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A B S T R A C T   

The commonly used weather stations cannot fully capture the spatiotemporal variability of near-surface air 
temperature (Tair), leading to exposure misclassification and biased health effect estimates. We aimed to improve 
the spatiotemporal coverage of Tair data in Germany by using multi-stage modeling to estimate daily 1 × 1 km 
minimum (Tmin), mean (Tmean), maximum (Tmax) Tair and diurnal Tair range during 2000–2020. We used weather 
station Tair observations, satellite-based land surface temperature (LST), elevation, vegetation and various land 
use predictors. In the first stage, we built a linear mixed model with daily random intercepts and slopes for LST 
adjusted for several spatial predictors to estimate Tair from cells with both Tair and LST available. In the second 
stage, we used this model to predict Tair for cells with only LST available. In the third stage, we regressed the 
second stage predictions against interpolated Tair values to obtain Tair countrywide. All models achieved high 
accuracy (0.91 ≤ R2 ≤ 0.98) and low errors (1.03 ◦C ≤ Root Mean Square Error (RMSE) ≤ 2.02 ◦C). Validation 
with external data confirmed the good performance, locally, i.e., in Augsburg for all models (0.74 ≤ R2 ≤ 0.99, 
0.87 ◦C ≤ RMSE ≤ 2.05 ◦C) and countrywide, for the Tmean model (0.71 ≤ R2 

≤ 0.99, 0.79 ◦C ≤ RMSE ≤ 1.19 ◦C). 
Annual Tmean averages ranged from 8.56 ◦C to 10.42 ◦C with the years beyond 2016 being constantly hotter than 
the 21-year average. The spatial variability within Germany exceeded 15 ◦C annually on average following 
patterns including mountains, rivers and urbanization. Using a case study, we showed that modeling leads to 
broader Tair variability representation for exposure assessment of participants in health cohorts. Our results 
indicate the proposed models as suitable for estimating nationwide Tair at high resolution. Our product is critical 
for temperature-based epidemiological studies and is also available for other research purposes.   

1. Introduction 

Climate change is one of the greatest global challenges for humans 
and their entire living environment in the 21st century. It has been at the 
center of various social and research disciplines, from economics (Hertel 
and Rosch, 2010) and animal welfare (Lacetera, 2019) to land man-
agement and food security (Shukla et al., 2019), with a particular 
attention to the human health domain (Peters and Schneider, 2021; 
Vicedo-Cabrera et al., 2021; Watts et al., 2019). Near surface air tem-
perature (Tair) is one of the most important meteorological parameters 

and a key indicator of climate change. Tair is observed to be steadily 
increasing globally since pre-industrial times, with the 10 warmest years 
on record to have occurred after 2000 (Lindsey and Dahlman, 2021). 
Further increases from 3 ◦C to 6.2 ◦C are expected by the end of 2100, if 
no action is taken (IPCC, 2022). In Germany, 32 of the last 34 years are 
characterized by annual Tair above the 1961–1990 average (DWD, 
2022). 

Many epidemiological studies have documented the adverse impact 
of Tair on mortality (Guo et al., 2016; Zanobetti and Schwartz, 2008) and 
morbidity (Ye et al., 2012), especially when exposure to extreme Tair 
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values occurs (Gronlund et al., 2018; Kovats and Kristie, 2006). Besides 
heat waves and cold spells, increases or decreases in more moderate Tair 
ranges to which people are exposed most of the time during their life, 
also contribute to the observed temperature-related mortality burden 
(Gasparrini et al., 2015). Human health can be adversely affected by Tair 
either after short (Breitner et al., 2014) or long-term (Zafeiratou et al., 
2021) exposure. Therefore, Tair extremes and variations pose a major 
threat for public health, especially with continuing global warming and 
the higher frequency and intensity of extreme events (Meehl and 
Tebaldi, 2004). In this regard, high spatiotemporally-resolved Tair 
exposure datasets are needed for improved exposure assessment in 
epidemiological studies. 

The vast majority of environmental epidemiological studies that 
investigate health effects of Tair or implement Tair in their analyses as a 
confounder or an effect modifier, use observational data from meteo-
rological stations, often provided by a national monitoring network. 
These datasets are generally highly accurate, quality controlled and 
publicly available and consist of various meteorological parameters, 
including Tair 2 m above the ground. However, the monitoring locations 
are irregularly scattered, often placed in rural or park-like environ-
ments, and their number is too limited to fully capture spatial temper-
ature variations across urban and rural landscapes. Furthermore, in most 
cases airport stations are used, which, by definition, are located out of 
the cities. Therefore, the commonly used weather station observations 
are not capable to represent the full variability of Tair in space and in 
time, leading to exposure misclassification and bias of health effect es-
timates towards the null hypothesis of no association (Armstrong, 
1998). Over the last years, researchers have developed methods to 
provide high-resolution spatiotemporally Tair exposure outputs on local, 
countrywide or even global scales. Several interpolation techniques 
have been suggested such as regression-kriging (Kilibarda et al., 2014; Li 
et al., 2020; Sekulić et al., 2020), modified inverse distance weighting 
(IDW) and thin plate spline (TPS) interpolation. For example, Sekulić 
et al. (2020) predicted daily mean Tair (Tmean) in 1 × 1 km across Croatia 
for 2008 using a regression kriging model with Tmean observations and 
geometrical temperature trend, digital elevation model (DEM) and 
topographic wetness index as covariates (R2 = 0.98, Root Mean Square 
Error (RMSE) = 1.2 ◦C). Jobst et al. (2017) introduced a multi-layer 
approach, including TPS and lapse rate models, to estimate daily 
maximum Tair (Tmax) and minimum Tair (Tmin) in 1 × 1 km from 1990 to 
2014, in the alpine Clutha catchment, New Zealand (Tmax RMSE =
2.38 ◦C, Tmin RMSE = 2.93 ◦C). Other studies compared multiple 
interpolation approaches in the same region. In middle Ebro Valley, 
Spain, Vicente-Serrano et al. (2003) compared the results of annual Tair 
models of global or local interpolators as well as geo-statistical and 
mixed methods. R2 ranged from 0.39 (co-kriging) to 0.75 (regression--
based) and RMSE from 0.80 ◦C (co-kriging) to 0.56 ◦C (IDW, r = 2). 
However, the traditional interpolation methods are subject to specific 
limitations. For instance, they are highly affected by the weather sta-
tions locations, without fully accounting for between-station variability. 
This issue is more profound in complex geo-climatic areas and land-
scapes characterized by high spatial heterogeneity. Interpolation also 
leads to neighbouring effects and cannot capture the Tair variations in 
city-level analysis and consequently the urban heat island (UHI) effects 
are not well represented. Finally, the weather stations are often poorly 
scattered across a country and fail to provide complete Tair time series. 

