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CLINICAL HIGHLIGHTS
� Ferroptosis is a distinct form of cell death marked by iron-dependent, overwhelming lipid peroxidation. Mounting

evidence suggests its involvement in aging, tumor suppression, and infection control, indicating that it may be an
innate cell death mechanism.

� Ferroptosis has been implicated in a variety of diseases such as ischemia-reperfusion injury, neurodegeneration,
and autoimmune diseases. Moreover, ferroptosis may be the underlying mechanism of tissue damage inflicted by
certain pathogens and drugs. Inhibition of ferroptosis in these contexts may therefore offer unprecedented thera-
peutic benefits.

� Ischemia-reperfusion injury is an unavoidable process in organ transplantation. Administering ferroptosis inhibitors
during organ preservation may alleviate tissue detriment to donor organs.

� Certain types of cancers, such as clear cell renal cell carcinoma and MYCN-amplified neuroblastoma, along with
drug-tolerant persister cells and those undergoing epithelial-mesenchymal transition, exhibit high vulnerability to
ferroptosis. This suggests the induction of ferroptosis as a potential therapeutic strategy.

� Some existing drugs and irradiation treatments have been shown to induce ferroptosis and eradicate tumor cells.
Combining different methods to induce ferroptosis could offer a promising approach to cancer therapy.
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Abstract

Wepresent here a comprehensive update on recent advancements in the field of ferroptosis, with a particular empha-
sis on its metabolic underpinnings and physiological impacts. After briefly introducing landmark studies that have
helped to shape the concept of ferroptosis as a distinct form of cell death, we critically evaluate the key metabolic
determinants involved in its regulation. These include the metabolism of essential trace elements such as selenium
and iron; amino acids such as cyst(e)ine, methionine, glutamine/glutamate, and tryptophan; and carbohydrates, cov-
ering glycolysis, the citric acid cycle, the electron transport chain, and the pentose phosphate pathway.We also delve
into themevalonate pathway and subsequent cholesterol biosynthesis, including intermediatemetabolites like dime-
thylallyl pyrophosphate, squalene, coenzyme Q (CoQ), vitamin K, and 7-dehydrocholesterol, as well as fatty acid and
phospholipid metabolism, including the biosynthesis and remodeling of ester and ether phospholipids and lipid per-
oxidation. Next, we highlight major ferroptosis surveillance systems, specifically the cyst(e)ine/glutathione/glutathi-
one peroxidase 4 axis, the NAD(P)H/ferroptosis suppressor protein 1/CoQ/vitamin K system, and the guanosine
triphosphate cyclohydrolase 1/tetrahydrobiopterin/dihydrofolate reductase axis. We also discuss other potential anti-
and proferroptotic systems, including glutathione S-transferase P1, peroxiredoxin 6, dihydroorotate dehydrogenase,
glycerol-3-phosphate dehydrogenase 2, vitamin K epoxide reductase complex subunit 1 like 1, nitric oxide, and acyl-
CoA synthetase long-chain family member 4. Finally, we explore ferroptosis’s physiological roles in aging, tumor sup-
pression, and infection control, its pathological implications in tissue ischemia-reperfusion injury and neurodegenera-
tion, and its potential therapeutic applications in cancer treatment. Existing drugs and compounds that may regulate
ferroptosis in vivo are enumerated.

cancer therapy; cell metabolism; ferroptosis; pathology; physiology
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1. INTRODUCTION

Cell death is a common occurrence in the human body,
with millions of cells dying every second. Under physio-
logical conditions, the vastmajority of these cells undergo
apoptosis, a process where cells die without rupturing
their membranes. However, in pathological conditions,
different necrotic cell death modalities, such as necropto-
sis, pyroptosis, and ferroptosis, may be actively involved.
Although all these modalities, including apoptosis, are
classified as forms of regulated cell death (1), ferropto-
sis stands out because of the absence of a cognate

executioner protein. In apoptosis, the executioner protein
caspase-3 orchestrates the breakdown of cellular compo-
nents like DNA upon activation. In necroptosis and pyrop-
tosis, phosphorylated mixed-lineage kinase domain-like
(MLKL) protein and cleaved gasdermin proteins, respec-
tively, form pores in the plasma membrane. By contrast,
ferroptosis is driven by iron-dependent overwhelming
lipid peroxidation resulting from metabolic dysfunctions
(2). In this regard, ferroptosis is more like a sabotage than
a programmed suicide process (3). The uniqueness of fer-
roptosis is further highlighted by its intricate connections
to different metabolic processes involving essential trace
elements, amino acids, carbohydrates, mevalonate path-
way metabolites, fatty acids, and phospholipids (PLs),
which are extensively reviewed in the following. We
introduce the main systems and key players control-
ling ferroptosis and explore its physiological, patho-
logical, and therapeutic roles. Our goal therefore is to
provide a detailed overview of the current state of the
art in the field of ferroptosis. Before delving into this,
however, we briefly discuss the preferroptosis era
because it is a common misconception that research
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on ferroptosis began only in 2012 when the term was
coined (4); in fact, the different facets of this form of cell
death had been observed and studied long before
then.

2. FERROPTOSIS IN THE PREFERROPTOSIS
ERA

2.1. Diet-Induced Hepatic Injury—Perhaps the First
Reported Ferroptosis Animal Model?

The story begins with T. E. Weichselbaum’s report in 1935
that the majority of rats maintained on a cystine-deficient
diet died from “hemorrhages” in the liver (later identified
as “necrosis”) (5). Intriguingly, earlier researchers con-
ducting the very same experiment observed only growth
retardation and no significant number of deaths. These
seemingly opposing findings were finally resolved in
1947, when it was found that varying levels of tocopherol
in the diet were key (6). Furthermore, the content of un-
saturated fatty acids also has a decisive impact on the de-
velopment of necrosis (7). In the meantime, K. Schwarz (8,
9) independently discovered the protective effect of a-to-
copherol (the most abundant form of vitamin E) on
liver necrosis, using a different model in which the
crude casein in diet was replaced by alkali-treated
casein. In further research into the cause of necrosis,
K. Schwarz and C. M. Foltz (10) identified selenium as
the “factor 3,” independent of cystine and vitamin E,
efficiently protecting the liver. In 1962, the develop-
ment of the thiobarbituric acid assay allowed demon-
stration of lipid peroxidation in the necrotic tissue (11).

The story of diet-induced hepatic injury was coming to
an end (FIGURE 1), but these pioneering studies just
kick-started ferroptosis research by outlining its key
players and principles, including cystine as the source
of cysteine and ultimately glutathione (GSH), selenium
as a crucial constituent of glutathione peroxidase 4
(GPX4), unsaturated fatty acids as proximate sub-
strates for lipid peroxidation, and tocopherol as a
representative of naturally occurring radical trapping
antioxidants (RTAs).

2.2. Cellular Cyst(e)ine Deprivation—the Primitive
Way to Induce Ferroptosis

The first time that ferroptotic cell death was observed
under the microscope probably dates back to the
1950s: H. Eagle (12, 13) found that mouse fibroblasts
and HeLa cells underwent cell death within a few days
in cystine-deficient medium. Intriguingly, some atypi-
cal cell lines such as mouse lymphoma L1210 even
died from cyst(e)ine deprivation in normal medium (14),
owing to the extremely low activity of the cystine trans-
port system, i.e., system xc

� (15). System xc
� is a cystine/

glutamate antiporter exchanging extracellular cystine for
intracellular glutamate in a 1-to-1 ratio (16, 17). High levels
of extracellular glutamate (>1–3mM) inhibit the uptake of
cystine and thus lead to cell death of fibroblasts (18).
Compared to fibroblasts, neuronal cells are by far more
sensitive to glutamate-induced toxicity (usually in the 2-
digit micromolar range) (19). To distinguish cell death
induced by glutamate-induced excitotoxicity and oxida-
tive toxicity to neurons, the latter form of cell death was
coined “oxytosis” in 2001 and depicts a novel form of cell
death characterized by GSH depletion, lipoxygenase
(LOX) activation, production of reactive oxygen species
(ROS), and calcium influx (20). We now know that oxytosis
and ferroptosis present the same phenomenon, yet for
over a decade oxytosis was thought to be neuron specific
and only studied in one given cell line (i.e., HT-22 cells).
The two subunits that make up system xc

� were eventu-
ally elucidated in 1999 by S. Bannai and H. Sato (21), and
mice lacking xCT (SLC7A11), the substrate specificity-con-
ferring subunit of system xc

�, were reported in 2005.
Interestingly, these mice appear healthy, whereas embry-
onic fibroblasts (MEFs) derived from these mice cannot
survive under normal cell culture conditions, unless being
supplemented with b-mercaptoethanol (22). In the mean-
time, a chemical compound targeting system xc

�, sulfasa-
lazine, was identified and extensively investigated (23).
Erastin, a more potent and widely used system xc

� inhibi-
tor, was initially identified as a selective cell death-induc-
ing agent of cells harboring oncogenic RAS (24). It took
almost a decade to clarify the main target of erastin,
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which concurrently inspired the coining of “ferroptosis”
(4) (FIGURE 1).

2.3. GPX4—the Protagonist in the Control of
Ferroptosis

GPX4 was discovered in 1982 by F. Ursini and co-
workers (25) and characterized as a “peroxidation in-
hibiting protein” that reduces phospholipid hydroperoxides
at the expense of GSH. Three years later, GPX4 was found
to harbor the rare 21st amino acid selenocysteine (Sec)
in its polypeptide chain (26). In 2003, the first Gpx4
knockout mouse line was established, which proved
to be embryonic lethal (27). To circumvent embryonic
lethality, our group generated a conditional Gpx4
knockout mouse line and provided the first evidence
that loss of GPX4 in cultured MEFs leads to an as-yet
unrecognized form of cell death marked by overwhelm-
ing lipid peroxidation. Furthermore, pups with neuron-
specific Gpx4 knockout develop neurodegeneration
(28), showing that this novel form of cell death is also
relevant in vivo. In parallel, W. S. Yang and B. R. Stockwell
(29) explored the mechanism of action of a small molecule
compound, named (1S,3R)-RSL3 (RSL3), which selectively
induces an iron-dependent, nonapoptotic form of cell
death in RAS-mutant cells. In 2014, the target of RSL3
was unveiled as GPX4 (30). Meanwhile, we reported
that deletion of GPX4 in adult mice triggers lipid peroxi-
dation-induced acute renal failure and early death of

mice (31). Taken together, all these studies helped to es-
tablish the central role of the cyst(e)ine/GSH/GPX4 axis
in ferroptosis surveillance (FIGURE 1).

3. METABOLIC PROCESSES IMPINGING ON
THE VULNERABILITY TOWARD
FERROPTOSIS

3.1. Essential Trace Elements

3.1.1. Iron.

As the name implies, ferroptosis is “iron dependent.”
Mechanistically, iron acts as a catalyst in lipid peroxida-
tion, either in the free redox-active form or incorporated
in enzymes such as LOXs and cytochrome P450 oxidor-
eductase (POR) (2). Therefore, changes in cellular iron
level may influence the sensitivity of cells toward ferrop-
tosis (32).
Cellular iron metabolism can be divided into four

processes: import, intracellular trafficking, storage,
and export (FIGURE 2). For most tissues, liver-derived
transferrin (encoded by the Trf gene), which mediates
ferric iron (Fe31) delivery in the blood, is the main
source of iron. Cells cultured in transferrin-depleted
media are resistant to ferroptosis because of iron defi-
ciency (33). However, global deletion of Trf is lethal in
mice, whereas ablation of transferrin in hepatocytes
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decades later, the first Gpx4 knockout (KO) mouse line, which proved to be embryonic lethal, was established. In 2008, the conditional Gpx4 knockout
mouse model and mouse embryonic fibroblasts (MEFs) were reported, showing that the mere loss of GPX4 causes a novel form of cell death marked
by (phospho)lipid peroxidation and rescuable by vitamin E. In 2014, GPX4 was identified as a key player in ferroptosis control, acting downstream of
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leads to iron overload in most tissues, likely due to
the increase of non-transferrin-bound iron (NTBI) in
serum (34). Uptake of the transferrin-Fe31 complex
(referred to as holo-transferrin) is mainly mediated by
transferrin receptor 1 (TFR1) (FIGURE 2). Silencing of
TFR1 renders cells resistant to ferroptosis (29, 33,
35). Consequently, E3 ubiquitin ligases (e.g., HUWE1,
NEDD4L, and CHIP), which mediate the degradation
of TFR1, protect cancer cells from ferroptosis (36–
38). In contrast, oncogenic MYCN and the deubiquiti-
nase OTUD1, which enhance TFR1 expression, sensitize
cancer cells to ferroptosis (39, 40). Taken together,
these studies highlight the central role of the transferrin-
TFR1 system in the control of cellular iron level and fer-
roptosis susceptibility. Interestingly, the upregulation of
TFR1, which is thought to accelerate the death process,
is deemed a marker of ferroptotic cells distinct from apo-
ptotic cells (41, 42). The underlying mechanism and
physiological role of this alteration, however, remain to
be elucidated. Depending on the cell type and the form
of extracellular iron source, other iron uptake mecha-
nisms may contribute to ferroptosis sensitivity, such as
ZIP14 (aka SLC39A14)- and ZIP8 (aka SLC39A8)-medi-
ated NTBI uptake (34, 43–45) and CD44-mediated
endocytosis of iron-bound hyaluronates (46) (FIGURE 2).
Iron uptake mediated by the transferrin-TFR1 system

is followed by endocytosis. In the acidic endolysosomal

compartment, Fe31 is reduced to ferrous iron (Fe21) by
the six transmembrane epithelial antigen of prostate
(STEAP) family and then secreted into the cytosol via
divalent metal transporter 1 (DMT1) (FIGURE 2). Blocking
this process by lysosome inhibitors renders cells resist-
ant to ferroptosis (35), whereas ablation of DMT1 can
lead to iron accumulation and lipid peroxidation in the ly-
sosome (47, 48). Fe21 entering the cytosolic iron pool is
distributed with the help of the poly(rC)-binding protein
(PCBP) family (FIGURE 2). Mice lacking PCBP1 in hepato-
cytes exhibit defects in liver iron handling associated
with lipid peroxidation and steatosis (49). Cancer cells
with gene silencing of PCBP1 or PCBP2 are vulnerable
to ferroptosis (50, 51). One of the most important intra-
cellular compartments of intracellular iron is mitochon-
dria, the central hub for energy and ROS generation.
Restricting iron entry into mitochondria by disrupting
DMT1 and mitoferrin 1/2 (MFRN1/2, aka SLC25A37/
SLC25A28), which are iron transporters residing on the
outer and inner mitochondrial membranes, respectively
(FIGURE 2), renders cells resistant to ferroptosis (52–
55). However, the conflicting reports on lysosomal DMT1
and mitochondrial DMT1 in ferroptosis require further
investigation. Mitochondrial iron is mainly used for iron-
sulfur cluster (ISC) biogenesis and heme synthesis
(FIGURE 2). Perturbation of key players such as cysteine
desulfurase NFS1 (56), iron-sulfur cluster assembly 2
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marily mediated by transferrin receptor 1 (TFR1), which
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(57), CDGSH iron-sulfur domain-containing proteins (58–
61), frataxin (62, 63), glutaredoxin-5 (64), and ferrochela-
tase (65, 66) can trigger an iron-starvation response and
promote ferroptosis. Thus, it appears that iron in the mito-
chondria promotes ferroptosis, especially when it is not
properly utilized.
Excess iron can be stored in ferritin, a heteropolymer

composed of heavy chains and light chains (FIGURE 2).
Loss of ferritin heavy chain in mouse cardiomyocytes
and loss of ferritin light chain in pregnant rats lead to fer-
roptosis-associated cardiomyopathy and preeclampsia,
respectively (67, 68). The degradation of ferritin (i.e., fer-
ritinophagy) is mediated by nuclear receptor coactivator
4 (NCOA4) (FIGURE 2). Inhibition of ferritinophagy by
targeting NCOA4 protects cells against ferroptosis (69,
70). Physiologically, NCOA4 is involved in systemic iron
homeostasis and erythropoiesis, as genetic disruption of
NCOA4 in mice causes ferritin accumulation in tissues
associated with anemia (71). Pathologically, NCOA4-de-
pendent ferroptosis has been implicated in glaucoma
(72), ischemic stroke (73), and ionizing radiation-induced
intestinal injury (74). In mitochondria, excess iron is
stored in mitochondrial ferritin (FTMT), which is structur-
ally and functionally homologous to ferritin heavy chain.
Mice lacking FTMT do not show obvious phenotypes
(75), whereas under oxidative stress FTMT may play an
antiferroptotic role in neurons and macrophages (76,
77). In addition to ferritin, transferrin and lipocalin-2 can
also modulate ferroptosis sensitivity by sequestering in-
tracellular iron in certain contexts (78–80). On the other
hand, the stress-responsive enzyme heme oxygenase-1
(HMOX-1, HO-1) can increase ferroptosis sensitivity by
liberating Fe21 from heme (81–84), albeit conflicting
reports claim that loss of HMOX-1 can induce heme tox-
icity (85, 86).
Cellular ironexport ismainlymediatedby theFe21 trans-

porter ferroportin (FPN, aka SLC40A1), which is coupled to
a ferroxidase such as ceruloplasmin and hephaestin that
oxidizes Fe21 to Fe31 so that the released iron can be
loaded onto transferrin (FIGURE 2). Ablation of FPN in the
neurons of mouse neocortex and hippocampus leads to
brain iron accumulation and ferroptosis-associated cogni-
tive impairment, which can be ameliorated by intranasally
delivered ferroptosis inhibitors (87).Micewith kidneyproxi-
mal tubule-specific FPN loss are more vulnerable to folic
acid-induced nephrotoxicity accompanied by signs of
ferroptosis (88). Consistently, ceruloplasmin depletion in
hepatocellular carcinoma cells (HCCs) increases their
sensitivity toward ferroptosis (89). In addition to the FPN
system, prominin 2 (PROM2)-mediated ferritin export
(90), FLVCR1-mediated heme export (91), and TRPML1-
mediated lysosomal exocytosis may confer ferroptosis
resistance in different contexts by lowering intracellular
iron levels (92) (FIGURE2).

