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Weakly Supervised Object Detection in Chest
X-Rays With Differentiable ROI Proposal

Networks and Soft ROI Pooling
Philip Müller , Felix Meissen , Georgios Kaissis , and Daniel Rueckert , Fellow, IEEE

Abstract— Weakly supervised object detection
(WSup-OD) increases the usefulness and interpretability of
image classification algorithms without requiring additional
supervision. The successes of multiple instance learning in
this task for natural images, however, do not translate well
to medical images due to the very different characteristics
of their objects (i.e. pathologies). In this work, we propose
Weakly Supervised ROI Proposal Networks (WSRPN),
a new method for generating bounding box proposals
on the fly using a specialized region of interest-attention
(ROI-attention) module. WSRPN integrates well with
classic backbone-head classification algorithms and is
end-to-end trainable with only image-label supervision.
We experimentally demonstrate that our new method
outperforms existing methods in the challenging task
of disease localization in chest X-ray images. Code:
https://github.com/philip-mueller/wsrpn.

Index Terms— Chest X-ray, object detection, pathology
detection, weak supervision.

I. INTRODUCTION

OBJECT localization is a vital task in computer vision.
It is not only useful for many of the downstream tasks

but is also a crucial factor for the interpretability of machine
learning models. However, especially in medical images, local-
ization labels such as bounding boxes are costly and difficult
to obtain as they require vast amounts of working hours from
trained professionals. Image labels, on the other hand, are
easier to collect and can be mined from radiology reports asso-
ciated with most existing medical images [1], [2]. This makes
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Fig. 1. Schematic illustration of MIL-based, CAM-based, and our novel
WSRPN approach.

weakly supervised object detection (WSup-OD) a promising
approach for the localization of diseases in medical images.
It only requires image-level labels for training, allowing the
use of such automatic collection approaches and thus making
localization tractable for a wider range of medical applications.
WSup-OD has a long history in natural images [3], [4], [5].
The SOTA methods here use multiple instance learning (MIL)
[6], where bounding box proposals for each image are selected
using algorithms such as Selective Search (SS) [7] or Edge
Boxes (EB) [8]. These algorithms, however, generate box
proposals based on heuristics for objects in natural images and
are not suited for detecting diseases in chest X-ray images,
as the latter ones have very different characteristics and are
more subtle. Selective Search produces box proposals by
over-segmenting the image based on pixel intensities. Since
pathologies in chest X-rays are not characterized by unique
local intensities, the Selective Search algorithm is likely to
not focus on them. The Edge Boxes algorithm is based on the
observation that in natural images, edges tend to correspond to
object boundaries and, thus, searches for regions that wholly
enclose edge contours. This method again delivers unsatisfac-
tory results for chest X-rays, as diseases here oftentimes do
not have clear edges, and even existing boundaries are often
not visible in summation images because they are covered by
dense, radiopaque masses along the viewing direction. That is
why WSup-OD literature in medical images so far has mostly
used CAM-based approaches [2], [9], [10], [11], [12] that
extract boxes from heatmaps. However, these approaches are
known to exhibit sub-par performance [13].
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To address this issue, we propose Weakly Supervised
ROI Proposal Networks (WSRPN), a novel paradigm for
WSup-OD in medical images. The bounding box proposals
of our method are learned end-to-end and are predicted on the
fly during the forward pass through an attention mechanism
similar to DETR [14]. To summarize, our contributions are the
following:

• We propose WSRPN, a novel, learnable, end-to-end train-
able, and fully differentiable box-proposal algorithm for
weakly supervised object detection in medical images.

• We set a new state-of-the-art for weakly supervised object
detection on the challenging and commonly used CXR8
[2] dataset.

• To the best of our knowledge, we provide the first
multiple-instance learning method successfully trained on
this dataset.

II. RELATED WORK

A. Weakly Supervised Object Detection on Natural
Images

So far, most works in WSup-OD have focused on nat-
ural images in datasets such as PASCAL VOC [15], [16],
COCO [17], ILSVRC [18], and CUB-200-2011 [19]. The
two dominant approaches in the field are Multiple Instance
Learning (MIL) and generating bounding boxes from Class
Activation Maps (CAM). Fig. 1 illustrates how these two
approaches compare to our proposed method.

1) MIL: In MIL-based approaches, each image is considered
a bag of instances (regions). Every bag with a positive class
label contains at least one positive region. A MIL model is
trained only with image labels by assigning every region the
label of the whole bag. After training with a large corpus of
diverse images, the model becomes invariant to uncorrelated
variations and gives higher scores to the most discriminative
regions in an image. To identify likely regions of objects
in an image, region-proposal-algorithms, such as Selective
Search [7] or Edge Boxes [8], are commonly used [4], [5],
[20], [21], [22]. The seminal work here is by Bilen and
Vedaldi [4], who extract a feature vector for each region
from a backbone network using a Spatial Pyramid Pooling
(SPP) layer [23] and subsequently classify each region with a
detection (is it an object?) and a classification (which class?)
branch. This method, however, tends to assign higher scores to
the most discriminative regions in an image, which do not nec-
essarily cover the whole extent of an object. Subsequent work
has, thus, mainly focused on solving the most discriminative
region problem by refining the predictions iteratively using
multiple refinement streams [20], incorporating the scores
of larger context around the region [5], clustering spatially
adjacent regions of the same class [21], or maximizing the
loss for the most discriminative region to force the model to
focus on larger regions [24]. Very recently, Liao et al. [25] have
proposed a novel method that uses Class Activation Maps as
pseudo-ground-truth and cross-attention with learnable tokens
to predict bounding boxes. Unlike our proposed WSRPN, how-
ever, their method is not fully differentiable, therefore limiting
its use in more complex end-to-end models (c.f. Sec. V).

