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a b s t r a c t 

Background Accurate measurement of left ventricular ejection fraction (LVEF) is crucial in diagnosing and 

managing cardiac conditions. Deep learning (DL) models offer potential to improve the consistency and efficiency 

of these measurements, reducing reliance on operator expertise. 

Objective The aim of this study was to develop an innovative software-hardware combined device, featuring a 

novel DL algorithm for the automated quantification of LVEF from 2D echocardiographic images. 

Methods A dataset of 2,113 patients admitted to the Affiliated Hospital of Qingdao University between January 

and June 2023 was assembled and split into training and test groups. Another 500 patients from another campus 

were prospectively collected as external validation group. The age, sex, reason for echocardiography and the 

type of patients were collected. Following standardized protocol training by senior echocardiographers using 

domestic ultrasound equipment, apical four-chamber view images were labeled manually and utilized for training 

our deep learning framework. This system combined convolutional neural networks (CNN) with transformers for 

enhanced image recognition and analysis. Combined with the model that was named QHAutoEF, a ‘one-touch’ 

software module was developed and integrated into the echocardiography hardware, providing intuitive, real- 

time visualization of LVEF measurements. The device’s performance was evaluated with metrics such as the Dice 

coefficient and Jaccard index, along with computational efficiency indicators. The dice index, intersection over 

union, size, floating point operations per second and calculation time were used to compare the performance 

of our model with alternative deep learning architectures. Bland-Altman analysis and the receiver operating 

characteristic (ROC) curve were used for validation of the accuracy of the model. The scatter plot was used to 

evaluate the consistency of the manual and automated results among subgroups. 

Results Patients from external validation group were older than those from training group ((60 ± 14) years vs. 

(55 ± 16) years, respectively, P < 0.001). The gender distribution among three groups were showed no statistical 

difference (43 % vs. 42 % vs. 50 %, respectively, P = 0.095). Significant differences were showed among pa- 

tients with different type (all P < 0.001) and reason for echocardiography (all P < 0.001 except for other reasons). 

QHAutoEF achieved a high Dice index (0.942 at end-diastole, 0.917 at end-systole) with a notably compact model 

size (10.2 MB) and low computational cost (93.86 G floating point operations (FLOPs)). It exhibited high consis- 

tency with expert manual measurements (intraclass correlation coefficient (ICC) = 0.90 (0.89, 0.92), P < 0.001) 

and excellent capability to differentiate patients with LVEF ≥ 60 % from those with reduced function, yielding an 

area under the operation curve (AUC) of 0.92 (0.90–0.95). Subgroup analysis showed a good correlation between 

QHAutoEF results and manual results from experienced experts among patients of different types ( R = 0.93, 0.73, 

0.92, respectively, P < 0.001) and ages ( R = 0.92, 0.94, 0.89, 0.91, 0.81, respectively, P < 0.001). 

Conclusions Our software-hardware device offers an improved solution for the automated measurement of 

LVEF, demonstrating not only high accuracy and consistency with manual expert measurements but also practical 
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adaptability for clinical settings. 
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. Introduction 

Quantitative assessment of cardiac systolic function is pivotal for the

iagnosis of diseases, risk stratification, and assessment of treatment re-

ponse [ 1 ]. Measurement of left ventricular ejection fraction (LVEF) us-

ng echocardiography is generally considered the first-line method for

linical evaluation of left ventricular systolic function [ 2 , 3 ]. In recent

ears, the advent of artificial intelligence (AI) in the medical image anal-

sis has opened up new avenues and the application of AI in echocar-

iography has the potential to improve measuring efficiency as well as

mage interpretation. 

Compared with machine learning (ML), deep learning (DL) could

tudy very complex functions through composing several nonlinear

odules [ 4 ]. Among numerous deep learning models, convolutional

eural network (CNN) was the most widely used in medical image analy-

is and several studies have demonstrated its capability in streamlining

orkflows, automating chamber segmentation, feature recognition of

edical images, and quantifying echocardiographic parameters [ 5 , 6 ].

