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The commonly used weather stations cannot fully capture the spatiotemporal variability of near-surface air
temperature (T,;;), leading to exposure misclassification and biased health effect estimates. We aimed to improve
the spatiotemporal coverage of T,ir data in Germany by using multi-stage modeling to estimate daily 1 x 1 km
minimum (Tpjp), mean (Tpean), maximum (Tyay) Tair and diurnal Ty, range during 2000-2020. We used weather
station Ty observations, satellite-based land surface temperature (LST), elevation, vegetation and various land
use predictors. In the first stage, we built a linear mixed model with daily random intercepts and slopes for LST
adjusted for several spatial predictors to estimate T,;, from cells with both Ty; and LST available. In the second
stage, we used this model to predict Ty, for cells with only LST available. In the third stage, we regressed the
second stage predictions against interpolated T, values to obtain T, countrywide. All models achieved high
accuracy (0.91 < R? < 0.98) and low errors (1.03 °C < Root Mean Square Error (RMSE) < 2.02 °C). Validation
with external data confirmed the good performance, locally, i.e., in Augsburg for all models (0.74 < R? < 0.99,
0.87 °C < RMSE < 2.05 °C) and countrywide, for the Tpyean model (0.71 < R? <0.99,0.79 °C < RMSE < 1.19°C).
Annual Tpean averages ranged from 8.56 °C to 10.42 °C with the years beyond 2016 being constantly hotter than
the 21-year average. The spatial variability within Germany exceeded 15 °C annually on average following
patterns including mountains, rivers and urbanization. Using a case study, we showed that modeling leads to
broader T, variability representation for exposure assessment of participants in health cohorts. Our results
indicate the proposed models as suitable for estimating nationwide T,;; at high resolution. Our product is critical
for temperature-based epidemiological studies and is also available for other research purposes.

1. Introduction and a key indicator of climate change. Ty is observed to be steadily

increasing globally since pre-industrial times, with the 10 warmest years

Climate change is one of the greatest global challenges for humans
and their entire living environment in the 21st century. It has been at the
center of various social and research disciplines, from economics (Hertel
and Rosch, 2010) and animal welfare (Lacetera, 2019) to land man-
agement and food security (Shukla et al., 2019), with a particular
attention to the human health domain (Peters and Schneider, 2021;
Vicedo-Cabrera et al., 2021; Watts et al., 2019). Near surface air tem-
perature (T,i;) is one of the most important meteorological parameters
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on record to have occurred after 2000 (Lindsey and Dahlman, 2021).
Further increases from 3 °C to 6.2 °C are expected by the end of 2100, if
no action is taken (IPCC, 2022). In Germany, 32 of the last 34 years are
characterized by annual T, above the 1961-1990 average (DWD,
2022).

Many epidemiological studies have documented the adverse impact
of Tyir on mortality (Guo et al., 2016; Zanobetti and Schwartz, 2008) and
morbidity (Ye et al., 2012), especially when exposure to extreme Ty
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values occurs (Gronlund et al., 2018; Kovats and Kristie, 2006). Besides
heat waves and cold spells, increases or decreases in more moderate Ty,
ranges to which people are exposed most of the time during their life,
also contribute to the observed temperature-related mortality burden
(Gasparrini et al., 2015). Human health can be adversely affected by T,
either after short (Breitner et al., 2014) or long-term (Zafeiratou et al.,
2021) exposure. Therefore, Ty, extremes and variations pose a major
threat for public health, especially with continuing global warming and
the higher frequency and intensity of extreme events (Meehl and
Tebaldi, 2004). In this regard, high spatiotemporally-resolved T,
exposure datasets are needed for improved exposure assessment in
epidemiological studies.

The vast majority of environmental epidemiological studies that
investigate health effects of Ty or implement Ty, in their analyses as a
confounder or an effect modifier, use observational data from meteo-
rological stations, often provided by a national monitoring network.
These datasets are generally highly accurate, quality controlled and
publicly available and consist of various meteorological parameters,
including T,i; 2 m above the ground. However, the monitoring locations
are irregularly scattered, often placed in rural or park-like environ-
ments, and their number is too limited to fully capture spatial temper-
ature variations across urban and rural landscapes. Furthermore, in most
cases airport stations are used, which, by definition, are located out of
the cities. Therefore, the commonly used weather station observations
are not capable to represent the full variability of Ty in space and in
time, leading to exposure misclassification and bias of health effect es-
timates towards the null hypothesis of no association (Armstrong,
1998). Over the last years, researchers have developed methods to
provide high-resolution spatiotemporally Tai, exposure outputs on local,
countrywide or even global scales. Several interpolation techniques
have been suggested such as regression-kriging (Kilibarda et al., 2014; Li
et al., 2020; Sekuli¢ et al., 2020), modified inverse distance weighting
(IDW) and thin plate spline (TPS) interpolation. For example, Sekuli¢
et al. (2020) predicted daily mean Taj; (Tiean) in 1 x 1 km across Croatia
for 2008 using a regression kriging model with Tpean Observations and
geometrical temperature trend, digital elevation model (DEM) and
topographic wetness index as covariates (R? = 0.98, Root Mean Square
Error (RMSE) = 1.2 °C). Jobst et al. (2017) introduced a multi-layer
approach, including TPS and lapse rate models, to estimate daily
maximum Ty (Thayx) and minimum Tyjr (Tryin) in 1 x 1 km from 1990 to
2014, in the alpine Clutha catchment, New Zealand (Tp.x RMSE =
2.38 °C, Tpin RMSE = 2.93 °C). Other studies compared multiple
interpolation approaches in the same region. In middle Ebro Valley,
Spain, Vicente-Serrano et al. (2003) compared the results of annual Ty,
models of global or local interpolators as well as geo-statistical and
mixed methods. R? ranged from 0.39 (co-kriging) to 0.75 (regression--
based) and RMSE from 0.80 °C (co-kriging) to 0.56 °C (IDW, r = 2).
However, the traditional interpolation methods are subject to specific
limitations. For instance, they are highly affected by the weather sta-
tions locations, without fully accounting for between-station variability.
This issue is more profound in complex geo-climatic areas and land-
scapes characterized by high spatial heterogeneity. Interpolation also
leads to neighbouring effects and cannot capture the T, variations in
city-level analysis and consequently the urban heat island (UHI) effects
are not well represented. Finally, the weather stations are often poorly
scattered across a country and fail to provide complete T,;, time series.