3.1.2. Selenium.

In contrast to iron, selenium is the most important trace
element in ferroptosis suppression because GPX4, the
mainstay in ferroptosis control, is a selenoprotein (30,
31). Therefore, not only the source of selenium but also
the regulation of Sec incorporation machinery has cru-
cial impacts on ferroptosis sensitivity (93).
Akin to transferrin in iron metabolism, selenoprotein P

(SELENOP) is mainly synthesized in the liver and has the
function of distributing selenium to other organs via the
circulatory system, although certain organs like brain also
express their own SELENOP to maintain the local sele-
nium cycle (94, 95) (FIGURE 3). Mice with global Selenop
deletion display neurological deficits in childhood and
reduced fertility in males (96, 97). Coincidently, mice (on a
mixed genetic C57BL/6J/129S6SvEv background) with a
targeted Sec-to-Cys (U46C) replacement in GPX4 are
born but die of seizures �2–3wk after birth (98), and
male mice with GPX4 ablation in spermatocytes are infer-
tile (99). In vitro, deletion of SELENOP in pancreatic b-cells
and glioblastomas leads to decreased GPX4 expression
and increased ferroptosis sensitivity, suggesting that
SELENOP maintains selenium level in a paracrine/auto-
crine manner in certain contexts (100, 101). The uptake of
SELENOP is mediated by low-density lipoprotein recep-
tor-related protein 8 (LRP8, aka APORE2) and LRP2 (aka
megalin) (FIGURE 3), which have distinct tissue distribu-
tions (102). Mice with global Lrp8 knockout exhibit defects
in brain formation and male infertility (103, 104), mimicking
the phenotypes of Selenop knockout mice, although
these defects are at least partially due to impaired Reelin
signaling (105). LRP2 is highly expressed in kidney proxi-
mal tubule epithelial cells, where it mediates the reab-
sorption of SELENOP from the primary urine (106).
Accordingly, Lrp2 mutant mice display increased urinary
SELENOP excretion and global selenium deficiency (107).
Depletion of LRP8 increases ferroptosis vulnerability in
neurons, neuroblastomas, and breast cancer cells (108–
110), but whether LRP2 plays a role in ferroptosis remains
to be determined.
In addition to SELENOP, selenium can be utilized by

cells in other organic or inorganic forms, where system
xc

� may play an essential role. For instance, selenocys-
tine (SeCys2) is imported by system xc

� at the exchange
of glutamate (111, 112) (FIGURE 3). The rapid utilization of
selenite (SeO2�

3 ) also relies on the cystine/cysteine cycle
mediated by system xc

�, which creates a reducing extrac-
ellular milieu facilitating the conversion of SeO2�

3 to sele-
nide (HSe�) (113, 114) (FIGURE 3). Thus, system xc

� not
only controls the substrate of GPX4 but also controls its
expression by mediating selenium uptake, especially
when the SELENOP system is impaired (109, 115).
Notably, a recent study indicates that high concentrations
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of inorganic selenocompounds protect cells from mito-
chondrial lipid peroxidation in a GPX4-independent
manner, i.e., by promoting sulfide quinone oxidore-
ductase (SQOR)-mediated regeneration of ubiquinol
(CoQH2) (116). However, whether this concept applies
to pathophysiological conditions remains to be
validated.
As a prerequisite for selenoprotein synthesis, both or-

ganic and inorganic selenocompounds must first be con-
verted to HSe� (117). Inorganic selenocompounds like
SeO2�

3 and selenate (SeO2�
4 ), once inside the cells, can

be reduced to HSe� by GSH- and thioredoxin reductase 1
(TXNRD1)-dependent reducing systems (117) (FIGURE 3).
Organic selenocompounds, including SELENOP, are usu-
ally catabolized in lysosomes to release Sec, which is then
further processed by Sec lyase (SCLY) to yield HSe�

(FIGURE 3). In some specific cell lines like neuroblastoma

SK-N-DZ, which are highly sensitive to selenium depriva-
tion, loss of SCLY alone is sufficient to trigger ferroptosis
(118). Interestingly, SCLY-deficient mice do not show as
severe phenotypes as Selenop knockout mice, implying
the presence of SCLY-independent metabolic pathways
(119). This assumption was recently confirmed in human T
lymphoma Jurkat cells as well as SK-N-DZ cells, but the
underlying mechanism remains unclear (118, 120). To be
incorporated into Sec-tRNA[Ser]Sec, HSe� needs to be
phosphorylated to selenophosphate (H2SePO

�
3 ) by

selenophosphate synthetase 2 (SEPHS2) (FIGURE 3).
Ablation of SEPHS2 not only impedes selenoprotein
synthesis but also leads to HSe� toxicity; therefore,
cancer cells with a high demand for selenium and sele-
noproteins are particularly sensitive to SEPHS2 pertur-
bation (114, 121). Furthermore, peroxiredoxin 6 (PRDX6)
was found to facilitate efficient utilization of HSe� by
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(GSH)- and thioredoxin reductase 1 (TXNRD1)-dependent systems. The rapid utilization of the inorganic selenocompound selenite (SeO2�

3 ) also relies
on system xc

�, which maintains a reduced extracellular milieu by mediating the cystine/cysteine cycle, thereby facilitating the conversion of SeO2�
3 to

selenide (HSe�). Alternatively, SeO2�
3 and selenate (SeO2�

4 ) can be slowly imported into cells, then reduced to HSe� by GSH- and TXNRD1-dependent
systems. For selenoprotein synthesis, both organic and inorganic selenocompounds must first be converted to HSe�. The conversion of Sec to HSe�

is mainly catalyzed by Sec lyase (SCLY), although SCLY-independent pathways exist. Selenide then binds to one of the Cys residues in peroxiredoxin 6
(PRDX6), which shuttles HSe� to selenophosphate synthetase 2 (SEPHS2), phosphorylating selenide to yield selenophosphate (H2SePO

�
3 ). The bio-

synthesis of Sec-tRNA[Ser]Sec involves 3 sequential steps catalyzed by seryl-tRNA synthetase (SerRS), phosphoseryl-tRNA kinase (PSTK), and Sep-tRNA:
Sec-tRNA synthase (SEPSECS), with H2SePO�

3 as the selenium donor in the final step. Sec-tRNA[Ser]Sec is then used for selenoprotein synthesis requir-
ing a Sec insertion sequence (SECIS) element present in the 30-untranslated region of selenoprotein mRNAs. SECIS-binding protein 2 (SECISBP2) and
associated factors, such as Sec-tRNA-specific eukaryotic elongation factor (EEFSEC), are essential for recognizing the SECIS element and dictating the
ribosome to decode the UGA opal codon as Sec instead of translational termination. Figure created with a licensed version of BioRender.com.
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SEPHS2 (FIGURE 3), as loss of PRDX6 depletes GPX4
and sensitizes cells to ferroptosis (118, 122, 123).
The biosynthesis of Sec-tRNA[Ser]Sec is unique and

requires three steps. First, tRNA[Ser]Sec (encoded by the
Trsp gene) is aminoacylated with serine by seryl-tRNA syn-
thetase (SerRS), yielding Ser-tRNA[Ser]Sec. Subsequently, the
seryl moiety is phosphorylated by phosphoseryl-tRNA ki-
nase (PSTK), resulting inO-phosphoseryl (Sep)-tRNA[Ser]Sec.
Finally, H2SePO�

3 is incorporated into Sep-tRNA[Ser]Sec by
Sep-tRNA:Sec-tRNA synthase (SEPSECS), generating Sec-
tRNA[Ser]Sec (FIGURE 3). Disruption of this finely orches-
trated process can lead to impaired selenoprotein
synthesis and associated phenotypes. For instance,
constitutive deletion of Trsp causes embryonic death
almost at the same developmental stage as Gpx4
knockout mice (27, 124). The deletion of Trsp in cer-
tain neurons leads to neuronal cell death and a neuro-
degenerative phenotype similar to the isolated deletion
of Gpx4 (125, 126). A missense mutation in Sepsecs
causes cardiorespiratory failure and perinatal death in
mice, which can be rescued by the expression of the
GPX4 U46C variant (127). These studies suggest the
unique position of GPX4 among other selenoproteins
and that in certain contexts ferroptosis is the direct con-
sequence of selenoprotein depletion.
Sec is encoded by the opal stop codon UGA. To

decode this stop codon into a Sec residue, a stem-loop-
like structure, known as Sec insertion sequence (SECIS)
element, is required in the 30-untranslated region of
selenoproteins in vertebrates. The SECIS element is rec-
ognized by SECIS-binding protein 2 (SECISBP2), which
in turn recruits other factors such as Sec-tRNA specific
eukaryotic elongation factor (EEFSEC) to facilitate the
insertion of Sec-tRNA[Ser]Sec (FIGURE 3). Constitutive loss
of SECISBP2 in mouse leads to embryonic death (128),
and mice with neuron-specific deletion of SECISBP2 dis-
play a phenotype similar to but milder than deletion of
Trsp (129). Although individuals carrying homozygous or
compound heterozygous mutations in the SECISBP2
gene are viable, they exhibit a multisystem disorder with
selenoprotein deprivation (130, 131). Recently, patients
with SECISBP2 mutations have been found to have a
higher risk of aortic aneurysm formation; studies on
patient samples and correlated animal models reveal fer-
roptosis underlying the pathogenesis (132).

3.2. Amino Acid Metabolism

3.2.1. Cyst(e)ine.

The unique position of cyst(e)ine in the control of fer-
roptosis is largely attributed to its effects on GPX4.
Cysteine is the rate-limiting substrate for GSH synthe-
sis (FIGURE 4), and GSH is the preferred substrate of

GPX4. In the absence of GSH, cysteine itself may serve
as an alternative reducing substrate of GPX4, albeit with
lower efficiency (133, 134). Cysteine also promotes pro-
tein synthesis of GPX4 by facilitating the uptake of sele-
nium (as outlined in sect. 3.1.2). Furthermore, cysteine is
a sulfur donor in ISC biogenesis, which may impact on
mitochondrial iron homeostasis and thus ferroptosis (as
discussed in sect. 3.1.1) (FIGURE 4). Cysteine also pro-
vides sulfur for hydropersulfide (RSSH) generation, which
is cell-intrinsic RTAs halting lipid peroxidation in a GPX4-
independent manner (135, 136) (FIGURE 4). Finally, cyste-
ine is a building block of coenzyme A (CoA) (FIGURE 4),
which plays an antiferroptotic role, although the mecha-
nism remains to be established (137, 138).
Cells acquire cysteine mainly via uptake from the

extracellular space and by de novo synthesis (139). In
vivo, extracellular cysteine can be imported by neutral
amino acid transporters (NAATs) such as alanine serine
cysteine transporter 1/2 (ASCT1/2), L-type amino acid
transporter 2 (LAT2), and excitatory amino acid carrier
type 1 (EAAC1, aka EAAT3, SLC1A1) (FIGURE 4). In cell cul-
ture, however, the level of extracellular cysteine is negli-
gible because cysteine is rapidly converted to cystine
under atmospheric oxygen. Therefore, cultured cells are
forced to express system xc

� for cystine import (139).
Intracellular cystine is then quickly reduced to cysteine
by GSH- or TXNRD1-dependent reducing systems (140,
141) (FIGURE 4). The distinct availability of extracellular
cyst(e)ine between in vitro and in vivo conditions thus
can easily lead to different outcomes, raising caution for
results obtained by in vitro and in vivo investigations.
Besides system xc

�, system b0,1 mediates the uptake
of cystine, but its expression is restricted to the kidney.
Humans and mice with defects in system b0,1 develop
cystinuria due to impaired renal reabsorption of cystine
(142). Ectopic expression of SLC3A1, the heavy chain of
system b0,1, has been linked to elevated GSH level and
tumorigenesis in breast cancer (143). In addition to cys-
tine, cysteine-enriched proteins and GSH-related pep-
tides can also serve as alternative sources for intracellular
cysteine. For instance, albumin is taken up by cancer cells
for cysteine supply via cathepsin B (CTSB)-mediated lyso-
somal degradation (144) (FIGURE 4). Extracellular GSH is
hydrolyzed to Cys-Gly dipeptide by the ectoenzyme
c-glutamyltransferase 1 (GGT1), followed by import and
dipeptidase-mediated digestion to yield cysteine (145)
(FIGURE 4). Ablation of GGT1 in glioblastomas and inhibi-
tion of carnosine dipeptidase II (CNDP2) in HCCs sensi-
tize cells to cystine deprivation-induced ferroptosis (146,
147). Nevertheless, forced expression of GGT1 in chromo-
phobe renal cell carcinomas paradoxically suppresses
GSH levels and cell proliferation (148).
Cysteine can be synthesized from serine and homo-

cysteine via the transsulfuration pathway. This is an
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irreversible process involving two vitamin B6-dependent
enzymes, cystathionine b-synthase (CBS) and cystathio-
nine c-lyase (CSE, aka cystathionase, CTH) (FIGURE 4).
CBS catalyzes the condensation of homocysteine and
serine to form cystathionine, which is then hydrolyzed
by CSE to generate cysteine, a-ketobuyrate (a-KB), and
ammonia. CBS and CSE are most strongly expressed in
liver tissue (149). Mice with hepatocyte-specific deletion
of both TXNRD1 and glutathione-disulfide reductase
(GSR) remain viable regardless of their inefficiency in
reducing cystine, as transsulfuration maintains the basic
supply of cysteine (150). Likewise, primary murine hepa-
tocytes with xCT deletion maintain cysteine levels and
proliferate normally (151). On the other hand, mice with
global Cbs knockout suffer from severe growth retarda-
tion and early death associated with homocysteinemia

and liver injury (152). Primary murine hepatocytes with
CTH loss are highly sensitive to cystine deprivation
(153). Although Cse knockout mice do not show any
obvious phenotype, their viability is highly dependent
on dietary cysteine supply (153, 154), and these mice
are more susceptible to acetaminophen-induced hep-
atotoxicity (155). Together, these studies highlight the
physiological importance of transsulfuration pathway
for cysteine supply. The transsulfuration pathway is
also exploited by some cancers. In a subset of cancer
cell lines, CBS and CSE are constitutively expressed,
whereas in some others CBS and CSE are induced
upon cysteine deficiency (156–159). Moreover, the
transsulfuration pathway can be activated by onco-
genic MYCN in neuroblastoma (160, 161), by PI3KCA in
breast cancer cells (162), and by interleukin 1 receptor

System xc
-SystemyGlu

Cys2   

Cys

e
mos

osyL

GSH/
TXNRD1

Albumin

MFSD12

e

CTNS

GSH

GGT1
Cys-GlyCysyyyyyyy

NAATs

CNDP2

Cys-Gly

/NRD1
CCTNSTN

CCC
2

Cys2   

Met
cycle

M
T

s M
A

T

S
A

H
H

M
S

/B
H

M
T

dcSAM SA
M

D
C

SA
M

Polyamine pathwayArg

Taurine

CSE

Transsulfuration

SAM
C

D
O

CSA

Pyruvate 
+ Sulfate

CoA
synthesis

GSH
synthesis

ISC synthesis

RSSH/RSSR/H2S

C
D

O

C

sis

C
B

S/
C

SE

Cys2   

sy

Hcy

SAH                    Met

Cysta

c

M

S

Protein
synthesis

SA

CBS

Storage

M
P

ST
G

O
T

T

CTSB

S
Ser

FIGURE 4. Cyst(e)ine and methionine metabolism. In vivo, extracellular cysteine (Cys) can be imported via neutral amino acid transporters (NAATs),
whereas in vitro cells rely heavily on system xc

�-mediated cystine (Cys2) import, which is then reduced to Cys by glutathione (GSH)- and thioredoxin re-
ductase 1 (TXNRD1)-dependent systems. Lysosomal degradation of albumin mediated by cathepsin B (CTSB) and sequential hydrolysis of GSH medi-
ated by c-glutamyltransferase 1 (GGT1) and carnosine dipeptidase II (CNDP2) can also contribute to the intracellular Cys pool. Additionally, Cys can
be synthesized through the transsulfuration pathway, where serine (Ser) and homocysteine (Hcy) are converted to cystathionine (Cysta) by cystathionine
b-synthase (CBS) and subsequently hydrolyzed by cystathionine c-lyase (CSE). Intracellular Cys, possibly stored as Cys2 in lysosomes, is crucial for the syn-
thesis of GSH, coenzyme A (CoA), and various proteins. Major facilitator superfamily domain containing 12 (MFSD12) and cystinosin (CTNS) mediate the
lysosomal influx and efflux of Cys and Cys2, respectively. Cys also serves as a sulfur donor for iron-sulfur cluster (ISC) biogenesis and the synthesis of per-
sulfide species, including hydropersulfide (RSSH), persulfide (RSSR), and hydrogen sulfide (H2S). This process can occur sequentially via glutamate oxalo-
acetate transaminase (GOT) and mercaptopyruvate sulfurtransferase (MPST) or via CBS or CSE using oxidized Cys (i.e., Cys2) or Cys plus Hcy as
substrates. Cys can also be oxidized by cysteine dioxygenase (CDO) to cysteine sulfinic acid (CSA), serving as a carbon donor for pyruvate and taurine.
Methionine (Met) is a precursor to Hcy and, subsequently, Cys. The conversion of Met to Hcy involves 3 steps catalyzed by methionine adenosyltransfer-
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(dcSAM), which, along with arginine (Arg), may drive the polyamine pathway. Figure created with a licensed version of BioRender.com.
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accessory protein (IL1RAP) in Ewing sarcoma cells to
counteract ferroptosis (163).
Intracellular cysteine is presumably stored in the form

of cystine in lysosomes (164). Upon cystine deprivation,
the decrease of lysosomal cystine instead of cytoplas-
mic cysteine is responsible for the induction of activat-
ing transcription factor 4 (ATF4) (165), which governs
the transcription of a set of genes including xCT and
CSE to rescue ferroptosis (166, 167). The lysosomal
influx and efflux of cysteine and cystine are controlled
by major facilitator superfamily domain containing 12
(MFSD12) and cystinosin (CTNS), respectively (168,
169) (FIGURE 4). Breast cancer cells with loss-of-func-
tion mutations in MFSD12 are more vulnerable to ROS
challenges because of insufficient cysteine storage and
GSH synthesis, whereas cells with MFSD12 overexpres-
sion are more tolerant (170). Consistent with this, CTNS
depletion sensitizes cells to oxidative stress and ferrop-
tosis because of blockade of lysosomal cystine export
(165, 170). However, it is noteworthy that the pathogenic
mechanism underlying cystinosis, a genetic disorder
caused by biallelic mutations in the CTNS gene, is
unlikely relevant to ferroptosis but rather the accumula-
tion of cystine crystals in lysosomes.
Intracellular cysteine is involved in multiple metabolic

pathways (FIGURE 4). For example, cysteine can be
degraded sequentially by glutamate oxaloacetate trans-
aminase [GOT, also known as cysteine aminotransferase
(CAT) or aspartate aminotransferase (AST)] and mercap-
topyruvate sulfurtransferase (MPST) to yield persulfide
(RSSR)/hydrogen sulfide (H2S). H2S can be further con-
verted to RSSH by reacting with an oxidized thiol spe-
cies (e.g., RSSR) or by mitochondrially localized SQR
(171). The transsulfuration enzymes CBS and CSE also
facilitate RSSH/H2S production by using either cystine
(oxidized cysteine) or homocysteine plus cysteine as
substrates (172, 173) (FIGURE 4). Depletion of SQR and
CSE sensitizes cells to ferroptosis, whereas depletion of
persulfide dioxygenase, which catalyzes persulfide deg-
radation, has the opposite effect (135, 136). These studies
clarify the mechanism underlying the previous observa-
tion that CBS and CSE protect against ferroptosis inde-
pendently of cysteine formation (158). Remarkably, H2S
per se is not an effective RTA (135). Upon cystine depriva-
tion, H2S may even sensitize cancer cells to ferroptosis
by inhibiting the enzyme activity of S-adenosyl-L-homo-
cysteine hydrolase (SAHH) and thus the transsulfuration
pathway (174). Intracellular cysteine is also utilized for pro-
tein synthesis and cysteine dioxygenase (CDO)-mediated
oxidation (FIGURE 4), which do not exert obvious antifer-
roptotic effects. These metabolic processes may com-
pete with the others for cysteine utilization and thereby
promote ferroptosis. For example, the expression of CDO
sensitizes cancer cells to ferroptosis (175–177), whereas

blocking protein synthesis by targeting mTOR complex 1
(mTORC1) suppresses cystine deprivation-induced ferrop-
tosis (178).