To improve the interpolation between locations, several studies have 
used satellite data for their main predictors (Benali et al., 2012; Fluck-
iger et al., 2022; Vancutsem et al., 2010; Xu et al., 2014; Zhu et al., 
2013). For instance, Xu et al. (2014) applied a linear regression and a 
random forest (RF) model to predict Tmax across British-Columbia, 
Canada. The RF model achieved higher model’s accuracy (R2 = 0.74, 
mean absolute error (MAE) of 2.02 ◦C) in comparison with the linear 
regression model (R2 = 0.64, MAE = 2.41 ◦C). Recently, Jin et al. (2022) 
estimated high-resolution spatiotemporal Tmean from land surface tem-
perature (LST) and a variety of spatial predictors using a three-stage 

ensemble model in Sweden over a long period. The ensemble model 
consisted of a generalized additive model, a generalized additive mixed 
model, a RF model and an extreme gradient boosting model (R2 = 0.98, 
RMSE = 1.38 ◦C). In recent years, several studies applied a multi-stage 
regression-based approach introduced by Kloog et al. (2014), and 
making use of the moderate resolution imaging spectroradiometer 
(MODIS) LST products to predict daily Tair in 1 × 1 km (Kloog et al., 
2017; Rosenfeld et al., 2017; Shi et al., 2016). This approach is 
straightforward to model, with high accuracy and small errors. 

Tmean is the most frequently modeled Tair measure and the most 
commonly used in studies of environmental epidemiology. However, we 
also need to focus on Tmin and Tmax. Climate change strongly affects Tmin 
and Tmax (Modala et al., 2017) and there is evidence that Tmin, which 
corresponds to the nighttime temperatures, has been increased more 
than Tmax during the 20th century (Gil-Alana, 2018). Due to this sub-
stantial Tmin increase, especially the urban areas face extensive heat 
stress nights, a phenomenon that will be strengthened in the future 
(Chapman et al., 2017). Modeling Tmin and Tmax also facilitates the es-
timates of the diurnal Tair range (DTR). There is already evidence that 
DTR affects, independently from Tmean, the human health (Cheng et al., 
2014; Davis et al., 2020). These effects are critically important for future 
policies implementation, but lack of broad epidemiological investiga-
tion, especially at national scale due to the scarcity of fully spatially 
covered, high resolution, daily DTR data. 

In this study, we aimed to extend and improve the spatiotemporal 
coverage of Tair data in the complex terrain of Germany, using remote 
sensing and regression-based modeling. More specifically, we aimed to 
map daily Tmin, Tmean, Tmax and DTR in 1 × 1 km across Germany during 
the period 2000–2020 to provide harmonized Tair data for epidemio-
logical research like the German National Cohort (NAKO) with more 
than 200,000 participants spread around the country. 

2. Methods 

2.1. Study area 

Germany is located in central Europe, covering 357,021 km2, with a 
population of 83.2 million people (Statistisches Bundesamt, 2022). The 
country consists of a diverse landscape, starting from the Alps in the 
south to the northern coast lines of the North and Baltic Seas, including 
big cities, small towns, mountains, various water bodies, forests and 
arable land. Elevation ranges from 3.54 m below sea level near 
Neuendorf-Sachsenbande to 2,962 m in the Alpine mountain Zugspitze. 
Climate is temperate to continental according to the Köppen climate 
classification. There is a warm summer humid continental climate in 
south-eastern regions and a temperate oceanic climate in north-western 
regions (Beck et al., 2018b). The lowest Tair ever recorded in Germany 
was − 37.8 ◦C measured on February 12th, 1929 in Wolznach-Hüll 
(DWD, 2017), while the highest was 41.2 ◦C measured on July 25th, 
2019 in Duisburg and in Tönisvorst of North Rhine-Westphalia (DWD, 
2020). We divided Germany’s mainland into 366,536 grid cells of 1 × 1 
km based on the European INSPIRE (Infrastructure for Spatial Infor-
mation in the European Community) standard using the Lambert 
Azimuthal Equal-Area projection, EPSG: 3035 (©GeoBasis-DE/BKG 
(2021)). 

2.2. Materials 

We collected a large number of publicly available earth- and 
satellite-based data derived from multiple sources for the period 
2000–2020 across Germany, with the best fitting temporal and spatial 
resolution for our analysis. LST based on satellite data was the main 
predictor for Tair as they were strongly correlated. Moreover, we 
implemented in the modeling process various spatial predictors such as 
remote sensing elevation, vegetation, urban fabric, arable land, pas-
tures, forests and inland waters to increase the percentage of explained 
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variance and enhance the model performance overall. 

2.2.1. Tair data 
We downloaded daily data of Tmin, Tmean and Tmax observations 2 m 

above the ground from 1080 sites, which are publicly available from the 
Deutscher Wetterdienst (DWD) - German Meteorological Service online 
database (DWD, 2021). All data were quality controlled by DWD and 
their metadata (e.g., station relocation or time zones) were provided as 
well. We did not find any unusual values such as temperatures lower or 
higher than the observed temperature extreme records in the country or 
any seasonal outliers. We excluded stations that stopped measuring 
before 2000 (N = 358), stations that weren’t operating continuously 
over the entire study period (N = 309, > 70% NAs) and stations located 
outside the German mainland (N = 7). Thus, we included Tair data from 
406 weather stations scattered across the country (Fig. 1), with each 
station located in a single grid cell of our gridded dataset. The DWD Tair 
dataset had only 1.4% of station-days with missing values during our 
study period. 