To improve the interpolation between locations, several studies have
used satellite data for their main predictors (Benali et al., 2012; Fluck-
iger et al., 2022; Vancutsem et al., 2010; Xu et al., 2014; Zhu et al.,
2013). For instance, Xu et al. (2014) applied a linear regression and a
random forest (RF) model to predict Tpax across British-Columbia,
Canada. The RF model achieved higher model’s accuracy (R? = 0.74,
mean absolute error (MAE) of 2.02 °C) in comparison with the linear
regression model (R2 = 0.64, MAE = 2.41 °C). Recently, Jin et al. (2022)
estimated high-resolution spatiotemporal Tpean from land surface tem-
perature (LST) and a variety of spatial predictors using a three-stage
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ensemble model in Sweden over a long period. The ensemble model
consisted of a generalized additive model, a generalized additive mixed
model, a RF model and an extreme gradient boosting model (R% = 0.98,
RMSE = 1.38 °C). In recent years, several studies applied a multi-stage
regression-based approach introduced by Kloog et al. (2014), and
making use of the moderate resolution imaging spectroradiometer
(MODIS) LST products to predict daily Ty in 1 x 1 km (Kloog et al.,
2017; Rosenfeld et al., 2017; Shi et al., 2016). This approach is
straightforward to model, with high accuracy and small errors.

Tmean is the most frequently modeled T,;; measure and the most
commonly used in studies of environmental epidemiology. However, we
also need to focus on Ty and Tpax. Climate change strongly affects Tpyin
and Tpax (Modala et al., 2017) and there is evidence that Ty, which
corresponds to the nighttime temperatures, has been increased more
than Tp,ax during the 20th century (Gil-Alana, 2018). Due to this sub-
stantial T, increase, especially the urban areas face extensive heat
stress nights, a phenomenon that will be strengthened in the future
(Chapman et al., 2017). Modeling Ty, and Tpax also facilitates the es-
timates of the diurnal Ty; range (DTR). There is already evidence that
DTR affects, independently from Tpean, the human health (Cheng et al.,
2014; Davis et al., 2020). These effects are critically important for future
policies implementation, but lack of broad epidemiological investiga-
tion, especially at national scale due to the scarcity of fully spatially
covered, high resolution, daily DTR data.

In this study, we aimed to extend and improve the spatiotemporal
coverage of T,y data in the complex terrain of Germany, using remote
sensing and regression-based modeling. More specifically, we aimed to
map daily Tmin, Tmean, Tmax add DTR in 1 x 1 km across Germany during
the period 2000-2020 to provide harmonized T, data for epidemio-
logical research like the German National Cohort (NAKO) with more
than 200,000 participants spread around the country.

2. Methods
2.1. Study area

Germany is located in central Europe, covering 357,021 km?, with a
population of 83.2 million people (Statistisches Bundesamt, 2022). The
country consists of a diverse landscape, starting from the Alps in the
south to the northern coast lines of the North and Baltic Seas, including
big cities, small towns, mountains, various water bodies, forests and
arable land. Elevation ranges from 3.54 m below sea level near
Neuendorf-Sachsenbande to 2,962 m in the Alpine mountain Zugspitze.
Climate is temperate to continental according to the Koppen climate
classification. There is a warm summer humid continental climate in
south-eastern regions and a temperate oceanic climate in north-western
regions (Beck et al., 2018b). The lowest T ever recorded in Germany
was —37.8 °C measured on February 12th, 1929 in Wolznach-Hiill
(DWD, 2017), while the highest was 41.2 °C measured on July 25th,
2019 in Duisburg and in Tonisvorst of North Rhine-Westphalia (DWD,
2020). We divided Germany’s mainland into 366,536 grid cells of 1 x 1
km based on the European INSPIRE (Infrastructure for Spatial Infor-
mation in the European Community) standard using the Lambert
Azimuthal Equal-Area projection, EPSG: 3035 (©GeoBasis-DE/BKG
(2021)).