3.2.2. Methionine.

As a precursor of homocysteine, methionine should theo-
retically protect against ferroptosis by boosting intracellu-
lar cysteine level via the transsulfuration pathway.
Unexpectedly, two independent groups recently reported
opposing results that methionine deprivation inhibits ferrop-
tosis induced by cystine deprivation, which are discussed
here (179, 180).
The conversion of methionine to homocysteine

involves three steps: first, methionine and adenosine
triphosphate (ATP) are condensed by methionine
adenosyl transferase (MAT) to generate S-adenosyl
methionine (SAM); SAM is a universal methyl group
donor, and its methyl group can be removed by a vari-
ety of methyltransferases (MTs) including glycine N-
methyltransferase (GNMT) to yield S-adenosyl-homo-
cysteine (SAH); SAH is then hydrolyzed by S-adeno-
syl-L-homocysteine hydrolase (SAHH, aka adenosyl
homocysteinase, AHCY) to produce homocysteine.
Note that homocysteine can be converted back to me-
thionine by either methionine synthase (MS) or betaine-
homocysteine S-methyltransferase (BHMT), completing
the methionine cycle (149) (FIGURE 4). The conversion
of SAM to SAH is rate limiting for homocysteine synthe-
sis, given that ectopic expression of GNMT, but not MAT
or SAHH, restores cell proliferation upon cystine depri-
vation (156). On the other hand, ablation of GNMT and
inactivation of SAHH both sensitize cancer cells to fer-
roptosis (156, 174, 181). Taken together, these studies
suggest that methionine replenishes the intracellular
cysteine pool and thereby impedes ferroptosis.
For certain cancer cells, methionine is obligatory in

the culture media and cannot be replaced by homocys-
teine (182–184). Forced substitution leads to cell cycle
arrest and eventually apoptosis in methionine-depend-
ent cells (185–187). Interestingly, two recent studies
have shown that a number of cancer cells tolerate com-
bined deprivation of methionine and cysteine better
than cysteine deprivation alone (179, 180). In particular,
both studies suggest that cysteine deprivation alone
induces ferroptosis, whereas double deprivation only
delays cell proliferation without causing robust cell
death induction. Furthermore, both studies agree that
SAM and not SAH is the key metabolite that determines
cell fate. Nevertheless, Homma et al. (179) proposed that
SAM promotes cell cycle progression by providing the
methyl group for DNA methylation and that cell cycle
progression is required for ferroptosis to occur. By con-
trast, Zhang et al. (180) suggested that SAM activates
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the polyamine pathway, which generates hydrogen per-
oxide (H2O2) that sensitizes cells to ferroptosis (FIGURE 4).
In support of the latter viewpoint, amine oxidase copper-
containing 1 (AOC1) and spermidine/spermine N1-acetyl-
transferase 1 (SAT1), which mediate polyamine catabo-
lism and thus ROS generation, have been linked to
ferroptosis vulnerability (188, 189). Furthermore, deple-
tion of arginine or ornithine decarboxylase 1 (ODC1),
which are involved in polyamine synthesis, renders cells
resistant to ferroptosis (178, 190). Recently, a third mech-
anism was proposed to account for the proferroptotic
effect of SAM upon cysteine deprivation, i.e., SAM con-
tributes to methylation-dependent coenzyme Q (CoQ)
synthesis, thus sustaining the operation of electron
transport chain (ETC) and ROS generation (as dis-
cussed in sect. 3.3.3) (191). In summary, it appears that

methionine can either promote or prevent ferroptosis,
with the consequences crucially dependent on the
metabolic pathway of SAM (FIGURE 4).

3.2.3. Glutamine/glutamate.

Glutamine/glutamate may affect ferroptosis sensitivity
in several ways. First, excessive extracellular gluta-
mate may directly inhibit the function of system xc

�,
thereby triggering ferroptosis (4). Second, intracellu-
lar glutamate derived from extracellular glutamine is
required for the exchange of extracellular cystine by
system xc

�. Since both cysteine and glutamate are
building blocks of GSH (FIGURE 5), glutamine uptake
facilitates GSH biosynthesis and ferroptosis preven-
tion (192, 193). Third, glutamine may drive ferroptosis
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upon cystine depletion because glutamate cannot be
used for cystine exchange or GSH synthesis in the ab-
sence of cystine. As a result, intracellular glutamate
accumulates and glutamine fuels the tricarboxylic
acid (TCA) cycle via glutaminolysis, followed by the
overactivation of electron transport chain (ETC) driv-
ing ferroptosis (as discussed in sect. 3.3.3) (33, 194,
195).
A series of transporters are capable of importing glu-

tamine, including SLC1A5 (aka ASCT2), SLC38A1, and
SLC38A5 (196) (FIGURE 5). Whereas the expression of
these transporters is essential for ferroptosis defense
across a range of cancer cell lines (197–199), blocking
these transporters protects cells from cystine depriva-
tion-induced ferroptosis (33, 195). Intracellular glutamine
can serve as a nitrogen donor for the biosynthesis of nu-
cleotides, nicotinamide adenine dinucleotide (NAD), as-
paragine, and hexosamines, concurrently generating
glutamate as a by-product (FIGURE 5). Furthermore, glu-
tamine can be imported into the mitochondrial matrix
by the transporter SLC1A5 variant (SLC1A5v) (200),
where glutamine is converted to glutamate by gluta-
minase (GLS) (FIGURE 5). Expression of GLS2, but
not GLS1, contributes to susceptibility to ferroptosis
(33, 201). This might be related to their different sub-
cellular localization, which remains ambiguous so far
(202).
Mitochondrial glutamate can be exported to the cyto-

sol by the glutamate carriers SLC25A18 and SLC25A22
(203), where it is used for the biosynthesis of GSH and
for the exchange of extracellular cystine (FIGURE 5).
Blockade of SLC25A22 is associated with reduced GSH
levels and vulnerability to ferroptosis in pancreatic duc-
tal adenocarcinoma (PDAC) cells (204). Mitochondrial
glutamate can also be converted to a-ketoglutarate
(a-KG) by glutamate dehydrogenase (GDH/GLUD), glu-
tamic-oxaloacetic transaminase 2 (GOT2), or glutamic-
pyruvic transaminase 2 (GPT2), thereby fueling the TCA
cycle (FIGURE 5). Knockdown of GDH and inhibition of
the transaminases protect against cystine deprivation-
induced ferroptosis in certain contexts (33, 195), whereas
supplementation with a-KG or its downstream metabo-
lites, including succinate, fumarate, and malate, restores
cell death upon combined glutamine and cysteine depri-
vation (33, 194). Therefore, intracellular glutamine/gluta-
mate plays a dual role in ferroptosis: under normal
conditions it is required for the prevention of ferroptosis,
whereas in cystine deficiency it exacerbates ferroptosis
via the TCA cycle.

3.2.4. Tryptophan.

Tryptophan is an essential amino acid that mammals
obtain exclusively from food and gut microbes. Recently,

several tryptophan metabolites have been found to in-
hibit ferroptosis by acting as RTAs, including indole-3-py-
ruvate (I3P), serotonin (5-HT), and 3-hydroxyanthranilic
acid (3-HA) (205–208). Interestingly, these metabolites
are distributed across the three major pathways of tryp-
tophan metabolism. I3P is generated extracellularly from
the indole pathway, in which tryptophan is degraded by
the secreted L-amino acid oxidase IL4i1 (205). It is
hypothesized that an unknown I3P transporter is present
that is required for I3P import and exertion of the antifer-
roptotic effect (209). 5-HT is synthesized via the sero-
tonin pathway mainly in the central nervous system
(CNS) by serotonergic neurons and in the gastrointestinal
tract by enterochromaffin cells. The antiferroptotic effect
of 5-HT depends on the expression of the serotonin
transporter SLC6A4 (207), whereas it is abrogated by the
expression of monoamine oxidase A, which degrades 5-
HT (206). 3-HA is derived from the kynurenine pathway,
in which intracellular tryptophan is first converted to kynu-
renine, followed by the generation of 3-hydroxy-kynuren-
ine (3-HK) and then 3-HA. Indoleamine 2,3-dioxygenase 1
(IDO1), which catalyzes the rate-limiting step in the kynu-
renine pathway, and kynureninase (KYNU, aka L-kynu-
renine hydrolase), which mediates the conversion of
3-HK to 3-HA, protect cancer cells from ferroptosis,
whereas 3-HA 3,4-dioxygenase (HAAO), which con-
sumes 3-HA, has an opposite effect (206, 208).
In addition to directly scavenging free radicals, many
of the tryptophan metabolites are able to activate the
nuclear factor E2-related factor 2 (NRF2) pathway,
which can counteract ferroptosis by promoting GSH
biosynthesis (205, 208). Furthermore, in a recent study,
trans-3-indoleacrylic acid, a tryptophan metabolite
derived from the gut microbe Peptostreptococcus
anaerobius, was found to protect colorectal cancer
from ferroptosis in a ferroptosis suppressor protein 1
(FSP1)-dependent manner by promoting the reduc-
tion of NAD1 to NADH (210).

3.3. Carbohydrate Metabolism

Glucose is the driving force of the TCA cycle, in parallel
with glutamate/glutamine. Therefore, it is not surprising
that glucose starvation protects MEFs and PDAC cells
from cystine deprivation-induced ferroptosis (211–213).
On the other hand, glucose impels the regeneration of
nicotinamide adenine dinucleotide phosphate (NADPH)
via the pentose phosphate pathway (PPP). Although
conflicting results have been reported on the effects of
PPP on ferroptosis, cells with a metabolic profile that
favors PPP over glycolysis, as induced by the P47S vari-
ant of tumor protein 53 (p53), are more resistant to fer-
roptosis (214).
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3.3.1. Glycolysis.

The cellular uptake of glucose is mediated by glucose
transporters such as glucose transporter 1 (GLUT1, aka
SLC2A1). Part of the glucose is then used for glycolysis,
forming pyruvate (FIGURE 5). Impeding pyruvate genera-
tion by ablation of GLUT1 or pyruvate kinase M2 (PKM2),
a key enzyme in glycolysis, renders PDAC resistant to
cysteine depletion-induced ferroptosis (212, 215, 216),
whereas supplementation with glycolytic metabolites,
including high concentrations of pyruvate, sensitizes can-
cer cells to ferroptosis (217, 218). Cancer cells preferably
convert pyruvate to lactate (FIGURE 5), also known as
the Warburg effect. Interestingly, lactate has an antifer-
roptotic effect, as evidenced by the fact that disruption of
lactate dehydrogenase (LDH) in HT1080 cells and inhi-
bition of lactate import in HCCs by targeting mono-
carboxylate transporter 1 (MCT1) both sensitize cells
to ferroptosis. Mechanistically, it may be related to the
acidic environment induced by lactate and the deactiva-
tion of AMP-activated protein kinase (AMPK) (218, 219).
Under aerobic conditions, pyruvate is imported into the
mitochondria, where it is oxidized by the pyruvate dehy-
drogenase (PDH) complex. As a consequence, its acetyl
group is transferred to CoA, yielding acetyl-CoA, which
fuels the TCA cycle (FIGURE 5). Inhibition of the E1 subu-
nit of PDH complex by RNA interference or by overex-
pressing pyruvate dehydrogenase kinase 4 (PDK4)
protects cells from cystine deprivation (212, 217).
However, inhibition of the E3 subunit (aka dihydrolipoyl
dehydrogenase, DLD) may lead to different outcomes
depending on the context (217, 220). For example, one
study argues that autoxidation of dihydrolipoamide in
the absence of DLD generates more superoxide anion
radical (O2

��), thereby sensitizing cells to ferroptosis
(217). The reason for this contradiction remains unclear,
but it should be noted that DLD is the E3 subunit shared
by a-KG dehydrogenase (KGDH) and branched-chain
ketoacid dehydrogenase complexes.

3.3.2. TCA.

Activation of the TCA cycle is associated with sus-
ceptibility to cystine deprivation-induced ferroptosis.
Enzymes of the TCA cycle, including KGDH (220),
succinate dehydrogenase (SDH) (221, 222), fumarate
hydratase (FH, aka fumarase) (194), and malate dehy-
drogenase 2 (MDH2) (223), contribute to ferroptosis in dif-
ferent cellular contexts (FIGURE 5). Supplementation with
TCA intermediates such as citrate or a-KG counteracts
the protective effect of glucose deprivation on ferropto-
sis in PDAC (212). Interestingly, mitochondrial NADP1-
dependent isocitrate dehydrogenase (IDH2) protects
against ferroptosis despite being a TCA cycle enzyme

(224–226), perhaps due to NADPH production (FIGURE 5).
In line with this, mutant IDH2, which consumes NADPH for
the conversion of a-KG to 2-hydroxyglutarate (2-HG), sensi-
tizes acute myeloid leukemia (AML) to ferroptosis (227). In
contrast, IDH3, which catalyzes the same reaction as
IDH2 in the mitochondria but in an NAD-dependent
fashion, has not yet been linked to ferroptosis regula-
tion. In parallel to IDH2, cytosolic NADP1-dependent
isocitrate dehydrogenase (IDH1) confers resistance
to ferroptosis (212), whereas mutant IDH1 exerts an
opposite effect (228, 229).

3.3.3. ETC.

Activation of the TCA cycle can drive the ETC
(FIGURE 5). Mitochondrial membrane potential hy-
perpolarization is observed during cystine deprivation-
induced ferroptosis, suggesting ETC overactivation, and,
accordingly, cell death can be rescued by inhibitors of mi-
tochondrial complexes and the mitochondrial uncoupler
CCCP (194). However, the contribution of mitochondrial
complexes may vary depending on the context. In one
study, activation of complex I instead of complex III was
proposed to drive cystine deprivation-induced ferroptosis
in human fibroblasts (230), whereas in another study using
a mouse hepatoma cell line a completely opposite result
was reported (231). Activation of complex IV contributes to
cystine deprivation-induced ferroptosis in non-small cell
lung carcinoma (NSCLC) cells (232), whereas the activa-
tion of SDH (complex II) promotes ischemia-reperfusion-
induced neuronal ferroptosis (222). Paradoxically, in cer-
tain contexts inhibition of complex I can directly lead to
ferroptosis (233, 234), which may be partly due to sup-
pression of CoQH2 production (235, 236). Furthermore,
depletion of mitochondrial DNA (leading to a lack of respi-
ratory chain catalytic subunits, namely Rho0 or r0) does
not significantly affect or even sensitize cells to ferroptosis
induced by GPX4 inhibition (4, 237, 238). As such, it can
be concluded that the TCA cycle and the ETC promote
cystine deprivation-induced ferroptosis, but their roles in
ferroptosis driven by other impacts (e.g., GPX4 inhibition)
seem to be context dependent.

3.3.4. PPP.

In parallel to glycolysis, intracellular glucose can be metabo-
lized in the PPP shunt, whereby cytosolic NADP1 is
reduced to NADPH (FIGURE 5). However, how PPP
affects ferroptosis appears to be context dependent, as
one study found that silencing of two PPP enzymes,
namely glucose-6-phosphate dehydrogenase (G6PD)
and phosphoglycerate dehydrogenase (PGD), prevented
erastin-induced ferroptosis (4), whereas another study
claimed the opposite (239). This may be attributed to the
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dual role of NADPH in ferroptosis regulation. NADPH is a
substrate of NADPH oxidases (NOXs) and cytochrome
P450 oxidoreductase (POR), which can generate harmful
ROS; at the same time, NADPH is also a universal elec-
tron donor that provides reducing power for the regener-
ation of cellular antioxidants involved in ferroptosis
defense, including cysteine, GSH, vitamin E, vitamin K,
CoQ, and tetrahydrobiopterin (BH4) (240). Furthermore,
NADPH can directly activate the E3 ubiquitin ligase
MARCH6 (aka MARCHF6), which inhibits ferroptosis by
mediating the degradation of proferroptotic players such
as acyl-CoA synthetase long-chain family member 4
(ACSL4) and p53 (241). Overall, it is believed that cells
with a high cellular NADPH level are more resistant to fer-
roptosis (242).

3.4. The Mevalonate Pathway

The mevalonate pathway (also known as the isopre-
noid pathway) is notorious for acting upstream of the
de novo synthesis of cholesterol. It starts with acetyl-
CoA, which is mainly derived from mitochondrial pyru-
vate oxidation and subsequently exported to the cyto-
sol via the citrate-malate shuttle (FIGURE 6). The rate-
limiting enzyme 3-hydroxy-3-methylglutaryl-CoA (HMG-
CoA) reductase (HMGCR) is the target of statins, which
are widely used in the clinic for the management of
hypercholesteremia. Intriguingly, statins sensitize cancer
cells to ferroptosis (238, 243). Indeed, several intermedi-
ates during the biosynthesis of cholesterol such as dime-
thylallyl pyrophosphate (DMAPP), farnesyl pyrophosphate
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FIGURE 6. The mevalonate pathway and the biosynthesis of fatty acid. The mevalonate pathway begins with acetyl-CoA, mainly derived from mito-
chondrial pyruvate oxidation and subsequently exported to the cytosol via the citrate-malate shuttle. The rate-limiting enzyme of the mevalonate path-
way is 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), and the end products are isopentenyl pyrophosphate (IPP) and the isomer dimethylallyl
pyrophosphate (DMAPP). DMAPP serves as a substrate for tRNA isopentenyltransferase 1 (TRIT1), which modifies a subset of tRNAs including Sec-
tRNA[Ser]Sec. IPP and DMAPP are precursors of farnesyl pyrophosphate (FPP), which can be used for synthesizing squalene, coenzyme Q (CoQ), and
menaquinone-4 (MK-4) in the endoplasmic reticulum (ER), mitochondria, and Golgi apparatus, respectively. Squalene and 7-dehydrocholesterol (7-
DHC) are intermediates in cholesterol biosynthesis. Squalene synthase (SQS) and sterol-C5-desaturase (SC5D) mediate their synthesis, whereas squa-
lene epoxidase (SQLE) and 7-DHC reductase (DHCR7) mediate their metabolism. Notably, DHCR7-mediated metabolism of 7-DHC is the final step in
cholesterol biosynthesis. Cholesterol can also be imported in the form of low-density lipoprotein (LDL) or high-density lipoprotein (HDL) via their respec-
tive receptors, LDLR and scavenger receptor B1 (SR-B1). Fatty acid biosynthesis starts with cytosolic acetyl-CoA, which is converted to malonyl-CoA by
acetyl-CoA carboxylase (ACC). Malonyl-CoA can be utilized by fatty acid synthase (FASN) to produce the long-chain saturated fatty acid palmitic acid
(PA, 16:0). PA can be further elongated to stearic acid (SA, 18:0) by elongases, and PA and SA can be desaturated to palmitoleic acid (POA, 16:1, x-7)
and oleic acid (OA, 18:1, x-9) by stearoyl-CoA desaturase 1 (SCD1), respectively. Malonyl-CoA is also critical for generating long-chain polyunsaturated
fatty acids, such as arachidonic acid (AA, 20:4, x-6) and adrenic acid (AdA, 22:4, x-6), derived from dietary linoleic acid (LA, 18:2, x-6) through elonga-
tion and desaturation involving fatty acid desaturase 1 (FADS1), FADS2, and very long-chain fatty acid elongase 5 (ELOVL5). Besides de novo synthesis,
fatty acids can be imported by membrane-associated proteins such as CD36 and fatty acid transport proteins (FATPs). Figure created with a licensed
version of BioRender.com.
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(FPP), squalene, and 7-dehydrocholesterol (7-DHC) all con-
tribute either directly or indirectly to ferroptosis defense.