2.2.2. Remote sensing data 

2.2.2.1. TERRA MODIS data. We downloaded and preprocessed TERRA 
MODIS LST and normalized difference vegetation index (NDVI) data 
from the server (NASA, 2021) through the R package MODIStsp (Busetto 
and Ranghetti, 2016). Since TERRA MODIS started measuring on 
February 24th, 2000, our analysis also starts on that date. 

2.2.2.1.1. LST data. LST defines the radiative temperature of the 
earth’s surface, as derived from infrared radiation and measured in the 
direction of the remote sensor. We used the product MOD11A1v006 that 
provides LST (using the generalized split-window algorithm) data in a 

daily temporal resolution and a spatial resolution of 1 × 1 km, corrected 
for emissivity (Wan et al., 2015). We used daytime LST to model Tmax 
and nighttime LST to model Tmin and Tmean, as suggested by previous 
studies (Rosenfeld et al., 2017), regardless their quality assurance flag to 
avoid reducing the input sample size since for the most problematic cells 
affected by cloud effects, instrumental problems or other reasons, LST 
was not produced. For more insight into MODIS LST and its retrieval, we 
refer to the existing literature (Wan, 2014). 

2.2.2.1.2. NDVI data. NDVI is used as a proxy for greenness and 
quantifies the amount of vegetation by calculating the near-infrared and 
the red light difference. We used the product MOD13A3v006 that pro-
vides monthly NDVI data, as greenness does not change considerably 
within a month, in a spatial resolution of 1 × 1 km (Didan, 2015). We 
also tested the enhanced vegetation index (EVI) as alternative. Since we 
observed strong positive correlations between NDVI and EVI (21-year 
average r = 0.81), negligible differences in the models’ validation results 
(after the 3rd or 4th decimal point) and extremely correlated Tair pre-
dictions (r = 0.999988), we kept NDVI as model predictor. 

2.2.2.2. DEM data. We used the DEM (GTOPO30) developed by the US 
Geological Survey’s Earth Resources Observation Systems Data Center. 
Its spatial resolution was 30-arc-second and we aggregated it to 1 × 1 km 
grid cells over mainland Germany, borders and shorelines included 
(Fig. S1). 

2.2.2.3. Land use data. From Copernicus CORINE Land Cover 2012 
(CLC2012, 250 m resolution) https://land.copernicus.eu/pan-europe 
an/corine-land-cover/clc-2012 and 2018 (CLC2018, 100 m resolution) 
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018, 
we extracted the variables urban fabric (classes: “continuous urban 

Fig. 1. Map of Germany showing the spatial distribution of the 406 Tair weather stations included in our analysis (2000–2020).  
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fabric” and “discontinuous urban fabric” from the subcategory urban 
fabric of the artificial surfaces category), arable land (classes: “non- 
irrigated arable land”, “permanently irrigated arable land” and “rice 
fields” from the subcategory arable land of the agricultural areas cate-
gory), pastures (class: “pastures” from the subcategory arable land of the 
agricultural areas category), forests (classes: “broad-leaved forest”, the 
“coniferous forest” and the “mixed forest” from the subcategory forest of 
the forest and seminatural areas category) and inland waters (classes: 
“water courses” and the “water bodies” from the subcategory inland 
waters of the water bodies category). We then combined the classes of 
each variable and calculated each variable’s proportion of CORINE 
pixels to the INSPIRE 1 × 1 km grid cells over mainland Germany. 
CLC2012 was used for modeling until 2016 and CLC2018 from 2017 on. 

2.3. Statistical analysis and validation 

We applied a three-stage regression-based model, following the 
approach from Kloog et al. (2014). In previous studies following the 
same approach basis, the results were promising. Kloog et al. (2014) 
mapped Tmean in the northeast and mid-Atlantic USA (RMSE = 2.16 ◦C). 
Shi et al. (2016) predicted Tmean in southeastern USA (R2 = 0.97, RMSE 
= 1.38 ◦C). Rosenfeld et al. (2017) estimated Tmin, Tmean and Tmax in 
Israel using LST data from both TERRA and AQUA satellites (RMSE <
1.7 ◦C). Finally, Kloog et al. (2017) estimated Tmean in France (R2 > 0.93, 
RMSE < 1.7 ◦C). Given the method’s high accuracy, the small errors, its 
straightforward way of modeling and its successful application in 
different and geographically complex areas around the world, we also 
followed the basic concept of this approach, adjusting it to our needs 
with regard to Germany’s unique spatial and geo-climate features, 
differentiating the process where it was necessary and introducing a TPS 
technique implementation on the third stage of the model. More spe-
cifically, due to Germany’s unique surface and altitude fluctuation, we 
first adjusted our model for elevation. We also added information on 
water bodies, forests and arable land which corresponded to a large 
proportion of the country, i.e., arable land covers around 34% of Ger-
many (and 28.32% in stage 1 - calibration stage of our analysis). Addi-
tionally, we implemented a TPS interpolation given the number and the 
distribution of the DWD weather stations and used grid-cell specific 
intercepts and slopes in the third stage to capture spatial differences in 
the relationship of interpolated observed Tair with predicted Tair. Our 
code was developed in R software, version 4.0.2 (R Core Team, 2020). 
The linear mixed models analyses were conducted with the R package 
“LM4” (Bates et al., 2014), while figures were produced either using the 
R package “ggplot2” (Wickham, 2009) or QGIS, version 3.10.5-A Coruña 
(QGIS Development Team, 2020). We applied the three-stage modeling 
process separately for each year and each Tair measure. 

2.3.1. First stage: Tair and LST available 
The first stage included grid cells where both Tair observations from 

DWD weather stations and satellite-derived LST values were available. 
We regressed Tair on LST and additional spatial information to under-
stand and describe the Tair-LST relationship in the best way possible for 
Germany over the last two decades. A daily random slope for LST was 
implemented in the model to account for daily variations in the Tair-LST 
relationship. 

