to

COVID-19. In the European subset (DeCOIEUR), burden testing revealed nominal enrich-

ments of rare variants in coding and non-coding regions of genes that are implicated in the

interferon immune response both in the cohort overall and in the male-only subgroup. The

present analyses also confirmed associations between previously reported common risk loci

and COVID-19 severity, including a genome-wide significant association for the risk locus at

3p21.31, and showed that their aggregation into PRS accurately captured risk in an age-depen-

dent manner. Besides complementing ongoing, systematic COVID-19 host genetic efforts to

study common [7–10] or rare variants [11,12,14,17,18], our study can be used to jointly ana-

lyze variation across the entire frequency spectrum as part of larger, multi-study efforts.

The largest WGS study on severe COVID-19 to date was performed by GenOMICC, and

focused on critically-ill patients from intensive care units [22]. This study included more than

7,400 individuals with severe COVID-19, and rare variant associations were analyzed using

standard gene-based approaches [22]. Here, the DeCOI WGS data were explored in additional
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dimensions, including analyses performed from a clinical genetics perspective. Although our

sample size was limited, two characteristics of the DeCOI cohort rendered it suitable for the

present analyses. First, the cohort included SARS-CoV-2 infected individuals with mild disease

who could be used as controls. The presence of rare causal risk variants among these controls

was unlikely, thereby increasing confidence in the rare variant results. Second, the vast major-

ity of participants were recruited during the first 12 months of the pandemic, when: (i) most

individuals were not vaccinated against SARS-CoV-2; (ii) re-infections were uncommon; and

(iii) SARS-CoV-2 diversity was still low. On the other hand, use of the WHO classification sys-

tem as a proxy phenotype for severity likely increased classification heterogeneity - this might

have limited our statistical power. We envision that the robust identification of low-frequency

and rare risk variants will require large cohorts, which is supported by the fact that the GenO-

MICC consortium failed to identify rare individual genetic factors at the level of genome-wide

significance, despite their relatively large sample size and homogenous phenotype definition.

Further, additional factors such as prior stimulation of the immune system through viral infec-

tions [39] and/or vaccination [40], or the presence of type-I-interferon autoantibodies [3,41],

also shape the immune response of each individual, and contribute to the clinical outcomes of

SARS-CoV-2 infections. Therefore, future approaches involving the integration of genetic data

with clinical information on immune related traits and multi-omics data could facilitate eluci-

dation of the etiological landscape of COVID-19. Notably, such information (e.g., single-cell

transcriptomics [42,43]) is already available to some extent for the DeCOI cohort and will be

used for subsequent integrative analyses.

Studies that identified TLR7 deficiency as a monogenic form of severe COVID-19

[14,15,19] were limited to the TLR7 coding region, and thus did not consider potential causal

variants in adjacent regions with evidence of regulatory function (including structural vari-

ants). Despite comprehensive analyses, no causal SNVs or small indels were detected in the

DeCOI cohort, neither in coding nor non-coding regions. This included a lack of any potential

causal deletion at the TLR7 locus in males, which we investigated using coverage data. Never-

theless, the analysis suggested the overrepresentation of a low-frequency variant, located in a

constitutive enhancer element that was identified by ENCODE, in severely affected men. How-

ever, this result could not be replicated in a small independent WGS dataset, and thus remains

inconclusive. We also investigated the association between variants in additional 13 genes of

type I interferon (IFN) immunity, for which a recent study estimated a joint odds ratio of 3.11

[95% confidence interval (CI) 1.4–8.6] for having life-threatening COVID-19 when carrying

heterozygous pLoF variants in these 13 genes [20] (reported allele frequency of pLoF variants

within the 13 genes: 0.004). In our cohort, we identified 7 carriers of at least one heterozygous

variant in 5 of these genes but the mutation carriers did not show more severe disease courses

than expected by random chance, in line with the absence of replication in other clinically het-

erogeneous cohorts [17,18,22,44]. Interestingly, in our study we observed an odds ratio of 4.03

for the common lead variant at 3p21.31 (Ex, rs17713054, 95% CI: 2.56–6.37, MAF: 0.08). We

speculate that in our cohort, the relevance of monoallelic (i.e. heterozygous) deleterious vari-

ants in the 13 genes of the type I IFN immunity is limited. However, this does not exclude the

possibility that biallelic variants resulting in rare autosomal recessive inborn errors of immu-

nity within these genes could underlie unexpectedly severe cases, such as severe COVID-19 in

children, in the German population, for which our dataset was underpowered.