3.4.1. Sec-tRNA[Ser]Sec modification.

The end products of the mevalonate pathway are iso-
pentenyl pyrophosphate (IPP) and its isomer DMAPP.
DMAPP is a substrate of tRNA isopentenyltransferase 1
(TRIT1), which modifies a subset of tRNAs, including Sec-
tRNA[Ser]Sec, by adding a dimethylallyl group onto the ad-
enine at position 37 (FIGURE 6). Remarkably, this modifi-
cation is required for the efficient translational decoding
of the Sec codon UGA and synthesis of selenoproteins
(244). Accordingly, inhibition of the mevalonate pathway
with statins attenuates the expression of GPX4 (243).

3.4.2. Squalene.

One molecule of DMAPP and two molecules of IPP can
be sequentially condensed to obtain farnesyl pyrophos-
phate (FPP), which is the common precursor of squa-
lene, CoQ, and menaquinone-4 (MK-4, a type of vitamin
K2) (FIGURE 6). The synthesis of squalene from FPP is
mediated by squalene synthase (SQS, encoded by Fdft1
gene). Squalene is an essential metabolite that prevents
ferroptosis in a subset of ALK1 anaplastic large-cell lym-
phoma cell lines that lack squalene epoxidase (SQLE,
aka squalene monooxygenase), the enzyme acting
downstream of squalene (FIGURE 6); as such, these
cells are enriched with squalene, while being auxotro-
phic for cholesterol (245). The mechanism underlying
the antiferroptotic effect of squalene remains unclear
but appears to depend on its accumulation. Ablation of
SQLE renders HT1080 cells resistant, whereas ablation
of SQS has minimal effect on ferroptosis sensitivity
(246). Furthermore, supplementation with exogenous
squalene fails to prevent ferroptosis (245, 247). In cer-
tain contexts, such as FIN56-induced ferroptosis, inhibi-
tion of SQS even exerts a protective effect, probably by
increasing CoQ levels (238).

3.4.3. CoQ.

CoQ consists of the functional quinone group and a pol-
yisoprenyl tail derived from FPP (FIGURE 6). Depending
on the number of the isoprene units in the tail, CoQ
includes CoQ6, CoQ7, CoQ8, CoQ9 (the dominant form
in mice), and CoQ10 (the prevailing form in humans). CoQ
is generally appreciated as an electron carrier in the
ETC in the inner mitochondrial membrane (FIGURE 5). In
addition, CoQ can act as an RTA recycled by FSP1 to
prevent lipid peroxidation at the plasma membrane
(248, 249). As such, variations in the FPP level may influ-
ence CoQ biosynthesis and thus ferroptosis sensitivity.

For instance, FIN56 induces ferroptosis in part due to
the activation of SQS, which promotes the conversion of
FPP to squalene, thereby depleting CoQ (238). On the
contrary, excessive cholesterol induces SQLE degra-
dation, leading to ferroptosis resistance not only by
accumulating squalene but also by promoting CoQ
biosynthesis (246).

3.4.4. Vitamin K.

Vitamin K plays a central role in coagulation but has
recently also been identified as a cofactor of FSP1 to
prevent ferroptosis, acting in the same way as CoQ
(250, 251). According to the structure of the side
chain, vitamin K can be divided into vitamin K1 (phyllo-
quinone) and K2 (menaquinone-n, MK-n). MK-4, the
only form that can be synthesized by animals, is com-
posed of a naphthoquinone head group (menadione)
and a geranylgeranyl side chain derived from FPP
(FIGURE 6). Remarkably, menadione itself can be an
alternative substrate of FSP1 to prevent ferroptosis,
although it is less efficient and more cytotoxic than
MK-4 (250, 251).

3.4.5. 7-DHC.

The final step of cholesterol biosynthesis is mediated by
7-DHC reductase (DHCR7), which converts 7-DHC to
cholesterol (FIGURE 6). Most recently, 7-DHC has been
identified as a potent cell-intrinsic RTA suppressing fer-
roptosis. Ablation of DHCR7 renders cells resistant to
ferroptosis, whereas ablation of sterol-C5-desaturase
(SC5D, aka lathosterol oxidase), which catalyzes the syn-
thesis of 7-DHC, has the opposite effect (FIGURE 6)
(247, 252, 253). Remarkably, 7-DHC appears to be
essential for the survival of certain cancer cell lines, sug-
gesting that enzymes acting upstream of 7-DHC are
potential therapeutic targets (252). Conversely, target-
ing DHCR7 may be beneficial for acetaminophen- or is-
chemia-reperfusion-induced liver injury (253).

3.4.6. Cholesterol.

Whether cholesterol plays a major role in ferroptosis
is under debate. Although cholesterol is in principle
susceptible to peroxidation and treatment with cho-
lesterol hydroperoxides indeed contributes to ferrop-
tosis (98, 243, 254), it is known that supplementation
with cholesterol does not significantly affect ferropto-
sis sensitivity (252, 255) or even protect against fer-
roptosis (246). Consistent with the latter, inhibition of
cholesterol uptake by targeting the receptors for high-
density lipoprotein (i.e., scavenger receptor B1, SR-B1)
or low-density lipoprotein (i.e., LDLR) (256, 257) or
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leukocyte immunoglobulin-like receptor B1 (LILRB1) that
facilitates LDLR functioning (258) sensitizes certain cancer
cell lines to ferroptosis (FIGURE 6). Mechanistically, choles-
terol may promote the degradation of SQLE by activating
the E3 ubiquitin ligase MARCH6 (258–261). As a conse-
quence, the levels of squalene and CoQ are elevated
(246). Cholesterol can also increase the stiffness of the
plasma membrane and thereby alleviate the propagation
of lipid peroxidation (256). In addition, cholesterol uptake
has been found to be correlated with GPX4 expression
in cholesterol auxotrophic cells (257), probably because
the limited amount of DMAPP cannot support the cho-
lesterol biosynthesis and Sec-tRNA[Ser]Sec modification
simultaneously.

3.5. Fatty Acid Metabolism

Fatty acid metabolism essentially affects ferroptosis
sensitivity through the control of substrates of lipid
peroxidation. Among a variety of lipid species, poly-
unsaturated fatty acids (PUFAs) are particularly prone
to undergo peroxidation because of the presence of
bisallylic protons, which are highly susceptible to
hydrogen atom abstraction, whereas monosaturated
fatty acids (MUFAs) can counteract ferroptosis (255).
The accumulation of saturated fatty acids (SFAs) usu-
ally leads to “nonferroptotic” lipotoxicity (262), but in
certain contexts SFAs may contribute to ferroptosis
by promoting the biosynthesis of ether phospholipids
(ePLs) (263). To drive the overwhelming lipid peroxi-
dation that culminates in ferroptosis, a radical chain
reaction must be incited among the PUFAs esterified
in PLs (264). As such, the processes of uptake, bio-
synthesis, activation, catabolism, storage, and mem-
brane incorporation of fatty acids may all have an
impact on ferroptosis sensitivity.

3.5.1. Fatty acid uptake.

Mammalian cells acquire fatty acid via either uptake
or de novo synthesis. Membrane-associated proteins
such as CD36 (aka scavenger receptor B2, SR-B2)
and fatty acid transport proteins (FATPs, encoded by
solute carrier family 27, Slc27) are critical for the
uptake process (FIGURE 6). Interestingly, expression
of CD36 and FATP2 increases ferroptosis sensitivity
in CD81 tumor infiltrating lymphocytes and polymor-
phonuclear myeloid-derived suppressor cells, respec-
tively (265–268), whereas other FATP members are
proposed to prevent ferroptosis in melanoma cells
(269). This discrepancy might be related to the prefer-
ence of these transporters for different forms of fatty
acids. For example, CD36 preferentially imports
SFAs, PUFAs, and oxidized lipids (265, 266, 270),

whereas FATP4 selectively imports MUFAs (271).
Remarkably, CD36 can be palmitoylated upon SFA over-
dose, changing its preference for MUFA over SFA (272).
This may explain how cancer cells with high CD36
expression evade lipotoxicity and ferroptosis. Moreover,
the abundance of different fatty acids in the extracellular
environment can also be critical, as melanoma cells that
metastasize via the lymph are more resistant to GPX4
perturbations because of the higher abundance of
MUFAs in the lymph than in the blood (269). In cell cul-
ture conditions, limitation of extracellular lipid sensitizes
cancer cells to ferroptosis, as lipid starvation induces li-
polysis that promotes PUFA trafficking from lipid drop-
lets to the plasma membrane (as discussed in sect.
3.5.5) (273).

3.5.2. Fatty acid biosynthesis.

Mammals are able to synthesize SFAs and certain
MUFAs like palmitoleic acid (POA, 16:1, x-7) and oleic
acid (OA, 18:1, x-9) de novo but not x-3 or x-6 MUFAs
or PUFAs. As in the mevalonate pathway, de novo syn-
thesis of SFAs begins with cytosolic acetyl-CoA
(FIGURE 6). Acetyl-CoA carboxylase (ACC) mediates
the conversion of acetyl-CoA to malonyl-CoA, which is
then utilized by fatty acid synthase (FASN) to generate
the long-chain SFA palmitic acid (PA, 16:0). PA can be
further elongated to stearic acid (SA, 18:0) by elon-
gases, and PA and SA can be desaturated to POA and
OA by stearoyl-CoA desaturase 1 (SCD1), respectively
(FIGURE 6). Remarkably, malonyl-CoA is also a critical
element for the generation of long-chain PUFAs such
as arachidonic acid (AA, 20:4, x-6) and adrenic acid
(AdA, 22:4, x-6), which can be derived from dietary lin-
oleic acid (LA, 18:2, x-6) through elongation and desa-
turation wherein fatty acid desaturase 1 (FADS1),
FADS2, and very long-chain fatty acid elongase 5
(ELOVL5) are involved (FIGURE 6).
As illustrated in FIGURE 6, ACC-mediated malonyl-

CoA synthesis is a building block of SFAs, MUFAs, and
long-chain PUFAs; inhibition of ACC or glycolysis provid-
ing acetyl-CoA can lead to a composite outcome of fer-
roptosis resistance (211–213). Distinct from ACC, FASN is
only involved in the de novo synthesis of SFA and
MUFA (FIGURE 6). Ablation of FASN may therefore ele-
vate the proportion of PUFA in PLs and sensitize cells to
ferroptosis (274, 275). However, in certain contexts inhi-
bition of FASN may lead to ferroptosis resistance (212,
213), perhaps because of the decline in NADPH con-
sumption, which occurs in each fatty acid elongation
cycle (276). AA and AdA, which possess double bisallylic
groups, are preferable substrates for lipid peroxidation
compared to LA. Accordingly, the expressions of FADS1,
FADS2, and ELOVL5 are positively correlated with
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ferroptosis sensitivity (277–279). Conversely, MS4A15,
which depletes Ca21 from the endoplasmic reticulum
(ER) and thereby blocks PUFA elongation and desatura-
tion, drives ferroptosis resistance (280).
SCD1 is the dominant enzyme mediating the conver-

sion from SFAs to MUFAs (FIGURE 6). Cancer cells with
SCD1 overexpression are resistant to ferroptosis (281–
283). Notably, some cancer cells are capable of synthe-
sizing MUFAs like sapienate (16:1, x-10) and cis-8-octa-
decenoate (18:1, x-10) via a FADS2-dependent pathway;
however, their roles in ferroptosis remain to be clarified
(284). ACC, FASN, and SCD1 are all under the control
of sterol regulatory element-binding protein 1 (SREBP1),
a master regulator of lipogenesis. However, SREBP1
seems to have a stronger influence on SCD1 (285).
Interestingly, the SREBP1-SCD1 axis is positively regu-
lated by the oncogenic phosphatidylinositol 3-kinase
(PI3K)-AKT-mTOR complex 1 (mTORC1) and FLT3-C/EBPa
pathways (285–287) and negatively regulated by the
tumor suppressors p53 and AMPK (219, 288, 289), sug-
gesting the SREBP1-SCD1 axis as a potential therapeu-
tic target to sensitize cancer cells to ferroptosis.

3.5.3. Fatty acid activation.

Free fatty acid must first be activated by ligation to CoA
to participate in further metabolic processes such as
b-oxidation as well as triglyceride (TAG) and PL biosyn-
thesis. Long-chain fatty acyl-CoA ligase (aka acyl-CoA
synthetase long-chain or ACSL) is a group of enzymes
that catalyze this process. Of the ACSL family, ACSL4
and ACSL3 are most strongly associated with ferropto-
sis, as they preferentially activate long-chain PUFAs and
MUFAs, respectively (FIGURE 7). Ablation of ACSL4 con-
fers robust protection against ferroptosis in a number of
cell lines (290, 291), whereas ablation of ACSL3 has the
opposite effect (262, 269). Furthermore, ACSL1 can also
contribute to ferroptosis by activating a-eleostearic acid
(18:3) (292), but this seems to be case specific, perhaps
because of the scarcity of the substrate.

3.5.4. Fatty acid catabolism.

b-Oxidation is the catabolic process by which fatty acids
are broken down in the mitochondrial matrix, though for
certain fatty acid species such as very long-chain
(C�22) fatty acids peroxisomes are also involved in the
initial oxidation steps (FIGURE 7). b-Oxidation generally
suppresses ferroptosis presumably by degrading fatty
acids, despite the fact that it generates acetyl-CoA that
fuels the TCA cycle. To reach the mitochondrial matrix,
long-chain fatty acids must pass through the mitochon-
drial membranes with the help of the carnitine shuttle
system. Interfering with this system by inhibition of

carnitine palmitoyltransferase 1A (CPT1A) triggers fer-
roptosis, which synergizes with immunotherapy in
lung cancer stem cells (293), whereas restoration of
von Hippel–Lindau (VHL) that positively regulates
CPT1A expression protects clear cell renal cell carci-
noma (ccRCC) from ferroptosis (294). Consistently,
the high level of CPT1A in cytotoxic T lymphocyte subset
9 cells accounts for their resistance to ferroptosis and their
long-acting antitumor effects (295). Furthermore, cardio-
myocytes with a defect in the carnitine transporter
OCTN2 (encoded by SLC22A5) exhibit features of ferrop-
tosis, underlying the pathogenesis of an autosomal reces-
sive disorder called primary carnitine deficiency (296).
Whereas b-oxidation is usually applicable to all long-chain
species including SFA, MUFA, and PUFA, mitochondrial
2,4-dienoyl-CoA reductase (DECR1) is an auxiliary enzyme
specific for PUFA catabolism. This enzyme is highly
expressed by castration-resistant prostate cancer to
counteract ferroptosis (297, 298). Interestingly, under cer-
tain conditions b-oxidation selectively decreases MUFA
and increases PUFA, thus sensitizing cells to ferroptosis
(299), though the underlying mechanism remains unclear.

3.5.5. Fatty acid storage.

Excessive fatty acids are stored in lipid droplets in the
form of TAGs (FIGURE 7). This process is generally
believed to be antiferroptotic because it helps to
sequester PUFAs away from the plasma membrane
(300, 301). In line with this, glioblastomas lacking
CDKN2A, which selectively promotes the storage of
PUFAs in TAG, are prone to ferroptosis regardless of
unchanged total TAG levels compared to wild-type
cells (302). The biosynthesis of TAG requires several
steps, of which the transfer of an acyl group from acyl-
CoA to diacylglycerol (DAG) mediated by diacylglyc-
erol acyltransferase (DGAT) is the last and only com-
mitted step (FIGURE 7). Inhibition of DGAT sensitizes
cancer cells to ferroptosis (303), whereas activation of
DGAT by cell cycle arrest renders cells resistant (304).
Recently, an alternative TAG biosynthesis pathway
mediated by DGAT1/2-independent enzyme synthe-
sizing storage lipids (DIESL, aka TMEM68) was uncov-
ered. In contrast to DGAT, DIESL transfers fatty acyl
chains derived from membrane PLs or their precursors
to DAG (305). Whether TMEM68 plays a role in ferropto-
sis remains to be elucidated. Nevertheless, tumor pro-
tein D52 (TPD52), fatty acid binding protein-4 (FABP4),
and phospholipid transfer protein (PLTP) have been
reported to protect cancer cells from ferroptosis by pro-
moting lipid droplet formation (282, 306, 307).
The breakdown of lipid droplets is mediated by lipoly-

sis and lipophagy (FIGURE 7). These processes promote
the release of free fatty acids and can therefore increase
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sensitivity to ferroptosis. Deletion of adipose triglyceride
lipase (ATGL, encoded by PNPLA2), which catalyzes
the first and rate-limiting step of lipolysis, suppresses
GPX4 inhibition-induced ferroptosis in certain cancer
cells (292). Upon extracellular lipid depletion, ATGL-
mediated lipolysis contributes to the ferroptosis sus-
ceptibility of cancer cells (273). Likewise, depletion of
autophagy protein 5 (ATG5) and RAB7A, which are
involved in lipophagy, leads to ferroptosis resistance
in HCCs (307). In addition, it is worth noting that Fas-
associated factor 1 (FAF1) is a protein that may
directly sequester free PUFAs, mimicking the antifer-
roptotic mechanism of TAG synthesis and lipid drop-
let formation (308).

3.5.6. (e)PL biosynthesis.

