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ABSTRACT 

 
This study aims to improve the generalisation capabilities of machine learning models for 

modelling hourly air pollutant concentrations in scenarios where access to high-quality data is 
limited. A diverse set of techniques was implemented to tackle this challenge, encompassing the 
utilisation of the prophet, random forest, and three different deep learning architectures: long 
short-term memory networks, convolutional neural networks, and multilayer perceptrons. A 
hybrid model of random forest and prophet was also tested. The role of the hybrid model was to 
combine the forecasting strengths of the Prophet model with the predictive power of the 
Random Forest model to better capture complex temporal patterns in the data. After testing, the 
hybrid model demonstrated improved generalization capabilities, achieving statistically significant 
improvements in R2 for hourly concentrations of NO (improving by 26%), NO2 (enhancing by 
18%), PM10 (with changes ranging from an 8% decline to a 35% improvement), and O3 (showcasing 
R2 coefficients ranging from 0.83 to 0.87) at five sites in Graz, Austria. The utilisation of surface 
atmospheric ERA5-Land datasets within the models as model features showed high feature post 
hoc importance in the best (hybrid) models per pollutant and site. Furthermore, error analysis 
was performed to understand better the conditions under which these models might fail. The 
results showed that despite the expectations for models to fail with an increasing timeframe (the 
test set) from March 2019 to March 2020, the models were sufficiently stable for long-term 
prediction and thus can be used to forecast and predict air pollution. 
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1 INTRODUCTION 
 

Particulate matter (PM), gaseous pollutants, nitrogen oxides (NOx), and ozone (O3) have impacts 
on human health. Once inhaled, PM of submicron diameter can penetrate from the lung alveoli 
into the bloodstream (Anderson et al., 2012; Kim et al., 2015). Therefore, the smaller the particle 
size, the greater the adverse health effect (Jakovljević et al., 2020; Li et al., 2019; Yang et al., 
2020). In addition, NOx compounds can enter the human body through the airways. People with 
pre-existing lung diseases are especially vulnerable to NOx and it can cause chronic respiratory 
diseases, lung cancer, and cardiovascular diseases, such as heart failure, myocardial ischaemia, 
infarction, stroke, and arrhythmia (Almetwally et al., 2020). Lung cancer and respiratory diseases 
are also related to O3, which is absorbed by the upper respiratory tract and conducted into the 
intrathoracic airways. Women and children are especially vulnerable to the effects of O3 because 
they inhale higher concentrations owing to the smaller size of their airways (Nuvolone et al., 
2018). 

The application of machine learning (ML) in studies of air pollution, specifically in predicting 
future values or events, is gaining momentum. This was even more emphasized during the 
COVID-19 lockdown air quality investigations (Grange et al., 2021; Lovrić et al., 2022, 2021). There 
are several reasons why ML models are appropriate for air pollution studies: 1) ML models can 
capture the complex and often nonlinear relationships among various factors influencing air 
pollution, including meteorological conditions, emissions sources, geographical features, and 
chemical reactions in the atmosphere; 2) ML models can yield more accurate predictions than 
traditional statistical methods, especially with large and high-dimensional datasets; 3) ML models 
can provide real-time or near-real-time predictions once they have been trained; 4) ML models 
can be automated and scaled, enabling broad geographical coverage and continuous updates as 
new data become available; and 5) ML models can provide insights into the importance of 
different features (variables). Therefore, ML models can be useful for identifying the key sources 
of pollution and targeting interventions. Several factors contribute to the increased application 
of ML, including increased data availability, advancements in remote sensing, and IoT (internet 
of things) technology. IoT plays a crucial role here, enabling real-time monitoring of air pollution 
by connecting sensors and devices to exchange data over the internet. Heightened health 
concerns further drive the adoption of ML for more effective environmental monitoring and 
management. Understanding the dynamics of long-term air pollutant concentrations with high 
spatial coverage is important for risk assessment and environmental policies (Camatini et al., 
2017; Segersson et al., 2017; Tobías et al., 2018). ML is being increasingly utilised to analyse air 
pollutant concentrations and forecast their levels, owing to its numerous benefits over statistical 
analysis. Such algorithms can process vast amounts of complex and heterogeneous data, including 
atmospheric and meteorological variables, to identify intricate patterns and relationships that may 
influence air pollution (Grange and Carslaw, 2019; Šimić et al., 2020). By leveraging ML, researchers 
can develop highly accurate predictive models that consider various factors, such as emission 
sources, weather conditions, and geographical features, resulting in more precise and reliable air 
quality forecasts (Li et al., 2023). In addition, ML techniques can adapt to and learn from new data, 
allowing models to continuously improve their accuracy over time. ML studies for air pollution 
prediction can be categorised depending on the pollutants or the ML task (Li et al., 2023). In 
terms of the pollutants, the primary focus is on PM and gaseous pollutants (Šimić et al., 2020). In 
a forecasting setting, future predictions of pollutants are estimated using historic measurements 
and often environmental properties; that is, the task can be seen as an extrapolation of a time 
series. In the prediction setup, the goal is to predict a pollutant based on measurements from other 
sources or locations without considering the future development of the target pollutant. This task 
is equivalent to estimating pollutants for which measurements do not exist or are impossible. 
Furthermore, this task provides insights into the main influencing factors of specific pollutants. 