2.2. Materials

We collected a large number of publicly available earth- and
satellite-based data derived from multiple sources for the period
2000-2020 across Germany, with the best fitting temporal and spatial
resolution for our analysis. LST based on satellite data was the main
predictor for T, as they were strongly correlated. Moreover, we
implemented in the modeling process various spatial predictors such as
remote sensing elevation, vegetation, urban fabric, arable land, pas-
tures, forests and inland waters to increase the percentage of explained
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variance and enhance the model performance overall.

2.2.1. Ty data

We downloaded daily data of Tpin, Tmean and Tmax Observations 2 m
above the ground from 1080 sites, which are publicly available from the
Deutscher Wetterdienst (DWD) - German Meteorological Service online
database (DWD, 2021). All data were quality controlled by DWD and
their metadata (e.g., station relocation or time zones) were provided as
well. We did not find any unusual values such as temperatures lower or
higher than the observed temperature extreme records in the country or
any seasonal outliers. We excluded stations that stopped measuring
before 2000 (N = 358), stations that weren’t operating continuously
over the entire study period (N = 309, > 70% NAs) and stations located
outside the German mainland (N = 7). Thus, we included T,;; data from
406 weather stations scattered across the country (Fig. 1), with each
station located in a single grid cell of our gridded dataset. The DWD Tg;,
dataset had only 1.4% of station-days with missing values during our
study period.

2.2.2. Remote sensing data

2.2.2.1. TERRA MODIS data. We downloaded and preprocessed TERRA
MODIS LST and normalized difference vegetation index (NDVI) data
from the server (NASA, 2021) through the R package MODIStsp (Busetto
and Ranghetti, 2016). Since TERRA MODIS started measuring on
February 24th, 2000, our analysis also starts on that date.

2.2.2.1.1. LST data. LST defines the radiative temperature of the
earth’s surface, as derived from infrared radiation and measured in the
direction of the remote sensor. We used the product MOD11A1v006 that
provides LST (using the generalized split-window algorithm) data in a
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daily temporal resolution and a spatial resolution of 1 x 1 km, corrected
for emissivity (Wan et al., 2015). We used daytime LST to model Tmpax
and nighttime LST to model Tp,i, and Tpean, as suggested by previous
studies (Rosenfeld et al., 2017), regardless their quality assurance flag to
avoid reducing the input sample size since for the most problematic cells
affected by cloud effects, instrumental problems or other reasons, LST
was not produced. For more insight into MODIS LST and its retrieval, we
refer to the existing literature (Wan, 2014).

2.2.2.1.2. NDVI data. NDVI is used as a proxy for greenness and
quantifies the amount of vegetation by calculating the near-infrared and
the red light difference. We used the product MOD13A3v006 that pro-
vides monthly NDVI data, as greenness does not change considerably
within a month, in a spatial resolution of 1 x 1 km (Didan, 2015). We
also tested the enhanced vegetation index (EVI) as alternative. Since we
observed strong positive correlations between NDVI and EVI (21-year
averager = 0.81), negligible differences in the models’ validation results
(after the 3rd or 4th decimal point) and extremely correlated Tp;, pre-
dictions (r = 0.999988), we kept NDVI as model predictor.

2.2.2.2. DEM data. We used the DEM (GTOPO30) developed by the US
Geological Survey’s Earth Resources Observation Systems Data Center.
Its spatial resolution was 30-arc-second and we aggregated itto 1 x 1 km
grid cells over mainland Germany, borders and shorelines included
(Fig. S1).

2.2.2.3. Land use data. From Copernicus CORINE Land Cover 2012
(CLC2012, 250 m resolution) https://land.copernicus.eu/pan-europe
an/corine-land-cover/clc-2012 and 2018 (CLC2018, 100 m resolution)
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018,

we extracted the variables urban fabric (classes: “continuous urban
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Fig. 1. Map of Germany showing the spatial distribution of the 406 T,;, weather stations included in our analysis (2000-2020).
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fabric” and “discontinuous urban fabric” from the subcategory urban
fabric of the artificial surfaces category), arable land (classes: “non-
irrigated arable land”, “permanently irrigated arable land” and “rice
fields” from the subcategory arable land of the agricultural areas cate-
gory), pastures (class: “pastures” from the subcategory arable land of the
agricultural areas category), forests (classes: “broad-leaved forest”, the
“coniferous forest” and the “mixed forest” from the subcategory forest of
the forest and seminatural areas category) and inland waters (classes:
“water courses” and the “water bodies” from the subcategory inland
waters of the water bodies category). We then combined the classes of
each variable and calculated each variable’s proportion of CORINE
pixels to the INSPIRE 1 x 1 km grid cells over mainland Germany.
CLC2012 was used for modeling until 2016 and CLC2018 from 2017 on.