Epidemiological evidence suggests that pre-existing conditions are a major risk factor for

severe COVID-19 [2,34]. The present analyses identified six recessive monogenic disorders in

male individuals, who had presented with severe or moderate COVID-19. While this does not

imply any causality, it is of note that these six individuals had an age that was below the average

age of the DeCOI cohort overall. In several of these individuals, a modification of the COVID-
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19 phenotype by the underlying monogenic disease is biologically plausible (see S1 Text). For

example, biallelic variants within AIRE can cause autoimmune polyendocrinopathy syndrome

type 1 (APS-1). In individuals with APS-1, antibodies against IFN-ɑ and IFN-ω are frequently

present, and moderate or severe COVID-19 has been described in SARS-CoV-2 infected APS-

1 patients [45–47]. Additionally, some of the recessive diseases identified lead to an

impairment of important organ systems and could therefore indirectly predispose to more

severe COVID-19 disease outcomes (see S1 Text), e.g. Bardet-Biedl Syndrome 1 probably

caused the intellectual developmental disorder, and primary hyperoxaluria might have been

responsible for the kidney and liver transplant in the two study participants who died of

COVID-19, respectively.

In contrast to individuals with putative autosomal-recessive disorders, individuals with

putative autosomal-dominant disorders did not differ from the remainder of the DeCOI

cohort regarding age or COVID-19 severity. This could be due to a lack of power, which might

be attributable to factors such as reduced penetrance, which is more common in dominantly

inherited disorders [48]. Overall, it needs to be kept in mind that the results for both autosomal

recessive and autosomal dominant monogenic disorders are from a non-representative sample

and insufficient to establish any causality.

At the single-gene level, no significant enrichment of rare variants was observed beyond

that which would have been expected based on chance alone. Furthermore, the gene-set based

analysis of rare variants across candidate genes only yielded nominally significant results. The

lowest p-values in our gene-set based analysis were generated for genes that are implicated in

the innate immune system, specifically the IFN pathways. Here, pLoF variants, either alone or

in combination with missense variants, were enriched in hospitalized or severely affected indi-

viduals. Surprisingly, we also observed nominally significant enrichments in mild COVID-19,

of variants in the 3’UTRs of genes from the interferon pathway and at GWAS loci. While these

results do not withstand statistical correction and warrant independent replication, they are

complementing a recent study which identified a highly significant depletion of 3’UTR vari-

ants in the gene IL18RAP in amyotrophic lateral sclerosis (ALS) patients [49]. Specifically, for

IFN genes, we speculate that 3’UTR variants might contribute to an increased stability or

abundance of gene product, e.g. through abolishment of miRNA binding sites, as recently sug-

gested for a 3’UTR variant in TRIM14, a gene also implicated in the type I IFN pathway [50].

In the gene-/gene-set based collapsing analyses, the availability of the individual’s common

genotypes was leveraged in order to weigh down individuals with higher PRS, as it has been

suggested that integration of PRS into rare-variant burden analyses might be beneficial in

terms of their statistical power [51]. It is important to note that most of the rare variant burden

signals in the present study were driven by male individuals, which suggests the presence of

sex-differences in terms of the extent to which rare variants contribute to severe COVID-19

risk. This finding requires replication in independent cohorts. Also, in the future, novel statis-

tical models that include variants spanning the entire frequency spectrum may enhance the

power for rare variant and/or gene identification in cohorts such as DeCOI. A subsample of

the present DeCOI cohort already contributed to one such effort [28].

Interestingly, despite our relatively small cohort size, in the association analysis of more fre-

quent variants, our analysis found a comparably large effect size for the contribution of the

known risk locus at 3p21.31 to COVID-19 severity, resulting in genome-wide significance.

This indicates that this locus is relevant to our cohort of mainly German individuals which

might also be true to the German population. Additionally, previously reported GWAS signals

were replicated at nominal level, despite a sample size that was substantially lower than those

of the discovery cohorts (i.e., GenOMICC or COVID-HGI) [10,22]. When common variants

were aggregated into PRS and applied to overall and age-stratified groups, a larger genetic
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contribution of common genetic variation to COVID-19 severity was observed in younger

individuals. While this has been described previously for candidate lead variants at individual

major risk loci [35,52], the present study expanded this analysis to the genome-wide scale. In

older individuals, the addition of PRS for COVID-19 severity only moderately improved pre-

dictive models, as shown in data from the UK Biobank alone [53] or in the UK Biobank plus

three additional US-American cohorts [27]. Since neither of these two studies performed age-

stratified analyses, our data suggest that the addition of genetic factors to predictive models

could prove particularly helpful in younger individuals, and highlight the translatory potential

of PRS. Importantly we constructed the PRS on the basis of WGS data from the GenOMICC

cohort, thus reducing the impact of technical variation on score construction.