Methods for forecasting and prediction include traditional ML-based approaches, such as random 
forest (RF) (Breiman, 2001; Huang et al., 2020) and statistical approaches, such as autoregressive 
and deep learning (DL) methods (Jiang et al., 2021a; Jiang et al., 2021b). Most approaches mentioned 
in the literature conducted forecasts on an hourly basis, with a 12-h forecast horizon, such as 
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Zhou et al. (2021), who conducted forecasts to cover quarterly time spans in the Yangtze River 
Delta, making use of a seasonal nonlinear grey Bernoulli model. Their study highlighted the low 
rate of change in air pollutants in certain areas. Most existing prediction studies opt for either 
daily or hourly averages of the target pollutant, with some noteworthy exceptions. For example, 
Araki et al. (2021) predicted various air quality indicators monthly for Japan-based features such 
as meteorological, land use, and road-related features, achieving a coefficient of determination 
(R2) between 0.74 and 0.79. Tree-based approaches are popular, including RF (Bozdağ et al., 
2020; Chen et al., 2021; Huang et al., 2021; Zamani Joharestani et al., 2019; Lovrić et al., 2022, 
2021; Sun et al., 2021) and boosted trees (Gagliardi and Andenna, 2020; Liu, 2021), as well as the 
combination of tree-based approaches with other learning algorithms (Qi et al., 2020; Zhang et 
al., 2020). A wide variety of deep-learning-based approaches have also been explored, including 
multilayer perceptron (Photphanloet and Lipikorn, 2020; Sayahi et al., 2020), convolutional neural 
networks (CNNs; Park et al., 2020), recurrent approaches (Huang et al., 2021; Wang et al., 2021), 
and attention-based approaches (Chen et al., 2021). For evaluation, many authors prefer variants 
of cross-validation, such as those based on close measurement stations (Wang et al., 2021). 
Meteorological indicators such as temperature, humidity, wind speed and direction, land-use 
features, and traffic data are commonly included in the models. The top of the atmosphere and 
aerosol optical depth have also been explored (Park et al., 2020; Sun et al., 2021; Yan et al., 2021; 
Zhang et al., 2020) and it has been noted that thorough preprocessing of data is needed. 

These algorithms often suffer from low data coverage and deterioration over longer periods 
owing to possible data drift. In recent years, there has been a novel trend of combining ML 
models with first-principle or physics-based models, known as hybrid or physics-inspired models. 
This trend has achieved improved model accuracy in many settings (Hoffer et al., 2022; Lovrić et 
al., 2020). Predicting deterioration over time is a critical consideration in time-series analysis and 
ML (Vela et al., 2022). Time-series data often exhibit patterns that change over time, making it 
challenging to maintain accurate predictions over long forecasting periods. If a time series model 
does not account for these changes, its accuracy may decrease as the forecasting period 
progresses. Therefore, it is crucial to monitor and assess model predictions. By tracking forecast 
errors over time, analysts can identify when a model's predictions start to degrade, allowing them 
to take corrective actions before the model's accuracy deteriorates significantly. Therefore, 
prediction deterioration versus time is an essential consideration in time-series modelling to 
ensure accurate and reliable predictions over extended forecasting horizons. 

The overall aim of this study was to improve strategies for creating ML models to predict air 
pollutant concentrations (e.g., PM10, NO, NO2, and O3) while utilising meteorological, satellite, 
and temporal features as predictors. Predictors are values used as inputs in models to help 
forecast or predict air pollutant concentrations. The objectives of this study were to 1) evaluate 
data coverage and the choice of both target and predictive variables in ML models to improve 
model accuracy, 2) compare multiple ML/DL algorithms and forecasters, 3) test hybrid time-series 
ML models, 4) investigate the limitations of the model using error analysis and model deterioration, 
and 5) estimate the feature contribution to model performance. The city of Graz in southern 
Austria was examined as a case study. 