Lipid peroxidation occurs in PUFAs esterified in PLs
rather than free PUFAs. Initially, it was believed that
PUFA-containing phosphatidylethanolamines (PEs) are
specific targets for peroxidation during ferroptosis (291),
but subsequent studies identified a wide range of PL
species that can all be proximate targets for peroxidation
regardless of their head groups, such as phosphatidyl-
choline (PC), phosphatidylserine (PS), phosphatidylinosi-
tol (PI), phosphatidylglycerol (PG), phosphatidic acid (PA),
and even cholesteryl ester (82, 274, 309–312). In mam-
malian cell membranes, PC and PE are the most abun-
dant PLs, which can be synthesized from DAG by
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FIGURE 7. Fatty acid metabolism and lipid peroxidation. Free fatty acids, including saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs),
and polyunsaturated fatty acids (PUFAs), must first be ligated to CoA by long-chain fatty acyl-CoA ligase (ACSL) to participate in further metabolic proc-
esses. Among the ACSL family, ACSL3 and ACSL4 preferentially activate long-chain MUFAs and PUFAs, respectively. Fatty acids are potential energy
sources as they can cross mitochondrial membranes with the help of the carnitine shuttle system and undergo b-oxidation in the mitochondrial matrix.
Excess fatty acids can be stored in lipid droplets in the form of triglycerides (TAGs). Diacylglycerol acyltransferase (DGAT)-mediated transfer of an acyl
group from acyl-CoA to diacylglycerol (DAG) is the last and only committed step in TAG biosynthesis. Lipid droplets are broken down via lipolysis and
lipophagy. The first and rate-limiting step of lipolysis is catalyzed by adipose triglyceride lipase (ATGL). Fatty acids can also be utilized for phospholipid
(PL) biosynthesis. For example, DAG can be attached to a choline or ethanolamine head group by choline phosphotransferase 1 (CHPT1), ethanolamine
phosphotransferase 1 (EPT1), and choline/ethanolamine phosphotransferase 1 (CEPT1), which have different preferences in DAG with PUFA, MUFA, and
SFA chains. Ester PLs are synthesized solely in the endoplasmic reticulum (ER), whereas the biosynthesis of ether PLs requires peroxisomes in addition.
The remodeling of fatty acid composition in PLs is known as the Lands cycle, which involves generating lysophospholipids (lyso-PLs) from PLs by cleav-
age of a fatty acyl chain and regenerating PLs from lyso-PLs by incorporating a new fatty acyl chain. In the former process, the phospholipase A2 (PLA2)
family specifically recognizes the sn-2 position where PUFAs are usually incorporated. In the latter process, various lipid acyltransferases, including
membrane-boundO-acyltransferase 1 (MBOAT1), MBOAT2, MBOAT7, lyso-PC acyltransferase 1 (LPCAT1), LPCAT3 (also known as MBOAT5), and 1-acyl-
glycerol-3-phosphate O-acyltransferase 3 (AGPAT3), selectively incorporate SFA, MUFA, and PUFA. Lipid peroxidation occurs in PUFAs esterified in
PLs. Although the requirement for enzymatic oxygenation remains controversial, cytochrome P450 oxidoreductase (POR), cytochrome b5 reductase 1
(CYB5R1), and NADPH oxidases (NOXs), which generate reactive oxygen species (ROS) like hydrogen peroxide (H2O2) and superoxide (O2

��), as well
as lipoxygenases (LOXs) that directly catalyze the dioxygenation of PUFAs all contribute to lipid peroxidation in specific contexts. Figure created with a
licensed version of BioRender.com.
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attaching the respective head groups. Choline phospho-
transferase 1 (CHPT1) and ethanolamine phosphotrans-
ferase 1 (EPT1) catalyze the synthesis of PC and PE,
respectively, whereas choline/ethanolamine phospho-
transferase 1 (CEPT1) is a dual-functional enzyme that can
catalyze both processes (FIGURE 7). Intriguingly, CHPT1
and EPT1 potently drive ferroptosis, whereas CEPT1 plays
the opposite role (313). These results are consistent with
previous reports that CHPT1 and EPT1 preferentially gen-
erate PC/PE with PUFA side chains, whereas CEPT1 pref-
erentially generates PC/PE with SFA and MUFA chains
(314, 315). Beyond de novo synthesis, PE can also be syn-
thesized from PS in the mitochondria. In this regard,
ATG2A, which mediates PS import into mitochondria,
may boost PE level, thereby promoting ferroptosis (316).
ePLs are a group of PLs with an ether bond instead of

a typical ester bond at the sn-1 position. Although they
are a rather minor fraction in membranes (accounting for
�20% of total PLs), ePLs can significantly influence fer-
roptosis sensitivity in certain contexts. In contrast to the
ester PLs, which are synthesized solely in the ER, the
biosynthesis of ePL requires peroxisomes in addition
(FIGURE 7). Ablation of PEX genes involved in peroxiso-
mal biogenesis and depletion of enzymes involved in
ePL biosynthesis both prevent ferroptosis in some can-
cer cells (263, 317). Nevertheless, ePLs are not always
essential for ferroptosis (318), and a lack of ePLs even
promotes ferroptosis in germ cells of Caenorhabditis
elegans fed a high-PUFA diet (319). These disparities
might be due to the differences in composition of ePLs
across different cell types and species. Specifically,
ePLs are known to be highly enriched in certain mam-
malian tissues such as brain and heart, whereas in liver,
for instance, ePLs are present in a low amount (320).
Furthermore, ePLs in C. elegans contain a lower propor-
tion of PUFA compared to mammalian cells. As such,
ePL depletion may decrease MUFA rather than PUFA
content in C. elegans cell membranes (321). Indeed, the
presence of the PUFA chain but not the ether bond is
critical for ferroptosis sensitization (317). This is sup-
ported by the fact that myeloid cells, which have a lower
proportion of PUFA-PLs but are enriched in ePLs, are
more resistant to ferroptosis than lymphoid cells (322)
and that forced enrichment of MUFA-ePLs by MS4A15
overexpression leads to ferroptosis resistance (280).
Most recently, ePLs were found to facilitate CD44-medi-
ated iron uptake, which might account for their profer-
roptotic effect (323). Alternatively, it could also simply be
due to the fact that ePLs have a higher probability of har-
boring a PUFA chain at the sn-2 position (317).
Of note, a subgroup of ePLs, namely plasmalogen,

has been claimed to prevent ferroptosis, given that tar-
geting TMEM189, a professional gene mediating the
generation of plasmalogen from alkyl ePLs, sensitized

cells to ferroptosis (263). However, other studies failed
to corroborate these results (317, 321), suggesting that
the statement may be context dependent. Indeed, the
antiferroptotic effect of plasmalogen is indirect but relies
on its negative feedback regulation on fatty acyl-CoA re-
ductase (FAR1), which mediates ePL biosynthesis (324).
As such, preventing the conversion of alkyl ePLs to plas-
malogen may boost ePL biosynthesis and sensitize cells
to ferroptosis (263).

3.5.7. PL remodeling.

The remodeling of fatty acid composition in PLs is known
as the Lands cycle. Briefly, it describes the generation of
lysophospholipids (lyso-PLs) from PLs by phospholipase-
mediated cleavage of a fatty acyl chain and the regenera-
tion of PLs from lyso-PLs by lipid acyltransferase-medi-
ated incorporation of a new fatty acyl chain (FIGURE 7).
The Lands cycle has a decisive impact on ferroptosis, not
only because it can alter the PUFA content in PLs but also
because it helps to replace the oxidatively truncated
PUFA chains from PLs, thereby terminating the chain
reaction of peroxidation (FIGURE 7). In this regard, the
phospholipase A2 (PLA2) family, which specifically recog-
nizes the sn-2 position where PUFAs are usually incorpo-
rated, is particularly relevant (FIGURE 7). Several PLA2

members, including PLA2G2F (325), PLA2G4B (326),
PLA2G4C (274), PLA2G6 (aka calcium-independent
PLA2b) (327–329), and PLA2G7 (aka lipoprotein-associ-
ated PLA2 and platelet-activating factor acetylhydrolase,
PAFAH) (330, 331), as well as enzymes with PLA2 activity
such as PRDX6 (332, 333), ABHD12 (334), and PAFAH2
(335), have been shown to protect from ferroptosis in vari-
ous contexts.
The effect of lyso-PL reacylation on ferroptosis is

mainly determined by the type of fatty acid chain
incorporated. For example, lyso-PC acyltransferase 3
(LPCAT3, aka membrane-bound O-acyltransferase 5,
MBOAT5), MBOAT7 (aka LPIAT1), and 1-acylglycerol-
3-phosphate O-acyltransferase 3 (AGPAT3), which
preferentially mediate the reacylation of PUFA, sensi-
tize cells to ferroptosis (311, 317, 336) (FIGURE 7).
TMEM164, which selectively transfers AA acyl chains
from PCs to lyso-ePLs, thereby producing PUFA-ePLs,
has a similar effect (337). By contrast, MBOAT1 (aka
LPEAT1) and MBOAT2 (aka LPCAT4), which preferen-
tially mediate the reacylation of MUFA, and LPCAT1,
which preferentially mediates the reacylation of SFA,
protect from ferroptosis (325, 338) (FIGURE 7). Of
note, a recent study suggests that LPCAT3 favors the
incorporation of PA-CoA over AA-CoA when they
are present at equimolar concentration, which may
account for its antiferroptotic effect in KRAS mutant
lung cancer (274) (FIGURE 7). Furthermore, since
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LPCAT3 does not mediate the incorporation of AdA-
CoA (339), an excess of AA caused by LPCAT3 abla-
tion may be redirected and become elongated to AdA
and finally incorporated into PLs (340). Regardless of
all these inherently complex metabolic processes, the
relationship between fatty acids and ferroptosis is
clear, i.e., the higher PUFA content in the PLs, the
higher the sensitivity to ferroptosis. In support of this,
a recent paper proposed that PLs incorporated with
two PUFA chains are efficient drivers of ferroptosis,
despite their low abundance (341).

3.6. Lipid Peroxidation

The essence of ferroptosis is unrestrained lipid peroxi-
dation, which may occur via two primary mechanisms: a
free radical chain reaction (autoxidation) or enzymatic
oxygenation. During the last few years this topic has
been under intense debate (264, 342) (FIGURE 7).
Although no conclusion can be drawn so far on which
mechanism is more important, it appears that enzymatic
oxygenation perhaps contributes to ferroptosis in cer-
tain contexts, yet there is no such enzyme universally
required for the catalyzation of lipid peroxidation.
An involvement of enzymatic oxygenation was initially

suggested by the proferroptotic effects of a number of
LOXs in different contexts, including eLOX-3 (255), 5-LOX
(343, 344), 12-LOX (345), and 15-LOX alone with its scaf-
fold protein PE binding protein 1 (PEBP1) (28, 291, 346).
Theoretically, LOXs catalyze the dioxygenation of PUFAs,
resulting in fatty acid hydroperoxides, thereby potentially
driving ferroptosis directly (FIGURE 7). However, the im-
portance of LOXs has been questioned, not only because
the ablation of 12/15-LOX (encoded by the Alox15 gene),
which can act on esterified PUFAs in membranes, fails to
prevent GPX4 deficiency-induced ferroptosis either in
vitro or in vivo (31, 347, 348) but also because the vast ma-
jority of LOX inhibitors that suppress ferroptosis show off-
target RTA activity (254). In parallel to LOX, cyclooxygen-
ase (COX, aka prostaglandin-endoperoxide synthase,
PTGS) catalyzes the peroxidation of PUFAs. Whereas
PTGS2 upregulation has been observed during ferropto-
sis, inhibition of COX-1/COX-2 fails to confer protection of
cells to ferroptosis (30).
POR is a membrane-bound enzyme transferring elec-

trons from NADPH to cytochrome P450s (CYPs) or other
electron acceptors. Remarkably, some CYPs possess
the epoxygenase activity that can catalyze the epoxida-
tion of PUFAs (349). However, only POR, but none of the
CYPs, was identified in the CRISPR/Cas9 screens as
strong drivers of ferroptosis (350). Mechanistically, POR
and to some extent cytochrome b5 reductase 1
(CYB5R1) were found to generate H2O2 independently
of CYPs and thus promote ferroptosis (351) (FIGURE 7).

Nonetheless, neither the knockout of POR nor the dou-
ble knockout of POR/CYB5R1 completely prevents fer-
roptosis (350, 351). Like POR, NOXs are membrane-
bound enzymes that utilize electrons from NADPH to
generate O2

�� that further dismutates to H2O2

(FIGURE 7). NOX1 and NOX4 in particular have been
implicated in the induction of ferroptosis (4, 352–354),
but their contributions to ferroptosis seem to be context
specific. ETC is another major source of intracellular
ROS, but as mentioned in sect. 3.3.3 blockade of ETC
does not always rescue ferroptosis. In fact, exogenous
H2O2 does not induce ferroptosis in the presence of
wild-type GPX4, distinguishing between ROS-induced
cytotoxicity and lipid peroxidation (98). However, when
the defense system is compromised, for example, when
wild-type GPX4 is replaced by the GPX4 U46C variant,
H2O2 can induce ferroptosis by irreversibly inactivating
the catalytic cysteine in GPX4 (98). In this regard, the
consumption of NADPH by POR and NOXs may under-
mine the antiferroptotic systems to some extent, thereby
sensitizing cells to ROS-induced ferroptosis.

4. THE MAIN FERROPTOSIS CONTROLLING
SYSTEMS

4.1. The Cyst(e)ine/GSH/GPX4 Axis

The cyst(e)ine/GSH/GPX4 axis is the central antifer-
roptotic hub that is ubiquitously expressed in cells and
tissues (FIGURE 8). To effectively trigger ferroptosis,
perturbation of this system is generally necessary
and, in many contexts, easily sufficient. Accordingly,
when ferroptosis is induced by unknown factors, this
axis is usually impaired. In vitro, disruption of this axis
can be readily achieved by pharmacological or
genetic means targeting system xc

�, GSH biosynthe-
sis, and GPX4, but still only few tools are available
for in vivo studies. In addition to direct targeting,
manipulating the factors that regulate the expres-
sion or activity of this axis can also be effective. On
the other hand, when an impairment of the cyst(e)
ine/GSH/GPX4 system causes pathological condi-
tions, administration of ferroptosis inhibitors may be
of therapeutic value.

4.1.1. System xc
�.

Since cyst(e)ine metabolism is extensively reviewed in
sect. 3.2.1, we focus here on system xc

�, the main trans-
porter mediating cystine uptake. System xc

� is a hetero-
dimer consisting of a light chain (i.e., xCT, encoded by
Slc7a11) and a heavy chain (i.e., 4F2, aka CD98, encoded
by Slc3a2) (21). Since the heavy chain is shared by
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several other amino acid transporters facilitating proper
folding of their respective light subunits (355), xCT
determines substrate specificity of system xc

�. The dis-
tinct significance of xCT in cell/organoid cultures versus
in vivo suggests that caution should be exercised when
interpreting in vitro findings. The complex regulation of
xCT implies its potential response to different types of
stress.

In vitro, most cells cannot survive in the absence of
xCT, with the exception of a few cases such as primary
hepatocytes (151). Lack of xCT usually induces ferropto-
sis, but some cells like mouse melanoma B16F10 may
undergo nonferroptotic cell death, perhaps because
they require high amounts of cysteine for melanin syn-
thesis (356, 357). In vivo, xCT appears to be redundant,

as Slc7a11 knockout mice develop normally and have a
normal lifespan (22, 358), but upon oxidative challenge
system xc

� may exert a protective effect (359, 360). The
expression of xCT is low in most tissues, except brain,
thymus, and spleen (361). Analysis of metabolites from
xCT-deficient mice revealed a major decrease in cysta-
thionine (another substrate of system xc

�) instead of cys-
teine in thymus and spleen (362), implying that system
xc

� is not important for cysteine uptake even in the tis-
sues where it is highly expressed. Therefore, perturba-
tion of xCT is unlikely to trigger ferroptosis in
physiological conditions, making it an appealing target
for cancer therapy (as discussed in sect. 5.3).
Mouse xCT consists of 502 amino acids, but its lon-

gest transcript spans �12 kb (21), suggesting complex
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generate c-glutamylcysteine (c-Glu-Cys), and then glycine (Gly) is attached by GSH synthetase (GSS). GPX4 uses GSH as a substrate to reduce (phos-
pho)lipid hydroperoxide [(P)LOOH] to (phospho)lipid alcohol [(P)LOH], whereby 2 molecules of GSH are oxidized and condensed to 1 molecule of oxi-
dized glutathione (GSSG). Glutathione-disulfide reductase (GSR) then recycles GSSG back to GSH using NADPH. Besides GPX4, peroxiredoxin 6
(PRDX6) and glutathione S-transferase P1 (GSTP1) may possess peroxidase activity. The NAD(P)H/ferroptosis suppressor protein 1 (FSP1)/coenzyme Q
(CoQ)/vitamin K (VK) system represents the second critical pillar against ferroptosis. CoQ biosynthesis occurs in mitochondria, initiated by 4-hydroxy-
benzoate polyprenyltransferase (COQ2). Cytosolic StAR-related lipid transfer domain protein 7 (STARD7) mediates the trafficking of CoQ to the plasma
membrane. VK biosynthesis occurs in the endoplasmic reticulum (ER) and is mediated by UbiA prenyltransferase domain-containing protein 1 (UBIAD1).
Notably, UBIAD1 also mediates CoQ10 biosynthesis in the Golgi membranes of zebrafish and human cells. On the plasma membrane, FSP1 utilizes both
NADH and NADPH to reduce CoQ or VK. The reduced forms, CoQH2 and VKH2, act as radical trapping antioxidants (RTAs), reacting with (phospho)lipid
peroxyl radicals [(P)LOO·] to form (P)LOOH. Additionally, it has been suggested that dihydroorotate dehydrogenase (DHODH) and glycerol-3-phos-
phate dehydrogenase 2 (GPD2) protect mitochondrial membranes from lipid peroxidation by reducing intramitochondrial CoQ and that vitamin K epox-
ide reductase complex subunit 1-like 1 (VKORC1L1) protects the ER from lipid peroxidation by reducing VK. The guanosine triphosphate cyclohydrolase
1 (GCH1)/tetrahydrobiopterin (BH4)/dihydrofolate reductase (DHFR) axis is the third pillar in ferroptosis control. GCH1 catalyzes the rate-limiting step in
BH4 biosynthesis, which acts as an endogenous RTA, whereas DHFR regenerates BH4 using NADPH as the reducing power. Note BH4 is also a cofac-
tor in the biosynthesis of serotonin (5-HT) and nitric oxide (NO), both of which can act as RTAs. Furthermore, indole-3-pyruvate (I3P), 3-hydroxyanthra-
nilic acid (3-HA), 7-dehydrocholesterol (7-DHC), and hydropersulfide (RSSH) are potent RTAs. Figure created with a licensed version of BioRender.com.
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regulation of its expression. xCT is transcriptionally acti-
vated by NRF2 and ATF4 in response to oxidative stress
and ER stress, respectively (166, 363). Aberrant activa-
tion of NRF2 and ATF4 can therefore protect cancer
cells from ferroptosis (364–366). Glioma amplified
sequence 41 (GAS41) and AT-rich interaction domain 1A
(ARID1A), which epigenetically enhance the binding of
NRF2 to the xCT promoter region (367, 368), and tran-
scription factor ETS-1, which transactivates xCT in syn-
ergy with ATF4 (369), inhibit ferroptosis in different
contexts. Furthermore, xCT is upregulated by ZNF706
downstream of oncogenic MYC in HCCs (370), by tran-
scription factor 7 (TCF7, aka TCF1) downstream of the
Wnt signaling pathway in colorectal tumor organoids
(371), and by the RNA-binding protein RBMS1 at the
translational level in lung cancers to counteract ferropto-
sis (372). On the other hand, transcription factors that
negatively regulate xCT expression sensitize cells to fer-
roptosis, such as p53 (373), c-Fos (374), ATF3 (375), BTB
domain and CNC homolog 1 (BACH1) (376), protein argi-
nine methyltransferase 1 (PRMT1) (377), SMAD3 down-
stream of transforming growth factor b1 (TGF-b1) (378),
and STAT1 downstream of interferon-c (IFN-c) (367). The
tumor suppressor BRCA1-associated protein 1 (BAP1),
which epigenetically suppresses xCT, also has a profer-
roptotic effect (379). Posttranscriptionally, xCT mRNA is
cleaved and degraded by inositol-requiring enzyme 1
(IRE1a), an ER-resident protein with endoribonuclease
(RNase) activity (380). In terms of posttranslational modi-
fications, xCT is stabilized by a CD44 variant (CD44v)
(381), epidermal growth factor receptor (EGFR) (382),
and the deubiquitylases OTUB1 and USP18 (383, 384),
whereas it is destabilized by CRL3KCTD10 and SOCS2-
mediated ubiquitination (384, 385). The activity of xCT is
enhanced by IL1RAP (163) but suppressed by the direct
interaction of BECN1 downstream of AMPK (386) and by
mTOR complex 2 (mTORC2)- and oncogenic PI3KCA-
mediated S26 phosphorylation (162, 387). Together,
these studies greatly expand our understanding of the
regulatory network of xCT, particularly in cancer cells.