In conclusion, while the performance of WGS studies continue to be hampered by consider-

ations of cost and sample size, this flagship analysis of the DeCOI cohort highlights the potential

of WGS in terms of both investigating variants that are inaccessible to other methods, and per-

forming combined analyses of variants from the entire allelic spectrum, respectively. A more

complete understanding of the underlying genetic architecture will be of paramount importance

to the clinical (risk) management of individuals with COVID-19 and its post-acute sequelae,

which are likely to play important roles in quotidian clinical practice for years to come.

Methods

Ethics statement

Written informed consent for host genetics analyses was obtained from each participant or

their legal representative in case of minors. The study received ethical approval by the Ethical

Review Board (ERB) of each participating center: Faculty of Medicine at Technical University

Munich (TUM 217/20, TUM 221/20S, TUM 440/20S); Medical Faculty of the University Bonn

(Approval Nr. 171/20 and 468/20); University of Cologne (20–1295); University Hospital

Cologne (160054 and 2001187); Landesärztekammer des Saarlandes (62/20); Medical Faculty

of the University Hospital Tübingen (Approval Nr. 286/2020B01); University Hospital RWTH

Aachen (EK 080–20); University Hospital Essen (UME: 21-9900-BO); Medical Faculty of Goe-

the University Frankfurt am Main (20–748); Healthcare System of the Autonomous Province

of Bolzano; Medical Faculty of Heinrich-Heine-University Düsseldorf (5350 - amendment for

COVID19); Hannover Medical School (9001_BO_K); LMU University Hospital Munich (20–

245); Medical Faculty of the LMU Munich (20–263); and Medical Faculty of the University of

Regensburg (20-1785-101). Additional details on ERBs are provided in S1 Table.

Recruitment of participants

DeCOI was founded in the spring of 2020, with the aim of advancing next-generation sequenc-

ing (NGS)-based COVID-19 research in the areas of viral epidemiology, functional genomics,

and host genetics [32]. For the host genetic analyses participants were recruited at 16 different

sites, 15 of which were situated in Germany, and one in the German-speaking region of Italy

(South Tyrol), from individual COVID-19 studies that were being conducted at the respective

institutions. The inclusion criteria for the host genetics analyses were: (i) available DNA; (ii) a

test-confirmed SARS-CoV-2 infection; and (iii) explicit consent for WGS analysis. Notably,

the type of test used for confirmation of a SARS-CoV-2 infection (self-reports based on rapid

antigen tests and/or qPCR) varied across the 16 recruitment sites. Descriptions of the individ-

ual studies are provided in S1 Table.

We included 1,275 individuals for WGS analysis. The minimum phenotypic dataset for

each individual that was available to the research team comprised sex, age, and information on

COVID-19 disease course in accordance with the World Health Organization (WHO) ordinal
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scale [33]. The majority of individuals (n = 1,204; 94.4%) were infected in 2020 (n = 1,136/

1,275; 89.1%) or early 2021 (January to April 2021, n = 68; 5.3%) and therefore were naive for

any COVID-19 vaccination at the time of reported infection. For 71 individuals, no informa-

tion on vaccination status was available. However, given the limited population-wide availabil-

ity of COVID-19 vaccination during 2021, and the fact that the latest time point of reported

infection in these cases was December of 2021, these individuals are unlikely to have been vac-

cinated at the time of recruitment.

WGS data generation

Library preparation and sequencing was performed using consolidated workflows at three dif-

ferent sites of the German NGS Competence Centers, i.e., the Cologne and Bonn sites of the

West Germany Genome Center (WGGC), and the NGS Competence Center Tübingen

(NCCT). In brief, genomic DNA was quantified using the Qubit dsDNA HS assay kit and a

Qubit fluorometer (ThermoFisher). DNA library preparation was performed using the TruSeq

DNA PCR-Free kit (Illumina), in accordance with the manufacturer’s instructions. Up to 1.2 μg

of genomic DNA was fragmented to 350 bp using ultrasonication on the LE220 focused-ultraso-

nicator (Covaris). The resulting libraries were sequenced as paired-end 150 bp reads on an Illu-

mina NovaSeq6000, with a sequencing output of approximately 120 Gb per sample.