 

2 MATERIALS AND METHODS 
 

2.1 Data Sources 
Data collection and site specifications for particulate and gas phase pollutants have been 

described previously (Lovrić et al., 2021; Moser et al., 2019). This study used hourly data from 
January 2014 to March 2020, which is an increased temporal resolution compared to (Lovrić et 
al., 2021). The dataset was based on environmental, pollution, and weather data from publicly 
available sources provided by the regional government of Styria, Austria. The long-term 
measurements were taken from five measurement sites (Fig. 1): Süd (eng. South), Nord (eng. 
North), West (eng. West), Don Bosco, and Ost (eng. East). The latter two are situated on arterial 
roads with high traffic volumes, especially during the morning and evening rush hours. 

A detailed description of the site and potential pollution sources were obtained from a past  
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Fig. 1. Locations of the measurement sites in Graz, Austria. 

 
study (Lovrić et al., 2021). The concentrations of NO2, NO, O3, and PM10 were prepared in a flat 
table together with temporal information (day of week, days counted from 1st of January 1970 
(Julian date), month, year, holiday etc.) and meteorological variables (maximum daily temperature 
(T), minimal daily T, difference of max and min T, average T, maximum daily pressure (p), minimum 
daily p, difference of max and min p, average p, maximum daily relative humidity (RH), minimum 
daily RH, average RH, difference of max and min RH, wind speed, precipitation). To the best of 
our knowledge, the scope of this study extends beyond prior studies by evaluating an additional 
set of variables, namely ERA5 reanalysis alongside previously utilised features such as the listed 
ones. ERA5-Land is a global meteorological reanalysis dataset covering the period from 1950 to the 
present on a 0.1°  ×  0.1° horizontal grid (Hersbach et al., 2023; Muñoz Sabater, 2019). Reanalysis 
combines model data with global observations from across the world into a globally complete 
and consistent dataset using the laws of physics. ERA5-Land reanalysis does not use observations 
directly but uses them as inputs to control the simulated land fields and ERA5 atmospheric variables, 
such as air temperature and air humidity. Hourly reanalysis data were retrieved through API 
requests from the Copernicus Climate Data Store (Hersbach et al., 2023; Muñoz Sabater, 2019) 
and aggregated into daily mean, maximum, or minimum values. All analyses were performed using 
Python (v3.9.16). The libraries and installation environment are provided in the Supplementary 
Material. The retrieved ERA5 data covered the 1st January 2014 to the 30th April 2022 between 
15°E and 16°E and 46.5°N and 47.5°N. The retrieved variables are listed in Table S1 in the 
Supplementary Material. 

 
2.2 Data Processing 

The first data operation involved the removal of outliers. Values with extremely high or low 
values (such as those affected by fireworks around New Year's Eve) were winsorised based on 
three-day windows (72 h), where all values above and below four standard deviations in the 
window were excluded. Missing values were filled in using an iterative imputer. This method models 
each feature with missing values as a function of the other features, taking turns in a round-robin 
manner. After filling in the missing values, lag features were created using meteorological data 
from all five stations (Šimić et al., 2020). Lagging was performed by considering the 12 most 
recent measurements (12 h window) and the median of the preceding measurements was 
calculated to represent the value of that hour. To obtain an accurate representation of the wind 
direction for each measurement, the sinus and cosine were calculated to derive the x and y values 
in the coordinate system. This was done to avoid situations in which 0° and 360° were interpreted 

https://doi.org/10.4209/aaqr.230317
https://aaqr.org/
https://aaqr.org/
https://doi.org/10.4209/aaqr.230317
https://doi.org/10.4209/aaqr.230317
https://doi.org/10.4209/aaqr.230317
https://doi.org/10.4209/aaqr.230317


ORIGINAL RESEARCH 
 https://doi.org/10.4209/aaqr.230317 

Aerosol and Air Quality Research | https://aaqr.org 5 of 16 Volume 24 | Issue 12 | 230317 

as different wind directions. The wind speed at 10 m was calculated using the u and v components. 
Finally, the features were cleaned based on the correlation (above 90%), with all features assigned 
to all models. The processed dataset consists of 71929 time points from 00:00 on the 1st of 
January 2014 to the 15th of March 2020, with a total of 123 features, and is provided in a table 
format within a persistent data repository (Lovrić et al., 2023). 