4.1.2. GSH.

GSH is the most abundant nonprotein thiol found in
mammalian cells. It is a tripeptide composed of gly-
cine, cysteine, and glutamate. The biosynthesis of
GSH requires two ATP-consuming steps. First, gluta-
mate and cysteine are ligated by glutamate-cysteine
ligase (GCL, aka c-glutamylcysteine synthetase, c-GCS)
to generate c-glutamylcysteine; then, glycine is added
to the COOH terminus by GSH synthetase (GSS) to
yield GSH (FIGURE 8). Upon cystine deprivation,
GCL ligates glutamate with alternative amino acids,
thereby keeping glutamate away from the TCA cycle

and partially rescuing ferroptosis (388). GCL is a heter-
odimeric enzyme composed of the catalytic subunit
GCLC and the modifier subunit GCLM. These subunits
have been found to be upregulated in certain cancer
cells to counteract ferroptosis (389, 390). Interestingly,
although ablation of GCLC is lethal to cells, cell death
can be fully rescued by the supplementation of N-ace-
tyl-L-cysteine (NAC) (391) or by overexpression of xCT
(140), suggesting that GSH is not necessarily required
in vitro. In these contexts, cysteine is probably used
by GPX4 as an electron donor to directly inhibit ferrop-
tosis (133, 134).

In mice, global deletion of Gclc or Gss leads to em-
bryonic death (391–393), whereas systemic deletion
of Gclm does not cause any overt phenotype (394).
This is because GCLC alone may catalyze the reaction
like the holoenzyme GCL, albeit with lower efficiency.
Tissue-specific deletion of Gclc can cause tissue dam-
age, dysfunction, and even death, e.g., in the liver
(395), endocrine pancreas (396), endothelial cell
(397), keratinocytes (398), and CNS (399). Ferroptosis
is at least partially involved in tissue damage in the
liver and keratinocytes, as shown by lipid peroxida-
tion-associated cell death, whereas its role in other
contexts remains to be determined. In humans, muta-
tions in the GCLC gene and GSS gene are rare autoso-
mal recessive diseases. The reason why these patients
are born, in contrast to genetic knockout mice that die
embryonically, could be that the enzymes are not absent
but partially impaired (400). All patients present with he-
molytic anemia, whereas the severe cases develop neuro-
logical symptoms (400, 401). Vitamin E supplementation
has been regularly used to treat GSS deficiency since
the 1970s (402), but whether it counteracts ferroptosis
remains to be clarified.
GSH inhibits ferroptosis mainly by acting as a sub-

strate of GPX4, whereby two molecules of GSH are oxi-
dized and condensed to one molecule of GSSG. GSR
then recycles GSSG back to GSH at the expense of
NADPH (FIGURE 8). Therefore, it is generally assumed
that NADPH protects ferroptosis at least in part by recy-
cling GSH. However, direct evidence supporting a puta-
tive antiferroptotic role of GSR is curiously lacking.
Moreover, mice in which GSR has been ablated show no
obvious phenotype (403). Accordingly, humans with
large fragment deletion in the GSR gene, which is sup-
posed to be a null mutation, do not develop a severe
disease outcome (404). Thus, it appears that GSR is not
essential in physiological conditions and its role in fer-
roptosis remains blurry.
ChaC glutathione-specific c-glutamylcyclotransferase

1 (CHAC1) and multidrug resistance protein 1 (MRP1, aka
ABCC1) mediate the degradation and efflux of GSH,
respectively. CHAC1 was originally identified as a
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pharmacodynamic marker for the inhibition of system
xc

� as it acts downstream of ATF4 in response to cyst
(e)ine starvation (405). However, in the last decade,
only a few studies have addressed an involvement of
CHAC1 in ferroptosis regulation (406, 407). By con-
trast, MRP1 has been found to promote ferroptosis not
only in vitro but also in a rat model of cardiac ische-
mia-reperfusion (408–410). In aggregate, although
GSH is regulated by multiple factors, only its biosyn-
thesis and, to a certain extent, its export have been
closely associated with ferroptosis.

4.1.3. GPX4.

GPX4 sits at the center of ferroptosis control, as it is the
only enzyme that is ubiquitously present and capable of
reducing toxic lipid hydroperoxides (LOOHs), even
when embedded in biological membranes. GPX4 comes
in three flavors, namely the short form (sGPX4), the mito-
chondrial matrix form (mGPX4), and the nuclear form
(nGPX4), although only sGPX4 plays a major role in ferrop-
tosis prevention. GPX4 is a selenoprotein; thus its expres-
sion is directly linked to selenium metabolism. GPX4 is
also subject to control by transcriptional and posttransla-
tional mechanisms. In vivo, conditional knockout of Gpx4
(sometimes in combination with a low-vitamin E diet) is of-
ten used to investigate its role in specific tissues. In
humans, GPX4 deficiency causes a life-threatening dis-
ease called Sedaghatian-type spondylometaphyseal dys-
plasia (SMDS; OMIM #250220).
The three GPX4 isoforms share the same coding

sequence, except that mGPX4 and nGPX4 are addition-
ally furnished with the respective targeting sequences
at their NH2 termini. sGPX4 is known as cytosolic
GPX4, but this nomenclature is misleading because
sGPX4 also localizes in the mitochondrial intermem-
brane space and nucleus (411, 412). Ablation of all three
isoforms in mice causes early embryonic death (27, 413),
which can be rescued by the transgenic reconstitution of
sGPX4 but not mGPX4 (411). Indeed, the expression of
mGPX4 is predominant only in male germ cells and pho-
toreceptors to some degree, whereas the expression
of nGPX4 is more restricted and only present in late
spermatids. Selective disruption of mGPX4 or nGPX4
has no effect on mouse survival, although loss of
mGPX4 causes male infertility and retinal degenera-
tion (414–416). Together, these results indicate that
among the three isoforms only sGPX4 is of vital impor-
tance. Consistent with the in vivo observations, recon-
stitution of sGPX4, but not mGPX4, rescues cells with
GPX4 ablation, revealing a key role of sGPX4 in pre-
venting ferroptosis (417, 418). Surprisingly, two recent
studies claimed that mGPX4 inhibits ferroptosis in
cancer cells (418, 419). However, the major concerns

are that mGPX4 is expressed at a rather low level in a
range of cancer cell lines (417), as in most somatic
cells (420), and that high (artifactual) overexpression
of mGPX4 may confer antiferroptotic function due to
improper subcellular localization. As such, it remains
to be clarified whether the antiferroptotic effect of
mGPX4, if any, is (patho)physiologically relevant.
As discussed in sects. 3.1.2 and 3.4.1, the expression

of GPX4 is regulated by the availability of selenium, the
Sec incorporation machinery, and posttranscriptional
modification of Sec-tRNA[Ser]Sec. However, there is a hi-
erarchy of selenoproteins during the synthesis of sele-
noproteins where GPX4 ranks among the top ones (421).
For instance, GPX4 levels are less affected by selenium
deficiency than GPX1 in mouse and rat tissues (422,
423). In humans, insufficient selenium uptake is associ-
ated with a congestive cardiomyopathy known as
Keshan disease, whereas studies in mice suggest that
the kidney (besides certain types of neurons) is the tis-
sue most vulnerable to GPX4 ablation (31). Thus, it
appears that GPX4 synthesis is preferably maintained
under (patho)physiological conditions, and it would be
difficult to perturb GPX4 by simply limiting selenium. On
the other hand, supraphysiological levels of selenium
may stimulate GPX4 expression via the transcription fac-
tors AP2-c (encoded by TFAP2C) and stimulating protein
1 (SP1) (424, 425).
In terms of transcriptional regulation, the three GPX4

isoforms appear to be regulated differently. Here we
focus on sGPX4 and refer to it asGPX4 unless otherwise
stated below. GPX4 is deemed a housekeeping gene
with only limited regulation under stress (426). Initially,
only a few transcription factors were identified to pro-
mote murine Gpx4 transcription, including SP1, AP2, and
nuclear factor Y (NFY) (420, 427). In human GPX4, a
combined binding site for cAMP response element bind-
ing protein (CREB), cAMP response element modulator
(CREM), and CCAAT/enhancer binding protein (C/EBP) is
located immediately downstream of the NFY site (428),
which can be activated by C/EBPa, C/EBPɛ, and CREB in
different contexts to induce GPX4 expression (429–
431). In contrast, abnormal binding of the transcrip-
tional repressor CREMa to this site in neutrophils leads
to decreased GPX4 expression and ferroptosis, which
underlies the pathogenesis of systemic lupus erythem-
atosus (432). Several other transcription factors that
bind in a distal region (�1,000 to �2,500bp) upstream
of the GPX4 transcriptional start site have been
recently discovered in the context of cancer cells,
including neurogenic differentiation factor 1, androgen
receptor, and TCF7L2 (aka TCF4), which promote
GPX4 transcription (433–435), and zinc finger E-box
binding homeobox 1 (ZEB1), which suppresses GPX4
transcription (436). In addition, transcriptional inhibition
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of GPX4 has been linked to ferroptosis-induced renal tu-
bular injury, regulated by Kruppel-like factor 5 and the
interferon regulatory factor-1/zinc finger protein 350
complex (437, 438). Regardless of these findings, fur-
ther research is needed to carefully validate these
mechanisms, as NRF2 is considered to transcription-
ally regulate GPX4, but this assumption has recently
been refuted (439).
Posttranslational regulation may alter the enzyme ac-

tivity and protein stability of GPX4. For instance, alkyla-
tion of GPX4 C66 by itaconate increases GPX4 enzyme
activity (440), whereas succination of GPX4 C93 by fu-
marate has the opposite effect (441). GPX4 degradation
is partially mediated by the ubiquitin-proteosome sys-
tem. Deubiquitinating enzymes such as ubiquitin-spe-
cific protease 8 (442), OTUB1 (443), and OTUD5 (444)
have been shown to inhibit ferroptosis by stabilizing
GPX4 in different contexts. E3 ligases NEDD4 and
TRIM25, which mediate the K48-linked ubiquitination
on GPX4, promote ferroptosis in dopaminergic neu-
rons and cancer cells, respectively (445, 446). However,
ubiquitination can also stabilize the target protein depend-
ing on the way ubiquitins are conjugated (447), such as
M1- and K63-linked ubiquitination of GPX4 as mediated by
the LUBAC complex and the TRIM26 E3 ligase, respec-
tively (448, 449). Besides the ubiquitin system, GPX4 can
be degraded by macroautophagy and chaperone-medi-
ated autophagy (450–452), the latter of which is abro-
gated by creatine kinase B-mediated phosphorylation at
GPX4 S104 (453).
GPX4, or more specifically sGPX4, is ubiquitously

expressed in vivo. Not only is global Gpx4 knockout em-
bryonic lethal (27), but also hepatocyte- and neuron-spe-
cific Gpx4 knockout causes perinatal or postnatal death
in mice (28, 125, 126, 454). In adult mice, tamoxifen-in-
ducible deletion of Gpx4 in the whole body (except
brain) causes fatal acute kidney failure (31), whereas in
neurons it induces paralysis, muscle atrophy, and early
death (455). These studies suggest that the importance
of GPX4 is not only restricted to a single type of tissue.
However, the lethality of hepatocyte-specific Gpx4 dele-
tion can be compensated by vitamin E supplementation
(454). Adult mice with GPX4 ablation in hepatocytes do
not present an overt phenotype unless fed a vitamin
E-deficient diet (251). Likewise, specific deletion of Gpx4
in endothelial cells or the hematopoietic system only
induces pathologies under vitamin E deficiency (456–
458). As such, the antiferroptotic effect of GPX4 can be
masked by vitamin E in certain tissues and contexts. In
terms of the immune cells, GPX4 is essential for the sur-
vival of invariant natural killer T (iNKT) cells, proliferating
CD41 (in particular follicular helper) and CD81 T cells, as
well as B1 and marginal zone B cells but not for the sur-
vival of myeloid cells, T regulatory cells, or follicular B2

cells (347, 459–462). These discrepancies may be at
least partly due to their different PUFA content (322). In
neurons, constitutive Gpx4 knockout leads to the loss of
a specific population, i.e., the parvalbumin-positive,
GABAergic, inhibitory neurons; accordingly, the pups
are hyperexcitable and suffer from spontaneous and
severe seizures (28, 125, 126). It is noteworthy that the
loss of parvalbumin-positive neurons is not rescued by
the reconstitution of GPX4 U46C variant, suggesting
that they are strictly dependent on selenium-containing
GPX4 (98). On the other hand, agouti-related protein
(AgRP)- and proopiomelanocortin (POMC)-expressing
neurons are tolerant to GPX4 ablation, at least in physio-
logical conditions (463). In adult mice, spinal motor neu-
rons are selectively vulnerable to Gpx4 deletion, which
explains the rapid death upon Gpx4 deletion in neurons
(455). Furthermore, inducible deletion of GPX4 in fore-
brain neurons leads to hippocampal neurodegeneration
and cognitive impairment (464).
SMDS is an ultrarare, usually lethal autosomal reces-

sive disorder caused by mutations in the GPX4 gene.
The disease was first reported in 1980 (465), but the link
to GPX4 was not established until 2014 (466). Several
GPX4 variants associated with SMDS have been
described, including frameshifting and truncating muta-
tions, but patients with these mutations usually die in
utero or shortly after birth (466, 467). Only a few patients
with a biallelic homozygous GPX4 R152H mutation sur-
vive to childhood. Studies on this GPX4 variant are
ongoing and indicate decreased enzyme activity and a
defect in binding to membrane cardiolipins (468, 469).
Recently, a novel mutation, GPX4 K162E, has been
reported that likely impairs the interactions of GPX4 with
its substrates (470). Together, these studies underscore
the importance of GPX4 in human life and propel in-
depth studies on GPX4 and the development of thera-
peutic approaches for SMDS.

4.2. The NAD(P)H/FSP1/CoQ/Vitamin K System

The NAD(P)H/FSP1/CoQ/vitamin K system represents
the second major pillar that protects against ferroptosis
(FIGURE 8). In the absence of GPX4, this system alone
can fully prevent ferroptosis, at least in vitro. This system
differs from the cyst(e)ine/GSH/GPX4 axis in several
aspects. First, GPX4 acts by reducing (P)LOOH to (phos-
pho)lipid alcohol [(P)LOH], preventing further autoxida-
tion steps, whereas FSP1 acts by reducing CoQ or
vitamin K that react with (phospho)lipid peroxyl radicals
[(P)LOO·] to form (P)LOOH, thereby halting the lipid per-
oxidation chain reaction (248, 249, 251) (FIGURE 8).
Second, GPX4 uses GSH as the main reducing substrate
recycled by GSR and NADPH, whereas FSP1 can utilize
both NADH and NADPH as a source of reducing power,
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with no obvious preference (471) (FIGURE 8). In support
of this, the antiferroptotic effect of NADH in colorectal
cancer is FSP1 dependent (210). Third, under physiologi-
cal conditions, FSP1 expression is restricted to brown
adipose tissue, and mice with global Fsp1 knockout are
generally healthy despite increased body weight (472),
in contrast to the ubiquitous expression of GPX4 and
the early lethality of Gpx4 knockout embryos. Finally,
although FSP1 is highly expressed in a range of can-
cer cell lines (249), inhibition of FSP1 alone is usually
not sufficient to induce ferroptosis owing to the pres-
ence of GPX4.

4.2.1. FSP1.

FSP1 was initially described as a p53-responsive gene
(called PRG3) in 1999 (473) and then in 2002 as a mito-
chondria-associated apoptosis-inducing factor (called
AIFM2 or AMID) based on its structural homology with
AIFM1 (aka AIF, apoptosis-inducing factor) (474, 475).
Meanwhile, the antiferroptotic role of FSP1 was hinted at
by an inconspicuous study, where FSP1 appeared as an
anonymous gene with putative NADH oxidase function,
preventing “apoptosis” (now known as ferroptosis) along
with GPX4 in Burkitt lymphoma (476). Almost two dec-
ades later, the p53 dependency as well as the “apo-
ptosis-inducing function” of FSP1 were convincingly
refuted, whereas its antiferroptotic role has been
widely acknowledged (248, 249), leading to an ex-
ponential increase in studies on FSP1 in recent
years.

Physiologically, FSP1 is a lipid droplet-associated
protein enriched in brown adipose tissue. In response
to cold or b-adrenergic stimulation, FSP1 translocates
to the inner mitochondrial membrane (facing the inter-
membrane space), where it oxidizes NADH to NAD1

and replenishes the cytosolic NAD1 pool for robust
glycolysis (472). Furthermore, FSP1 is strongly induced
in extensor digitorum longus muscle during exercise,
also to elevate NAD1-to-NADH ratios (477). These
functional studies are in line with previous sequence
analysis classifying FSP1 as a member of the type II
NADH:quinone oxidoreductase (NDH-2) family, which
catalyzes the same reaction as complex I in the ETC,
but without pumping protons (478). Therefore, the
major role of FSP1 under physiological conditions is to
support glucose utilization. Intriguingly, sequence
analysis also reveals that FSP1 contains the elements
required for condensate formation involving phase
separation, which can indeed be induced by a small
molecule compound called icFSP1 (479). Whether this
feature has a physiological role, for example, in medi-
ating FSP1 translocation, requires further investiga-
tion. Besides, FSP1 was recently discovered to be the

long sought-after warfarin-resistant vitamin K reduc-
tase, sustaining the reduction of vitamin K during war-
farin overdose (250, 251). Accordingly, high-dose
vitamin K treatment fails to rescue Fsp1 knockout mice
upon warfarin poisoning (251).
To date, the antiferroptotic role of FSP1 has mainly

been associated with cancer cells: the higher the FSP1
expression in cancer cells, the less dependent they are
on the cyst(e)ine/GSH/GPX4 axis (248, 249). For instance,
FSP1 is transcriptionally upregulated by NRF2 in KRAS
mutant cancers and KEAP1 (kelch-like ECH associated
protein 1) mutant lung cancers (480, 481) and epigeneti-
cally upregulated by bromodomain-containing protein 4
(BRD4) in the germinal center B cell-like subtype of dif-
fuse large B cell lymphoma to counteract ferroptosis
(482). By contrast, T and B acute lymphoblastic leukemia
cells, which have low FSP1 expression due to DNA hyper-
methylation, are highly susceptible to perturbation of the
cyst(e)ine/GSH/GPX4 axis (483). The antiferroptotic activ-
ity of FSP1 is based on its plasma membrane localization,
mediated by N-myristoylation (248, 249). Dimethylation at
R316 by PRMT1 dampens FSP1 N-myristoylation and thus
its enzyme activity (377). The COOH-terminal domain of
human FSP1, which facilitates its functional dimerization,
may also be crucial (471). Furthermore, the E3 ubiquitin
ligases TRIM21 and RNF126 that are responsible for mem-
brane binding of FSP1 by ubiquitination contribute to fer-
roptosis resistance in gastrointestinal cancers and group
3 medulloblastoma cells, respectively (484, 485).
However, another E3 ubiquitin ligase, TRIM69, was found
to mediate the degradation of FSP1 in HCCs (486).