NN could learn complex features of echocardiograms through hier-

rchical structure of convolutional layers. The excellent local feature

apture capability of CNNs allows them to interpret precise features of

pecific diseases from echocardiography images [ 7–12 ]. Transformer,

n innovative deep-learning architecture, was widely used for natural

anguage processing (NLP) tasks. For medical application, transformer

an potentially enhance image analysis tasks by capturing long-range

ependencies between image patches in an integrated fashion [ 13 , 14 ].

revious proposed transformer network allows improved feature extrac-

ion, utilizing the inter-frame correlations in echocardiography images

 15 , 16 ]. CNN-transformer hybrid models were used for multi-task learn-

ng, improved image denoising and decreasing overall computational

ost in medical fields, mainly in computed tomography and magnetic

esonance imaging fields [ 17–19 ]. Hybridizing CNNs and transformers

s therefore a promising direction for echocardiography tasks. In ad-

ition, previous studies focused mainly on model building rather than

linical device application [ 20 , 21 ]. 

We hypothesized that algorithms hybridizing CNN and transformer

an readily evaluate LVEF with high accuracy from 2D echocardiogra-

hy images. We proposed that such a light-weight software-hardware

ombined device can be applied in the routine clinical workflows, al-

owing rapid and accurate assessment of LVEF. In this study, we aimed

o establish an echocardiography database from Chinese cohort by do-

estic equipment and further develop an automatic and accurate LVEF

easurement protocol that combines CNN and transformer. 

. Methods 

.1. Preliminary construction of algorithm framework 

.1.1. Algorithm framework 

The overall framework of the automated left ventricle segmentation

lgorithm is illustrated in Figure 1 A. It comprises an Encoder backbone

nd two head networks. Given an echocardiography image as input,

ncoder backbone first extracts multilevel features, then uses feature

yramids to segment images from coarse to fine through two head net-

orks. In the fine-aligned branch, a spatial channel attention-based en-

oder (CSE) module extracts information on mask-alignment from fine

eature maps and then feeds it back to coarse-alignment branch. The

nhanced coarse-aligned mask was processed by a feature-positioning

FP) module. 

.1.2. Channel-spatial encoder module 

The transformer architecture was used to better segment cardiac

hambers using structured information from ultrasound images. Given

he input fine-aligned feature map, the CSE module first deforms the

eature map F to obtain query Q, key K and value V. Subsequently, the

odule establishes long-term dependencies on the channel and space
2

f feature map from a global perspective, enhancing the semantic in-

ormation of fine-aligned branch feature map. Finally, an initial profile

f the cardiac chamber was obtained by applying convolution layers

 Figure 1 B). 

.1.3. Feature-positioning module 

Due to the unique imaging principle of ultrasound, some degree of

coustic noise will be present in the image and some noise will appear

n the observed area, which will affect the scanning results. When per-

orming an ultrasound examination, the physician neglects the noise of

he ultrasound image based on clinical experience in order to outline

he chamber of the heart and make the final diagnosis. For this reason,

e try to mimic this behavior with different network structures, exclud-

ng false positives or false negative interferences that predict regional

eterogeneity. Therefore, the FP module was designed to fuse features

t different levels, as shown in Figure 1 C. For feature maps at differ-

nt scales from two head networks, the FP module is guided by the

ne-aligned branch predicted cardiac chamber contours figure, using

lement-by-element subtraction operations to suppress noise interfer-

nce and element-by-element summation to enhance target foreground

nformation, respectively. A more precise prediction map of the cham-

er of the heart was obtained by applying a convolution layer on the

efined fusion feature map. 