 
2.3 Model Training and Algorithms 

For air pollution concentration modelling, several approaches were used: 1) RF regression 
(Breiman, 2001), based on our previous studies (Lovrić et al., 2021; Šimić et al., 2020); 2) Prophet 
(PRH) (Taylor and Letham, 2018); 3) three DL architectures, namely, multilayer perceptron (MLP) 
(Rosenblatt, 1958), long short-term memory network (LSTM) network, and a one-dimensional 
CNN (LeCun et al., 2015); and 4) a hybrid RF model (HYB) inspired by previous works (Hoffer et 
al., 2022; Lovrić et al., 2020) which uses PRH to generate additional features based on forecasting 
alongside all other available features. The algorithms are briefly described in the Supplementary 
Material. 

The inspiration for training hybrid models stems from the group's previous works, where 
different types of models, commonly physical and ML models, were combined and yielded higher 
accuracies (Hoffer et al., 2022; Lovrić et al., 2021). One way to form a hybrid model is to generate 
features in one model and utilise them in a subsequent model. In this study, we fed PRH-generated 
features, such as forecasts and seasonalities, into RF models since RF can’t infer those directly 
from the data. Hence, we trained the PRH models and stored the generated features, which were 
then utilised alongside meteorological and temporal features to generate predictions for the 
hybrid models. 

The predicted variables (target or outcomes) in this study were the pollutant concentrations 
at hourly frequencies (PM10, NO, NO2, and O3) at all measured locations, while the independent 
(input) features were the temporal and meteorological variables. A schematic of the model is 
shown in Fig. 2. The model assumed that the concentrations of PM and gaseous pollutants can 
be modelled based on temporal and meteorological variables as independent variables. The 
input of the three DL models at a certain hour consisted of weather and environmental variables, 
in addition to the ERA5 variables of the past 96 h. With this input, the model predicted the 
concentration of the target pollutant for the next hour. The data were split into training (from 
1st of January 2014 to 14th March 2019) and test (from 15th of March 2019 to 15th of March 2020) 
sets to determine the extent to which the models degrade over a longer period. A cross-validation  

 

 
Fig. 2. Overview of the study methodology to detect changes in the relation ships between the 
(dependent and independent) variables. Deep learning models are colored in grey, while PRH 
and RF are highlighted since they flow into the HYB model. 
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was performed using the training set. The details of the validation are provided in the Supplementary 
Material. Performance was measured by calculating the R2, normalized mean absolute error 
(nMAE), and normalized root-mean-square error (nRMSE). R2 was used as the main metric for 
standardised intercomparison as it is independent of scale. nMAE and nRMSE were computed by 
normalizing each metric based on the interquartile range (IQR), which is the difference between 
the 75th percentile and the 25th percentile. 
 

3 RESULTS 
 
3.1 Model Performance 

The model results are depicted in Fig. 3, which shows the performance of all trained models 
for the test set. The calculation for each metric was performed for each location (Süd, Nord, West, 
Don Bosco, and Ost) and pollutant (PM10, NO2, NO, and O3). The nMAE and nRMSE results revealed 
notable variations in model performance across different pollutant types and sites (Table S2). For 
instance, in predicting NO levels at Ost, the HYB and MLP models achieved the lowest nMAE 
values, indicating superior accuracy. By contrast, LSTM, CNN, and PRH exhibited higher nMAE 
values, suggesting room for improvement in their predictions. Notably, when assessing NO2 levels 
at West, MLP performed exceptionally well, with the lowest nMAE, whereas LSTM struggled, 
showing relatively higher errors. These variations in performance help reveal which models are 
suited to predicting specific pollutants in certain regions. The nRMSE results also highlighted 
distinctions in model performance (Table S3). For instance, MLP consistently demonstrated lower 
nRMSE values than the other models for predicting PM10 concentrations at various sites. 
Conversely, LSTM and PRH exhibited higher nRMSE values in certain cases, suggesting potential 
limitations in their predictive capabilities for specific pollutants and sites. The R2 results provided 
insights into the overall goodness-of-fit of the models. MLP consistently achieved high R2 across 
multiple pollutant types and regions, indicating its capacity to explain a significant portion of the 
variance in pollutant concentrations (Fig. 3). In contrast, LSTM and PRH exhibited lower R2 in 
some cases, suggesting that they did not capture the underlying patterns in the data. The models 
also showed distinct patterns for specific pollutants. HYB demonstrated remarkable accuracy in 
predicting NO2 concentrations, whereas CNN and MLP were superior in forecasting PM10 levels. 
Furthermore, regarding NO prediction, MLP was the most accurate, followed by HYB. For O3 
concentrations, all models except for PRH exhibited high accuracy. 