2) CAM: The idea of using Class Activation Mapping for
weakly-supervised object detection was first proposed by
Zhou et al. [26]. This method leverages the weights of the
final classification layer to classify each patch in the un-pooled
feature map and create an activation heatmap for each class
that can be thresholded and used for object detection. A similar
idea was proposed by Pinheiro et al. [27]. However, they first
classified each patch in the feature map and then aggregated
the resulting scores via LSE pooling, alleviating the need to
create heatmaps via CAM. The authors of WELDON [28]
use max-min pooling instead to incorporate negative evidence
in the final classification and, thus, create better class con-
trast between the regions. Similar heatmaps are created via
GradCAM [29], which uses the gradients w.r.t. the feature
map instead of the classifier weights. Just like for MIL-
based models, several approaches have been made to solve the
most-discriminative-region problem for CAM-based models.
In ACoL, for example, Zhang et al. [30] follow an idea similar
to ICMWSD [24], masking out the most discriminative regions
to make the model focus more on secondary features.

B. Weakly Supervised Object Detection in Medical
Images

WSup-OD is an underrepresented topic in the medical
literature and is mainly focused on established CAM-based
approaches from natural images. Along with the CXR8
dataset, Wang et al. [2] proposed a model for WSup-OD.
It uses CAMs for detection and LSE pooling [27] instead of
average- or max-pooling. The authors of CheXNet [9] also
relied on the simple CAM approach for object localization
in the chest X-ray images of the CXR8 dataset. To guide
the initially unstable localization in early epochs, Hwang
and Kim [10] start with training for classification and grad-
ually shift the focus towards detection using a dedicated
branch for each of the two tasks. Their detection branch
outputs a heatmap as in [27] to localize tuberculosis in
chest X-ray images. In [11], the authors extended the work
of Pinheiro et al. [27] by using a multi-channel map for
each class and employing max-min pooling as in [28] to
better localize diseases in CXR8. Yu et al. [31] included
anatomical information from radiology reports to guide local-
ization. Lastly, Tang et al. [32] improve the results of [2]
on CXR8 by employing a curriculum learning strategy based
on Disease Severity Labels mined from radiology reports and
using attention guidance to improve localization performance.

However, none of the above works in the medical domain
provides quantitative results of standard metrics in object
detection, such as mean Average Precision, limiting the com-
parability and quantification of their localization performance.

III. METHOD

A. Overview
In our weakly supervised object detection setting,

we assume that we are given an image that is labeled with
a set C of non-exclusive classes, i.e. there is one binary
classification label yc ∈ {0, 1} per class c ∈ C resulting
in a multilabel binary classification task. Given only these
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Fig. 2. Overview of our model architecture. We show the patch branch
(blue) and the ROI branch (purple), each with the encoding steps,
MIL classification and aggregation, and the loss functions. Components
typically used in a MIL model are colored in blue. Our key contributions
are outlined with bold lines. “sw” stands for shared weights. Yellow
denotes parts of the bounding box prediction.

per-image labels but without any bounding box supervision,
we then learn an object detection model.

Fig. 2 provides an overview of our method WSRPN. It is
based upon the MIL framework [6], [27], where regions-of-
interest (ROIs), i.e. bounding boxes, are predicted using a
bounding box proposal algorithm. Following the findings of
Sec. I, we however cannot use one of the classical, heuris-
tic bounding box proposal algorithms but instead learn the
algorithm end-to-end as a fully differentiable component of
our network. We, therefore, follow DETR [14] and use learned
ROI query tokens attending to patch features (computed by
a CNN backbone) and a box prediction network applied to
the resulting ROI features. However, since we do not have
supervision for the box proposals, the DETR loss function
cannot be applied. To ensure that the predicted box parameters
are meaningful (i.e. focus on relevant regions), we apply a
Gaussian-based soft approximation of ROI pooling to aggre-
gate ROI features from the patch features. Using a Gaussian
distribution during soft ROI pooling introduces an inductive
bias that assures that ROI features represent locally restricted
regions around the predicted center coordinates of the ROI.
The resulting ROI features are then classified and aggregated
following the MIL framework, such that they can be trained
using per-image class labels. Having only weak supervision,
training the ROI proposals directly can lead to instabilities
where the bad quality of box proposals during early training

stages makes refining these proposals hard. We thus propose
a two-branch approach where in the first branch the MIL
framework is applied to patches (we denote the patch branch
by P), while the second branch (denoted by R) is designated
to ROIs as described. We train both branches using a loss per
branch and also introduce a consistency loss, assuring that the
ROI proposals are aligned with discriminative patches.

In Sec. III-B and Sec. III-C, we describe the details of
the patch and ROI branch, respectively, and in Sec. III-D,
we describe how these branches can be trained using weak
supervision from classification labels.

B. Patch Branch
1) Patch Encoder: In the patch branch, we first encode each

image into H × W patches using the CNN backbone (we use
DenseNet121 [33]). These patches are then projected to the
model dimension d, and 2D cosine position encodings [34],
[35] are added. We denote the resulting embeddings of patch
(m, n) as hPm,n ∈ Rd , where m ∈ {1, . . . , H} is the y-index
and n ∈ {1, . . . , W } is the x-index of the patch.

2) Patch Classification: We now follow the MIL [6], [27]
approach and classify each patch (m, n) into the classes in
C, but also predict an additional no-finding (i.e. background)
class, denoted as ∅. We compute the class logits p̃Pm,n,c
of all classes in C and the no-finding class ∅ by applying
a multi-layer perceptron (MLP) to the corresponding patch
features hPm,n and then compute the class probabilities pPm,n,c
via

pPm,n,∅ = φ
(

p̃Pm,n,∅

)
,

pPm,n,c = (1 − pPm,n,∅) · φ
(

p̃Pm,n,c

)
∀c ∈ C , (1)

where φ is the sigmoid function. Patches with large no-finding
probabilities pPm,n,∅ receive lower probabilities for other
classes c ̸= ∅. Note that the other classes do not influence
each other (i.e. each class is considered as a binary classifica-
tion task) and are thus non-exclusive. We found this approach
more effective than having exclusive classes using Softmax.