2.3. Statistical analysis and validation

We applied a three-stage regression-based model, following the
approach from Kloog et al. (2014). In previous studies following the
same approach basis, the results were promising. Kloog et al. (2014)
mapped Tpean in the northeast and mid-Atlantic USA (RMSE = 2.16 °C).
Shi et al. (2016) predicted Tpean in southeastern USA (R? = 0.97, RMSE
= 1.38 °C). Rosenfeld et al. (2017) estimated Trin, Tmean and Tmax in
Israel using LST data from both TERRA and AQUA satellites (RMSE <
1.7 °C). Finally, Kloog et al. (2017) estimated Tpean in France ®R%> 0.93,
RMSE < 1.7 °C). Given the method’s high accuracy, the small errors, its
straightforward way of modeling and its successful application in
different and geographically complex areas around the world, we also
followed the basic concept of this approach, adjusting it to our needs
with regard to Germany’s unique spatial and geo-climate features,
differentiating the process where it was necessary and introducing a TPS
technique implementation on the third stage of the model. More spe-
cifically, due to Germany’s unique surface and altitude fluctuation, we
first adjusted our model for elevation. We also added information on
water bodies, forests and arable land which corresponded to a large
proportion of the country, i.e., arable land covers around 34% of Ger-
many (and 28.32% in stage 1 - calibration stage of our analysis). Addi-
tionally, we implemented a TPS interpolation given the number and the
distribution of the DWD weather stations and used grid-cell specific
intercepts and slopes in the third stage to capture spatial differences in
the relationship of interpolated observed Tp;, with predicted Taj. Our
code was developed in R software, version 4.0.2 (R Core Team, 2020).
The linear mixed models analyses were conducted with the R package
“LM4” (Bates et al., 2014), while figures were produced either using the
R package “ggplot2” (Wickham, 2009) or QGIS, version 3.10.5-A Coruna
(QGIS Development Team, 2020). We applied the three-stage modeling
process separately for each year and each T, measure.

2.3.1. First stage: Tgr and LST available

The first stage included grid cells where both Ty observations from
DWD weather stations and satellite-derived LST values were available.
We regressed Tair on LST and additional spatial information to under-
stand and describe the T,;;-LST relationship in the best way possible for
Germany over the last two decades. A daily random slope for LST was
implemented in the model to account for daily variations in the T,;;-LST
relationship.

The general mathematical formula of the first stage linear mixed
effects model was the following:

Taiij = bo + 1 + (by + vj) % LST;; + by * DEM; + by * NDVI; + by
+ UrbanFabric; + bs * ArableLand; + by * Pastures; + b; * Forests;
+ bg * InlandWaters; + &;;
@

where,
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Tairij stands for the Ty;; observation at the grid cell i on day j;

b, and u; stand for the fixed and the random intercepts, respectively;
LST;; stands for the daytime or nighttime LST measurement at the
grid cell i on day j;

b; and vj stand for the fixed and the random slopes, respectively;
DEM; stands for the elevation at grid cell i;

NDVI;; stands for the monthly NDVI measurement at the grid cell i on
the month that day j falls in;

UrbanFabric;, ArableLand;, Pastures;, Forests; and InlandWaters;
stand for the percentages of the urbanism, the land under temporary
agricultural crops, the pastures, the forests and the water bodies at
the grid cell i.

&;j is the error term at grid cell i on day j.

For each T,;; measure, we applied a separate regression.

2.3.2. Second stage: T not available and LST available

In the second stage, T, was predicted for the combinations of grid
cells and days without available T, observations, but with available
LST data by applying the regression coefficients derived from EQ. (1).

2.3.3. Third stage: neither Tg; nor LST available

In the third stage, we predicted T, for grid cells and days with
neither Ty observations nor LST data. We regressed second stage Tajy
predictions against daily interpolated T, values in 1 x 1 km across
Germany via a linear mixed model with random grid-cell-specific in-
tercepts and slopes. Since previous studies suggested that TPS out-
performed alternative interpolation techniques such as kriging or IDW
for T,i modeling (Wu et al., 2015), we applied it to interpolate the DWD
Tair data. The smoothing parameter was chosen by a generalized cross
validation (CV) method. We used the R package “fields” (Nychka et al.,
2017) for the TPS interpolation.

The general mathematical formula of the third stage linear mixed
effects model was the following:

Second stage Tyrj = a; + b * intTys; + € (@3]
where,

e Second stage Tayj Stands for the Ty, predictions given by the second
stage at the grid cell i, on the day j;

e a; and b; stand for the i grid-cell-specific intercepts and slopes;

e intT,yy stands for the interpolated Ty, values at the grid cell i on day
Js

e ¢ is the error term at grid cell i on day j.

For each T, measure, we applied a separate regression.

After predicting Tpmin, Tmean and Tmax, We also calculated the DTR by
taking the difference of Tp, from Thay. All dates are represented in the
standard time zone for Germany, i.e., UTC+1, without adjusting for
daylight-saving time.

2.3.4. Internal validation

The models’ performance was evaluated through 10-fold CV sepa-
rately for the first and third stage by randomly dividing the respective
datasets into testing and training sets (10:90) ten times. The models
were then re-fitted in each of the ten training sets and Ty, predicted in
the respective testing sets.

For the first stage, we calculated the corresponding percent of
explained Ty, variability R? and the RMSE between observed and pre-
dicted Ty, for each run for the cell-days with both T, and LST available.
The temporal and spatial performance (R? and RMSE) were also
computed (Shi et al., 2016). Briefly, the temporal statistics derived by
regressing (a) against (b), where: (a) is the difference of the DWD
observed T,irj; of each j day with the annual DWD observed Ty in
weather station location i, and (b) is the difference of the predicted Ty
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of each j day with the annual predicted Ty, at the same weather station
location i. Spatial statistics derived by regressing (c) against (d), where:
(c) is the annual DWD observed Ty and (d) is the annual predicted Ty
in weather station location i.