 

 
Fig. 3. Model prediction accuracy per pollutant. This figure shows the performance for the different models. The performance 
was measured by calculating the coefficient of determination (R2 score). 
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Fig. 4. A comparison of predicted and true values from the test set. This figure shows the true and 
predicted values of ozone concentration at the Sud measuring site using the HYB model and PRH model, 
respectively. Each value is the mean of 8 hourly measurements. 

 

3.2 Performance of HYB 
The performance of HYB is a noteworthy finding of this study. In previous work (Lovrić et al., 

2021), a Random Forest (RF) model was created to predict daily concentrations of air pollutants, 
using traffic as one of the features. However, in this paper, we used hourly data and hybrid (HYB) 
models, which showed better performance in predicting air pollutants. The R2 values for each 
specific pollutant are better than those in the previous paper. Integrating seasonality features 
into the RF model induced changes in the model's predictions by incorporating the features 
generated by PRH. This inclusion resulted in improved predictions for NO2 and NO across all sites, 
exhibiting R2 ranging from 0.521 to 0.618 for NO and from 0.63 to 0.67 for NO2 (see Fig. S1 in the 
Supplementary Material). Notably, the most substantial enhancement in NO2 (18%) and a large 
increase in NO (26%) was observed at Ost. Conversely, Süd displayed the smallest improvement 
in these two pollutants, with a 7% increase for NO and a 5% increase for NO2. In contrast, RF 
showcased higher R2 than the HYB model in predicting O3, ranging from 0.83 to 0.87, and PM10 
levels, ranging from 0.29 to 0.35. In addition, the incorporation of time-series data led to a 
decrease in R2 for PM10 prediction, with the most significant decline (8 %) observed at Nord. This 
decrease can be attributed to the inherent randomness of the models. Similarly, the efficiency of 
O3 prediction in HYB decreased by 2% at both Nord and Süd, which can also be attributed to the 
randomness and influx of features resulting from the integration of the PRH data. Fig. 4 shows 
an example of HYB model prediction compared against a PRH forecast for the same site and 
period. PRH predicted negative concentrations, which are physically implausible. This illustrates 
the poor performance of the PRH model in predicting air pollution concentrations. 
 
3.3 Day- and Night-time Differences in Model Quality 

The models were tested against potential limitations to better understand their performance. 
One of these is the daytime cycle of the predictive quality. This assumes that, owing to missing 
data on traffic or a lack of available data at the same frequency, there might be differences in 
daily variations. Fig. 5 shows how the models predicted the daytime and nighttime air pollutant 
concentrations. These data were created by dividing the time series of the predictions, which 
included both the true and predicted values for the external test set, into two subsets. The first 
subset included data from 06:00 until 17:59 (daytime) and the second dataset included data from 
18:00 until 05:59 (nighttime). Each dataset had a vector length of 4392. Seasonal changes in 
daytime and nighttime were not considered since these periods were used to represent commuting  
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Fig. 5. Heatmap displays the day and night predictions of every pollutant with all six models, using the coefficient 
of determination as the metric. 

 
and work schedules and not the actual state of the atmosphere and Earth’s rotation. After the 
two data subsets were created, R2 was calculated for the daytime and nighttime vectors. The 
best overall model for both vectors was HYB (see Fig. 5), except for NO for nighttime, for which 
MLP showed better results. Furthermore, a row called” average” was created using the results of 
each model. Therefore, to calculate the average NO2 for the daytime, all six mode values for each 
pollutant and part of the daytime were considered. This average value showed that night-time 
was usually better predicted than daytime for all pollutants, except for NO. Additionally, “average 
daytime’ and” average night-time’ were calculated to analyse how each model predicted daytime 
and night-time values. For example, to obtain the average HYB daytime, every prediction for 
every pollutant predicted using HYB during the daytime was considered. All models, except for 
PRH, had higher accuracies for the night-time concentrations of air pollutants than the daytime 
concentrations. However, HYB showed similar results for both 
 