3) Aggregation of Patch Probabilities: Further following the
MIL framework, we now obtain a single per-image proba-
bility for each class c by aggregating the probabilities of all
the patches using the LogSumExp (LSE) function [27] as a
smooth approximation of max pooling as in [2] and [27],
where we set the scaling hyperparameter r to 5.0. We again
assume multilabel binary classes, i.e. different classes c are
treated independently of each other instead of being exclusive.
The aggregated probabilities p̄Pc of classes c ∈ C are thus
computed as

p̄Pc = LSE
m,n

(
pPm,n,c

)
∀c ∈ C . (2)

The no-finding class ∅ is considered a special case, and
we aggregate it in two different ways: (i) following the OR
logic, denoted by ∨∅, where the class is considered positive
if there is any positive patch (similar to the other classes),
and (ii) following the AND logic, denoted by ∧∅, where it
is considered positive only if all patches are positive, i.e.
where there is no finding in the whole image. Case (ii) is
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Fig. 3. ROI attention component from our ROI branch. Using cross-
attention, ROI tokens {qk} gather relevant information from the patch
features {hP

m,n} to compute the ROI features {ĥ
R
k }.

implemented by inverting the probabilities of pPm,n,∅ before
LSE pooling. The OR approach assures that there are always
no-finding patches in an image, i.e. not all patches should
be assigned a class, while the AND approach assures that in
samples without any other classes, there are only no-finding
patches.

C. ROI Branch
1) ROI Attention: In the ROI branch, we use K learned ROI

tokens qk (where K is a hyperparameter, set to 10 in our
experiments). Given a ROI token qk , we now use our ROI
attention component to gather relevant information from the
patch features hPm,n to compute the ROI features ĥ

R
k . Note that

at this stage, we have no explicit regional bias in the form
of anchors, such that the ROI attention component gathers
information from all available patch features. As shown in
Fig. 3, the ROI attention component first performs multi-head
cross attention [35] with ROI tokens used as queries and patch
features used as keys and values. It then further processes the
resulting token features using an MLP and a single-head cross-
attention layer, where patch features are again used for keys
and values.

2) Box Prediction and Gaussian ROI Pooling: Given the
token features ĥ

R
k of token k, we now predict its box center

coordinates µk and size σ k , each relative to the image size.
We assume that relevant features within each ROI are roughly
distributed following a normal distribution around the box
center. Following this assumption, we now propose a smooth,
and therefore differentiable, approximation of (hard) ROI
pooling [36]. For each ROI k, we compute a soft receptive
field (i.e. attention map) Ak,m,n over all patches (m, n),
centered over the ROI center µk and with its scale (i.e.
width and height) controlled by σ k . We compute the receptive
field Ak,m,n , which is proportional to the probability density
function of a 2D multivariate Gaussian with independent x
and y components (i.e. with zero covariance), as

Ak,m,n ∝ exp

−
1
2

(
m+0.5

H − µk,y

σk,y

)2


× exp

−
1
2

(
n+0.5

W − µk,x

σk,x

)2
 . (3)

Examples of such receptive fields Ak,m,n are shown in Fig. 6.
Finally, we aggregate the patch features hPm,n for each ROI k
using the receptive field Ak,m,n to get the final ROI features
hRk .

3) ROI Classification: We assign each ROI k a probability
pRk,c for each c ∈ C∪{∅} by using the classifier from the patch
branch, including sharing the same weights, and applying it
to the ROI features hRk .

4) MIL Aggregation of ROI Probabilities: As in the patch
branch, we again follow the MIL framework to aggregate
the ROI probabilities pRk,c over the whole image. However,
instead of using LSE, we found the noisyOR [37], [38],
[39] aggregation strategy more effective. noisyOR and its
counterpart noisyAND are defined as follows:

noisyOR
k

( p) = 1 −

∏
k

(1 − pk) , (4)

noisyAND
k

( p) =

∏
k

pk . (5)

Using these aggregation functions, we now compute the aggre-
gated ROI probabilities p̄Rc for c ∈ C:

p̄Rc = noisyOR
k

(
pRk,c

)
∀c ∈ C . (6)

We again consider the special cases for the no-finding class
and aggregate with the OR ( p̄R

∨∅) and AND ( p̄R
∧∅) logic.

D. Weakly Supervised Loss Function

Our weakly supervised loss function is defined as

L = αPLP + αRLR + αP↔RLP↔R , (7)

where LP trains the patch branch, LR trains the ROI branch,
and LP↔R assures that both branches are mutually consistent.
All loss coefficients α are set to 1.0 unless specified otherwise.
The branch-specific loss functions (LP and LR) each consist
of two components: (i) a multilabel binary cross entropy loss
Lbce applied on aggregated patch or ROI probabilities for
providing strong gradients, and (ii) a supervised contrastive
loss Lsupcon [40] applied on per-class features from the patch
or ROI branch for pushing the patches and ROIs to focus on
discriminative regions. We therefore define the branch-specific
loss functions as

LP = LPbce + LPsupcon , LR = LRbce + LRsupcon . (8)

1) Multilabel Binary Cross Entropy: For the multilabel binary
cross entropy losses LPbce and LRbce, we use the per-image
binary labels yc with c ∈ C and yc ∈ {0, 1}. We additionally
define the no-finding label with AND logic y∧∅ as true only
if no other classes are true, i.e. y∧∅ = 1 − maxc∈C yc, as then
all patches/ROIs should be classified as no-finding, and the
no-finding label with OR logic y∨∅ as always true, i.e. y∨∅ =

1, as there should always be some patch/ROI that contains
no finding. The losses LPbce and LRbce are weighted multilabel
binary cross entropy losses over the classes C∪{∧∅, ∨∅} and
are applied to the aggregated patch probabilities p̄Pc and ROI
probabilities p̄Rc , respectively.
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2) Supervised Contrastive Loss: The losses LPsupcon and
LRsupcon are based on the supervised contrastive loss [40],
which is an NTXent-based loss function [41] where positive
pairs are defined based on label supervision. We consider each
class c ∈ C (but not the no-finding class ∅) independently (as
a binary label) and define the set of positive samples j for
each sample i and class c as

P(i, c) =

{
j ∈ {1, . . . , N } : y(i)

c = y( j)
c

}
. (9)

Following this setting, we require (sample-wise) per-class
features for each c ∈ C, which are computed once from the
patch branch (for LPsupcon) and once from the ROI branch

(for LRsupcon), and are denoted by h̄Pc ∈ Rd and h̄
R
c ∈ Rd ,

respectively. We consider the class probabilities of each patch
(pPm,n,c) or ROI (pRk,c) and compute the per-class features h̄Pc
and h̄

R
c as a weighted sum of all patch (hPm,n) and ROI

(hRk ) features, respectively, with weights computed as their
(normalized) class probabilities. Finally, we project the results
using an MLP. Similarly, we compute h̄

R
c from ROI features

hRk considering pRk,c, where the MLP is shared between both
branches.

