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Model-Based Temporal Unmixing
Towards Quantitative Photo-switching
Optoacoustic Tomography:
Supplement

This document provides supplementary information for the manuscript: Model-Based Temporal
Unmixing Towards Quantitative Photo-switching Optoacoustic Tomography. In Section 1, we
include the supporting tables and figures for the manuscript. In Section 2, we detail the model
and computation of the fluence maps used for unmixing. In Section 3, we provide an additional
simulation that shows the effectiveness of the regularization. In Section 4, we explain the
estimation of the kinetic constants of the photo-switching proteins.

1. SUPPORTING TABLES AND FIGURES

We provide an extract of the key photo-physical properties of the reversibly switchable OA
reporters (rsOAPs) used in the experiments in Table S1. For a summary of the complete properties
of these reporters, refer to [1].

Name τOFF k̄ εON
770nm εOFF

770nm

Unit s s−1 µM−1cm−1 µM−1cm−1

ReBphP-PCM (Re) 0.18 3.85 0.07 0.002

DrBphP-PCM (Dr) 0.70 0.99 0.04 0.004

RpBphP1-PCM (Rp) 0.42 1.65 0.06 0.009

Table S1. Key photo-physical properties of the three rsOAPs used in the experiments: half time
of the OFF switching cycle τOFF; kinetic constant k̄ derived based on τOFF; molar extinction
coefficients of the ON and OFF states εON

770nm, εOFF
770nm at 770nm (OFF-switching) wavelength.

We provide in Fig. S1 the OA signal during a typical OFF switching cycle in the numerical
simulation of a phantom of beads described in section 3 in this Supplement. We observe that
after 25 time steps (marked with a vertical gray dashed line), there is less useful information
in the signal other than noise. Hence, only the first 25 frames of OA images are used in the
reconstruction.

2. ESTIMATION OF THE LIGHT FLUENCE

A. Geometry of the Setup
The setup of our phantom experiment is illustrated in Fig. S2. The cylindrical agar phantom,
which serves as the non-switching background, has a diameter of 27mm and is submerged in
water to match the refractive indices. We inserted tubes of diameter 580 µm filled with solutions of
photo-switching proteins inside the phantom. The illumination originates from five laser outlets
that surround the body of the phantom such that the incident light can be assumed homogeneous
and diffuse on the surface of the body of the cylinder.

B. Optical Parameters
The absorption coefficient µa of the background is calculated according to [2]

µa(λ) = ln 10 · ε(λ)[cm−1 · mole−1 · L] · x% · 150[g · L−1]

64500[g · mole−1]
, (S1)



Fig. S1. Evolution of the OA signal during an OFF-switching cycle of 50 time points at three
representative locations inside the three rsOAPs: Re (blue), Dr (red), and Rp (green) for the
simulated (a) and experimental measurements (b) of a phantom of beads. The noise level in the
measurements of the simulated beads phantom is 1% of its maximal intensity.
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Fig. S2. Experimental setup of the phantom.

where λ = 770 nm is the OFF-switching wavelength, ε(λ) = 1311.88[cm−1 · mole−1 · L =

cm−1 · M−1] is the molar extinction coefficient of blood at 770 nm, assuming the blood we used in
the phantom to be mostly composed of deoxygenated hemoglobin (Hb), x = 3 is the percentage
of blood used in the phantom, 150[g · L−1] is the typical mass concentration of hemoglobin within
blood, and 64500[g · mole−1] is the molecular weight of hemoglobin. Using these values, the
background is determined by µ

bg
a = 0.21[cm−1].

The absorption coefficients of the protein species Re and Dr is calculated via [3]

µa(λ) = ln 10 · ε(λ)[M−1 · cm−1] · c[M] (S2)

from their molar concentration cRe = 4.23 × 10−6 [M], cDr = 3.71 × 10−6 [M] and their respective
molar extinction coefficients at 770nm εRe(770nm) ≈ 0.7 × 105 [M−1 · cm−1], εDr(770nm) ≈
0.4 × 105 [M−1 · cm−1]. We thus have µRe

a = 0.68 cm−1 and µDr
a = 0.34 cm−1.