At each sequencing site, demultiplexing and FastQ file generation was performed using

bcl2fastq2 version 2.20.0.422, and quality control (QC) statistics were generated using FastQC

v0.11.9. Subsequently, sequencing reads were aligned to the human reference genome

(GRCh38), duplicates were removed, and single nucleotide variants (SNVs) as well as short

indels were called using the Illumina DRAGEN platform (software version 3.5.7 or 3.6.3). The

resulting gVCF files were transferred to the study analysis hub (WGGC_Bonn), and joint vari-

ant calling of all samples was performed using a slightly modified version of GLnexus v1.3.1

(setting: “gatk”) in order to yield a raw cohort VCF (“raw-cVCF”). Modifications to the stan-

dard GLnexus pipeline included community changes that optimize the caller for haploid

regions, which are reported differently in GATK and DRAGEN.

WGS data analysis

The raw-cVCF was modified in order to retain biallelic variants with high-quality individual

genotypes only. For this purpose, individual genotypes were set to “missing” if they had low

coverage (sequencing depth (DP) < 4 reads) or a genotype quality (GQ)< 20. Furthermore,

genotypes were only retained if the fraction of reads with alternative alleles was <10% or

>90% for homozygous or hemizygous positions, or between 25% and 75% for heterozygous

positions. Based on this list of high-quality variants (“cVCF”), two variant sets were established

by applying additional filters. The first variant set was termed “Common variants for QC”
(n = 452,867). Here, the variant set was restricted to variant calls with a minimum DP of 8, a

minimum variant call rate (vCR) of 95%, and a minor allele frequency (MAF) >1%. Variants

were then limited to those outside of regions with high linkage disequilibrium32 (LD; see URL

section), and were pruned (r2: 0.2, window size: 1Mb). The second variant set was termed

“Generic variant set” (n = 53,195,313). Here, after removing samples that did not pass sample

QC (see below), calls with DP<8 were set to missing in all genomic regions of females and in

autosomal/pseudoautosomal (PAR) genomic regions of males. In addition, heterozygous calls

in non-PAR regions of males were set to missing, and only variants with a vCR above 95%

were retained.

Functional annotation of variants in silico was performed using: (i) the command line ver-

sion of Variant Effect Predictor (VEP; version 101) with the plugin TSSDistance; (ii) the
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external annotation sources gnomAD (version 2.1.1 as well as 3.1.2), ClinVar (version

20221008), dbNSFP (version 4.1a), CADD (version 1.6), SpliceAI and core regions of DNAse I

hypersensitive sites (see URLs). The option “pick_allele_gene” was used to ensure that only

one consequence per gene was reported for each variant allele.

Sample QC and population subcohorts

Of the 1,275 samples, 35 had an average coverage of<20x and/or a call rate of<90% (based

on the “common variants for QC” set and autosomal regions, S1 Fig), and were therefore

excluded. Next, a subset of the “common variants for QC” (Hardy-Weinberg p-values above

0.001 in presumed females) was used to determine genetic sex via the check-sex function of

PLINK (version 1.9). Here, 20 individuals were excluded due to divergent genotypic and phe-

notypic sex. This resulted in a final set of 1,220 individuals (“DeCOI cohort”; Fig 1A and 1B

and S2 Table) with diverse population backgrounds.

For the formal statistical analyses, a homogeneous subset of unrelated individuals from one

major population background was generated using the “common variants for QC” variant set

and data from the 1000 genomes project [54]. Principal component (PC) analysis was con-

ducted on variants that were common to both datasets using PLINK (version 1.9). Based on

the obtained PCs and the population annotations within the 1000 genomes project, individuals

in the DeCOI cohort were then assigned to continental populations. To determine relatedness,

kinship coefficients were calculated using the KING software (version 2.2.7). Individuals were

defined as related when they had kinship coefficients > 0.04, which indicates third-degree

relatedness or closer. From each pair of related individuals, the least severely affected individ-

ual was excluded. This approach resulted in a cohort of 1,017 unrelated individuals from the

European population (“DeCOIEUR”; Fig 1A and 1B and S2 Table). Due to the low number of

individuals of non-European ancestry, no other population subcohort was suitable for associa-

tion testing.