For the third stage, R? and RMSE derived from linearly regressing the
predicted T,i; against DWD observed T, for each run. Before the
beginning of the modeling process, this specific sub-sample of DWD
weather stations Ty observations in cell-days without LST available,
was completely held-out from the modeling process. Thus, we used these
cell-days to validate our third stage predictions and to quantify the
respective errors also under conditions such as of cloudy days. We also
compared the predicted T, of the third stage against the second stage
Tair, i-€., the dependent variable of the third stage model, for all grid cells
across Germany.

We additionally quantified the bias through measuring the mean
signed error between the DWD observed T,i; and our models’ Ta, as
predicted from all the modeling stages.

2.3.5. Validation with external data

We carried out two validations using external datasets and compared
our predictions i) on the small scale with a monitoring network (HOBO-
Logger) set up in the region of the city of Augsburg in 2012 in a coop-
erative work of Helmholtz Munich (Institute of Epidemiology, Envi-
ronmental Risks) and the University of Augsburg (Institute of
Geography, Physical Geography and Quantitative Methods) (Beck et al.,
2018a) and ii) on the large scale with predictions from another
German-wide model dataset developed by DWD within the “Testrefer-
enzjahre” (TRY) project by using a completely different methodological
approach (Krahenmann et al., 2018).

For the small-scale validation, we considered T,;; measurements of 4
min resolution from 82 HOBO-Logger devices (ONSET, Type Pro v2)
(2013-2018) with most of them to be located in the city of Augsburg
where we did not have prior information from DWD on the first - cali-
bration model’s stage (Fig. S2). For a detailed description of the moni-
toring network and the measurements’ quality assurance we refer to the
corresponding paper (Beck et al., 2018a). To proceed with our com-
parison, we aggregated the 4-min data to daily Tpean values and we also
considered the daily Tpi, and Trax values. We additionally investigated
the intraseasonal models’ performance.

For the large scale validation, we downloaded openly available daily
Tmean predictions from the DWD TRY project on a 1 x 1 km spatial
resolution (Krahenmann et al., 2016), generated by a 3-step interpola-
tion method. A daily background field was constructed from a non-linear
temperature gradient and it was estimated seven times a day. Then, two
hourly background fields were calculated by weighting the three
temporally closest background fields and they also conducted an hourly
residual interpolation. For a detailed description of the modeling pro-
cess, we refer to the corresponding paper (Krahenmann et al., 2018).
Our comparison was restricted to mainland Germany and the over-
lapping time period between the two datasets from 2001 to 2012. In
addition to an overall comparison of both Tpean models’ predictions (all
our model predictions against all DWD TRY model predictions across the
country for every year), we also conducted several sensitivity analyses
subsetting the predictions by season, without their extreme values, to
their extreme values, and comparing the urban versus the rural Augs-
burg area.

For both 2.3.4 and 2.3.5, all stated R? values correspond to the
fraction of variance explained by the respective models.

2.4. Case study - Augsburg

We used Augsburg as a case study to examine the spatiotemporal
variability as well as the distribution of the modeled daily Tpean in
comparison with the observed daily Tpean at the DWD sites. Augsburg is
the third largest city in Bavaria, Germany. The overall population of its
urban district and its surrounding districts (Landkreis Augsburg in the
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west and Aichach-Friedberg in the east), is around 900,000 people, of
which approx. 300,000 live in the city center. We chose Augsburg as it is
the study region of the Cooperative Health Research in the Region of
Augsburg (KORA) cohort (Holle et al., 2005) and one of the 18 study
centers of the NAKO study (German National Cohort Consortium, 2014).

2.5. Spatial and temporal patterns in Germany during 2000-2020

We calculated the main descriptive statistics of the three Ty;, mea-
sures and investigated the spatiotemporal patterns of T,y across entire
Germany, but also for the 18 study centers of the NAKO study, which are
scattered across the country and represent both rural and urban areas
including the biggest German cities (Fig. S3), focusing on study regions
that have more than 2000 inhabitants/km? and cover a large population
percentage (Mannheim, Leipzig, Kiel, Hannover, Hamburg, Essen,
Diisseldorf, Berlin and Augsburg).

3. Results
3.1. Models’ accuracy

Ta,ir and LST were highly correlated, with an average R?=0.91, an
intercept of 4.79 °C and a slope of 0.88 over the period 2000-2020, after
regressing T,y against LST. Table 1 shows the prediction accuracy results
for the first and the third stage model of each T,; measure for
2000-2020 on average. The detailed results per year are in the Sup-
plementary material (Tables S1 and S2). For the first stage, the 21-year
average R? equalled 0.91 (yearly range: 0.86-0.93), 0.96 (yearly range:
0.95-0.97) and 0.96 (yearly range: 0.95-0.97) for the Tnin, Tmean and
Tmax model in an average of 45,432, 48,925 and 42,155 cell-days,
respectively. We additionally observed low values of RMSE for all the
models. For the Tpyi, model, the 21-year average RMSE equalled 2.02 °C
(yearly range: 1.91 °C-2.13 °C), while for the Tpean and Tax equalled
1.41 °C (yearly range: 1.32 °C-1.54 °C) and 1.77 °C (yearly range: 1.67
°C-1.85 °C), respectively. The spatial and temporal R? remained quite
high, while the corresponding errors stayed low. In the case of Tpean,
overall spatial R? = 0.88 (yearly range: 0.84-0.93) and temporal R% =
0.97 (yearly range: 0.95-0.98), while RMSEg,atia1 = 0.49 °C (yearly
range: 0.42 °C-0.59 °C) and RMSE emporal = 1.32 °C (yearly range: 1.25
°C-1.45 °QC).