.1.4. Horizontal comparison of algorithms 

In order to investigate whether this model was superior compared to

rior models, we assembled three neural network models and selected

our widely used segmentation networks for lateral comparison in pub-

ic datasets. (1) U-Net structure: a classical CNN model that greatly im-

roves the accuracy of pixel level semantic segmentation through the

umping connection between encoder and decoder; (2) U-Net++ : an ad-

anced structure that foster better inter-layer information transfer com-

ared with U-Net, which improves the sensitivity of the model to dif-

erent sizes of receptive fields; (3) Attention Unet: an encoder-decoder

tructure with attention gating module for medical image segmentation,

ncreases the weight of key parts in the region by increasing the attention

echanism in the decoder, making the model converge faster while in-

reasing the sampling accuracy; (4) ACNN: a novel training strategy for

ardiac image segmentation, constraining the model through the prior

nowledge of the anatomical structure to improve the segmentation ac-

uracy during training. The CAMUS heart dataset is used for horizontal

omparison, and finally the self-built and top-performing model on the

AMUS dataset will be selected as the model adopted in this protocol. 

.2. Database establishment 

A dataset with patients who underwent echocardiography at three

ampuses (the Shinan campus, the Pingdu campus and the west coast

ampus) of the Affiliated Hospital of Qingdao University from January

o June 2023 was established prospectively for model training and inter-

al test groups. For the external validation of the model, 500 echocar-

iography videos corresponding to 500 patients were prospectively ob-

ained from July to August 2023, mirroring real clinical environments

t the Laoshan campus of the Affiliated Hospital of Qingdao Univer-

ity. The exclusion criteria for the study population included: (1) age

 18 years; (2) patients with very poor image quality so that the endo-

ardium could not be completely identified; (3) patients with thoracic

eformity; (4) images with foreshortening. The reason for echocardio-

raphy (physical examination, rehabilitation and health care, preoper-

tive evaluation, cardiovascular disease evaluation, prenatal examina-

ion, non-cardiovascular disorders, radiotherapy and other reasons) and

he type of patients (outpatient, inpatient or emergency) were collected.

All study participants provided informed consent, and the study de-

ign was performed in line with the Declaration of Helsinki and ap-

roved by the ethics committee of the Affiliated hospital to Qingdao

niversity (Approval No. QYFYEC2024–34). All methods in our study
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Fig. 1. (A) Overall block diagram of automated chamber segmentation algorithm; (B) The Channel-Spatial Encoder Module using transformer; (C) Feature-Positioning 

Module. 
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ere carried out in accordance with relevant guidelines and regulations

n the Ethics approval. 

The original data are not publicly accessible as the model is intended

or commercial release. The data that supports the findings of this study

s available from the corresponding author upon prior request. 

Before database establishment, all of researchers received standard-

zed training, including image acquisition process, image storage pro-

ess, data interpretation procedure, and image labeling protocol ac-

ording to established guidelines for echocardiography [ 22 , 23 ]. Patients

ere all performed echocardiography twice by the same senior echocar-

iographer. LVEF values measured using a commercial echocardiogra-

hy machine (Philips Epiq 7C with S5–1 probe) were saved as the gold

tandard. And then all images were collected using Hisense echocar-

iographic system (HD80 with P4–1EL probe) for training and test of

he algorithm. Four dynamic videos were collected for each patient, in-

luding parasternal left ventricular long-axis view (PLAX), apical four-

hamber view (A4C), apical two-chamber view (A2C), and apical three-

hamber view (A3C), each of which contained 6–10 cardiac cycles. Each
3

atient was anonymized and assigned to a set of echocardiographic im-

ge datasets. 

.3. Algorithm training and testing 

From the database, the A4C videos were extracted to get the train-

ng dataset for model training and validation. The dynamic videos were

onverted to static images as input dataset using Hisense ultrasound

edicated software. The end-diastolic and end-systolic frames of each

ardiac cycle were identified by a senior echocardiographer and the en-

ocardial borders were manually traced with LabelMe, a tool created by

he Massachusetts Institute of Technology. 

The optimal model, selected out of the seven test models, was used

or training. The PyTorch framework was used for code implementation

f model training and validation. The hardware environment was In-

el(R) Core (TM) i7–10700F CPU @ 2.90 GHz and NVIDIA GeForce RTX

090 GPU (24 G). In the training phase, we performed an automated

re-processing workflow to remove identifying information and human
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r  
abeling. All subsequent videos were cropped and masked to remove any

ext, ECG and respirator information. Normalized 512 × 512 pixel single

hannel images were obtained by bilinear interpolation using OpenCV.

ata expansion was performed by PyTorch library for up-and-down flip,

eft-right flip, and random rotation. 