Case/control definitions for association analyses

On the basis of the available phenotypic information, the study participants were classified as

having one of three phenotypes: “ambulatory mild” (WHO 1–3), “hospitalized moderate”

(WHO 4–5), or “hospitalized severe” (WHO 6–10). For association analyses, these classes were

used to assign case/control status to 1,017 individuaIs of the DeCOIEUR cohort, for two sepa-

rate case/control definitions (Fig 1A and 1B): (i) “extreme” (Ex / cases: hospitalized severe,

n = 272 / controls: ambulatory mild, n = 362), and (ii) “all_hospitalized” (B1 / cases: hospital-

ized moderate and hospitalized severe, n = 655 / controls: ambulatory mild, n = 362). The phe-

notype B1 is in accordance with the definition by the COVID-19 HGI [8].

Targeted analysis of variants at the TLR7 locus

The following SNVs were retrieved from the raw-cVCF: (i) those located within TLR7 protein-

coding regions; and (ii) those located in the promoter, 3’/5’ untranslated regions (UTRs) and

regions annotated as SCREEN enhancers by the ENCODE project (accessed November 30,

2022; 13 elements within the gene body and 50 kb upstream of the transcription start site

(TSS)). For the protein-coding regions, the following were selected: (i) all putative loss of func-

tion (pLoF) and non-synonymous variants (VEP impact “high” or “moderate”); and (ii) vari-

ants with potential effects on splicing (defined as “any spliceAI delta score above 0.5”),

independent of MAF. For the non-coding regions, variants were included if they had a maxi-

mum allele frequency of 1% according to gnomAD v3.1.2 (popmax value). To identify
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potential deletions at the TLR7 locus, the cohort VCF (region: chrX:12760551–12980636) was

queried for stretches of 3 or more variant positions with missing coverage in male individuals.

Filtering for rare variants with strong effects according to variant effect

predictions or ClinVar

To identify rare variants with strong effects in DeCOI, we selected variants with an allele count

of<5 within the cVCF (n = 1,220 individuals), and excluded variants that had more than one

homozygous report in any population from either gnomAD exomes (version 2.1.1) or gno-

mAD genomes (version 3.1.2). For variants in genes linked to dominant Mendelian disorders,

an allele count of 50 or below in gnomAD exomes or genomes was required (sum across all

population backgrounds, respectively).

For homozygous or hemizygous variants, a ratio between alternative and total reads (allelic

balance) of higher than 95% was required. For heterozygous variants an allelic balance between

25% and 75% was required, as well as a read count of at least 4 for both the reference and the

alternative allele. To identify potential compound heterozygous variant carriers, we first fil-

tered for individuals with� 2 variants in the same gene. Subsequently, variant co-occurrence

(gnomAD version 2; [55]) and/or review of the literature was used to determine if the variants

are likely affecting one allele (in cis) or both alleles (in trans, i.e. compound heterozygous).

Based on this strategy, the following analyses were performed:

a. For the “Analysis of 13 genes previously implicated in severe COVID-19” we only considered

variants that were predicted to be LoF (VEP impact “high”) or that were previously shown

to result in functional alterations [11].

b. For the “Targeted analysis of monogenic disorders”, we only retained variants reported as

being pathogenic or likely pathogenic in ClinVar by multiple submitters or by expert panels

(version 20221008, n = 40,189) [56]. Variants within genes from the American College of

Medical Genetics and Genomics (ACMG) secondary findings list [57] were excluded, and

variants were only retained if they affected a gene annotated with an Online Mendelian

Inheritance in Man (OMIM) phenotype (data downloaded: November 18, 2021). Modes of

inheritance were determined using OMIM-data. Genes annotated as being dominant were

only retained if they were not annotated with any recessive phenotype in OMIM. The

zygosity of the variants identified in the DeCOI cohort had to match the zygosity expected

based on the mode of inheritance of the gene, respectively.

To reduce the risk of re-identification for the participants, identified dominant Mendelian

diseases are grouped as broad categories and age ranges are reported rather than exact ages.

Gene- and gene-set-based collapsing analyses

Next, gene- and gene-set-based collapsing analyses were conducted to study joint effects of

rare variants across single genes and sets of genes with presumed importance to COVID-19.