3.4 Weekday Differences in Model Quality 

The objective of this subsection is to address the limitations of the models caused by weekday 
disparities, including potential fluctuations that may be crucial for model generalisation, presumably 
linked to the absence of traffic data. To better comprehend the effect of weekdays on pollutant 
levels, R2 was calculated by splitting the prediction vectors and their corresponding true values 
into seven subsets, representing each day of the week. Model quality metrics were computed for 
each subset, considering individual air pollutants and consolidating the outcomes across multiple 
locations. Only the best model was included in the analysis of the effect of weekdays on pollutants. 
The examination commenced by focusing on PM10, which is the most challenging pollutant to 
predict using the model. R2 ranged from 0.24 on Sunday to 0.31 on Thursday (see Fig. S2). The 
model provided more accurate predictions on weekdays than on weekends. For NO, the model 
exhibited improved performance, with R2 ranging from 0.42 to 0.52. The weakest predictions were 
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observed on Saturdays and Sundays, indicating that the model performs better on workdays. 
However, NO2 displayed different outcomes compared to the other pollutants, with R2 ranging 
from 0.61 to 0.68, the highest values recorded on Saturday and Sunday, and strong predictions 
on Friday. Lastly, for O3, the prediction was consistent throughout the week, with R2 ranging from 
0.82 to 0.84. Overall, no significant variations were identified when pollutant predictions across 
different weekdays were compared. 

 
3.5 Prediction Deterioration over Time 

The models were expected to deteriorate owing to commonly observed drifts in the covariance 
matrix between the predictors and targets, sometimes also referred to as concept drift (Lu et al., 
2019). This can occur due to meteorological changes or other events in an urban setting, such as 
long-term road closure, new regulations causing changes in traffic, and other government policies, 
such as the COVID-19 lockdowns (Lovrić et al., 2022, 2021; Stipaničev et al., 2022). In concept 
drift, the models deteriorate, allowing the generalisation ability of models to be determined over 
a longer period. Model deterioration was analysed by predicting a one-year time series and 
inspecting the model quality. Fig. 6 shows the true versus predicted values for each pollutant and  

 

 
Fig. 6. Root-mean-square deviation of models per pollutant over one year of a test set. 
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model. Fig. 6 was generated by calculating the root-mean-square error (RMSE) deviation for each 
pollutant at each of the five sites and then averaging the scores across the five sites to represent 
the model predictions for the pollutant. The same process was repeated every hour of the day. 
For visualisation purposes, the data were smoothed the rolling mean of seven days was used. 
The error in the NO2 level worsened during the colder months of the year. However, the models 
were generally stable. A similar pattern was observed for PM10. For NO, there was deterioration 
in some of the algorithms over time, whereas our emphasised (HYB) model showed good stability. 
O3 remained relatively stable over time compared to the other pollutants but had more variance 
when comparing the models. For all pollutants, considering RMSE deviation, HYB performed well, 
indicating its ability for long-term predictions. 

Additionally, in Fig. 6, some models (MLP, LSTM, and RF) show greater deterioration in 
performance for NO compared to others from autumn 2019 to spring 2020. Several factors could 
lead to this. First, the complexity and architecture of the models play a significant role. Different 
models, such as LSTM and CNN, have varying capabilities in capturing temporal and spatial 
dependencies compared to traditional machine learning models like RF. Additionally, the choice 
of hyperparameters during training can significantly affect model performance, with some models 
being better tuned for the characteristics of NO data. Data handling and feature engineering also 
contribute to the differences, as each model may preprocess the data and incorporate features 
differently, affecting their ability to capture underlying patterns in NO concentrations. Furthermore, 
issues of overfitting and underfitting impact model performance. Lastly, temporal variations and 
external factors, such as weather conditions and traffic patterns, can cause variations in RMSE 
over time, with some models being more sensitive to these factors and thus showing varying 
performance across different periods. 

 
3.6 Feature Analysis 

To explain model prediction, we utilised permutation importance (explained in the Supplementary 
Material), as used in previous studies (Lovrić et al., 2021; Šimić et al., 2020). The trained ML models 
are nonlinear black boxes; hence, one of the ways to comprehend them is to utilise post-hoc 
methods model explainability methods such as permutation importance. The final model, HYB, 
showed the best results. The permutation importance was calculated for each model and 
pollutant three times, meaning that each feature was shuffled three times and then the model 
dependence was tested. Because many features were used per model, we reported only the five 
most important features for each. Out of the 17 models, 14 had a PRH prediction feature as the 
most important feature: either yhat or yh (a common naming for predicted vectors, here of the 
PRH model) or its upper/lower values (yh-up, yh-low). Furthermore, 15 out of the 17 models had 
at least two PRH features among the five most important features. All models had a windspeed 
feature among the five most important features, either from local meteorology or ERA5 (WS, 
peek WS). Total precipitation (tp) and 10 m u-component of wind(u10) were in the top five for 
seven of the models. There were three types of wind features. Although these did not correlate, 
there was a strong presence of wind driving the concentration variation of the pollutants. Only 
three models had temperature (T) as an included feature. NO models were strongly weighted by 
their PRH predictions, showing strong seasonality patterns and less dependence on other factors, 
probably being driven by traffic, which was not represented in the data. NO2 models showed a 
similar pattern, with Süd having a PRH feature in the top five and Don Bosco being strongly 
weighted by PRH NO prediction. Interestingly, for PM10, the presence of PRH NO2 predictions was 
clear. This points to NO2 partially explaining PM10, probably via being a surrogate for traffic (Gilbert 
et al., 2003). The two models for O3, both had a strong dependence on their PRH predictions 
show. The results are shown in Table 1. 
 