The optimizer was Adam method with an initial learning rate of

.0015 and a weight decay of 0.3. The batch size was 32 and the train-

ng was performed for 300 cycles in which the first 15 cycles were taken

s warmup stages. 

.4. Algorithm external validation 

500 videos from the external validation group were saved for the

erformance validation of the model. The Bland-Altman analysis and the

eceiver operating characteristic (ROC) curve were used for validation

f the accuracy of the model. The scatter plot was used to evaluate the

onsistency of the manual and automated results among subgroups. 

.5. Software development and software-hardware integration 

This novel model was named QHAutoEF in which “Q ” means

he Affiliated Hospital of Qingdao University and “H ” means Hisense

edicine. The PyTorch library facilitated the storage of QHAutoEF as a

odel file (.pt format) containing the network structure and all weight

arameters. The .pt file was serialized and converted into the high-

erformance DL support engine, TensorRT, to enable seamless integra-

ion. During serialization, we employed the half-precision floating-point

ormat for data representation to reduce model size. In addition, we de-

eloped inference code as dynamic link libraries, which were then inte-

rated and compiled with the standard echocardiography control soft-

are. The frame information was bonded to the knob for visualization

utput. 

In the real clinical settings, echocardiographer activated QHAutoEF

hrough the specialized button and the one-touch visualization func-

ionality proceeded through the following sequence: (a) loading of the

HAutoEF model when the echocardiography machine was powered

n; (b) de-constructing echocardiography videos into individual frames,

ach of which was transferred to the graphics processing unit (GPU)

rom the central processing unit (CPU). This was followed by model in-

erence, after which the results were sent back to the CPU; (c) combining

he inference outcomes with the original echocardiography images for

isplay on the monitor; (d) manually adjusting the visualization, frame

y frame using the control knob; (e) generating a volume-time curve

ith a single button press; (f) clearing all memory and cache, leaving

he model ready for the next activation. 

.6. Data protection 

All the collected data was converted to DICOM format. During

he pre-processing stage, only the original image data was extracted

rom the DICOM dataset and saved in PNG format, without including

ny patient-identifying information. In addition, all data handling and

odel training processes took place in a secure offline environment to

nsure that no data was uploaded to external servers. 

.7. Statistical analysis 

To assess the distribution of the measured data, a normality test

as applied. Data conforming to normal distribution was represented

s mean ± standard deviation (SD), whereas non-normally distributed

ata was described using the median and interquartile range. Categor-

cal variables were expressed as frequency and percentage. According

o the sample distribution, variance, and experimental setting, we used

arametric independent samples t -test or Pearson’s chi-quare test to test

gainst differences between groups. Several metrics were calculated to

valuate the performance of the QHAutoEF tool: (a) Dice index, model
4

ize; (b) floating point operations (FLOPs); (c) calculation time; (d) mean

quared error (MSE); (e) root mean squared Error (RMSE); (f) mean ab-

olute error (MAE); (g) mean absolute percentage Error (MAPE); (h) rel-

tive absolute error (RAE); (i) relative squared error (RSE); (j) adjusted

oefficient of determination (R2 
adj ); (k) Intersection over Union (IoU).

he consistency between QHAutoEF measurements and senior echocar-

iographer measurements was assessed using Bland-Altman analysis

nd intraclass correlation coefficient (ICC). ROC curves and area under

he curve (AUC) were employed to demonstrate QHAutoEF’s capacity

o accurately categorize patients with varying levels of LVEF. Statistical

ignificance was set at a P value < 0.05. Statistical analysis used IBM

PSS statistics version 26 (IBM Corporation, Armonk, NY, USA), Graph-

ad Prism 9, and draw.io online platforms. 