Given these aggregated patch features h̄Pc and ROI features
h̄
R
c , respectively, as representations for class c in sample i ,

the losses LPsupcon and LRsupcon follow the following form:

Lsupcon =
1

N |C|

N∑
i=1

∑
c∈C

1
|P(i, c)|

∑
j∈P(i,c)

log
e

cos
(

h̄(i)
c ,h̄( j)

c

)
/τ

∑N
j ′=1 e

cos
(

h̄(i)
c ,h̄( j ′)

c

)
/τ

. (10)

3) Patch-ROI Consistency Regularizer: To stabilize train-
ing and guide the generation of useful features in the ROI
branch, we introduce a consistency regularization loss LP↔R.
This loss ensures the agreement between the spatial distri-
bution of class features of the ROI- and the patch branch.
To calculate this agreement, we first need to compute spatial
class-distribution probabilities (i.e. patch-wise class probabili-
ties) for both the patch- and the ROI branch. While these class
probability maps already exist for the patch branch (cf. pPm,n,c
from Eq. (1)), getting them for the ROI branch requires further
steps:

For the ROI branch, we know the class probabilities pRk,c
and the spatial distribution (given by the soft receptive field
Ak,m,n) of each ROI. We use these to compute the spatial class
map pR→P

m,n,c of each class c for each patch (m, n) as follows:

pR→P
m,n,c = noisyOR

k

(
Ak,m,n · pRk,c

)
∀c ∈ C . (11)

For the no-finding class ∅, we consider the assigned patches
of ROIs with high no-finding probabilities pRk,∅ as well
as patches where ROIs have low attention Ak,m,n and use
noisyAND pooling over the ROIs:

pR→P
m,n,∅ = noisyAND

k

(
Ak,m,n · pRk,∅ + (1 − Ak,m,n)

)
(12)

This assures that patches that are only marginally considered
during Gaussian ROI pooling but have high probabilities in
real classes c ∈ C, receive high probabilities for the no-finding
class.

We now define the consistency loss LP↔R using the empiri-
cal KL-divergence DKL from the newly computed spatial class
map pR→P

m,n,c (from the ROI branch) to the (original) spatial
class map pPm,n,c (from the patch branch):

LP↔R
=

1
H W

H,W∑
m,n

DKL
c∈C∪{∅}

[
pPm,n,c

∥∥∥∥pR→P
m,n,c

]
(13)

E. Inference
During inference, we initially predict one box for each

ROI k. Center position µk and box size σ k , computed during
box prediction, are used as box parameters. We compute the
predicted class c∗

k ∈ C of ROI k as c∗

k = arg maxc∈C pRk,c and
use pRk,c∗

k
as its confidence score. Finally, we apply standard

post-processing as it will be described in Sec. IV.

IV. EXPERIMENTS

We show the effectiveness of our Weakly Supervised ROI
Proposal Network on the task of disease localization in chest
X-ray images.

A. Dataset and Evaluation Metrics
We follow previous works [2], [9], [11] and evaluate on

the challenging ChestXray-8 (CXR8) dataset [2]. The dataset
consists of 108 948 X-ray images from the National Institutes
of Health Clinical Center in the US. The dataset contains
labels for eight different disease types and “no-finding” (∅).
Each image can have more than one positive label, turning
the task into a multi-class classification problem. All labels
were automatically mined from associated radiology reports
with an algorithm that achieved an F1 score of 0.90 on
an external dataset. The labels, thus, include a significant
amount of noise, making the dataset challenging, even for
classification. Additionally, the dataset contains 984 bounding
boxes on 882 images from unique patients, hand-labeled by
a board-certified radiologist. From the images with bounding
boxes, we used 50% for validation and kept the other 50%
as a held-out test set. The images of patients that were not
included in the validation or test sets were used for training.

To compare the performance of our proposed model with the
baselines, we report the Robust Detection Outcome (RoDeO)
[42], a recently proposed metric for object detection in medical
images, such as Chest X-rays, that reflects the clinical require-
ments for object detection methods better than other metrics
and further gives insights about strengths and weaknesses of
the models. Additionally, we report standard metrics, such as
Average Precision (AP) and localization accuracy (loc-acc) at
two different IoU thresholds (0.3 and 0.5). Note, however, that
loc-acc is biased to favor models that predict fewer boxes.

B. Implementation Details
As the backbone for our model and all baselines, we used

a Densenet121 [33] as in [9] and [11], pre-trained on
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TABLE I
MEAN AND STANDARD DEVIATION OF OUR METHOD WSRPN AGAINST BASELINE METHODS ON RODEO, AP, AND LOCALIZATION ACCURACY.
THE BEST METHOD PER METRIC IS MARKED IN BOLD. OUR METHOD OUTPERFORMS ALL BASELINES ON ALL OBJECT DETECTION METRICS,

SETTING A NEW STATE-OF-THE-ART FOR WEAKLY SUPERVISED OBJECT DETECTION ON THE CHALLENGING CXR8 [2] DATASET

ImageNet [43]. For all CAM-based methods that produce
heatmaps, we adopted the bounding box generation method
and parameters of Wang et al. [2], where the heatmaps are
binarized, and box proposals are drawn around each connected
component. We extended this method to also produce class
probabilities and confidence scores per box. This is necessary
to apply score-based postprocessing and compute the Average
Precision metrics. Unless indicated otherwise, we post-process
the predictions of all models by keeping only the most
confident predicted box per class (top1-per-class), a valid
assumption in the CXR8 dataset that has at maximum one
box for any class per image. We implemented all models in
PyTorch [44] and optimized them using AdamW [45] with a
learning rate of 1.5 ·10−4, weight decay of 10−6, and gradient
clipping at norm 1.0. All models were trained for a maximum
number of 50000 iterations with early stopping (patience set
to 10000) and a batch size of 128. Finally, the checkpoint
with the highest mAP on the validation set was chosen. The
images were resized to 224 × 224 pixels and normalized with
the mean and standard deviation of the training dataset. During
training, we augmented the data by applying random color
jitter and random Gaussian blurring, each with a probability of
50%, using the Albumentations library [46]. We applied two
different random augmentations to each image to guarantee
always at least one positive sample for the Lsupcon. During
validation or testing, no data augmentation was applied. All
of our experiments were performed on a single Nvidia RTX
A6000 GPU. Our model trained for roughly 8 hours, requiring
about 11 GB of GPU memory.