The general mathematical formula of the first stage linear mixed 
effects model was the following: 

Tairij = bo + uj +
(
b1 + vj

)
∗ LSTij + b2 ∗ DEMi + b3 ∗ NDVIij + b4

∗ UrbanFabrici + b5 ∗ ArableLandi + b6 ∗ Pasturesi + b7 ∗ Forestsi

+ b8 ∗ InlandWatersi + εij

(1)  

where,  

• Tairij stands for the Tair observation at the grid cell i on day j;  
• bo and uj stand for the fixed and the random intercepts, respectively;  
• LSTij stands for the daytime or nighttime LST measurement at the 

grid cell i on day j;  
• b1 and vj stand for the fixed and the random slopes, respectively;  
• DEMi stands for the elevation at grid cell i;  
• NDVIij stands for the monthly NDVI measurement at the grid cell i on 

the month that day j falls in;  
• UrbanFabrici, ArableLandi, Pasturesi, Forestsi and InlandWatersi 

stand for the percentages of the urbanism, the land under temporary 
agricultural crops, the pastures, the forests and the water bodies at 
the grid cell i.  

• εij is the error term at grid cell i on day j. 

For each Tair measure, we applied a separate regression. 

2.3.2. Second stage: Tair not available and LST available 
In the second stage, Tair was predicted for the combinations of grid 

cells and days without available Tair observations, but with available 
LST data by applying the regression coefficients derived from EQ. (1). 

2.3.3. Third stage: neither Tair nor LST available 
In the third stage, we predicted Tair for grid cells and days with 

neither Tair observations nor LST data. We regressed second stage Tair 
predictions against daily interpolated Tair values in 1 × 1 km across 
Germany via a linear mixed model with random grid-cell-specific in-
tercepts and slopes. Since previous studies suggested that TPS out-
performed alternative interpolation techniques such as kriging or IDW 
for Tair modeling (Wu et al., 2015), we applied it to interpolate the DWD 
Tair data. The smoothing parameter was chosen by a generalized cross 
validation (CV) method. We used the R package “fields” (Nychka et al., 
2017) for the TPS interpolation. 

The general mathematical formula of the third stage linear mixed 
effects model was the following: 

Second stage Tairij = ai + bi ∗ intTairij + εij (2)  

where,  

• Second stage Tairij stands for the Tair predictions given by the second 
stage at the grid cell i, on the day j;  

• ai and bi stand for the i grid-cell-specific intercepts and slopes;  
• intTairij stands for the interpolated Tair values at the grid cell i on day 

j;  
• εij is the error term at grid cell i on day j. 

For each Tair measure, we applied a separate regression. 
After predicting Tmin, Tmean and Tmax, we also calculated the DTR by 

taking the difference of Tmin from Tmax. All dates are represented in the 
standard time zone for Germany, i.e., UTC+1, without adjusting for 
daylight-saving time. 

2.3.4. Internal validation 
The models’ performance was evaluated through 10-fold CV sepa-

rately for the first and third stage by randomly dividing the respective 
datasets into testing and training sets (10:90) ten times. The models 
were then re-fitted in each of the ten training sets and Tair predicted in 
the respective testing sets. 

For the first stage, we calculated the corresponding percent of 
explained Tair variability R2 and the RMSE between observed and pre-
dicted Tair for each run for the cell-days with both Tair and LST available. 
The temporal and spatial performance (R2 and RMSE) were also 
computed (Shi et al., 2016). Briefly, the temporal statistics derived by 
regressing (a) against (b), where: (a) is the difference of the DWD 
observed Tairij of each j day with the annual DWD observed Tairi in 
weather station location i, and (b) is the difference of the predicted Tairij 
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of each j day with the annual predicted Tair at the same weather station 
location i. Spatial statistics derived by regressing (c) against (d), where: 
(c) is the annual DWD observed Tairi and (d) is the annual predicted Tairi 
in weather station location i. 

For the third stage, R2 and RMSE derived from linearly regressing the 
predicted Tair against DWD observed Tair for each run. Before the 
beginning of the modeling process, this specific sub-sample of DWD 
weather stations Tair observations in cell-days without LST available, 
was completely held-out from the modeling process. Thus, we used these 
cell-days to validate our third stage predictions and to quantify the 
respective errors also under conditions such as of cloudy days. We also 
compared the predicted Tair of the third stage against the second stage 
Tair, i.e., the dependent variable of the third stage model, for all grid cells 
across Germany. 

We additionally quantified the bias through measuring the mean 
signed error between the DWD observed Tair and our models’ Tair as 
predicted from all the modeling stages. 

2.3.5. Validation with external data 
We carried out two validations using external datasets and compared 

our predictions i) on the small scale with a monitoring network (HOBO- 
Logger) set up in the region of the city of Augsburg in 2012 in a coop-
erative work of Helmholtz Munich (Institute of Epidemiology, Envi-
ronmental Risks) and the University of Augsburg (Institute of 
Geography, Physical Geography and Quantitative Methods) (Beck et al., 
2018a) and ii) on the large scale with predictions from another 
German-wide model dataset developed by DWD within the “Testrefer-
enzjahre” (TRY) project by using a completely different methodological 
approach (Krähenmann et al., 2018). 

For the small-scale validation, we considered Tair measurements of 4 
min resolution from 82 HOBO-Logger devices (ONSET, Type Pro v2) 
(2013–2018) with most of them to be located in the city of Augsburg 
where we did not have prior information from DWD on the first - cali-
bration model’s stage (Fig. S2). For a detailed description of the moni-
toring network and the measurements’ quality assurance we refer to the 
corresponding paper (Beck et al., 2018a). To proceed with our com-
parison, we aggregated the 4-min data to daily Tmean values and we also 
considered the daily Tmin and Tmax values. We additionally investigated 
the intraseasonal models’ performance. 