We adopt a typical value of 10 cm−1 for the reduced scattering coefficient µ
′
s of the background,

which is composed of 3% intralipid as a scatterer.

C. Diffusion Equation
From the calculated optical parameters, we see that the light propagation within the sample is
within the diffuse regime in which scattering is much stronger than absorption (µa ≪ µ

′
s). We

thus adopt the diffusion equation Eq. (S3) complemented by the suitable boundary condition
Eq. (S4) which describes the tissue/water interface to compute the light fluence distribution Φ(r)
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over a sample Ω as [4, 5]

µa(r)Φ(r)−∇ · (D(r)∇Φ(r)) = S(r), r ∈ Ω, (S3)

Φ(r)− 2D(r)∇Φ(r) · n = 0, r ∈ ∂Ω (S4)

where Ω is a 3D domain, and n is the outward normal vector of the boundary. The illumination is
described by a function S(r). The diffusion coefficient D(r) depends on the absorption coefficient
µa(r) and the reduced scattering coefficient µ

′
s(r) according to

D(r) =
1

3(µa(r) + µ
′
s(r))

. (S5)

In the case of our agar cylinder phantom, we model the domain Ω with a cylinder of height H
and diameter L (see Fig. S2), which leads to

Ω =
{
(x, y, z)|(z − zc)

2 + (x − xc)
2 ≤ (L/2)2, 0 ≤ y − yc ≤ H

}
. (S6)

The incident diffuse illumination on the body of the phantom is approximated by a function
S(r) of constant-intensity I0

S(x, y, z) = I0, if (z − zc)
2 + (x − xc)

2 = (L/2)2

= 0, else (S7)

D. Numerical Implementation
D.1. Variational Formulation

We numerically solve Eq. (S3) and Eq. (S4) via the finite element method and we briefly summarize
the key steps to achieve the variational formulation. First, multiply Eq. (S3) with a test function
v(r) from a suitable function space and integrate over Ω, obtaining∫

Ω
µa(r)Φ(r)v(r)dr −

∫
Ω
∇ · (D(r)∇Φ(r))v(r)dr =

∫
Ω

S(r)v(r)dr. (S8)

Then use integration by parts to get

∫
Ω

µa(r)Φ(r)v(r)dr +
∫

Ω
D(r)∇Φ(r) · ∇v(r)dr −

∫
dΩ

(D∇Φ(r) · n︸ ︷︷ ︸)
Φ(r)
2D

v(r)ds =
∫

Ω
S(r)v(r)dr.

(S9)
Reorganize the terms and conclude with∫

Ω
((µaΦ(r)− S(r)) v(r) + D(r)∇Φ(r) · ∇v(r))dr =

∫
dΩ

Φ(r)v(r)
2

ds. (S10)

D.2. Meshes

We represent the domain Ω with two type of meshes of uniform mesh elements. The first type is
a grid composed of boxes with size determined by its physical size (Z, X, Y) and the number of
sampling points (Nz, Nx, Ny) in each dimension: (Z/Nz, X/Nx, Y/Ny). This type is used in the
construction of the forward model and the unmixing algorithm (due to matrix operations). The
second type is a finite element mesh that discretizes the cylinder domain directly into tetrahedrons
with mesh size ∆s, which we choose to be max(Z/Nz, X/Nx, Y/Ny)/2 to reach a balance between
computational accuracy and speed (see Fig. S3 (a)). This is done using Gmsh, an open-source 3D
finite element mesh generator [6]. This type of mesh is used to solve the diffusion equation. For
computational speed, we precompute and save the 3D mesh with defined physical sizes and only
load it when needed.