C. Comparison With the Baselines
Table I shows the results of our method and the base-

lines. WSRPN significantly outperforms all weakly supervised
baselines on all metrics by a large margin (Welch’s t-test,
p < 0.001). Compared to the best baseline CheXNet w/
noisyOR aggregation, WSRPN achieves a relative improve-
ment of 96.5% in RoDeO score, setting a new state-of-the-art.
Especially, the box quality of our method is better than the
baselines. For the submetrics RoDeOloc and RoDeOshape, the
relative improvements to CheXNet w/ noisyOR aggregation
are 119.4% and 141.0%, respectively. Also, in terms of AP

TABLE II
WE COMPUTED THE AVERAGE IOU OF THE TARGET BOXES IN CXR8

[2] AND PASCAL VOC 2007 [15] AND THE BOXES PRODUCED BY THE

SELECTIVE SEARCH (SS) [7] AND EDGE BOXES (EB) [8]
ALGORITHMS. WE ONLY CONSIDERED THE PREDICTED BOX WITH THE

HIGHEST IOU FOR EVERY TARGET BOX, MAKING THESE NUMBERS AN

UPPER BOUND FOR METHODS USING SS OR EB

and loc-acc, our method outperforms the baselines by a large
margin, especially when more accurate localization is required.
At the IoU-threshold of 0.5, we notice a relative improvement
of 58.5% in AP. On the test set, WSRPN predicts, on average,
1.049 boxes per sample, which much more closely resembles
the 1.098 true boxes per sample than CheXNet with 3.411
(even after applying top1-per-class filtering). This quality is
also expressed by the much better loc-acc across all thresholds
compared to the baselines.

All baselines in Table I are CAM-based since MIL-based
training (WSDDN [4]) did not converge on this challenging
dataset and was thus excluded from the table. A likely reason
for the failure of WSDDN are the box proposal algorithms
available for this method (SS and EB). The box proposals of
these algorithms have a significantly lower overlap with the
objects in chest X-ray images than with those of natural images
(c.f. Table II). This strongly limits the detection performance
of models building upon these proposals.

D. Performance on Different Pathologies

In Fig. 4 and Table III, we study the results individually
for each of the eight pathologies (atelectasis, cardiomegaly,
effusion, infiltration, mass, nodule, pneumonia, pneumothorax)
of the bootstrapped (N = 250) test dataset. We compare
our model WSRPN with the best baseline (CheXNet with
noisyOR-aggregation). We observe (cf. Fig. 4) that on five
pathologies (atelectasis, cardiomegaly, effusion, mass, and
nodule), our method WSRPN performs significantly better
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TABLE III
RESULTS PER PATHOLOGY OF OUR MODEL WSRPN AND THE BEST BASELINES.OVERALL, OUR METHOD WSRPN PERFORMS SIGNIFICANTLY

BETTER ON FIVE PATHOLOGIES (ATELECTASIS, CARDIOMEGALY, EFFUSION, MASS, AND NODULE). ON PNEUMOTHORAX, IT IS COMPETITIVE

WITH THE BASELINES, WHILE ON TWO PATHOLOGIES (INFILTRATION AND PNEUMONIA), IT PERFORMS NOTABLY WORSE. HOWEVER, WSRPN
OUTPERFORMS THE BASELINES ON ALL PATHOLOGIES WHEN CONSIDERING LOCALIZATION AND SHAPE SIMILARITY

Fig. 4. Comparison of the results per pathology between our method
WSRPN and the best baseline on the bootstrapped (N = 250) test set.
On five pathologies (atelectasis, cardiomegaly, effusion, mass, and nod-
ule), our WSRPN method performs significantly better, on pneumothorax,
it is competitive with the baselines, while on two pathologies (infiltration
and pneumonia), it performs worse.

than the baseline, often by large margins. On pneumoth-
orax, it is competitive with the baseline, while on two
pathologies (infiltration and pneumonia), it performs notably
worse. Table III provides further explanations by distinguish-
ing between the quality of classification, localization, and
(box) shape similarity. We observe that the localization and
shape quality of our model WSRPN outperforms the baseline
for all eight pathologies by large margins. For localization,
we observe relative improvements of 103% for atelectasis,
46% for cardiomegaly, 204% for effusion, 232% for infiltra-
tion, 200% for mass, 72% for nodule, 28% for pneumonia, 2%
for pneumothorax, For shape similarity, these improvements
are similarly significant.

We further show the confusion matrix for our proposed
WSRPN in Fig. 5. Since confusion matrices are not triv-
ial to generate for object detection problems, we computed
them from the 1-to-1 correspondences between predicted and
ground-truth boxes after the matching step in RoDeO [42].
The figure confirms that the model often confuses infiltration
with pneumonia and that it seems to fail to predict cases of
pneumonia. Both classes, however, are not well defined in
CXR images. Infiltration is an imprecise descriptive term used

Fig. 5. Confusion matrix for our proposed WSRPN. The matrix was
generated from the 1-to-1 correspondences between predicted and
ground-truth boxes after the matching step in RoDeO [42].

for accumulations of an abnormal substance in the lung, while
pneumonia is a clinical diagnosis that can not solely be made
from an X-ray image. Pneumonia is further often detected by
symptoms such as infiltrations and related to pleural effusions,
in part explaining the confusions in the figure.