For the large scale validation, we downloaded openly available daily 
Tmean predictions from the DWD TRY project on a 1 × 1 km spatial 
resolution (Krähenmann et al., 2016), generated by a 3-step interpola-
tion method. A daily background field was constructed from a non-linear 
temperature gradient and it was estimated seven times a day. Then, two 
hourly background fields were calculated by weighting the three 
temporally closest background fields and they also conducted an hourly 
residual interpolation. For a detailed description of the modeling pro-
cess, we refer to the corresponding paper (Krähenmann et al., 2018). 
Our comparison was restricted to mainland Germany and the over-
lapping time period between the two datasets from 2001 to 2012. In 
addition to an overall comparison of both Tmean models’ predictions (all 
our model predictions against all DWD TRY model predictions across the 
country for every year), we also conducted several sensitivity analyses 
subsetting the predictions by season, without their extreme values, to 
their extreme values, and comparing the urban versus the rural Augs-
burg area. 

For both 2.3.4 and 2.3.5, all stated R2 values correspond to the 
fraction of variance explained by the respective models. 

2.4. Case study - Augsburg 

We used Augsburg as a case study to examine the spatiotemporal 
variability as well as the distribution of the modeled daily Tmean in 
comparison with the observed daily Tmean at the DWD sites. Augsburg is 
the third largest city in Bavaria, Germany. The overall population of its 
urban district and its surrounding districts (Landkreis Augsburg in the 

west and Aichach-Friedberg in the east), is around 900,000 people, of 
which approx. 300,000 live in the city center. We chose Augsburg as it is 
the study region of the Cooperative Health Research in the Region of 
Augsburg (KORA) cohort (Holle et al., 2005) and one of the 18 study 
centers of the NAKO study (German National Cohort Consortium, 2014). 

2.5. Spatial and temporal patterns in Germany during 2000–2020 

We calculated the main descriptive statistics of the three Tair mea-
sures and investigated the spatiotemporal patterns of Tair across entire 
Germany, but also for the 18 study centers of the NAKO study, which are 
scattered across the country and represent both rural and urban areas 
including the biggest German cities (Fig. S3), focusing on study regions 
that have more than 2000 inhabitants/km2 and cover a large population 
percentage (Mannheim, Leipzig, Kiel, Hannover, Hamburg, Essen, 
Düsseldorf, Berlin and Augsburg). 

3. Results 

3.1. Models’ accuracy 

Tair and LST were highly correlated, with an average R2 = 0.91, an 
intercept of 4.79 ◦C and a slope of 0.88 over the period 2000–2020, after 
regressing Tair against LST. Table 1 shows the prediction accuracy results 
for the first and the third stage model of each Tair measure for 
2000–2020 on average. The detailed results per year are in the Sup-
plementary material (Tables S1 and S2). For the first stage, the 21-year 
average R2 equalled 0.91 (yearly range: 0.86–0.93), 0.96 (yearly range: 
0.95–0.97) and 0.96 (yearly range: 0.95–0.97) for the Tmin, Tmean and 
Tmax model in an average of 45,432, 48,925 and 42,155 cell-days, 
respectively. We additionally observed low values of RMSE for all the 
models. For the Tmin model, the 21-year average RMSE equalled 2.02 ◦C 
(yearly range: 1.91 oC–2.13 ◦C), while for the Tmean and Tmax equalled 
1.41 ◦C (yearly range: 1.32 oC–1.54 ◦C) and 1.77 ◦C (yearly range: 1.67 
oC–1.85 ◦C), respectively. The spatial and temporal R2 remained quite 
high, while the corresponding errors stayed low. In the case of Tmean, 
overall spatial R2 = 0.88 (yearly range: 0.84–0.93) and temporal R2 =

0.97 (yearly range: 0.95–0.98), while RMSEspatial = 0.49 ◦C (yearly 
range: 0.42 oC–0.59 ◦C) and RMSEtemporal = 1.32 ◦C (yearly range: 1.25 
oC–1.45 ◦C). 

For the third stage model (Table 1), the 21-year average R2 = 0.97 
(yearly range: 0.95–0.98), 0.98 (yearly range: 0.97–0.99) and 0.97 
(yearly range: 0.95–0.98), while the RMSE = 1.25 ◦C (yearly range: 
1.17 ◦C–1.38 ◦C), 1.03 ◦C (yearly range: 0.88 ◦C–1.12 ◦C) and 1.41 ◦C 
(yearly range: 1.22 ◦C–1.49 ◦C) for the Tmin, Tmean and Tmax model in a 
number of 81,166, 87,040 and 84,330 cell-days, respectively. Table S3 
shows the comparison results between the third and second stage Tair 
predictions. 

21-year average mean signed error was found to be 0.10 ◦C, 0.05 ◦C 
and − 0.16 ◦C, for Tmin, Tmean and Tmax model, respectively. We report it 
in a yearly basis, together with the intercepts and slopes of the linear 
regressions between our predictions and the DWD observations in 
Table S4. 

The percentage of Tair predictions that was provided by each stage of 
the modeling procedure can be found in Table S5 of the Supplementary 
material. On average, the first stage resulted in 0.04%, 0.04%, 0.03% of 
the final Tmin, Tmean and Tmax predictions, respectively, the second stage 
a 36.1%, 35.6% and 32.7%, while the third stage filled in the remaining 
approximately 62%, 62.5% and 65.4%. The missing values of our output 
Tair predictions’ dataset over the period 2000–2020 were close to 1% for 
all the models. 

3.2. Validation with external data 

The small-scale validation in the Augsburg area showed that all 
models achieved high correspondence (0.95 ≤ R2 ≤ 0.99) and low 
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errors, even below 1 ◦C (Table 2). By season comparison led to similar 
findings of high models’ performance. All Tair models, and especially the 
Tmin model, achieved slightly better performance during the winter 
rather than the summer period (Table 2). Detailed results are provided 
in Tables S6 and S7. Τhe linear regressions between the predicted Tair 
from our daily Tmin, Tmean and Tmax models and the HOBO-Logger 
observed daily Tmin, Tmean and Tmax during the comparison period, 
gave an intercept of 0.61, 0.28 and 0.41, and a slope of 1.04, 1.02 and 
0.98, respectively (Table S8). Fig. 2 and S4 also indicates the strong 
correspondence of our model predictions and the HOBO-Logger network 
observations. 