4 DISCUSSION 
 
Overall, the models had the best generalisation for O3 followed by NO2, NO, and PM10, which 

is in line with previous studies (Lovrić et al., 2021; Šimić et al., 2020). The present study went 
further than past studies by incorporating more complex methods. The DL methods of LSTM,  
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Table 1. Feature importance ranked by means of the Permutation Importance method with Feature 1 being the most important 
followed by others in descending order. 

Target Feature1 set Feature2 set Feature3 set Feature4 set Feature5 set 
Ost|NO NO (pr,yh) NO (pr,yh-low) WS u10 peek WS 
Ost|NO2 NO2 (pr,yh-up) peek WS NO2 (pr,yh-low) RH str 
Ost|PM10 PM10 (pr,yh-low) peek WS tp sshf NO2 (pr,ys) 
West|NO NO (pr,yh) NO (pr,yh-low) tp u10 WS 
West|NO2 NO2 (pr,yh) peek WS tp NO2 (pr,yh-up) WS 
West|PM10 NO2 (pr,ys) PM10 (pr,yh-low) tp T peek WS 
Nord|O3 O3 (pr,yh) RH peek WS T O3 (pr,yh-up) 
Nord|NO NO (pr,yh) NO (pr,yh-low) u10 Rad peek WS 
Nord|NO2 NO2 (pr,yh) peek WS u10 NO2 (pr,yh-up) NO2 (pr,yh-low) 
Nord|PM10 NO2 (pr,ys) PM10 (pr,yh-low) slhf peek WS tp 
Sud|O3 RH WS O3 (pr,yh) O3 (pr,yh-low) T 
Sud|NO WS u10 NO (pr,yh) NO (pr,yh-low) tp 
Sud|NO2 WS NO2 (pr,yh) peek WS RH u10 
Sud|PM10 NO2 (pr,ys) peek WS NO2 (pr,yh) tp PM10 (pr,yh-low) 
DonBosco|NO NO (pr,yh) peek WS u10 NO (pr,yh-low) WS 
DonBosco|NO2 NO2 (pr,yh-up) peek WS NO2 (pr,yh-low) WS NO (pr,ws) 
DonBosco|PM10 PM10 (pr,yh-low) tp peek WS smlt T 