From these observations, we conclude the following: i)
Our model WSRPN performs exceptionally well at localizing
pathologies, while its classification capabilities reveal limita-
tions on some classes. This can especially be observed for
pneumonia and infiltration, where no or only a few bounding
boxes are correctly classified, and on pneumothorax, where the
baseline performs particularly well at classification. ii) Good
localization and classification capabilities do not necessarily
correlate between pathologies. For example, pneumonia is
localized well but classified incorrectly, while nodules are
classified quite well but are not located well.

E. Qualitative Results and Failure Cases
Fig. 6 shows example predictions of our model. The first

two columns show correctly detected pathologies. The quality
of these samples reflects the performance of our model for
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Fig. 6. Qualitative results of some exemplary images. Left: successfully detected pathologies. Middle: Roughly localized correct predictions. Right:
failure cases. Solid boxes are predictions. Dashed boxes are human-annotated targets.

each class (c.f. Table III): Cardiomegaly is detected nearly
perfectly, but also effusion, atelectasis, and mass are often
successfully detected by the proposed WSRPN. Besides the
successful cases, we mainly identified two types of failure
cases, namely (i) imprecise prediction of the exact extent of
the pathology and (ii) miss-classification or partial detection.

Examples of failure type (i) are shown in Fig. 6, column
three (yellow column). Here, pathologies are detected and
roughly localized. However, the predicted bounding boxes do
not match the target boxes because their aspect ratios differ

or the predicted box is too small or too large. Such cases may
be hard to tackle and may require semi-supervision, especially
as the exact extent of pathologies can be hard to define and
is often subjective. Generally, our model tends to produce
larger boxes, which is especially problematic for classes with
small boxes, such as nodules (c.f. Table III). However, the
low performance of the baseline models indicates that this is
a common problem of WSup-OD models.

Failure cases of type (ii) are shown in Fig. 6, column four
(red column) and include cases where bounding boxes are
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TABLE IV
ABLATION STUDY ON THE LOSS FUNCTION. WE EXPERIMENTED WITH

DIFFERENT COMBINATIONS OF THE INDIVIDUAL LOSS COMPONENTS.
OUR DEFAULT CONFIGURATION (USING ALL COMPONENTS) IS

HIGHLIGHTED IN GREY

TABLE V
ABLATION STUDY ON THE IMPORTANCE OF THE DIFFERENT LOSS

COMPONENTS αi . IN EVERY EXPERIMENT, WE DOUBLED THE WEIGHT

OF ONE LOSS COEFFICIENT COMPARED TO THE OTHERS. OUR

DEFAULT CONFIGURATION IS HIGHLIGHTED IN GRAY

TABLE VI
ABLATION STUDY ON THE NUMBER OF ROI TOKENS K

TABLE VII
ABLATION STUDY ON THE SHAPE PARAMETER β OF THE GENERALIZED

GAUSSIAN DISTRIBUTION

predicted approximately correctly but with incorrect classes,
especially if classes have similar clinical meaning (e.g. mass
and nodule, row 3, col 4) or are correlated (e.g. pneumonia
increasing the likelihood of atelectasis, row 2, col 4). In other
such cases, classes are not detected at all, especially in samples
with multiple overlapping boxes (row 1, col 4). We assume a
significant part of this category of failure cases can be tackled
by improving the model’s classification performance on the
dataset.

F. Ablation Studies

We conduct extensive ablation studies to quantify the rel-
evance of different loss functions (Tables IV and V), the
influence of the number of ROI tokens K (Table VI), the
treatment of the no-finding class (Table VIII), the assumed

TABLE VIII
ABLATION STUDY ON THE USAGE OF THE NO FINDING CLASS ∅

DURING MIL AGGREGATION (AND IN THE BCE LOSSES LP
bce AND

LR
bce ). WE EXPERIMENTED WITH IGNORING IT AND USING ONLY THE

CLASSES IN C, OR ADDITIONALLY USING EITHER THE

AND-AGGREGATION (∧∅) OR THE OR-AGGREGATION (∨∅) OF THE

NO-FINDING CLASS BUT FOUND THAT USING BOTH OF THEM

(MARKED IN GREY) IS MOST EFFECTIVE FOR BOTH BCE LOSSES

TABLE IX
ABLATION STUDY ON DIFFERENT PATCH SIZES. WE EXPERIMENTED

WITH TWO OPTIONS TO REDUCE THE PATCH SIZE FROM 32 × 32 TO

16 × 16: (A) USING LOWER-LEVEL FEATURES FROM denseblock3
INSTEAD OF denseblock4, AND (B) SKIPPING THE LAST POOLING

FEATURES. FOR BOTH CASES, WE OBSERVE NO SIGNIFICANT

DIFFERENCES IN PERFORMANCE

distribution of the soft receptive field (Table VII), and the
patch size (Table IX).

1) Loss Functions: In Table IV, we observe that without
the patch branch loss components (LP = LPbce + LPsupcon),
the performance drops substantially in both RoDeO and AP,
highlighting the importance of the patch branch for stabilizing
the training. If, instead, the ROI branch loss components
(LR = LRbce + LRsupcon) are removed, the performance drops
as well, but the model is still competitive with the best
baselines. Here, the consistency loss LP↔R trains the ROI
branch based on the predicted patch classes. Training without
the consistency loss LP↔R leads to poor performance, again
confirming the relevance of the consistency loss for stabilizing
the box predictions based on the patch branch. In Table V,
we individually increased the relative importance of the single
loss components. All deviations from the default coefficients
lead to a decrease in performance. The smallest drop is seen
when increasing αP↔R, confirming the high importance of
LP↔R.

Additionally, we study the relevance of the BCE (LPbce, LRbce)
and supervised contrastive (LPsupcon, LRsupcon) loss functions.
Removing the BCE losses always leads to a performance
collapse, independently of using the consistency loss LP↔R.
Removing the supervised contrastive losses leads to a perfor-
mance drop, but the performance does not collapse entirely if
the consistency loss is used.

2) Number of ROI Tokens: The number of ROI tokens K
determines the maximum number of proposed boxes and is a
crucial parameter of our proposed method. Table VI shows the
detection performance for varying values for this parameter.
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The optimum is found at K = 10 (= |C|+2) tokens. A notably
anomaly is at K = 8 (= |C|) tokens. We hypothesize that in
this case, the single tokens can get too class-specific, which
hurts performance.