4.2.2. CoQ and vitamin K.

Both CoQ and vitamin K can be reduced by FSP1 to
prevent ferroptosis (248, 249, 251), and site-directed
mutational analysis suggests that they use the same
binding pocket of FSP1 (250). CoQ and vitamin K (or
more specifically, MK-4) are structurally similar, both
containing a (naphtho)quinone group and an FPP-
derived polyisoprenyl tail (FIGURE 6). Biosynthesis of
CoQ occurs in the inner mitochondrial membrane and
is initiated by 4-hydroxybenzoate polyprenyltransfer-
ase (COQ2) (FIGURE 8), which catalyzes the prenylation
of 4-hydroxybenzoic acid serving as the precursor of
the benzoquinone ring of CoQ. Disruption of COQ2
largely abrogates the antiferroptotic effect of FSP1 (248,
249), suggesting that mitochondrion-derived CoQ is the
major source of this cofactor. In line with this, depletion
of cytosolic StAR-related lipid transfer domain protein 7
(STARD7), which is responsible for the trafficking of
CoQ from mitochondria to the plasma membrane
(FIGURE 8), sensitizes cells to ferroptosis without affect-
ing mitochondrial CoQ generation (487). Vitamin K is
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synthesized in the ER, where UbiA prenyltransferase
domain-containing protein 1 (UBIAD1) catalyzes the con-
densation of the isoprenyl side chain to the naphthoqui-
none group (488) (FIGURE 8). Interestingly, UBIAD1 also
mediates the biosynthesis of CoQ10 in the Golgi mem-
branes of zebrafish and human cells (489) (FIGURE 8),
though it remains unclear whether it facilitates CoQ9

synthesis in mice. In human melanoma cells, UBIAD1-
mediated CoQ10 synthesis is crucial for preventing lipid
peroxidation and cell death (490). Overall, despite the
structural and functional similarities between CoQ and
vitamin K, CoQ is likely the dominant cofactor in FSP1-
mediated ferroptosis prevention, considering that it is
more abundant than vitamin K in mammals (491).

4.3. The GCH1/BH4/DHFR Axis

Guanosine triphosphate cyclohydrolase 1 (GCH1) was
identified as a ferroptosis suppressor in 2020 in two in-
dependent studies using different CRISPR/Cas9 screens
(326, 492). Mechanistically, GCH1 catalyzes the rate-lim-
iting step in the biosynthesis of BH4, which is a potent
RTA, and GCH1 may also promote CoQ synthesis in cer-
tain contexts (326, 492) (FIGURE 8). One of the studies
further showed that dihydrofolate reductase (DHFR), the
enzyme regenerating BH4 using NADPH as the reducing
power, is crucial for the prevention of ferroptosis (326)
(FIGURE 8). Remarkably, GCH1 overexpression compen-
sates for the loss of GPX4 in MEFs, indicating the robust-
ness of this antiferroptotic system (492). However, there
have been only a very few follow-up studies in recent
years. For instance, DHFR was found to protect macro-
phages from ferroptosis in aged mice (493), and GCH1
was reported to protect neurons from ferroptosis in the
context of amyotrophic lateral sclerosis (ALS) and mandi-
bulofacial dysostosis with microcephaly (494, 495).
Moreover, it is noteworthy that BH4 is a cofactor in
the biosynthesis of 5-HT and nitric oxide (NO), both of
which can act as RTAs (FIGURE 8).

4.4. Other Ferroptosis Defense Systems

Antiferroptotic systems that act independently of GPX4,
FSP1, and DHFR are categorized and briefly discussed
here. The first group of antiferroptotic systems mimics
GPX4 using GSH to reduce (P)LOOH, represented by
PRDX6 and GSH S-transferase P1 (GSTP1) (FIGURE 8). It
has long been known that PRDX6 possesses peroxi-
dase activity (496), but its activity depends on the pres-
ence of GSTP1, which catalyzes the glutathionylation of
oxidized C47 in PRDX6, thus regenerating its peroxi-
dase activity using GSH (497, 498). Accordingly, the per-
oxidase activity of PRDX6 can hardly be detected in
the cell-free context (122). Intriguingly, a recent study

indicated that GSTP1 per se harbors peroxidase activity
that is independent of PRDX6 (499). In addition, PRDX6
harbors PLA2 activity and is involved in cellular selenium
utilization (118, 122, 123, 332, 333), whereas GSTP1 has
GSH conjugation activity (499), all of which contribute to
ferroptosis prevention. Nevertheless, overexpression of
PRDX6 fails to substitute for GPX4 in vitro (118, 123),
whereas GSTP1 overexpression compensates for the
loss of GPX4 at least within a certain timeframe (499).
The second group of antiferroptotic systems mimics

FSP1 reducing CoQ or vitamin K and is represented by
dihydroorotate dehydrogenase (DHODH), glycerol-3-
phosphate dehydrogenase 2 (GPD2), and vitamin K
epoxide reductase complex subunit 1 like 1 (VKORC1L1)
(FIGURE 8). DHODH and GPD2 are enzymes localized
in the outer leaflet of the inner mitochondrial membrane,
both mediating the reduction of CoQ. It has been sug-
gested that DHODH and GPD2 together with mGPX4
protect mitochondrial membranes from lipid peroxida-
tion, in parallel with sGPX4 and FSP1 surveilling the
plasma membrane (418, 419). However, the validity of
this model has recently been questioned, not only
because of the improper use of the DHODH inhibitor
brequinar leading to off-target effects on FSP1 but also
because FSP1 alone completely prevents ferroptosis in
cells with compound GPX4 and DHODH deletion (417).
VKORC1L1 is an ER-resident enzyme reducing vitamin
K. Unlike FSP1, VKORC1L1 cannot reduce CoQ and is
sensitive to warfarin (500). In vitro, warfarin treatment
synergizes with GPX4 inhibition to induce ferroptosis in
pancreatic tumor cells, suggesting the antiferroptotic
role of VKORC1L1. However, it remains unsolved how
warfarin alone in the presence of GPX4 can induce fer-
roptosis in vivo (500).
The third group of antiferroptotic systems acts

through the direct generation of RTAs, such as RSSH,
several tryptophan metabolites, 7-DHC, and NO
(FIGURE 8), among which the first three have already
been introduced in sects. 3.2.1, 3.2.4, and 3.4.5,
respectively. The identification of NO as an inhibitor
of lipid peroxidation dates back �30 years. It was ini-
tially found to inhibit LOXs (501), but like most LOX
inhibitors NO also acts as an endogenous RTA (502,
503). Not surprisingly, M1 macrophages expressing
high levels of inducible nitric oxide synthase (iNOS,
aka NOS2) are therefore enriched with NO and are
more resistant to ferroptosis than M2 macrophages.
Consequently, treatment with NO donors renders M2
macrophages as well as HCCs resistant to ferroptosis
(504, 505). Remarkably, the iNOS/NO system can
substitute for GPX4 to prevent ferroptosis in macro-
phages and HT1080 cells (325, 505). Furthermore,
macrophage-derived NO can cell nonautonomously
rescue epithelial cells from ferroptosis induced by
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Pseudomonas aeruginosa, revealing a novel intercel-
lular defense mechanism against ferroptosis (506).
In addition to the systems mentioned above, ferropto-

sis is essentially influenced by iron and fatty acid metab-
olism, which are discussed in detail in sect. 3. In the
broadest sense, antiferroptotic systems should also
include those that deplete intracellular iron or mem-
brane PUFA content. For instance, overexpression of
MBOAT1 or MBOAT2, which remodels the membrane
profile to a high-MUFA state, can compensate for the
loss of GPX4 (325), again highlighting a major impact of
fatty acid metabolism on ferroptosis.

4.5. Proferroptosis System—ACSL4

As discussed in sect. 3.6, there are several enzymes
that potentially promote lipid peroxidation, such as
LOXs and POR. However, since ACSL4 is the only pro-
tein known so far whose loss can fully prevent GPX4
ablation-induced cell death at least in the in vitro con-
text, we focus on ACSL4 in this section, reviewing its
role in ferroptosis and its regulation and physiological
function.
The first time that ACSL4 emerged as a proferroptotic

gene was in a genetic screen in haploid cells (336).
Subsequently, ACSL4 was identified as a requirement
for the execution of ferroptosis along with the successful
establishment of Gpx4 and Acsl4 double-mutant cells
(290). Curiously, ablation of ACSL4 does not always fully
prevent ferroptosis. For example, ACSL4 knockout cells
are less protected from ferroptosis induced by cystine
deprivation than by GPX4 inhibition, whereas cell death
can be fully rescued by ferrostatin-1 in both cases (318).
Furthermore, photodynamic therapy-induced ferroptosis
and, in certain contexts, LOX-mediated ferroptosis may
bypass ACSL4 (310, 343, 345, 507, 508). It is noteworthy
that in one of these studies a lipidomic analysis was per-
formed and PUFA-PA was identified as the main sub-
strate of lipid peroxidation (310). However, since the
biosynthesis of PUFA-PA does not bypass ACSL4, which
mediates PUFA activation, it remains unexplained why
ACSL4 can be dispensable.
The expression of ACSL4 determines susceptibility to

ferroptosis. For instance, Acsl4 is upregulated during in-
testinal ischemia-reperfusion injury and acute kidney
injury, contributing to ferroptosis-associated tissue dam-
age. Mechanistically, these regulations are controlled by
the transcription factors SP1 and hypoxia-inducible factor
1a (HIF-1a), which positively and negatively regulate Acsl4,
respectively (509, 510). Ferroptosis is known to be inhib-
ited at high cell density (28, 511), which may be partially
due to the downregulation of ACSL4 downstream of
E-cadherin and the Hippo pathway. Mechanistically, the
activation of Hippo pathway increases the phosphorylation

of yes-associated protein (YAP), blocking its function as a
coactivator for TEAD4-mediated ACSL4 transcription (512).
Prostate cancer cells with loss of the tumor suppressor
gene RB1 are particularly sensitive to ferroptosis due to the
upregulation of ACSL4 by the transcription factor E2F
(513). The high sensitivity of mesenchymal cancer cells to
ferroptosis is partially due to ACSL4 upregulation by ZEB1
(514). In antitumor immunity, CD81 T cell-derived IFN-c
sequentially activates STAT1, interferon regulatory factor 1,
and the ACSL4 gene, sensitizing cancer cells to ferroptosis
(515). In terms of posttranslational modifications, ACSL4
can be phosphorylated by the protein kinase C family
member PKCbII at T328 and by mitochondrial phosphoe-
nolpyruvate carboxykinase 2 (PCK2) at T697, which are
essential for its dimerization/activation and binding to sub-
strate AA, respectively (516, 517). By contrast, methylation
of ACSL4 at R339 by protein arginine N-methyltransferase
4 (PRMT4, aka CARM1) promotes its degradation by the E3
ubiquitin ligase RNF25 (518). Besides, the E3 ubiquitin
ligases MARCH6 and F-box only protein 10 have been
reported to mediate the degradation of ACSL4 (241, 519).
In vivo, ACSL4 is not essential, at least for male mice.

Acsl4 is a gonosomal X-linked gene, and Acsl4 knock-
out male mice (genotyped Acsl4�/y) appear normal and
are fertile. When mated with wild-type female, their off-
spring have a normal genotype distribution (Acsl41/y

and Acsl41/�). In contrast, heterozygous female mice
(genotyped Acsl41/�) have reduced fertility when
crossed with wild-type male, and the pups carrying the
disrupted allele (Acsl4�/y and Acsl41/�) have a high risk
of embryonic death (520). Thus, it appears that embry-
onic death is attributed to the simultaneous deficiency
of ACSL4 in pups and mothers. Studies in male Acsl4
knockout mice revealed that their bone marrow-derived
macrophages (BMDMs) and lungs have markedly less
PUFA-derived fatty acyl-CoA and thus lower PUFA-PLs
(521, 522), which is consistent with the in vitro studies. In
addition, these mice are resistant to paraquat-induced
lung injury and protected from methotrexate-induced
lung fibrosis and acetaminophen-induced hepatotoxic-
ity, because of the attenuated lipid peroxidation (522,
523). Tissue-specific ablation of ACSL4 in adipocytes,
myeloid cells, and kidney tubule cells protects mice
from diet-induced obesity, LPS-induced peritonitis, and
renal ischemia-reperfusion injury, respectively, associ-
ated with attenuated lipid peroxidation (510, 524, 525). It
therefore can be concluded that ACSL4 does play a pro-
ferroptotic role in vivo by enriching PUFA-PLs. However,
the deletion of ACSL4 is not always beneficial, as male
mice with global Acsl4 knockout were shown to be
more sensitive to LPS-induced septic shock because
of overproduction of COX-derived eicosanoids (526),
suggesting that care must be taken when considering
ACSL4 as a potential therapeutic target.
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5. POTENTIAL PHYSIOLOGICAL ROLE AND
DISEASE RELEVANCE OF FERROPTOSIS

5.1. Physiological Role of Ferroptosis

Cell death is an important physiological process by
which unwanted cells are removed. Defects in cell death
induction may lead to aberrant survival of malignant,
senescent, damaged, or infected cells. Mounting evi-
dence suggests that ferroptosis is actively involved in
the processes of aging, tumor suppression, and infec-
tion control (FIGURE 9), perhaps implying ferroptosis as
an innate (nonartificially induced) cell death modality.

5.1.1. Aging.

A link between ferroptosis and aging was first demon-
strated in Caenorhabditis elegans. When ferroptosis is
blocked by either an RTA or an iron chelator, their life-
span and health span are markedly increased (527). In
line with this, C. elegans fed a high-MUFA diet survive
longer, associated with lower lipid peroxidation (528). In
rodents, ferroptosis has been associated with arterial
aging, and inhibition of ferroptosis improves vascular
function in aged animals (529, 530). The presence of
ferroptosis in various mouse organs during aging as well
as in the process of embryonic erythropoiesis has been

shown by immunohistochemical staining of 4-hydroxy-2-
nonenal (HNE)-modified proteins (531). However, since
HNE is not exclusively specific to ferroptosis and may
also mark other lipid peroxidation events, further studies
are required to critically evaluate the presence of cell
death.

5.1.2. Tumor suppression.

To eliminate cancer or precancerous cells, ferroptosis
can be triggered by intrinsic signals derived from cer-
tain tumor suppressor genes such as p53 or by extrin-
sic signals represented by CD81 T cell-derived IFN-c
(FIGURE 9). As the best-studied tumor suppressor,
p53 is known for its key roles to induce cell cycle
arrest, senescence, and apoptosis. Interestingly, mu-
tant p533KR, which is defective in carrying out these
processes, retains the ability to suppress tumors
(532). Further studies reveal that p533KR promotes tu-
mor ferroptosis by negatively regulating xCT, indicat-
ing that ferroptosis may be an additional protective
shield in tumor suppression besides apoptosis (373).
Furthermore, p53 may facilitate ferroptosis by downre-
gulating VKORC1L1 and SCD1 (288, 500), suppressing
the mevalonate pathway (533) and activating SAT1-
mediated polyamine catabolism (188). Nevertheless,
p21, the major target gene of p53 responsible for its cell
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FIGURE 9. The physiological, pathological, and therapeu-
tic roles of ferroptosis. Ferroptosis has been implicated in
the aging process of rodent tissues, and inhibition of ferrop-
tosis has been shown to increase the lifespan and health
span of Caenorhabditis elegans. Ferroptosis can be acti-
vated by specific tumor suppressor genes, such as p53, or
by CD81 T cell-derived interferon-c (IFN-c), suggesting
its role as an innate tumor suppression mechanism.
Furthermore, in some contexts, ferroptosis occurring in
infected cells may contribute to infection control, indicat-
ing a physiological role of ferroptosis. Ferroptosis has
been implicated in a variety of diseases, including ische-
mia-reperfusion injury, neurodegeneration, and autoim-
mune diseases. Organ damage during organ transplantation,
where ischemia-reperfusion is unavoidable, may also involve
ferroptosis. Additionally, ferroptosis may underlie tissue dam-
age caused by certain pathogens and drugs, suggesting a
pathological role. Certain cancer cells, such as clear cell renal
cell carcinoma (ccRCC) and MYCN-amplified neuroblastoma,
are inherently sensitive to ferroptosis. In certain contexts,
cancer cells with mutant RAS are also susceptible. Drug-toler-
ant persister cells, which usually display characteristics of epi-
thelial-mesenchymal transition (EMT) or dedifferentiation, are
more vulnerable to ferroptosis. Irradiation and some exist-
ing drugs have been found to eradicate tumor cells by
inducing ferroptosis, suggesting a therapeutic role for
ferroptosis induction. Figure created with a licensed ver-
sion of BioRender.com.
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cycle arrest function, plays an antiferroptotic role (534,
535). Therefore, it could be hypothesized that ferropto-
sis induction is a backup option of p53, especially in
case it loses control over p21. In addition to p53, tumor
suppressors that exert a proferroptotic effect include
BAP1, which epigenetically silences xCT (379), FH, which
drives the TCA cycle and thus mitochondrial ROS (194),
and phosphatase and tensin homolog deleted from
chromosome 10 (PTEN), which suppresses NRF2-
mediated xCT expression and GSH synthesis (536).
In terms of extrinsic signals, CD81 T cell-derived IFN-
c may trigger ferroptosis in cancer cells by mediating
upregulation of ACSL4 and downregulation of 4F2
and xCT (515, 537).

5.1.3. Infection control.

Ferroptosis is not restricted to mammals but also
occurs in other kingdoms of life (538). For example,
Staphylococcus aureus is highly sensitive to PUFA-
induced lipid peroxidation (539), and mice fed a high-
PUFA diet are more tolerant to septic S. aureus infec-
tion (540). Leishmania infantum is susceptible to lipid
peroxidation, and it exploits the antiferroptotic effects
of NRF2 in macrophages to escape cell death (541).
Although it remains to be determined whether the
immune system can kill pathogens by inducing ferrop-
tosis, the available evidence indicates that ferroptosis
occurring in infected cells may afford infection control.
For example, replication of hepatitis C virus and neu-
roinvasive viruses is restrained by lipid peroxidation
(542, 543). Enhancing hepatocyte ferroptosis during
liver-stage malaria infection is beneficial to the host
(544). Microsporidia and Brucella even facilitate their
host cells to avoid ferroptosis, thereby promoting their
own proliferation (545, 546). The p53 P47S variant,
which predominates in humans of African descent, is
known to be defective in ferroptosis induction (547).
Mice carrying this mutation are more susceptible to
bacterial infection as their macrophages tolerate a
higher iron level that supports bacterial growth (548).

5.2. Pathological Role of Ferroptosis

Ferroptosis has been implicated in a variety of diseases
such as ischemia-reperfusion injury and neurodegener-
ation (FIGURE 9). The emerging role of ferroptosis in
autoimmune diseases (e.g., systemic lupus erythemato-
sus, rheumatoid arthritis, inflammatory bowel disease,
multiple sclerosis, and psoriasis) has already been
acknowledged and reviewed in detail elsewhere (549,
550) (FIGURE 9). Despite the beneficial role in infection
control (as discussed in the foregoing), ferroptosis may
be exploited by certain pathogens to promote host

tissue damage, e.g., Mycobacterium tuberculosis (551),
Pseudomonas aeruginosa (552), and SARS-CoV-2 (553,
554). Furthermore, ferroptosis has been associated with
doxorubicin-induced cardiotoxicity (81), paraquat-induced
lung injury (522), folic acid-induced nephrotoxicity (555),
and acetaminophen-induced hepatotoxicity (523), although
the latter is still controversial (556, 557) (FIGURE 9).

5.2.1. Tissue ischemia-reperfusion injury.

The link between ferroptosis and tissue ischemia-reperfu-
sion injury was established largely based on the rescue
effect of synthetic RTAs (e.g., liproxstatin-1, ferrostatin-1) in
rodent models with heart (81), liver (31), kidney (558), lung
(559), and intestinal (509) ischemia-reperfusion and ische-
mic stroke (560). Ischemia-reperfusion injury describes a
pathological condition in tissue that occurs when the
blood supply is restored after a transient period of ische-
mia. Mechanistically, tissue damage is attributed, at least
in part, to mitochondrial dysregulation, i.e., succinate that
accumulates during the ischemic phase rapidly fuels com-
plex II during the reperfusion phase, resulting in reverse
electron transport in complex I associated with over-
whelming ROS generation (561). Moreover, dysregulation
of key systems controlling ferroptosis was found in vari-
ous models of ischemia-reperfusion. For instance, GPX4
degradation is induced by kidney ischemia-reperfusion
(444). ACSL4 is upregulated during ischemia-reperfusion
in the lung and intestine (509, 559). MRP1-mediated GSH
efflux and 15-LOX are activated during heart ischemia-
reperfusion (408, 562, 563). Remarkably, inhibition of mi-
tochondrial complex II alone fails to restore the GSH pool,
whereas inhibition of MRP1 and complex II synergistically
protect cardiomyocytes in an in vitro anoxia-reoxygena-
tion model (408), implying that the dysregulation of fer-
roptosis controlling systems may not be a downstream
event of mitochondrial ROS but is triggered independ-
ently by ischemia-reperfusion. However, further studies
are required to validate this statement in vivo and to shed
light on the underlying mechanisms.