. Results 

.1. Baseline data of the study population 

In this study, 2,613 echocardiograms, each corresponding to a

nique patient, were prospectively incorporated into the analysis. Out of

hese, 2,113 echocardiograms (1,913 from individual patients for model

raining and 200 for internal testing) were allocated to the development

f the predictive model. The remaining 500 echocardiograms were des-

gnated for external validation of the model. The baseline characteris-

ics of the study population are shown in Table 1 . Compared to train-

ng and test group, patients from external validation group were older

(60 ± 14) years vs. (55 ± 16) years vs (59 ± 14) years, respectively in vali-

ation, training and test group, P < 0.001). No statistical difference was

howed in the gender distribution among three groups (43 % vs 42 %

s 50 %, respectively, P = 0.095) . Significant differences were showed

mong patients with different type (all P < 0.001). The percentage of pa-

ients for the reason other than common 7 reasons for echocardiography

howed no statistical difference among groups (2 % vs. 1 % vs. 2 %, re-

pectively, P = 0.367). The distribution of patients with common reasons

or echocardiography showed significant difference among training, test

nd validation groups (all P < 0.001). 

.2. Performance of QHAutoEF 

QHAutoEF exhibits superior characteristics including a smaller size

10.2 MB), lower floating-point operations (93.86 G), fast calcula-

ion (22 ms) and higher Dice index and intersection over union

DiceED = 0.942, DiceES = 0.917, IoUED = 0.89, IoUES = 0.85) compared

ith other models for automatic measurement of LVEF ( Table 2 ). 

.3. The accuracy validation of QHAutoEF 

QHAutoEF demonstrated strong performance in the external val-

dation cohort, achieving DiceED = 0.93, DiceES = 0.91, MAE = 3.67 %,

SE = 20.31 %, RMSE = 4.51 %, MAPE = 6.72 %, RSE = 0.21, RAE = 0.62,
2 

adj = 0.82, IoUED = 0.87 and IoUES = 0.84. There was a high degree of

onsistency between the automatic measurements made by QHAutoEF

nd the manual measurements conducted by experts, as indicated by ICC

f 0.90 (0.89, 0.92) and a statistically significant p-value ( P < 0.001).

ompared with manual measurement, QHAutoEF measurement was

arginally lower with a difference of 1.119 % (95 % CI: − 7.447, 9.686)

 Figure 2 A). For distinguishing patients with LVEF ≥ 60 % from those

ith LVEF < 60 %, the AUC for QHAutoEF was 0.92 (0.90–0.95), in-

luding sensitivity of 0.88 and a specificity of 0.80 ( Figure 2 B) 

In Figure 2 C, we present illustrative results showcasing the perfor-

ance QHAutoEF. The visual representation clearly demonstrates that

ur proposed QHAutoEF showed high consistency with ground truth in

erms of visual quality, especially when trained using domestic Chinese

ohort. 

Subgroup analysis showed a good correlation between QHAutoEF

esults and manual results from experienced experts in patients from
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Table 1 Patient characteristics in different dataset 

Statistics Total Training Test Validation P -values 

Number of Patients ( n ) 2,613 1,913 200 500 

Age (years ( ± SD)) 56 ± 16 55 ± 16 59 ± 14 60 ± 14# 
< 0.001 

Male ( n (%)) 1,163 (44) 828 (43) 85 (42) 250 (50) 0.095 

Patient types ( n (%)) < 0.001 

Emergency 514 (20) 418 (22) 17 (9) 79 (16) < 0.001 

Outpatient 994 (38) 844 (44) 43 (22) 107 (21) < 0.001 

Inpatient 1,105 (42) 651 (34) 140 (70) 314 (63) < 0.001 

Reason for presentation < 0.001 

RHC ( n (%)) 180 (7) 161 (8) 13 (6) 6 (1) < 0.001 

Prenatal examination ( n (%)) 80 (3) 23 (1) 2 (1) 55 (11) < 0.001 

Preoperative evaluation † ( n (%)) 975 (37) 654 (34) 141 (71) 180 (36) < 0.001 

Physical examination ( n (%)) 503 (19) 371 (19) 13 (7) 119 (24) < 0.001 

Radiotherapy ‡ ( n (%)) 197 (8) 175 (9) 8 (4) 14 (3) < 0.001 

Cardiovascular disease ( n (%)) 211 (8) 180 (9) 5 (3) 26 (5) < 0.001 

Non-cardiovascular disorders ( n (%)) 421 (16) 313 (16) 17 (9) 91 (18) 0.006 

Other ( n (%)) 46 (2) 36 (2) 1 (1) 9 (2) 0.367 

RHC: rehabilitation and health care. 
† pre-operative evaluation for non-cardiovascular surgery. 
‡ evaluation of cardiac structure and function after radiotherapy. 