3) No-Finding Handling: In Table VIII, we study the use of
the no-finding class ∅ during MIL-aggregation (and in the
BCE losses LPbce and LRbce). While in our standard setting,
we use both OR (∨∅) and AND (∧∅) interpretations of this
class, we also experiment with using only one of them and
ignoring the no-finding class completely (considering only the
classes in C). While this hyperparameter has minimal influence
on the ROI branch, and the other settings are still competitive
with the baselines, the performance degrades when changing
this hyperparameter for the patch branch.

4) Receptive Field Distribution: We assume that the relevant
features for a pathology roughly follow a Gaussian distribu-
tion. We check the validity of this assumption by gradually
switching to a more “box-like” distribution by increasing
the parameter β of the generalized Gaussian distribution.
Table VII shows that performance is maximal at β = 2 which
corresponds to a standard Gaussian distribution.

5) Patch Size: Table IX shows results for changing the patch
size of the encoder from 32 × 32 to 16 × 16. We employed
two distinct strategies to investigate the influence of the patch
size: First, we used the features of denseblock3 instead of
denseblock4 in the DenseNet121 encoder. This feature map
contains twice as many patches with half the size. Since the
features of denseblock3 may differ significantly from those
of denseblock3, we experimented with another technique of
skipping the final average pooling layer. This results in the
same patch size, but the features are closer to those of
our proposed models. Neither alternative improved over our
default model.

6) Single- vs Multi-Box: Lastly, we measure how our model
performs on images with a single (single-box) and multiple
target classes (multi-box). In the former, WSRPN achieves a
high RoDeO score of 36.4 ± 1.6, while for the latter, more
difficult cases, the score drops to 23.7 ± 1.5.

V. DISCUSSION AND CONCLUSION

A. Clinical Applicability

Our model WSRPN shows promising results for pathology
localization on chest X-rays. It can provide precise or rough
localization for most of the studied pathologies, even if bound-
ing boxes are sometimes too huge. In clinical practice, even
such rough localizations can provide massive value as they
can assist clinicians in quickly spotting pathologies, especially
in time-critical situations like emergency units. However,
we also found some limitations that restrict its current clinical
applicability. Most importantly, it often misclassifies some
of the pathologies. Note that the risks of misclassification
differ between pathologies. For example, misclassifying a
mass as a nodule does not have severe consequences as
one of them is detected since both are indicators of cancer
and require further examination. Misclassifying (or missing)
pneumothorax, on the other hand, is more critical as immediate
clinical intervention may be required. Therefore, future work

may focus on improving the classification capabilities of our
WSRPN model.

B. A Novel Approach Towards Weakly Supervised
Pathology Detection

We propose the first WSup-OD method that can directly
optimize (i.e., is differentiable w.r.t.) the box parameters
(position and size). Existing WSup-OD methods rely on
unsupervised, non-differentiable region proposals (MIL-based
methods) or predict bounding boxes using thresholding (CAM-
based methods). On the other hand, our Gaussian ROI pooling
enables the box parameters to be optimized directly by differ-
ent kinds of supervision signals, even simultaneously, which is
impossible with current other approaches. This enables a wide
range of applications beyond WSup-OD, including, but not
limited to, the integration into multimodal large language mod-
els, contrastive learning with text, or semi-supervised learning
with bounding boxes for a subset of samples. We are convinced
that – besides setting a new state-of-the-art on this challenging
task – we open up a new research direction without the need
for thresholding or external box proposals, which enables this
underexplored field (of weakly supervised pathology detec-
tion) to progress beyond the existing approaches on which
research has mostly stagnated in recent years.

C. Conclusion
We have proposed WSRPN – a new paradigm for WSup-OD

using learned box proposals – after identifying weaknesses
in the established box proposal algorithms when applied to
X-ray images. While further clinical validation is required,
we set a new state-of-the-art in disease detection on the
challenging CXR8 [2] dataset and significantly improve upon
existing methods. MIL-based methods for natural images have
improved dramatically over several years, and we expect a sim-
ilar evolution for RPN-MIL methods. We deem incorporating
other forms of weak supervision like text, anatomy informa-
tion, or semi-supervision into our framework as promising
future research.

NOMENCLATURE
P Patch branch.
R ROI branch.
H Patch height.
W Patch width.
hPm,n Embedding features of patch (m, n).

ĥ
R
k Token features of token k.

hRk Embedding features for ROI k.
Ak,m,n Soft receptive field of token k at patch (m, n).
pR→P

m,n,c Spatial class map for patch (m, n) and class c.

h̄Pc Per-class patch features.

h̄
R
c Per-class ROI features.

p̃Pm,n,c Logits for patch (m, n) and class c.
pPm,n,c Probabilities for patch (m, n) and class c.
pRk,c Probabilities for ROI k and class c.
p̄Pc Aggregated patch probabilities for class c.
p̄Rc Aggregated ROI probabilities for class c.
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µk Center coordinates of box k.
σ k Size of box k.
C Set of classes.
∅ No-finding class.
φ Sigmoid function.
LSE LogSumExp function.
L Loss.

REFERENCES

[1] J. Irvin, “CheXpert: A large chest radiograph dataset with uncertainty
labels and expert comparison,” in Proc. AAAI, 2019, pp. 590–597.

[2] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers,
“ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on
weakly-supervised classification and localization of common thorax
diseases,” in Proc. CVPR, Jul. 2017, pp. 2097–2106.

[3] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Is object localization for
free?—Weakly-supervised learning with convolutional neural networks,”
in Proc. CVPR, Jun. 2015, pp. 685–694.

[4] H. Bilen and A. Vedaldi, “Weakly supervised deep detection networks,”
in Proc. CVPR, Jun. 2016, pp. 2846–2854.

[5] V. Kantorov, M. Oquab, M. Cho, and I. Laptev, “ContextLocNet:
Context-aware deep network models for weakly supervised localization,”
in Proc. ECCV, 2016, pp. 350–365.

[6] J. Ramon and L. De Raedt, “Multi instance neural networks,”
in Proc. ICML Workshop Attribute-Value Relational Learn., 2000,
pp. 53–60.