 
CNN, and MLP achieved competitive R2 scores for PM10, O3, and NO. It is expected that forecasting 
methods and DL will be superior because of their capability to inherently capture temporal 
dependencies and complex patterns in multivariate time-series data, which can be a significant 
advantage over RF. However, the results showed that the gap between the RF/HYB and DL 
predictions was marginal. This similarity in performance has been reported in the literature for 
time-series forecasting (Makridakis et al., 2023), particularly for short-term forecasting. Indeed, 
the literature shows that well-designed statistical methods can outperform complicated state-of-
the-art DL methods (Elsayed et al., 2021; Makridakis et al., 2023). In general, when the gain in the 
performance of DL methods is marginal, as in our case, more efficient and explainable approaches, 
such as RF and HYB, are preferred. PRH adeptly captures time series nuances, including trends and 
seasonality. Whereas RF excels in detecting nonlinear relationships and intricate feature interactions. 
Together, they offer a more comprehensive modelling approach with improved prediction 
accuracy. Similar results were observed in past studies (Hoffer et al., 2022; Lovrić et al., 2021). 
The results showed that the predicted night-time pollution concentration values better agreed 
with the true values than the daytime values. This may be because pollutant concentrations during 
the night are less variable than those during the day due to the lack of traffic, industrial operations, 
and other human activities. Additionally, stable atmospheric conditions, such as lower wind 
speeds and less atmospheric mixing, contribute to this reduced variability (Dobson et al., 2021; 
Singh et al., 2020). Daytime pollutant concentrations started to increase with increasing daily 
human activity, which usually started at 06:00 (Kecorius et al., 2017). Between 06:00 and 18:00, 
pollutant concentrations suddenly increased (due to peak hours), then slightly decreased at noon 
because of greater mixing in the planetary boundary layer, increased again because of evening 
rush hour, and stabilised during the nighttime because of the lack of emission sources. In 
comparison, nighttime pollution concentrations remained relatively stable, which may have been 
easier to capture by the models. In our previous study (Lovrić et al., 2021), O3 was easier to 
predict than NO2 and PM10, as were the daily averages. A better model representation of the O3 
concentration may be the result of a distinct O3 concentration profile during the daytime. Ozone 
is produced by a chemical reaction between natural and anthropogenic pollutants (gases) involving 
sunlight (Steinfeld, 1998). Therefore, tropospheric O3 concentrations highly depend on human 
daily activity patterns and sunlight, both of which peak between 06:00 and 18:00. This causes a 
monotonous daily O3 concentration increase and decrease during the day and night, respectively 
(Singh et al., 2020). The nitric oxides have features similar to those in equilibrium (Steinfeld, 1998). 
In our previous work, we showed that PM10 is challenging to predict (Lovrić et al., 2021). There 
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are many potential sources of PM10, some of which are difficult to model, such as sand events 
(Federal Office: MeteoSwiss, 2020), sun flares, local construction, burning, earthquakes (Lovrić 
et al., 2022), and other weather patterns. The major unknowns in such analyses are traffic and 
other emission factors from vehicular fleets, chemistry and physics, emission factors from industry, 
and atmospheric transport. 

Regarding the important features, the results suggested a clear pattern in which 14 out of 17 
models identified PRH prediction as the most crucial feature, either in the form of yhat or its 
upper/lower values. The majority (15 of 17) of models had at least two PRH features among the 
top five most significant features. This showcases a strong dependence on temporal information 
and seasonality which is commonly missing for models like RF but can be added either through 
lag features (Šimić et al., 2020) or PRH-generated features. The five sites exhibited unique pollution 
sources and environmental conditions that influenced the features chosen for air pollutant 
concentration modelling. Feature selection is affected by the data availability, which varies across 
sites. Correlations among features can lead to the exclusion of some features to prevent 
multicollinearity. Techniques such as boosting aggregation in random trees can be used to ensure 
debiasing and address collinearity. Additionally, temporal changes, such as seasonal variations, 
can shift feature importance. Overall, multiple factors, from site-specific conditions to modelling 
techniques, determine the feature selection; hence, different features may be chosen. 

These findings underscore the significant impact of model selection on the accuracy of air 
pollution predictions, highlighting that different models may yield varying performances depending 
on the specific pollutants and locations under examination. Further research is warranted to 
delve into the underlying factors contributing to these disparities and identify optimal strategies 
for model selection in different air pollution scenarios, as well as mechanisms and sources. 
 

5 CONCLUSION 
 

This study evaluated several factors for modelling the hourly concentrations of commonly 
monitored air pollutants in urban settings, such as PM10, NO, NO2, and O3. These factors were the 
a) choice of the ML algorithm, b) type of features used, c) model deterioration, and d) sensitivity to 
temporal events. The algorithms were based on DL (LSTM, CNN, and MLP), time-series forecasting 
(PRH), and ensembles (RF). We also proposed HYB, which fed RF into the PRH forecast. HYB 
performed best for all pollutants, regardless of the time of day, except for NO during the night, 
for which MLP performed best. RF, LSTM, and CNN better predicted NO2, O3, and PM10 during 
the night compared to daytime than the other models. PRH performed poorly for almost every 
pollutant but performed better for the daytime dataset than the nighttime dataset. Overall, the 
models showed the best generalisation for O3, followed by NO2, NO, and PM10. In addition to the 
more accurate results, HYB exhibited low model deterioration over a one-year prediction period. We 
further inspected which predictive features had a high weight in the predictions of the best models 
using permutation importance. The models were mostly driven by seasonality and predictions 
from the PRH in HYB. Another highly relevant driver was wind speed, which was represented by 
different features. The results showed that temporal variations are strong predictors of air pollutant 
concentrations and indicate missing key features, which represent sources such as heating and 
traffic. In the absence of unobserved confounders, the predictions can be improved by adding 
temporal features to act as surrogates. 
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