For the third stage model (Table 1), the 21-year average R? = 0.97
(yearly range: 0.95-0.98), 0.98 (yearly range: 0.97-0.99) and 0.97
(yearly range: 0.95-0.98), while the RMSE = 1.25 °C (yearly range:
1.17 °C-1.38 °C), 1.03 °C (yearly range: 0.88 °C-1.12 °C) and 1.41 °C
(yearly range: 1.22 °C-1.49 °C) for the Tpin, Tmean and Tmax model in a
number of 81,166, 87,040 and 84,330 cell-days, respectively. Table S3
shows the comparison results between the third and second stage Tair
predictions.

21-year average mean signed error was found to be 0.10 °C, 0.05 °C
and —0.16 °C, for Tpin, Tmean and Tmax model, respectively. We report it
in a yearly basis, together with the intercepts and slopes of the linear
regressions between our predictions and the DWD observations in
Table S4.

The percentage of T,;; predictions that was provided by each stage of
the modeling procedure can be found in Table S5 of the Supplementary
material. On average, the first stage resulted in 0.04%, 0.04%, 0.03% of
the final Trin, Tmean and Trax predictions, respectively, the second stage
a 36.1%, 35.6% and 32.7%, while the third stage filled in the remaining
approximately 62%, 62.5% and 65.4%. The missing values of our output
Tair predictions’ dataset over the period 2000-2020 were close to 1% for
all the models.

3.2. Validation with external data

The small-scale validation in the Augsburg area showed that all
models achieved high correspondence (0.95 < R? < 0.99) and low
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Prediction accuracy for the first and the third stage predictions: 10-fold CV results for daily Tpin, Tmean and Tmax in Germany, averaged for 2000-2020.

First stage predictions

Measure R? Rszpatia] R‘zemporal RMSE (°C) SD (°C) RMSEpagial (°C) RMSE emporal (°C) Sample size (cell-days number)
Tmin 0.91 0.68 0.92 2.02 6.76 0.87 1.83 45,432

Tmean 0.96 0.88 0.97 1.41 7.56 0.49 1.32 48,925

Tmax 0.96 0.84 0.97 1.77 9.12 0.77 1.60 42,155

Third stage predictions

Measure R? RMSE (°C) SD (°C) Sample size (cell-days number)
Trin 0.97 1.25 6.44 81,166

Tmean 0.98 1.03 7.22 87,040

Tmax 0.97 1.41 8.02 84,330

*SD: standard deviation of the DWD observed Ta;,.

errors, even below 1 °C (Table 2). By season comparison led to similar
findings of high models’ performance. All T,;; models, and especially the
Tmin model, achieved slightly better performance during the winter
rather than the summer period (Table 2). Detailed results are provided
in Tables S6 and S7. The linear regressions between the predicted Tq,
from our daily Tmin, Tmean and Tmax models and the HOBO-Logger
observed daily Tpin, Tmean and Tmax during the comparison period,
gave an intercept of 0.61, 0.28 and 0.41, and a slope of 1.04, 1.02 and
0.98, respectively (Table S8). Fig. 2 and S4 also indicates the strong
correspondence of our model predictions and the HOBO-Logger network
observations.

The large-scale comparison with the TRY dataset suggested a good
correlation between the two models’ outputs (0.71 < R? < 0.99) while
most RMSE were below 1 °C (Table 3). For year by year results, please
see Table S9-S13 in the Supplementary material. In Fig. 3, we visualized
the model correspondence for a randomly selected example year (2010).
Most of the two models’ predictions met in the slope of 1.

Our model predictions captured a wider Ty, distribution and repre-
sentation of spatial Ty, variations in small scale analysis as we observe in
the example Fig. S5 for the years 2003, 2006, 2008 and 2012 (randomly
chosen) in the Augsburg area.

3.3. Case study - Augsburg

We first calculated the distances between the geocoded residential
addresses of the KORA study participants and the two available DWD
stations across the Augsburg area (Fig. S6). Most of the participants lived
5-15 km far from a station. Additionally, we found that Tpea, varied
substantially over space (Fig. 4). The city centre was way hotter that the
surrounding rural areas (variation close to 2 °C) and in these rural re-
gions there was also substantial variation even in neighbouring tiles. The
actual difference in exposure assessment from the DWD observations
and our model predictions could also be seen in the long-term

assignment (Fig. 5). The DWD Tp,ean Was only representative for the left-
hand side distribution queue (cooler Augsburg areas). The higher tem-
peratures are not captured by the DWD stations.

Fig. 6 is a short-term Tpean exposure distribution example, using an
average of 7 days, which is often used for exposure assessment in
epidemiological studies. Our model’s predictions were close to the DWD
observations at both stations. But, both stations values were below the
distribution’s mean and especially the Tpean of DWD station 1 was lower
than the first quartile (Q1) of the distribution. This was mainly affected
by their location, which was outside the city centre as seen in Fig. 4.