[7] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and
A. W. M. Smeulders, “Selective search for object recognition,” Int. J.
Comput. Vis., vol. 104, no. 2, pp. 154–171, Sep. 2013.

[8] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals
from edges,” in Proc. ECCV, 2014, pp. 391–405.

[9] P. Rajpurkar et al., “CheXNet: Radiologist-level pneumonia detection
on chest X-rays with deep learning,” 2017, arXiv:1711.05225.

[10] S. Hwang and H.-E. Kim, “Self-transfer learning for weakly super-
vised lesion localization,” in Proc. Int. Conf. Med. Image Comput.
Comput.-Assist. Intervent. (MICCAI). Cham, Switzerland: Springer,
2016, pp. 239–246.

[11] C. Yan, J. Yao, R. Li, Z. Xu, and J. Huang, “Weakly supervised deep
learning for thoracic disease classification and localization on chest
X-rays,” in Proc. ACM BCB, Aug. 2018, pp. 103–110.

[12] S. Hu et al., “Weakly supervised deep learning for COVID-19 infection
detection and classification from CT images,” IEEE Access, vol. 8,
pp. 118869–118883, 2020.

[13] F. Shao et al., “Deep learning for weakly-supervised object detection
and localization: A survey,” Neurocomputing, vol. 496, pp. 192–207,
Jul. 2022.

[14] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in Proc.
ECCV, 2020, pp. 213–229.

[15] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man. The PASCAL Visual Object Classes Challenge 2007 (VOC2007)
Results. Accessed: Feb. 8, 2024. [Online]. Available: http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html

[16] The PASCAL Visual Object Classes Challenge 2012 (VOC2012)
Results. Accessed: Feb. 8, 2024. [Online]. Available: http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html

[17] T. Lin et al., “Microsoft COCO: Common objects in context,” in Proc.
ECCV, 2014, pp. 740–755.

[18] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[19] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
Caltech-UCSD birds-200–2011 dataset,” California Inst. Technol.,
Pasadena, CA, USA, Tech. Rep. CNS-TR-2011-001, 2011. [Online].
Available: https://resolver.caltech.edu/CaltechAUTHORS:20111026-
120541847

[20] P. Tang, X. Wang, X. Bai, and W. Liu, “Multiple instance detection
network with online instance classifier refinement,” in Proc. CVPR,
Jul. 2017, pp. 2843–2851.

[21] P. Tang et al., “PCL: Proposal cluster learning for weakly supervised
object detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 1,
pp. 176–191, Jan. 2020.

[22] Z. Chen, Z. Fu, R. Jiang, Y. Chen, and X.-S. Hua, “SLV: Spatial
likelihood voting for weakly supervised object detection,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 12992–13001.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in
deep convolutional networks for visual recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015.

[24] Z. Ren et al., “Instance-aware, context-focused, and memory-efficient
weakly supervised object detection,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 10598–10607.

[25] M. Liao et al., “End-to-end weakly supervised object detection with
sparse proposal evolution,” in Proc. ECCV, 2022, pp. 210–226.

[26] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proc. CVPR, Jun. 2016,
pp. 2921–2929.

[27] P. O. Pinheiro and R. Collobert, “From image-level to pixel-level
labeling with convolutional networks,” in Proc. CVPR, Jun. 2015,
pp. 1713–1721.

[28] T. Durand, N. Thome, and M. Cord, “WELDON: Weakly supervised
learning of deep convolutional neural networks,” in Proc. CVPR,
Jun. 2016, pp. 4743–4752.

[29] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 618–626.

[30] X. Zhang, Y. Wei, J. Feng, Y. Yang, and T. Huang, “Adversarial
complementary learning for weakly supervised object localization,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 1325–1334.

[31] K. Yu, S. Ghosh, Z. Liu, C. Deible, and K. Batmanghelich, “Anatomy-
guided weakly-supervised abnormality localization in chest X-rays,” in
Proc. MICCAI, 2022, pp. 658–668.

[32] Y. Tang et al., “Attention-guided curriculum learning for weakly
supervised classification and localization of thoracic diseases on chest
radiographs,” in Proc. MIDL, 2018, pp. 249–258.

[33] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. CVPR, Jul. 2017,
pp. 2261–2269.

[34] Z. Wang and J.-C. Liu, “Translating math formula images to LaTeX
sequences using deep neural networks with sequence-level training,” Int.
J. Document Anal. Recognit., vol. 24, nos. 1–2, pp. 63–75, Jun. 2021.

[35] A. Vaswani, “Attention is all you need,” in Proc. NeurIPS, 2017.
[36] R. Girshick, “Fast R-CNN,” in Proc. ICCV, Dec. 2015, pp. 1440–1448.
[37] O. Maron and T. Lozano-Pérez, “A framework for multiple-instance

learning,” in Proc. NIPS, 1997, pp. 570–576.
[38] K. Ali and K. Saenko, “Confidence-rated multiple instance boosting for

object detection,” in Proc. CVPR, Jun. 2014, pp. 1417–1424.
[39] B. Babenko, P. Dollár, Z. Tu, and S. Belongie, “Simultaneous learn-

ing and alignment: Multi-instance and multi-pose learning,” in Proc.
Workshop Faces Real-Life Images, Detection, Alignment, Recognit.,
2008.

[40] P. Khosla et al., “Supervised contrastive learning,” in Proc. NIPS, vol. 33,
2020, pp. 18661–18673.

[41] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in Proc. ICML, 2020,
pp. 1597–1607.

[42] F. Meissen, P. Müller, G. Kaissis, and D. Rueckert, “Robust detection
outcome: A metric for pathology detection in medical images,” 2023,
arXiv:2303.01920.

[43] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. CVPR, Jun. 2009,
pp. 248–255.

[44] A. Paszke, “PyTorch: An imperative style, high-performance deep learn-
ing library,” in Proc. NeurIPS, vol. 32, 2019.

[45] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in Proc. ICLR, 2019.

[46] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin,
and A. A. Kalinin, “Albumentations: Fast and flexible image augmen-
tations,” Information, vol. 11, no. 2, p. 125, Feb. 2020.