Table 2 QHAutoEF performance compared to alternative deep learning architectures in assessing 

cardiac function 

Methods 

Dice index IoU Size 

(MB) 

FLOPs 

(G) 

Calculation 

time (ms) 
ED ES ED ES 

U-Net [ 34 ] 0.94 0.91 0.88 0.84 2 16.59 16 

U-Net ++ [ 35 ] 0.92 0.90 0.86 0.82 9.5 86.55 40 

Attention Unet [ 36 ] 0.92 0.91 0.86 0.83 30.2 266.54 57 

ACNN [ 37 ] 0.94 0.91 0.88 0.84 16.8 158.45 42 

Model 1 0.94 0.92 0.88 0.84 17.2 137.22 33 

Model 2 (QHAutoEF) 0.94 0.92 0.89 0.85 10.2 93.86 22 

Model 3 0.91 0.88 0.83 0.78 6.8 45.30 17 

ED: end-diastole; ES: end-systole; FLOPs: floating point operations per second; IoU: Intersection 

over Union; MB: megabyte; G: 109 . 

Fig. 2. QHAutoEF performance included consistency analysis (A), ROC analysis (B), visualization results (C), (a) original echocardiography images; (b) ground truth; 

(c) training on CAMUS datasets and validation on Chinese cohort; (d) training on CAMUS plus Chinese datasets and validation on Chinese cohort. ICC: intra-class 

correlation coefficient; AUC: area under the curve. 
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Fig. 3. Subgroup analysis for the association between QHAutoEF results and experts’ manual results. (A) Subgroup analysis according to different origins; (B) 

Subgroup analysis according to different age. 
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he emergency department, outpatient clinic, and inpatient settings

 R = 0.93, 0.73, 0.92, respectively, P < 0.001. Figure 3 A). When the

alidation cohorts were divided into subgroups by age, high consistency

as obtained among patients with different levels of age ( R = 0.92, 0.94,

.89, 0.91, 0.81, respectively, P < 0.001. Figure 3 B). 

.4. Visualization output by the one-touch module 

The one-touch module facilitates three key functions: (1) delicate

djustment: precise frame-by-frame adjustment is possible by rotating

he knob, allowing for accurate measurement of LVEF. (2) cardiac cycle
ig. 4. Illustration of results obtained manually and via QHAutoEF output in 2 exam

ig. 4 B showed cardiac cycle switching to avoid inaccurate results from non-standard

he standard apical four chamber view. 

6

witching: the module automatically presents the varying LVEF values of

ifferent cardiac cycles on the screen with a simple turn of the knob. (3)

olume-Time Curve: a comprehensive volume-time curve for a complete

ardiac cycle is displayed through one-touch operation, enabling the

bservation of left ventricular volume changes throughout the cycle. 

Two cases are illustrated in Figure 4 . In case 1 ( Figure 4 A), the LVEF

easured by the expert was 65 %. QHAutoEF provided a slightly higher

esult of 69 %. However, after a delicate adjustment by one frame, the

VEF was re-adjusted to 66 %. In case 2 ( Figure 4 B), the LVEF mea-

ured by the expert was 65 %. However, the views captured in one of

he three cycles were not standard (the first cycle). Consequently, by uti-
ple cases. Fig. 4 A showed more accurate results from delicate adjustments and 

 views. The blue circle in Fig. 4 B marked aortic valve that should not appear in 
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izing the cardiac cycle switching knob, the LVEF from alternative cycles

ere promptly displayed at 63 % (the second cycle) and 66 % (the third

ycle). This switching functionality was enabled by paired EDV and ESV

alues obtained from the volume-time curve. The operation penal with

pecial buttons for QHAutoEF was showed in Supplementary Figure 1

nd the software interface was showed in Supplementary Figure 2. 