3.4. Descriptive statistics and spatiotemporal Tq; patterns

Table 4 shows a selection of descriptive statistics (mean, standard
deviation (SD), Q1, median and third quartile (Q3)) regarding the Tyip,
Tmean and Tax in Germany for the period 2000-2020 resulting from the
DWD weather stations observations and our model predictions. The
observed 21-year average Tmin, Tmean and Tmax from the DWD stations
were 5.15 °C (SD = 6.59 °C), 9.44 °C (SD = 7.39 °C) and 13.85 °C (SD =
8.77 °C), respectively, while our models gave predicted 21-year average
Tmin> Tmean and Tpax of 5.24 °C (SD = 5.89 °C), 9.57 °C (SD = 7.36 °C)
and 14 °C (SD = 8.75 °C), respectively.

We also present the 21-year averaged predicted Tmin, Tmean and Tmax
maps of Germany (Fig. 7, plot 1). The Ty, spatial variability exceeded
15 °C annually on average, depending on the measure. We saw specific
spatial patterns for T, including mountainous regions, rivers, lakes,
forests and coastlines. For instance, the Alps and the Harz highland area
were characterized by the lowest Ty, values nationwide, while the dense
urban cores (e.g., from Stuttgart to Frankfurt) or big individual cities as
Munich and Berlin had much higher values of Ty, especially for Tpin
and Tean, than the surrounding rural areas. We also observed the high
contrasts our output provided even for small areas, due to its high res-
olution of 1 x 1 km. We additionally present in Fig. S7, the German-wide

Table 2
Accuracy results of the small-scale external validation with HOBO-Logger Tpin, Tmean and Tmax Observations in the Augsburg area during 2013-2018, overall and by
season.
Overall
Measure R? RMSE (°C) SD (°C) 7-day average R? 7-day average RMSE (°C) SD (°C)
Tmin 0.95 1.80 6.84 0.97 1.44 6.44
Tmean 0.99 1.07 7.72 0.99 0.90 7.37
Tmax 0.98 1.37 9.11 0.98 1.08 8.50
By season
Measure Winter Spring Summer Fall
R? RMSE (°C) SD (°C) R? RMSE (°C) SD (°C) R? RMSE (°C) SD (°C) R? RMSE (°C) SD (°C)
Thmin 0.83 1.53 4.10 0.89 1.78 4.74 0.74 2.05 3.13 0.87 1.72 4.51
Tmean 0.93 1.00 3.94 0.97 1.06 5.15 0.92 1.24 3.49 0.97 1.02 5.10
Tmax 0.92 1.30 4.68 0.96 1.29 6.26 0.91 1.43 4.81 0.96 1.36 6.59

*SD: standard deviation of the dependent variable (HOBO-Logger T,;,).
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Fig. 2. Density scatterplots between the model daily Tyean predictions and the HOBO-Logger daily Tpean Observations for 2018, daily average and 7-day average.

Table 3
Comparison between our model daily Tpean predictions and the DWD TRY model
daily Tmean predictions in Germany during 2001-2012.

R? RMSE (°C)
Overall 0.99 0.90
Season
Winter 0.94 0.98
Spring 0.97 0.90
Summer 0.94 0.88
Fall 0.97 0.86
Without extremes
5th petl. < Tmean < 95th petl. 0.99 0.79
To extremes
Tmean < 5th petl. 0.76 1.19
Tmean > 95th petl. 0.71 0.93
District
Augsburg Landkreis (rural) 0.99 0.84
Stadt Augsburg (urban) 0.99 0.85

N = 131.924.412 pairs

307 y=-0027+x R2,=0.99

adj
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Fig. 3. Density scatterplot between our model daily Tpean predictions and the
project TRY model daily Tmean predictions for 2010.

DTR maps for 2016-2019, i.e., the NAKO study baseline years. Eastern
Germany and more intensely the North-Eastern part of the country
experienced higher DTR variations, while cities or mountains and large
water bodies were characterized by smaller DTR.

Regarding the temporal Ty variability in Germany (and in NAKO
study centers) over the first two decades of the 21st century, we report
the differences between the predicted Tpean yearly averages and the 20-
year average (Fig. 7, plot 2 and Fig. S8). The year 2000 was excluded as
the model predictions started from late February. There was an obvious
tendency of increased averaged Tpean for the last 5-7 years (continu-
ously beyond 2016). The hottest years recorded during the studied
period were 2018 (Tpean = 10.45 °C) and 2020 (Tpean = 10.42 °C).
Additionally, we mapped the number of heat (Tpyax > 30 °C) and cold
(Tmin < 0 °C) days by 3-digit zip code through the years. Fig. 8 presents
an example comparing the years 2001 (as a reference) and 2015, where
the observed difference was pronounced. For 2015 the number of heat
days increased dramatically since 2001 mainly in eastern and south-
eastern Germany, whereas the cold days dropped, even if 2015 was
not among the hottest years of the study period (Fig. 7, plot 2).