The gene- and gene-set-based collapsing analyses involved three stages.

First, the definition of genes and gene-sets: Variants were assigned to one of 19,630 protein-

coding genes, as based on position (VEP’s annotation; column “SYMBOL”). Furthermore, five

gene-sets were curated based on a priori evidence or biological plausibility for an involvement

in COVID-19 etiology: (a) “GWAS_genes” (94 genes, closest to lead SNV and/or reported as a

candidate gene at 71 risk loci identified in prior GWAS for SARS-CoV-2 related traits, includ-

ing susceptibility and severity, S3 Table); (b) “IFNresponse_COVID-19_genes” (31 genes of

the interferon signaling pathway, based on a recent review [30]); (c)
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“IFNresponse_reactome_genes” (185 genes of the interferon signaling pathway, based on reac-

tome [58]); (d) “innate_db” (1,037 genes involved in the innate immunity pathway according

to the InnateDB platform [59]; and (e) “Zhang_et_al” (13 genes involved in immune response

to viral infection with a reported prior enrichment of LoF variants [11]). The major histocom-

patibility complex (MHC) region was excluded from all lists. Notably, a small overlap was

present between individuals from DeCOIEUR and several of the studies from which the

“GWAS_genes” list was derived. However, given that this represented less than 0.04% of the

entire sample used in the GWAS, the sample overlap was not expected to drive any

associations.

Second, the definition of functional masks for collapsing analyses: Eleven functional masks

(FM) were defined, as based on the predicted consequences of variants (see S4 Table). Briefly,

coding variants were classified into categories analogous to those applied in previous studies

[18,19]. These categories comprised: (a) predicted loss-of-function (pLoF) variants; and (b)

four missense deleteriousness categories, as based on REVEL scores [60]. For non-coding vari-

ants, categories of promoters, 5’ and 3’ UTRs, as well as regulatory elements were defined, and

CADD scores [61] were included as a proxy measure of deleteriousness. Variants located in

the core regions of DNAse I hypersensitive sites (Altius index) [62] and within 1 kb to 50 kb

upstream of the respective TSS were defined as variants in regulatory elements.

Third, the statistical analyses. Gene- and gene-set-based collapsing analyses were performed

with regenie (version 3.1 [63]), using the DeCOIEUR cohort and the generic variant set (see

above). For each analysis, 11 FMs (see above) and two phenotypes (Ex, B1) were tested for asso-

ciation using the default additive model and the ‘—build-mask sum’ option. Based on prior evi-

dence of varying heritability estimates for different age and sex categories [24], gene-set-

analyses were also stratified for age (age lower than 60 years / greater or equal to 60 years), and

for sex (male / female). For age and sex, stratification applied to both cases and controls. The

covariates and options described for the GWAS were used (see section “Single-variant associa-

tion analyses” below; settings “firth” and “ignore-pred”), with individual polygenic risk score

(PRS) being added as a covariate (see section “Polygenic risk scoring” below). The same analysis

was also run without PRS. The included variants had an MAF below 0.1%. Allele frequency was

determined based on the maximum allele frequency in either the present cohort or gnomAD

(version 3.1.2; all populations). Conservative Bonferroni-based thresholds for multiple correc-

tions were alpha = 1.16x10-07 (19,630 genes, 11 FM, 2 phenotypes) for the single gene analyses,

and alpha = 9.1x10-05 for the gene-set-analysis (5 sets, 11 FM, 2 phenotypes, 5 stratifications).

Statistical analyses were only performed if the category contained at least one variant.

Single-variant association analyses

For single variant analyses, two GWAS were performed in the DeCOIEUR cohort using the case/

control definitions Ex and B1. For each of the two GWAS, variants were removed from the

generic variant list if they met any of the following criteria: MAF< 0.5%, vCR< 98%, missing-

ness-difference between cases and controls above 2%, Hardy-Weinberg p<10−6 (among autoso-

mal variants in respective controls), p<10−10 (among autosomal variants in cases), p<10−6

(among X-chromosomal variants in females). These GWAS variant sets (n = 15,708,109 variants

(Ex), n = 15,742,368 (B1)) were pruned (“indep-pairwise 50 5 0.05” command, autosomal vari-

ants only, performed in PLINK, n = 548,183 (Ex) and n = 549,436 variants (B1) remaining) and

used for calculation of PCs in order to capture the population structure within each GWAS.