The large-scale comparison with the TRY dataset suggested a good 
correlation between the two models’ outputs (0.71 ≤ R2 ≤ 0.99) while 
most RMSE were below 1 ◦C (Table 3). For year by year results, please 
see Table S9-S13 in the Supplementary material. In Fig. 3, we visualized 
the model correspondence for a randomly selected example year (2010). 
Most of the two models’ predictions met in the slope of 1. 

Our model predictions captured a wider Tair distribution and repre-
sentation of spatial Tair variations in small scale analysis as we observe in 
the example Fig. S5 for the years 2003, 2006, 2008 and 2012 (randomly 
chosen) in the Augsburg area. 

3.3. Case study - Augsburg 

We first calculated the distances between the geocoded residential 
addresses of the KORA study participants and the two available DWD 
stations across the Augsburg area (Fig. S6). Most of the participants lived 
5–15 km far from a station. Additionally, we found that Tmean varied 
substantially over space (Fig. 4). The city centre was way hotter that the 
surrounding rural areas (variation close to 2 ◦C) and in these rural re-
gions there was also substantial variation even in neighbouring tiles. The 
actual difference in exposure assessment from the DWD observations 
and our model predictions could also be seen in the long-term 

assignment (Fig. 5). The DWD Tmean was only representative for the left- 
hand side distribution queue (cooler Augsburg areas). The higher tem-
peratures are not captured by the DWD stations. 

Fig. 6 is a short-term Tmean exposure distribution example, using an 
average of 7 days, which is often used for exposure assessment in 
epidemiological studies. Our model’s predictions were close to the DWD 
observations at both stations. But, both stations values were below the 
distribution’s mean and especially the Tmean of DWD station 1 was lower 
than the first quartile (Q1) of the distribution. This was mainly affected 
by their location, which was outside the city centre as seen in Fig. 4. 

3.4. Descriptive statistics and spatiotemporal Tair patterns 

Table 4 shows a selection of descriptive statistics (mean, standard 
deviation (SD), Q1, median and third quartile (Q3)) regarding the Tmin, 
Tmean and Tmax in Germany for the period 2000–2020 resulting from the 
DWD weather stations observations and our model predictions. The 
observed 21-year average Tmin, Tmean and Tmax from the DWD stations 
were 5.15 ◦C (SD = 6.59 ◦C), 9.44 ◦C (SD = 7.39 ◦C) and 13.85 ◦C (SD =
8.77 ◦C), respectively, while our models gave predicted 21-year average 
Tmin, Tmean and Tmax of 5.24 ◦C (SD = 5.89 ◦C), 9.57 ◦C (SD = 7.36 ◦C) 
and 14 ◦C (SD = 8.75 ◦C), respectively. 

We also present the 21-year averaged predicted Tmin, Tmean and Tmax 
maps of Germany (Fig. 7, plot 1). The Tair spatial variability exceeded 
15 ◦C annually on average, depending on the measure. We saw specific 
spatial patterns for Tair, including mountainous regions, rivers, lakes, 
forests and coastlines. For instance, the Alps and the Harz highland area 
were characterized by the lowest Tair values nationwide, while the dense 
urban cores (e.g., from Stuttgart to Frankfurt) or big individual cities as 
Munich and Berlin had much higher values of Tair, especially for Tmin 
and Tmean, than the surrounding rural areas. We also observed the high 
contrasts our output provided even for small areas, due to its high res-
olution of 1 × 1 km. We additionally present in Fig. S7, the German-wide 

Table 1 
Prediction accuracy for the first and the third stage predictions: 10-fold CV results for daily Tmin, Tmean and Tmax in Germany, averaged for 2000–2020.  

First stage predictions 

Measure R2 R2
spatial R2

temporal RMSE (oC) SD (oC) RMSEspatial (oC) RMSEtemporal (oC) Sample size (cell-days number) 

Tmin 0.91 0.68 0.92 2.02 6.76 0.87 1.83 45,432 
Tmean 0.96 0.88 0.97 1.41 7.56 0.49 1.32 48,925 
Tmax 0.96 0.84 0.97 1.77 9.12 0.77 1.60 42,155  

Third stage predictions 

Measure R2 RMSE (oC) SD (oC) Sample size (cell-days number) 

Tmin 0.97 1.25 6.44 81,166 
Tmean 0.98 1.03 7.22 87,040 
Tmax 0.97 1.41 8.02 84,330 

*SD: standard deviation of the DWD observed Tair. 

Table 2 
Accuracy results of the small-scale external validation with HOBO-Logger Tmin, Tmean and Tmax observations in the Augsburg area during 2013–2018, overall and by 
season.  

Overall 

Measure R2 RMSE (oC) SD (oC) 7-day average R2 7-day average RMSE (oC) SD (oC) 

Tmin 0.95 1.80 6.84 0.97 1.44 6.44 
Tmean 0.99 1.07 7.72 0.99 0.90 7.37 
Tmax 0.98 1.37 9.11 0.98 1.08 8.50  

By season 

Measure Winter Spring Summer Fall 

R2 RMSE (oC) SD (oC) R2 RMSE (oC) SD (oC) R2 RMSE (oC) SD (oC) R2 RMSE (oC) SD (oC) 

Tmin 0.83 1.53 4.10 0.89 1.78 4.74 0.74 2.05 3.13 0.87 1.72 4.51 
Tmean 0.93 1.00 3.94 0.97 1.06 5.15 0.92 1.24 3.49 0.97 1.02 5.10 
Tmax 0.92 1.30 4.68 0.96 1.29 6.26 0.91 1.43 4.81 0.96 1.36 6.59 

*SD: standard deviation of the dependent variable (HOBO-Logger Tair). 
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DTR maps for 2016–2019, i.e., the NAKO study baseline years. Eastern 
Germany and more intensely the North-Eastern part of the country 
experienced higher DTR variations, while cities or mountains and large 
water bodies were characterized by smaller DTR. 