. Discussion 

In this study, we developed a Chinese software-hardware device with

 light-weight hybrid CNN-transformer model from echocardiography

mages obtained from a Chinese cohort. This model, named QHAutoEF,

s capable of performing quick and automatic measurements of LVEF

ith good accuracy. 

Artificial intelligence, especially DL used in medical field, has greatly

mproved the efficiency of diagnosis and treatment in a variety of med-

cal scenarios [ 8 , 20 , 24 , 25 ]. CNNs were the primary methods for in-

erpretation of echocardiograms. Previous studies have demonstrated

easibility of CNNs for standard views classification [ 6 ], segmentation

f cardiac chambers [ 5 ], assessment of systolic function [ 21 ], specific

iseases detection [ 8 , 10 , 11 , 24 ], and prediction of cardiovascular risk

actors or outcomes [ 9 , 26 ]. Madani’s group established a CNN model

ased on 223,787 echocardiographic static images from 267 patients,

hich showed that the model accurately identified 15 standard views

or echocardiography [ 6 ]. Ghorbani developed a CNN model based on

,600,000 images from 2,850 patients and this model was used to ac-

urately identify cardiac pacemaker leads and estimate left ventricular

nd-systolic and end-diastolic volumes and further calculate LVEF [ 5 ].

otably, these models often have a large number of parameters in order

o achieve high predictive accuracy. This complexity however, can lead

o practical challenges in clinical deployment due to computational re-

ources required, longer inference times, and difficulties in integrating

t with the existing healthcare systems. 

The Transformer architecture represents an innovative approach

hat can be employed in medical imaging tasks, which relies primar-

ly on self-attention mechanisms to discern dependencies and associa-

ions within sequences of data [ 27 ]. In the analysis of biomedical im-

ges, the Transformer conceptualizes each image patch as an individual

lement in a sequence, processing the image as a contiguous array of

uch patches. This methodology facilitates the capture of long-range de-

endencies among patches and effectively models spatial relationships

ithin the image. By leveraging self-attention, it markedly enhances

lassification performance across a wide spectrum of image analysis

asks [ 13 , 14 , 28 , 29 ]. 

Given the constraints of CNNs in capturing global information and

he shortcomings of transformer models in extracting local details, hy-

rid CNN-transformer models have been developed to improve perfor-

ance [ 30 , 31 ]. These models commonly employ either a serial or par-

llel integration strategy to merge CNN and transformer architectures,

ielding superior results compared to the individual performances of

NNs or transformers. Two-dimensional features of input images were

ubsequently refined and encoded with positional information before

eing further learned by the transformer, resulting in more accurate

lassification in Carion’s study [ 32 ]. The ViT-FRCNN architecture, pre-

ented by Beal, integrates a faster R-CNN in series following the vision

ransformer (ViT), showcasing the transformer’s capability to preserve

mple spatial information for target detection [ 33 ]. Unlike the above

ethods, the QHAutoEF framework presented in this study, employs

 CNN as its backbone, while the transformer serves as one aspect of a

ual-branch system. This transformer interlaces the temporal and spatial

imensions of the image features to establish branch-specific attributes.

hese are subsequently amalgamated with the local features discerned

y the CNN via a feature-positioning module. The process culminates

n the formation of comprehensive segmentation results. Notably, this

usion of CNN and transformer architectures demonstrates potential to
7

ield highly fitting performances, producing commendable outcomes

ven in the analysis of low-quality images. 

Previous studies have primarily concentrated on the development

f models with exceptional performance, neglecting the creation of

ractical devices that could be broadly utilized in clinical settings.

he QHAutoEF architecture is characterized by its automatic nature,

ightweight design, compactness, and minimal computational resource

equirements. Consequently, it is suitable for integration with echocar-

iography equipment possessing modest hardware specifications as it

s adaptable for use across diverse medical institutions with varying

quipment capabilities. The QHAutoEF is particularly beneficial for re-

ote areas with limited resources, as well as in health screening centers

or disease detection. In our device, dynamic link libraries (DLLs) fa-

ilitate improved interaction between the hybrid model and hardware.

his integration simplifies processes and enables rapid display of re-

ults through direct memory level manipulation using DLLs. In addition,

LLs standardize the interface between the model and the echocardio-

raphy software in scenarios that require extensive deployment. This

tandardization ensures that consistent and accurate results are readily

btainable by adhering to the interface protocols, thereby enhancing the

epeatability of the deployment process. 