Together with age, sex, age*age, and age*sex, these 10 PCs were used as covariates in a logistic

regression, which was conducted using regenie (version 3.1; options “firth” and “ignore-pred”).
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For the Ex case-control definition, analysis was re-run in phenotypic substrata (i.e., male/female

and younger than 60 years/older or equal 60 years; see above).

Replication cohorts/data

For selected analyses, in silico replication was attempted using previously generated summary

statistics from the COVID-19 HGI release 7 (array-based data, without GenOMICC and

23andMe) [10] and GenOMICC (WGS data) [22]. For low frequency candidate variants, or

when individual genotype data were required, WGS data from the BQC-19 project (Quebec

Biobank) [64] were re-analyzed.

Autozygosity

For each individual in the DeCOIEUR cohort, the inbreeding coefficient (FI) was estimated in

accordance with the definition proposed by Wright [65,66], and as implemented in PLINK

v1.9 with the—ibc command (Fhat3). FI was first calculated on the basis of all variants, and

then on the basis of those with a MAF� 1% (PLINK, option—maf 0.01) to evaluate the robust-

ness of the analysis. Using the Ex and B1 case-control definitions respectively, FI values

between cases and controls were compared using: (i) a one-sided Wilcoxon-test; and (ii) logis-

tic regression with 10 PCs as covariates, as described in the section “Single-variant association

analyses”. The autozygosity definition follows the standard approach used by Cruz et al. [24]

for their “FGRM” analysis. Their “FROH” analysis approach, which is an ad-hoc assessment of

the autozygous proportions in the human genome but not a direct autozygosity measure, was

not pursued.

Polygenic risk scoring

WGS-based GWAS data from the GenOMICC study [22], which has no known sample over-

lap with the DeCOI cohort, were used to generate a PRS for severe COVID-19. The program

PRS-CS (version 1.0.0) [67] was applied to the summary statistics of European-ancestry indi-

viduals from GenOMICC, using the UK Biobank-based LD reference panel, as provided by

PRS-CS. The resulting predictor contained 967,463 variants. PRS for individuals from the

DeCOIEUR cohort were then obtained using the ‘—score’ option within PLINK (version 1.9)

for variants with MAF>1% of the generic variant set (required: vCR > 98%). These individual

scores were included as covariates in the collapsing-analyses (described above).

P-values for the predictor PRS were determined using logistic regression (function glm

within R using the parameter family = binomial(link = "logit")), which included PRS as well as

the same covariates as those used in the GWAS (see above). To determine whether the PRS

improved prediction, two logistic regression models were fitted: (i) with the covariates only;

and (ii) with the covariates and the PRS, as described above. Subsequently, the Nakelkerke R2

was calculated for both models (NagelkerkeR2 function of the R package fmsb). The signifi-

cance of the differences between the two models were then determined using the likelihood

ratio test (lrtest function of the R package rms).

Since logistic regression models can be biased towards the sample used (overfitting), glmnet

was also employed, since this provides a combination of ridge and lasso regressions, and is

more suitable for the prediction on unknown data. To determine whether PRS added value

over random noise, 100 predictors from a normal distribution were simulated, and these were

used to train glmnet. To estimate the effect size using independent test data, multiple (1,000)

subsampling of our dataset was performed using a random proportion of individuals from

75% to 95% for training, and the remaining dataset for testing. The unequal size of the training

set was necessary in order to address the discrete nature of the data and the lack of variability
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on comparatively small samples. As a training procedure, cross-validation was used for choos-

ing the optimal parameter, and glmnet was used for the model. Instead of an absolute opti-

mum, lambda plus one standard error was chosen as a more conservative estimate. Statistical

analyses were performed as implemented in glmnet (see URL).

Supporting information

S1 Fig. Schematic representation of the quality control (QC) process. After alignment and

joint calling of SNVs and Indels, 1,275 individuals with appropriate phenotype data underwent

sample quality control to yield a final dataset consisting of 1,017 unrelated individuals of Euro-

pean ancestry (DeCOIEUR).

(JPG)

S2 Fig. Principal component analysis. For each individual, principal components were calcu-

lated based on the “common variants for QC” variant set. (A) The first two principal compo-

nents (PC1 and PC2) are plotted for all individuals of DeCOI (empty forms) together with

individuals from the 1000 genomes project (1 KG reference cohort, grey circles). Individuals

assigned to the European subcohort of DeCOI (DeCOIEUR) are plotted in blue circles, while all

others are indicated in black triangles. The region marked by the dashed box is enlarged in

panels B-D. (B) and (C): The individuals of DeCOIEUR are plotted within the PC-space, col-

ored by their case-control definitions in analyses Ex and B1. In (D), all individuals of

DeCOIEUR are plotted with colors indicating their respective site of sequencing.