Regarding the temporal Tair variability in Germany (and in NAKO 
study centers) over the first two decades of the 21st century, we report 
the differences between the predicted Tmean yearly averages and the 20- 
year average (Fig. 7, plot 2 and Fig. S8). The year 2000 was excluded as 
the model predictions started from late February. There was an obvious 
tendency of increased averaged Tmean for the last 5–7 years (continu-
ously beyond 2016). The hottest years recorded during the studied 
period were 2018 (Tmean = 10.45 ◦C) and 2020 (Tmean = 10.42 ◦C). 
Additionally, we mapped the number of heat (Tmax > 30 ◦C) and cold 
(Tmin < 0 ◦C) days by 3-digit zip code through the years. Fig. 8 presents 
an example comparing the years 2001 (as a reference) and 2015, where 
the observed difference was pronounced. For 2015 the number of heat 
days increased dramatically since 2001 mainly in eastern and south- 
eastern Germany, whereas the cold days dropped, even if 2015 was 
not among the hottest years of the study period (Fig. 7, plot 2). 

4. Discussion 

In this paper, we developed reliable high spatiotemporally-resolved 
Tmin, Tmean, Tmax and DTR datasets for Germany during 2000–2020, 
following a regression-based method which consists of three stages. We 
combined meteorological and remote sensing data as well as multiple 
land cover predictors. All models attained very good performance, and 
consequently their predictive ability appears to have a strong founda-
tion, with overall high explained variance (0.91 ≤ R2 ≤ 0.98) and low 
errors (1.03 ◦C ≤ RMSE ≤ 2.02 ◦C), calculated through CV. In addition, 
bias was found to be close to 0 (− 0.16 ◦C ≤ mean signed error ≤
0.10 ◦C). The external small (0.74 ≤ R2 ≤ 0.99, 0.87 ◦C ≤ RMSE ≤
2.05 ◦C) and large-scale validation (0.71 ≤ R2 ≤ 0.99, 0.79 ◦C ≤ RMSE ≤
1.19 ◦C) confirmed the high performance of the models. We additionally 
showed the benefits of our spatiotemporal Tair modeling in terms of 
exposure assessment for participants of epidemiological studies, con-
ducting a case study in the Augsburg area. 

For Germany, except the datasets of a coarser resolution of 5 km or 
more (Brinckmann and Bissolli, 2015; Frick et al., 2014), there is the 1 ×
1 km hourly Tair dataset for 1995–2012, generated by Krähenmann et al. 
(2018), who applied a 3-step interpolation method (monthly RMSE ≈
1 ◦C). We used this product to externally compare our model findings 
with another model across the country. There was a good overall 

Fig. 2. Density scatterplots between the model daily Tmean predictions and the HOBO-Logger daily Tmean observations for 2018, daily average and 7-day average.  

Table 3 
Comparison between our model daily Tmean predictions and the DWD TRY model 
daily Tmean predictions in Germany during 2001–2012.   

R2 RMSE (oC) 

Overall 0.99 0.90 
Season 
Winter 0.94 0.98 
Spring 0.97 0.90 
Summer 0.94 0.88 
Fall 0.97 0.86 
Without extremes 
5th pctl. < Tmean < 95th pctl. 0.99 0.79 
To extremes   
Tmean < 5th pctl. 0.76 1.19 
Tmean > 95th pctl. 0.71 0.93 
District 
Augsburg Landkreis (rural) 0.99 0.84 
Stadt Augsburg (urban) 0.99 0.85  

Fig. 3. Density scatterplot between our model daily Tmean predictions and the 
project TRY model daily Tmean predictions for 2010. 
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correspondence. However, our model predictions captured broader Tair 
variations, especially in city level (Fig. S5), as the interpolation methods 
are highly affected by the weather stations locations with limitations to 
fully represent between-station variability. Especially in Germany, a 

complex geo-climate study domain with high spatial heterogeneity, 
interpolation leads to neighbouring motives, thus closer regions are 
assigned rather similar values, and cannot capture sufficiently either the 
small-scale Tair variability or its extreme values. Therefore, we also 

Fig. 4. Spatial pattern of the averaged predicted Tmean in the Augsburg area during 2000–2020.  

Fig. 5. Distribution of the predicted Tmean, assigned to KORA participants for 2000–2020 (in blue). The green and red lines show the exposure assignment based on 
the nearest monitoring station location. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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observed worse correspondence of our and TRY models to extremes, i.e., 
5th and 95th percentiles (Table 3). Krähenmann et al. (2018) also lack 
validation with completely independent Tair datasets while validating 
the interpolation-based predictions with input data could be biased due 
to their strong dependence. Finally, our output had a longer and more 
recent temporal extent and can be used in recent German cohorts. 

Aiming to produce a helpful dataset for scientists working in the field 
of environmental epidemiology and especially those who investigate the 
Tair health effects or implement Tair in their analysis as a confounder or 
an effect modifier, the case study example we demonstrate for Augsburg 
is of great importance. The prevailing way for studies exploring the Tair 
health effects is to collect their exposure data from monitoring networks 
consisting of a limited number of ground-based weather stations, un-
evenly distributed across the country and insufficient to capture the 
spatial Tair variability, especially in city centers. Taking into consider-
ation the Augsburg area, an epidemiological study would usually assign 
to all participants the Tair observations of the station which has the 
shortest distance from their residential address or a weighted average of 
the two available stations, again depending on distances or a simple 
interpolation technique. Hence, the participants would not be assigned 
with the exposure value of their actual location, but of the station’s 
location even 10 km away (Fig. S6), implying the need of finer resolu-
tions. People living in the city centre, where there is no available station, 
would be assigned with a way lower Tair exposure than their represen-
tative one, as we observed in Figs. 5 and 6. All the aforementioned issues 
lead to exposure error and consequently the health effects are biased 
towards the null (Zeger et al., 2000). On the other hand, our output 
captured the Tair variability and trends and reduced the exposure 
misclassification. Hence, we achieved a better representation of Tair 

variability and fulfilled one of our primary goals that was to provide 
more accurate Tair exposure assessment to German epidemiological 
studies. 