The knowledge gained from ischemia-reperfusion stud-
ies has been applied to organ transplantation, where is-
chemia-reperfusion is unavoidable (FIGURE 9). Treatment
with ferroptosis inhibitors during organ preservation allevi-
ates the damage to donor lungs and livers (564, 565), and
administration of ferroptosis inhibitor to heart transplant
recipients reduces cardiomyocyte cell death and blocks
neutrophil recruitment (566). Interestingly, reports regard-
ing the therapeutic effect of ferroptosis inhibition on kid-
ney transplantation are oddly lacking, although it is well
known that the kidney is one of the most susceptible
organs to ferroptosis and ischemia-reperfusion. On the
contrary, it was reported that treatment with a low dose of
RSL3 on aged donor kidneys helps to remove the
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senescent tubular cells by ferroptosis, thereby reducing
tissue damage and inflammation following transplantation
(567). Nevertheless, whether this counterintuitive thera-
peutic strategy is valid and applies to other organs
requires further investigations.

5.2.2. Neurodegeneration.

Brain iron accumulation has long been acknowledged
as a feature of aging, and abnormal iron deposition in
specific brain regions is linked to certain neurodege-
nerative diseases (568). As unchaperoned iron is re-
dox-active and can generate ROS via the Fenton
reaction, it is generally believed that excessive iron
may be toxic and may drive neuron damage and dys-
function. With the establishment of the concept “fer-
roptosis,” iron-induced neuronal death has attracted
attention. Recent studies suggest that ferroptosis may
be actively involved in the development of neurode-
generative diseases such as Alzheimer’s disease (AD),
Parkinson’s disease (PD), and ALS.

AD is the most common form of dementia, charac-
terized with a progressive decline in memory, think-
ing, and behavior. The first hint that ferroptosis may
contribute to AD is that conditional deletion of Gpx4 in
mouse forebrain neurons leads to an AD-like pheno-
type that is ameliorated by treatment with liproxsta-
tin-1 (464). Correspondingly, GPX4 overexpression
rescues neurodegeneration and cognitive impairment
in a genetic ADmouse model (569). Furthermore, prese-
nilin and apolipoprotein E (APOE), the two most studied
genes associated with early-onset and late-onset AD,
respectively, were found to protect against ferroptosis.
Mechanistically, presenilin activates Notch-1 signaling,
which maintains LRP8-mediated selenium uptake and
thus GPX4 expression. Mutations in presenilin that lead
to abnormal generation of amyloid-b simultaneously
suppress Notch-1 signaling (108). APOE activates the
PI3K/AKT pathway, which inhibits the degradation of fer-
ritin. APOE ɛ4 variant carriers with a low expression of
APOE may therefore have a high ferritin degradation
rate (570). In addition, APOE ɛ4 blocks intracellular han-
dling of LRP8 back to the cell surface (571), which may
negatively impact on selenium uptake.
PD is the second most common neurodegenerative

disease after AD, characterized by involuntary or uncon-
trollable movements. The gradual loss of midbrain dopa-
minergic neurons and aggregation of a-synuclein are
the major pathological features of PD. Evidence support-
ing the link between ferroptosis and PD includes evi-
dence that the metabolite of 15-LOX accumulates in the
midbrains of PD rodent models and patient-derived
fibroblasts (329) and that iron-induced dopamine oxi-
dation modifies GPX4 for subsequent degradation

(445). Furthermore, a-synuclein may drive ferroptosis
in neurons by ROS generation and ePL biosynthesis
(572, 573), and overexpression of human a-synuclein
in the primary motor cortex of mice leads to ferropto-
sis-associated parvalbumin interneuron loss and
motor learning impairment (574). Nevertheless, con-
ditional deletion of Gpx4 in mouse dopaminergic
neurons does not lead to a significant consequence,
suggesting that these neurons are somewhat resistant
to ferroptosis (463). Analysis of postmortem human
brain tissue reveals that GPX4 is upregulated in the
surviving nigral cells of PD patients (575). Whether fer-
roptosis underlies the loss of dopaminergic neurons in
PD therefore remains to be investigated.
ALS is a fatal neurodegenerative disease that affects

motor neurons and results in weakness, atrophy of volun-
tary skeletal muscles, paralysis, and eventually respiratory
failure. There are several signs suggesting a strong rela-
tionship between ALS and ferroptosis. First, a longitudinal
study on 512 ALS patients identified four prognostic bio-
markers for ALS, including neuronal integrity, DNA oxida-
tion, lipid peroxidation, and iron accumulation, all related
to ferroptosis (576). Second, a multiomics analysis of
human induced pluripotent stem cell-derived spinal
motor neurons revealed dysregulation in lipid metabolism
with elevated AA levels, whereas treatment with 5-LOX
inhibitors reversed ALS-related phenotypes both in vitro
and in Drosophila and mouse models (577). Third, GPX4
depletion was found in postmortem spinal cords of both
sporadic and familial ALS patients, as well as the spinal
cord and brain of different ALS mouse models (578).
Fourth, conditional deletion of Gpx4 in neurons of adult
mice led to rapid degeneration of spinal motor neurons
and paralysis followed by death, whereas neurons in
other regions such as cerebral cortex do not display overt
degeneration at the early stage despite the loss of GPX4,
suggesting that motor neurons are particularly vulnerable
to ferroptosis (455). Finally, motor neuron degeneration
and disease onset were significantly delayed in an ALS
mouse model by forced expression of GPX4, suggesting
that targeting ferroptosis might be a viable therapeutic
approach to mitigate ALS (578, 579).

5.3. Therapeutic Role of Ferroptosis

Induction of ferroptosis emerges as a novel therapeutic
strategy for cancer. Certain cancer cells such as ccRCC
and MYCN-amplified neuroblastoma are inherently sen-
sitive to ferroptosis (FIGURE 9). ccRCC is the most com-
mon form of kidney cancer, which is mainly caused by
the loss of VHL gene. These cells are sensitive to cyst(e)
ine deprivation or GPX4 inhibition, as loss of the VHL
gene leads to selective accumulation of PUFA-PLs and
impaired fatty acid degradation (294, 350). MYCN-
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amplified neuroblastoma is highly aggressive because
MYCN controls a variety of cellular processes such as
cell growth, proliferation, and TFR1-mediated iron
uptake. The high iron content therefore renders the cells
sensitive to ferroptosis induced by cyst(e)ine deprivation
and GPX4 inhibition (39, 580). Furthermore, these cells
exhibit low expression of xCT, and forced xCT expres-
sion negatively affects their survival for unknown rea-
sons (109). Thus, the cells rely on transsulfuration-
mediated cysteine supply and LRP8-mediated uptake of
organic selenium to counteract ferroptosis (109, 160,
161).
Ferroptosis was originally introduced as a cell death

modality that selectively eradicates cancer cells with
mutant RAS, but subsequent studies showed that mul-
tiple cell lines with wild-type RAS can actually undergo
ferroptosis (30). Indeed, the effect of mutant RAS on
ferroptosis is complex. For instance, HRAS V12G mu-
tant cells display increased MUFA uptake and resist-
ance to SCD1 inhibition (581), whereas KRAS G12D
mutant cells display increased de novo lipogenesis
and vulnerability to FASN and ACSL3 perturbation
(274, 582). The KRAS G12D mutant cells also display
increased GSH synthesis and FSP1 expression driven
by NRF2 signaling, making the cells tolerant to GPX4
depletion while sensitive to FSP1 inhibition and xCT
ablation (138, 481, 583). Therefore, it is difficult to state
whether mutant RAS promotes or inhibits ferroptosis
without specifying the details, e.g., what type of mu-
tant RAS is present and how ferroptosis is induced
(FIGURE 9). More importantly, these studies imply
that cancer cells that are resistant to ferroptosis
induced in one way may remain susceptible to fer-
roptosis induced in another way.
The occurrence of drug-tolerant persister cells repre-

sents a major challenge in cancer therapy, as they can
lead to cancer relapse. In contrast to antibiotic-resistant
bacteria, the persister cells do not exhibit any genomic
alterations but become transiently tolerant to the
drugs by metabolic rewiring and epigenetic modifica-
tions. Interestingly, persister cells are highly depend-
ent on GPX4 to prevent ferroptosis (584) (FIGURE 9).
Consistent with this, cells undergoing epithelial-mes-
enchymal transition (EMT) or dedifferentiation, both of
which have been associated with drug resistance,
become more vulnerable to ferroptosis (243, 585).
Mechanistically, the EMT regulator ZEB1, which regu-
lates lipid homeostasis and suppresses GPX4 tran-
scription, is at least partially involved (243, 436, 514).
Iron accumulation induced by CD44-mediated iron
uptake and decreased FPN expression may also
make some contribution (46, 586). On the other
hand, epithelial cells are resistant to ferroptosis due
to intracellular interactions mediated by E-cadherin

and a6b4 integrin. E-cadherin activates the Hippo
pathway to downregulate ACSL4 and TFR1 (512),
whereas a6b4 integrin activates the SCR signaling to
downregulate ACSL4 (587). Furthermore, activation
of the Hippo pathway sustains the expression of lami-
nin 332, which is the ligand of a6b4 integrin, whereas
the binding of laminin 332 and a6b4 integrin sup-
presses ZEB1-mediated EMT (588).
Although ferroptosis induction appears to have high

potential for tumor eradication, the difficulty remains as
to how to target tumor cells. For instance, a systemic in-
hibition of GPX4 may inevitably impair other healthy
cells including those of the adaptive and innate immune
systems. In this regard, a compound called N6F11 has
been developed to induce tumor-specific GPX4 degra-
dation by activating the tumor-specific E3 ligase TRIM25
(446). Unlike GPX4, xCT and FSP1 are considered safer
targets given their dispensability for mouse survival.
Indeed, xCT ablation significantly delays tumor progres-
sion and tumor metastasis in vivo, as evidenced by sev-
eral xenograft models and a genetically engineered
mouse model of PDAC (138, 357, 589, 590). In contrast,
targeting FSP1 alone is usually not sufficient to trigger
ferroptosis due to the presence of GPX4. Nevertheless,
the combination of FSP1 inhibition and irradiation may
be a promising strategy (480), as irradiation also has
some proferroptotic effects (591–593) (FIGURE 9). To
date, inhibitors of xCT and FSP1 for in vivo application
are still under development, including imidazole ketone
erastin (IKE) and icFSP1 (479, 594), but existing drugs
like sulfasalazine and brequinar have been found to
have off-target effects on xCT and FSP1, respectively
(23, 417) (FIGURE 10). Other drugs, which have been
implicated in ferroptosis induction, include altretamine
that inhibits GPX4 activity (595), withaferin A that pro-
motes GPX4 degradation and iron release from heme
(82), methotrexate that targets DHFR (326), statins that
interfere with the mevalonate pathway (238), APR-246
(aka eprenetapopt) that induces GSH depletion and
NFS1 inhibition (596), and imetelstat that enriches PUFA-
PLs (597) (FIGURE 9, FIGURE 10). The diversity of their
proferroptotic mechanisms thus provides a toolbox that
may be harnessed to selectively target the Achilles heel
of certain types of cancer.

6. FUTURE PERSPECTIVE AND CONCLUDING
REMARKS

When we compiled our previous review article on the
relation between cell metabolism and ferroptosis pub-
lished in 2020 (2), there were fewer than 1,000 publica-
tions on “ferroptosis” available on PubMed. Today, this
number has risen to over 15,000 and continues to grow,
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with dozens of new papers appearing daily. The signifi-
cant efforts in this area have undoubtedly contributed to
the rapid development of the field. However, several
major challenges remain to be overcome.
First, we have not yet identified a readily available

protein biomarker for ferroptosis that is as specific as
the executioner proteins in apoptosis, necroptosis,
and pyroptosis. Although an elevation in TFR1 may
help distinguish ferroptotic cells from apoptotic ones
(41, 42), it is important to note that TFR1 is ubiquitously
expressed and regulated by various factors, including
intracellular iron status. Recently, hyperoxidized per-
oxiredoxin 3 (PRDX3) was proposed as a potential
marker for ferroptosis applicable to both in vitro and in
vivo conditions (598). Nevertheless, cells lacking PRDX3
can still undergo ferroptosis (598). Moreover, its specific-
ity to ferroptosis needs to be examined under a broader
range of oxidative conditions and validated in typical fer-
roptotic mouse models with tissue-specific Gpx4 knock-
out. At present, lipid peroxidation is the most widely used
biomarker for ferroptosis, but lipid peroxidation does not
necessarily drive cell death, as a critical threshold of

LOOH must be reached to trigger ferroptosis (254).
Furthermore, lipid peroxidation can also occur in other
oxidative stress conditions unrelated to ferroptosis.
For instance, sorafenib induces cell death alongside
lipid peroxidation, but this cell death is not rescued by
liproxstatin-1 or the iron chelator deferiprone (356).
Therefore, the current standard for identifying ferrop-
tosis requires the simultaneous fulfillment of three
conditions: cell death, lipid peroxidation, and rescue
by ferroptosis inhibitors.
Second, we still have limited models to study ferropto-

sis in vivo. To date, the only widely acknowledged ani-
mal models for ferroptosis are tissue-specific Gpx4
knockout mice, but these models have several short-
comings. One common criticism is the artificial nature of
these models, as Gpx4 is a housekeeping gene, and the
loss of GPX4 is unlikely the primary driving force of fer-
roptosis under (patho)physiological conditions. Another
significant limitation is the irreversibility ofGpx4 deletion.
Consequently, even if cell death can be temporarily
inhibited by antiferroptotic agents, ferroptosis may still
occur once these agents are withdrawn. Furthermore,
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FIGURE 10. Existing drugs and compounds that may induce or inhibit ferroptosis in vivo. Existing drugs that may exert a proferroptotic effect include
brequinar that targets dihydroorotate dehydrogenase (DHODH) but inhibits ferroptosis suppressor protein 1 (FSP1) at a high dose, statins (e.g., lova-
statin) that block the mevalonate pathway by inhibiting 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), withaferin A that promotes glutathione
peroxidase 4 (GPX4) degradation and iron release from heme, imetelstat that enriches polyunsaturated fatty acid (PUFA)-phospholipids (PLs), metho-
trexate that inhibits dihydrofolate reductase (DHFR), sulfasalazine that inhibits system x

c
�, altretamine that inhibits GPX4, and APR-246 that depletes

glutathione (GSH) and blocks iron-sulfur cluster biogenesis by inhibiting NFS1. Compounds that have been reported to induce ferroptosis in mice
include imidazole ketone erastin that inhibits system x

c
�, icFSP1 that inhibits FSP1, L-buthionine sulfoximine that blocks GSH synthesis by inhibiting glu-

tamate-cysteine ligase (GCL), and compound 24, compound 28, compound C18, and PACMA31, which all inhibit GPX4. Existing drugs that may exert an
antiferroptotic effect include deferoxamine, deferiprone, and deferasirox, which are iron chelators, and a-tocopherol and retinol, which act as radical
trapping antioxidants (RTAs). Compounds that suitable for ferroptosis inhibition in mice include liproxstatin-1 and UAMC-3203, which are RTAs. Figure
created with a licensed version of BioRender.com.
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the extent of lipid peroxidation induced is not scalable,
at the level of individual cells. Although administering a
lower dose of tamoxifen can reduce the activation of
Cre recombinase, thereby decreasing the number of fer-
roptotic cells and mitigating the phenotype in a given tis-
sue/organ (599), the induction of lipid peroxidation in
individual cells is an all-or-nothing decision. In addition
to GPX4 perturbation, ischemia-reperfusion might be an
alternative way to trigger ferroptosis in vivo. However,
the major concern with this approach is that it may
induce a mixture of cell death modalities.
Third, we have limited tools to manipulate ferroptosis

in the human body. Although a few drugs have been
found to promote ferroptosis as an off-target effect (as
mentioned in sect. 5.2), no drug has been specifically
developed to trigger ferroptosis hitherto. For in vivo
experiments, several agents have been developed:
engineered human cyst(e)inase to deplete serum cyst
(e)ine (600), IKE to inhibit system xc

� (594), L-buthio-
nine sulfoximine (BSO) to target GCL (601), icFSP1 to
target human FSP1 (479), and several compounds (e.g.,
PACMA31, compound C18, compound 24, and com-
pound 28) to target GPX4 (351, 602–604) (FIGURE 10).
Whether these developments can be eventually trans-
lated into clinical practice remains to be seen.
As for ferroptosis inhibitors, iron chelators such as de-

feroxamine, deferiprone, and deferasirox are clinically
approved but are typically used to treat systemic iron
overload (FIGURE 10). Two recent clinical trials investigat-
ing the use of deferiprone to alleviate symptoms in
patients with amyloid-confirmed early Alzheimer’s disease
and in newly diagnosed Parkinson’s disease patients not
receiving dopaminergic treatment resulted in even wors-
ened outcomes (605, 606). Another clinical trial is currently
underway to assess deferiprone in the treatment of early
amyotrophic lateral sclerosis (NCT03293069). However,
whether iron chelators can prevent ferroptosis in vivo
remains unclear.
As a representative of RTAs, a-tocopherol is clinically

available and has been used worldwide as a dietary sup-
plement (FIGURE 10). Despite numerous positive results
from cell culture and animal studies including models of
genetic Gpx4 deficiency, a-tocopherol supplementation
does not appear to significantly affect all-cause mortal-
ity or provide benefits for cardiovascular diseases in
humans (607). Conversely, daily dietary supplementa-
tion with 400 IU of all-rac-a-tocopheryl acetate signifi-
cantly increases the risk of prostate cancer among
healthy men (608). Recently, retinol (vitamin A) and its
metabolites were found to halt lipid peroxidation by
acting as RTAs (609, 610) (FIGURE 10). Additionally,
all-trans retinoic acid also orchestrates the expression
of antiferroptotic genes via the retinoic acid receptor
(611). Nevertheless, whether a-tocopherol and retinol

can inhibit ferroptosis in the human body remains
uncertain, similar to the case with iron chelators. Compared
to a-tocopherol and retinol, ferrostatin-1 and liproxstatin-1
are much more effective at inhibiting ferroptosis (612).
However, only liproxstatin-1 is suitable for in vivo conditions
because of its superior pharmacokinetic properties (31)
(FIGURE 10). In addition, UAMC-3203, a metabolically more
stable ferrostatin-1 analog, showed improved in vivo effi-
cacy (613) (FIGURE 10). The (preclinical) development of
next-generation liproxstatins is currently in progress, and
we are eagerly looking forward to its potential clinical
translation.
In conclusion, given the active involvement of ferrop-

tosis in various pathological conditions and its substan-
tial potential in cancer therapy, we believe that the field
of ferroptosis is poised for a promising and impactful
future.
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