(JPG)

S3 Fig. Characteristics of carriers of pathogenic variants with established links to mono-

genic diseases. (A) Box plot indicating the age distribution of individuals in which a heterozy-

gous (filled with checkerboard pattern) or biallelic (blue data points, includes compound

heterozygous) variant with an established link to a monogenic disease was or was not found

(filled in white). The elements of the box plot correspond to the following values: thick line:

median, box: 25th and 75th percentile, whiskers: largest / smallest value not further away from

the box than 1.5 times the interquartile range, points: values outside of the range of the whis-

kers. Panels (B) to (D) show the proportion of heterozygous variant carriers according to

cohort membership (B), severity (C) or sex (D). The numbers above the bars indicate the total

number of individuals in each stratum. Note that statistical testing was performed using stu-

dent’s t-test for age (A) or fisher’s exact test (B-D). Except for nominally significant differences

in age, no statistically significant different proportions between strata were detected (lowest

nominal p-value: 0.13). pnom: uncorrected p-value.

(JPG)

S4 Fig. Gene-based collapsing analyses in DeCOIEUR. (A-B) Quantile-quantile plots for phe-

notypes Ex (A) and B1 (B). (C-D) Scatter plots showing the negative decadic logarithm of the

p-values for gene / functional mask combinations when PRS was included (x-axis) or not

included (y-axis) as a covariate. The p-values were calculated using the phenotype definitions,

as indicated in the left upper corner of the scatter plots. Pearson correlation coefficients

between negative decadic logarithms of the p-values calculated with or without PRS as covari-

ate were 0.92 for Ex and 0.96 for both B1.

(JPG)

S5 Fig. Quantile-quantile (QQ) plots of GWAS. Phenotypes and corresponding genomic

inflation factors (lambda) are indicated within the respective panels.

(JPG)
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S6 Fig. Results of stratified analyses within Ex. Manhattan plots (left panel) and quantile-

quantile plots (right panel) are represented for analyses including individuals which were of

female (Ex_female) or male (Ex_male) sex, and younger than 60 years (Ex_LT60) or 60 years

or older (Ex_GE60). Details on all variants with P<10−05 in any of the four substrata are listed

in S13 Table.

(JPG)

S7 Fig. Distribution of autozygosity in samples of the DeCOIEUR cohort. Distribution of

inbreeding coefficients in cases and controls according to the B1 and Ex classifications. The

dashed horizontal lines represent thresholds of 0.02 (green), 0.05 (blue) and 0.1 (red), respec-

tively.

(JPG)

S8 Fig. Comparison of PCs in samples of DeCOIEUR cohort. Values of principal component

1 and 2 for individuals of the DeCOIEUR cohort are shown for different ranges of the inbreed-

ing coefficient (FI). Case / control status for B1 (left) or Ex (right) is color coded only, if indi-

viduals were within the specified range of FI, otherwise individuals are colored in grey.

(JPG)

S1 Table. Description of individual cohorts.

(XLSX)

S2 Table. Characteristics of the overall DeCOI cohort (left) and the European subcohort

(DeCOIEUR, right).

(XLSX)

S3 Table. Overview of genes used in five different gene-sets.

(XLSX)

S4 Table. Definition of functional masks for gene collapsing analyses.

(XLSX)

S5 Table. Rare variants within coding and non-coding regions of TLR7.

(XLSX)

S6 Table. Replication results for rs192357402 in the Quebec Biobank.

(XLSX)

S7 Table. Variants in 13 genes previously implicated in severe COVID-19 and characteris-

tics of carriers.

(XLSX)

S8 Table. Results of gene collapsing analysis in Ex. This table contains the 5000 most signifi-

cant results, for a full list please refer to the Data Availability section.

(XLSX)

S9 Table. Results of gene collapsing analysis in B1. This table contains the 5000 most signifi-

cant results, for a full list please refer to the Data Availability section.

(XLSX)

S10 Table. Results of gene-set analyses.

(XLSX)

S11 Table. Results of most significant variants in B1 analysis of DeCOIEUR.

(XLSX)
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