A key finding of our analysis were the observed changes in Tair, 
which are mainly attributed to climate change that is already noticeable 
in Germany (Rüth et al., 2019). We showed that the four hottest years, 
based on an area-weighted averaging of the temperature during last two 
decades across the country, all occurred after 2014, while the last three 
consecutive years found to be the hottest overall (Fig. 7, plot 2). This 
finding was consistent and even more pronounced for the big constantly 
growing German cities (Fig. S7). Additionally, due to the high spatio-
temporal resolution of the models, we detected climate change effects 
that cannot be captured by crude German-wide Tair averages. For 
instance, for 2015, we observed a substantial increase in hot days since 
2001 even if this year’s average Tair was lower than the 20-year average. 
The results of this analysis showing the impact of climate change on Tair 
locally and countrywide, are large, even over this short temporal period. 
With this tool, impacts on human health could be detected which then 
might contribute to climate change adaptation and risk reduction pol-
icies that German authorities need to enact in the following years. 

4.1. Strengths 

Best of our knowledge, this is the first study of Tair modeling which 
validates the models’ prediction so extensively using external data. First 
locally, via a ground-based dense monitoring network for 6 years and 
then nationwide with another model based on a different approach for 
12 years. The results indicated good performance and low errors in both 
cases, boosting our confidence in the quality of our product. An addi-
tional strength is the models’ spatial resolution and spatial and temporal 
extent. They are German-wide and have a temporal extent of 21 years. 
Their national scale combined with the fine resolution of 1 × 1 km and 
the daily temporal resolution, provided us with the opportunity to study 
the spatiotemporal patterns of Tair all across Germany but also in specific 
places around the country, containing both urban and rural settings. 

Our output product is an excellent fit for many individual-level 
epidemiological studies in Germany, without limitations on the study 
area(s). Mapping four different Tair measures was also important for 
environmental epidemiology as many recent studies report health ef-
fects of different temperature measures (Cheng et al., 2014; Guo et al., 
2016; Oberheim et al., 2020; Wong et al., 2020), and there is a special 

Fig. 6. Predicted 7-day average Tmean distribution (with blue) vs the 2 available DWD stations Tmean observations (with red) across the Augsburg area for 
31.08.2019. The green lines represent our model’s predictions at the stations locations. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the Web version of this article.) 

Table 4 
Observed and predicted Tmin, Tmean and Tmax in Germany during 2000–2020.  

Source Measure Mean 
(oC) 

SD 
(oC) 

Q1 
(oC) 

Median 
(oC) 

Q3 
(oC) 

DWD observations 
(n = 406 stations) 

Tmin 5.15 6.59 0.34 5.33 10.33 
Tmean 9.44 7.39 3.71 9.59 15.27 
Tmax 13.85 8.77 6.81 13.91 20.68 

Models predictions 
(n = 366,536 grid 
cells) 

Tmin 5.24 5.89 0.24 5.24 10.29 
Tmean 9.57 7.36 3.76 9.71 15.19 
Tmax 14.00 8.75 6.90 14.05 20.67  
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need for further research with high spatiotemporally-resolved Tmin, 
Tmean, Tmax and DTR. Our final output can also be used for other research 
purposes outside the health field. For example, we are currently devel-
oping a high-resolution hybrid spatiotemporal RF model in order to 
predict daily mean relative humidity (RH) in Germany. To accomplish it, 
we use our daily Tmean predictions dataset as the main predictor in the 
RF model, due to its strong association (negative) with RH (Nikolaou 
et al., 2022). 

4.2. Limitations 

On the other hand, there are some limitations. First of all, the main 
predictor for estimating Tair is LST either at its daily or nightly value. It is 
well known that LST datasets include a high percentage of missing 
values because of cloud coverage, atmosphere dust, snow or sensor 
failure (Ghafarian Malamiri et al., 2018). However, using the TPS 
interpolated Tair data in the third stage model, we observed high accu-
racy for third stage predictions with quite low errors even when we 
compared them with independent observations from ground-based 

weather station networks. Moreover, we could not estimate the 
models performance, internally, in locations that have not been trained 
on. We tackled this issue by externally validating our Tair predictions 
with the HOBO-Logger Tair measurements for cells where the models 
were not trained on, and we observed high performance. Therefore, we 
are confident that even in the cell-days without available DWD Tair or 
LST data, our predictions are equally reliable. An additional factor that 
limits our product is its spatial resolution of 1 × 1 km, which is sufficient 
for country-wide analysis, but it might be a bit coarse for 
small-area/local analyses, especially for studies exploring the UHI ef-
fect. However, even in small scale analysis, our 1 × 1 km resolution 
dataset provides a better representation of Tair variability in comparison 
with the existing weather stations, as we showed in the case study of 
Augsburg’s area. Higher spatiotemporal resolution, at least for the cities, 
might be a very good future upgrade in the framework of Tair modeling 
in Germany, given the example of previous studies in neighbouring 
countries (Hough et al., 2020). Finally, the 21-year extent we used to 
understand the spatiotemporal Tair patterns over Germany might be 
short to investigate climate change (usually a 30-year period). It is 

Fig. 7. Spatiotemporal Tair patterns in Germany for 2000–2020. Plot 1: Spatial patterns of the predicted Tmin, Tmean and Tmax in Germany, averaged for 2000-2020. 
Plot 2: Difference between the predicted Tmean yearly averages and the predicted Tmean 20-year average (2001-2020), German-wide. 
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nevertheless a good starting point to understand the Tair patterns and 
find useful climate change indications in Germany. 

5. Conclusion 

In this study, we applied a high-resolution hybrid spatiotemporal 
modeling approach to estimate daily Tmin, Tmean and Tmax as well as to 
calculate DTR across Germany over the period 2000–2020. We achieved 
excellent models’ performances, validated extensively both locally and 
nationwide. Our product contributes substantially to exposure misclas-
sification decrease accomplishing a better representation of Tair vari-
ability, and helps towards understanding the spatiotemporal Tair 
patterns and observing the impact of climate change during the last 
decades in Germany. Finally, our dataset is a great fit for recent German 

health cohorts and environmental epidemiology studies overall, but 
could also be used for other research purposes. 
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