The relation between these two meshes is illustrated in Fig. S3 (b). To be precise, the box mesh
tightly fits the cylinder. The conversion between the two meshes is necessary when we compute
the fluence using optical parameter maps defined on a grid and when we cast the solution of the
fluence from the finite element mesh to the grid. We use linear interpolation in both cases.
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Fig. S3. (a) Finite-element mesh of a cylinder generated using Gmsh. (b) Relation between the
grid and the finite-element mesh.

Algorithm S1. Algorithm to solve the diffusion equation using Fenicsx

1: Input µa(r), µ
′
s(r), and S(r) as 3D arrays

2: Define mesh and function space V of type “continuous Galerkin” of order 1
3: Convert µa(r), µ

′
s(r), and S(r) to functions in V

4: Assemble Eq. (S10) into a linear form a(Φ, v) = L(v)
5: Solve the linear form to get solution ϕh
6: Convert the finite-element solution ϕh over a cylinder to a 3D box array ϕ3D that contains ϕh
7: Slice a cross-section of ϕ3D to obtain a 2D fluence map ϕ2D

8: Output 2D array ϕ2D

D.3. Solving the Equation

Eq. (S10) is solved using Fenicsx, an open-source library for the numerical solution of partial
differential equations [7, 8]. We provide a summary in Algorithm S1.

Note that the finite-element solution ϕh is over a cylindrical domain We convert it to a 3D
array that that tightly contains the cylinder. The output of the fluence computation is a 2D
cross-sectional image of the original 3D map, which we use to construct the forward model as
described in Fig. 2 of the manuscript.

3. EFFECTIVENESS OF THE REGULARIZATION

We show the effectiveness of the proposed regularization in our unmixing framework with the
following simulation. We design a 2D numerical phantom of size (150 × 150)px in which we
randomly insert three groups of disk targets of diameter between 7px and 12px that represent the
photo-switching reporters on a heterogeneous background. The background image is taken from
an image (cropped to contain only areas of the sample) of the last pulse of the first OFF-switching
cycle from the experimental dataset of the mouse model. Each target object has homogeneous
intensity. The ratio of the initial intensities between the three groups and the maximum intensity
of the background is 2:1:1:5, meaning that the background signal is stronger than that of the
reporters (which mimics scenario of a blood-rich sample). Each group has the same kinetic
constant as one of the three rsOAPs used in the experiment. The forward model is used to
generate measurements of a set of a total of 100 2D OA switching images of size (150 × 150)px. A
level of 1% Gaussian white noise is added to the simulated measurements to mimic to the noise
level in the experimental datasets (see Fig. S1 (a)).

We tested three reconstruction approaches, namely, least-square only (LS), least-square reg-
ularized with total variation on the spatial maps of each reporter (LS+TV), and least-square
regularized with TV and additionally ℓ1 among the reporters (LS+TV+ℓ1). We compare in Fig.
S4 the results of using these methods against the ground truth. In all the scenarios, the three
groups of reporters are successfully extracted from the non-switching background which is well
recovered with a perfect structural similarity index (SSIM) of 1.0, though the peak signal-to-noise
ratio (PSNR) varies among different methods.

Without any regularization, the unmixing performs well only on the first group of reporters,
which has the largest kinetic constant, achieving an SSIM of 0.9 out of 1. However, the algorithm
struggles to separate the second and the third groups. This is indicated by the presence of
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Fig. S4. Unmixing results of a simulated phantom of beads mimicking the experimental phan-
tom. The first three rows each contains reconstructed distribution maps of the three rsOAPs
shown in column one to three and the non-switching background image in the last column.
The PSNR and SSIM of each reconstruction is indicated on top of each image. Row one (a)-(d):
least-square solution. Row two (e)-(h): least-square with total variation regularization. Row
three (i)-(l): least-square with total variation and ℓ1 regularization. Row four (m)-(p): ground
truth. (q)-(s): horizontal intensity profiles at the 60th row of pixels of the reporter Re (q), Dr (r),
and Rp (s) for each reconstruction method. The intensities of all images are normalized to [0, 1]
for visual comparison.

reporters belonging to the third group appearing in the map of the second, leading to an SSIM of
only 0.79 for the second group.