4. Discussion

In this paper, we developed reliable high spatiotemporally-resolved
Tmin> Tmeans Tmax and DTR datasets for Germany during 2000-2020,
following a regression-based method which consists of three stages. We
combined meteorological and remote sensing data as well as multiple
land cover predictors. All models attained very good performance, and
consequently their predictive ability appears to have a strong founda-
tion, with overall high explained variance (0.91 < R? < 0.98) and low
errors (1.03 °C < RMSE < 2.02 °C), calculated through CV. In addition,
bias was found to be close to 0 (—0.16 °C < mean signed error <
0.10 °C). The external small (0.74 < R? < 0.99, 0.87 °C < RMSE <
2.05 °C) and large-scale validation (0.71 < R%< 0.99, 0.79 °C < RMSE <
1.19 °C) confirmed the high performance of the models. We additionally
showed the benefits of our spatiotemporal T,;; modeling in terms of
exposure assessment for participants of epidemiological studies, con-
ducting a case study in the Augsburg area.

For Germany, except the datasets of a coarser resolution of 5 km or
more (Brinckmann and Bissolli, 2015; Frick et al., 2014), there is the 1 x
1 km hourly T, dataset for 1995-2012, generated by Krahenmann et al.
(2018), who applied a 3-step interpolation method (monthly RMSE ~
1 °C). We used this product to externally compare our model findings
with another model across the country. There was a good overall
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Fig. 4. Spatial pattern of the averaged predicted Tpmean in the Augsburg area during 2000-2020.
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Fig. 5. Distribution of the predicted Tyean, assigned to KORA participants for 2000-2020 (in blue). The green and red lines show the exposure assignment based on
the nearest monitoring station location. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

correspondence. However, our model predictions captured broader Tq;, complex geo-climate study domain with high spatial heterogeneity,
variations, especially in city level (Fig. S5), as the interpolation methods interpolation leads to neighbouring motives, thus closer regions are
are highly affected by the weather stations locations with limitations to assigned rather similar values, and cannot capture sufficiently either the
fully represent between-station variability. Especially in Germany, a small-scale T, variability or its extreme values. Therefore, we also
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is referred to the Web version of this article.)

Table 4
Observed and predicted Tmin, Tmean and Tmax in Germany during 2000-2020.

Source Measure Mean SD Q1 Median Q3
°0) Q) Q) °0) °0)

DWD observations Tmin 5.15 6.59 0.34 5.33 10.33
(n=406stations)  Tmean 9.44 7.39 3.71 9.59 15.27
Tmax 13.85 8.77 6.81 13.91 20.68
Models predictions Tmin 5.24 5.89 0.24 5.24 10.29
(n=366,536 grid  Tmean 9.57 7.36 3.76 9.71 15.19
cells) Tmax 14.00 8.75 6.90 14.05 20.67

observed worse correspondence of our and TRY models to extremes, i.e.,
5th and 95th percentiles (Table 3). Krahenmann et al. (2018) also lack
validation with completely independent T, datasets while validating
the interpolation-based predictions with input data could be biased due
to their strong dependence. Finally, our output had a longer and more
recent temporal extent and can be used in recent German cohorts.
Aiming to produce a helpful dataset for scientists working in the field
of environmental epidemiology and especially those who investigate the
Tair health effects or implement T, in their analysis as a confounder or
an effect modifier, the case study example we demonstrate for Augsburg
is of great importance. The prevailing way for studies exploring the Ty,
health effects is to collect their exposure data from monitoring networks
consisting of a limited number of ground-based weather stations, un-
evenly distributed across the country and insufficient to capture the
spatial T, variability, especially in city centers. Taking into consider-
ation the Augsburg area, an epidemiological study would usually assign
to all participants the T,j, observations of the station which has the
shortest distance from their residential address or a weighted average of
the two available stations, again depending on distances or a simple
interpolation technique. Hence, the participants would not be assigned
with the exposure value of their actual location, but of the station’s
location even 10 km away (Fig. S6), implying the need of finer resolu-
tions. People living in the city centre, where there is no available station,
would be assigned with a way lower T, exposure than their represen-
tative one, as we observed in Figs. 5 and 6. All the aforementioned issues
lead to exposure error and consequently the health effects are biased
towards the null (Zeger et al., 2000). On the other hand, our output
captured the T, variability and trends and reduced the exposure
misclassification. Hence, we achieved a better representation of Ty,

variability and fulfilled one of our primary goals that was to provide
more accurate T exposure assessment to German epidemiological
studies.

A key finding of our analysis were the observed changes in Taj,
which are mainly attributed to climate change that is already noticeable
in Germany (Riith et al., 2019). We showed that the four hottest years,
based on an area-weighted averaging of the temperature during last two
decades across the country, all occurred after 2014, while the last three
consecutive years found to be the hottest overall (Fig. 7, plot 2). This
finding was consistent and even more pronounced for the big constantly
growing German cities (Fig. S7). Additionally, due to the high spatio-
temporal resolution of the models, we detected climate change effects
that cannot be captured by crude German-wide T, averages. For
instance, for 2015, we observed a substantial increase in hot days since
2001 even if this year’s average T, was lower than the 20-year average.
The results of this analysis showing the impact of climate change on Taj,
locally and countrywide, are large, even over this short temporal period.
With this tool, impacts on human health could be detected which then
might contribute to climate change adaptation and risk reduction pol-
icies that German authorities need to enact in the following years.

4.1. Strengths

Best of our knowledge, this is the first study of T, modeling which
validates the models’ prediction so extensively using external data. First
locally, via a ground-based