The automatic measurement of LVEF using QHAutoEF required only

pical four-chamber view, which was helpful for greenhorns to quickly

aster the accurate measurements. This might greatly increase the effi-

iency of cardiac function evaluation, which significantly shortens the

atient waiting times and thus improves the patient’s experience. The

utomated measurements of LVEF by QHAutoEF demonstrated a strong

oncordance with expert manual measurements, aligning with the re-

ults of previous research. This is in agreement with the findings of

uyang [ 21 ], who utilized a 3D-CNN architecture that incorporated

oth temporal and spatial parameters for LVEF evaluation. However,

he substantial size of the 3D-CNN model necessitates significant GPU

cceleration, suggesting that its application is typically confined to ad-

anced medical centers and research facilities. 

According to the American Society of Echocardiography (ASE) guide-

ines, the assessment of cardiac function in patients with arrhythmia

ecessitates a comprehensive evaluation through multi-cycle averag-

ng, with the mean LVEF representing patient cardiac function [ 22 ].

hile this protocol is accurate, it is time-consuming. In contrast, QHAu-

oEF can compute the LVEF for each cardiac cycle, presenting the data

hrough its visualization module. The visualization module enables the

chocardiographers to select cardiac cycles easily with a single click.

dditionally, in cases with poor image quality, repeated dynamic ob-

ervation is often essential for precise endocardial delineation, even for

xperienced sonographers in clinical practice. The frame-by-frame endo-

ardial outline provided by QHAutoEF could significantly enhance the

ccuracy and efficiency of endocardial identification in such instances.

n this study, the QHAutoEF architecture was developed based on a sub-

tantial sample from the Chinese population, incorporating patients with

arious cardiovascular conditions, thus allowing this streamlined model

o achieve accurate measurement of LVEF in different levels. 

In this study, we collected patients from 3 campuses (Shinan, Pingdu

nd West coast) for training and test while patients from another cam-

us (Laoshan) for external validation of the model. Actually, the 4 cam-

uses were located in different regions and were far apart, and the func-

ional positioning of each campus was also completely different. Con-

equently, patients collected from the four campuses could be seen as

ifferent groups with significant heterogeneity. And this was verified

rom our results. For echocardiography in clinical, a measurement with

igher objectiveness might be more valuable for future development.

ur results showed QHAutoEF owns the potential to reduce subjectivity

n LVEF measurement which implied its application prospect in clin-

cal. In addition, knowledge graph can be used for update of QHAu-

oEF according to different guidelines. A knowledge base including dif-

erent guideline criteria can serve as an intermediary before final out-

ut. Future studies should be able to investigate the use of reinforce-
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ent learning to assist sonographers in acquiring images of sufficient

uality. 

The clinical value of QHAutoEF still needs further validation in dif-

erent subgroups. In this study, we aim to introduce the independent

evelopment process of this localized model, and our results show that

HAutoEF has a high consistency with manual measurement by experts,

hough with a relatively lightweight size. In addition, the training of

HAutoEF only used images from Hisense devices, but the model could

uccessfully recognized .JPG images derived from commercial devices.

HAutoEF was not integrated into other commercial devices, which was

ore because of the confidentiality among different vendors. However,

his study aims to establish a domestic device that integrated with the

eep learning model, the application of QHAutoEF among commercial

chocardiography devices might be analyzed in our further study. 

In this study, we established a database of a representative Chi-

ese population using domestic equipment and then independently de-

eloped a software-hardware device featured hybrid CNN-transformer

odel. This device offers automated measurements of LVEF with high

ccuracy, which can support clinicians and augment clinical care. 
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