In fact, reporters of the third group “bleed” into the maps of the first two groups (see the
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zoomed-in area in Fig.S4 (a) and (b)). After having added a TV regularizer for each group and
tuned the regularization weights, we observe in Fig. S4 (e)-(g) that TV not only reduces noise
inside the beads, giving a much smoother intensity distribution for each of them, but also greatly
mitigates the bleed-through issue if we compare Fig. S4 (b) and (f). The PSNR of each group
enjoys an average boost of 7dB due to the noise reduction and the SSIM of reporters Re and Dr is
improved by 7% on average. However, there is still a hint of a remaining bleed-through in Fig. S4
(f), which is solved by the further addition of an ℓ1 regularizer to enforce sparsity at each pixel.
This proves to effectively solve the bleed-through problem and the intensity of each bead is more
uniform, increasing the PSNR of each map by another 2-5dB (see Fig. S4 (i)-(k)).

To gain more insight on the reconstruction quality, we compare the intensity profiles along a
representative horizontal line at the 60th row in Fig. S4 (q)-(s). We see that LS+TV+ℓ1 outperforms
LS only and LS+TV in the sense that, on one hand, the signal is correctly recovered at nearly its
100% intensity with very little fluctuation inside the bead (see signals at location 55px and 140px
in Fig. S4 (s) for a good example) and that, on the other hand, LS+TV+ℓ1 does not suffer from the
bleed-through issue on locations where there should not be any signal compared to the other two
approaches. Taking the signals at location 55px and 140px in Fig. S4 (q) and (r) as an example, LS
only and LS+TV show relatively prominent peaks at these two locations where the signals from
the third group should not appear at all, while LS+TV+ℓ1 shows only flat tiny bumps. Hence, we
conclude that our proposed reconstruction method, which combines TV and ℓ1 regularization
with least square, yields the best reconstruction results.

4. ESTIMATION OF THE KINETIC CONSTANTS

The kinetic constants k̄ reported in Table S1 are measured experimentally and depend on the
pulse energy and the subsequent unknown light fluence Φm during the measurement via k = k̄

Φm
,

where k is the intrinsic constant. To estimate Φm, we first use an empirical method to retrieve the
decay rates {bRe, bDr, bRp} of each species from the experimental dataset. Then, we determine
Φm from

Φm = 3

√
k̄Re
bRe

k̄Dr
bDr

k̄Rp

bRp
, (S11)

which is a cubic square root of the estimated results from all three species. To estimate the
{bRe, bDr, bRp}, we fit an exponential function

y = ae−bt + c (S12)

at each pixel to obtain a map of the decay rates b. Then, we approximate the OFF-switching rate
of each reporter by locating the peaks in the histogram of the map of b. In Fig. S5(a), we show
an example of the fitting result at one location inside each of the three rsOAPs marked by the
three dots in Fig. S5(b) for the dataset of the experimental phantom of beads. In Fig. S5(c), we
show the result of the empirical estimate of the kinetic constants. Three prominent peaks are
observed, indicating the decay rates of the three species. We take a value around these peaks as
the empirical estimate for {bRe, bDr and bRp}. Plugging the estimated {bRe, bDr, bRp} in Fig. S5
and k̄Re, k̄Dr, k̄Rp in Table S1 into Eq. (4), we obtain that Φm = 0.3.
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Fig. S5. Estimation of the decay rates for the three species based on the OFF-switching dataset
of the experimental phantom of beads. (a) Fitting results at three representative pixels, each
inside one of the three rsOAPs. The original data is the scatter points, the curves are the fitted
results. (b) Location of the three pixels used in (a). The OA image is the first frame of the OFF-
switching series. (c) Histogram (partial) of the fitted decay rate b for all the pixels in the OA
image. Based on the fitting result in (a), only the part of the histogram where the values within
the range (<25) is displayed.
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