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Key Points
c Proteolytic activation of the epithelial sodium channel (ENaC) was compromised by transmembrane serine protease 2
deficiency in murine cortical collecting duct cells and native mouse kidney.

c To compensate for impaired ENaC activation, rise in plasma aldosterone in response to low-salt diet was enhanced in
Tmprss22/2 mice.

c Transmembrane serine protease 2 may be a potential drug target to limit proteolytic ENaC activation in disorders with
increased renal ENaC activity.

Abstract
Background The renal epithelial sodium channel (ENaC) is essential for sodium balance and BP control. ENaC undergoes
complex proteolytic activation by not yet clearly identified tubular proteases. Here, we examined a potential role of
transmembrane serine protease 2 (TMPRSS2).

Methods Murine ENaC and TMPRSS2 were (co)expressed in Xenopus laevis oocytes. ENaC cleavage and function were
studied in TMPRSS2-deficient murine cortical collecting duct (mCCDcl1) cells and TMPRSS2-knockout (Tmprss22/2) mice.
Short-circuit currents (ISC) were measured to assess ENaC-mediated transepithelial sodium transport of mCCDcl1 cells.
The mCCDcl1 cell transcriptome was studied using RNA sequencing. The effect of low-sodium diet with or without high
potassium were compared in Tmprss22/2 and wild-type mice using metabolic cages. ENaC-mediated whole-cell currents
were recorded from microdissected tubules of Tmprss22/2 and wild-type mice.

Results In oocytes, coexpression of murine TMPRSS2 and ENaC resulted in fully cleaved g-ENaC and approximately
two-fold stimulation of ENaC currents. High baseline expression of TMPRSS2 was detected in mCCDcl1 cells without a
stimulatory effect of aldosterone on its function or transcription. TMPRSS2 knockout in mCCDcl1 cells compromised
g-ENaC cleavage and reduced baseline and aldosterone-stimulated ISC, which could be rescued by chymotrypsin. A
compensatory transcriptional upregulation of other proteases was not observed. Tmprss22/2 mice kept on standard diet
exhibited no apparent phenotype, but renal g-ENaC cleavage was altered. In response to a low-salt diet, particularly with
high potassium intake, Tmprss22/2 mice increased plasma aldosterone significantly more than wild-type mice to achieve a
similar reduction of renal sodium excretion. Importantly, the stimulatory effect of trypsin on renal tubular ENaC currents
was much more pronounced in Tmprss22/2 mice than that in wild-type mice. This indicated the presence of incompletely
cleaved and less active channels at the cell surface of TMPRSS2-deficient tubular epithelial cells.

Conclusions TMPRSS2 contributes to proteolytic ENaC activation in mouse kidney in vivo.
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Introduction
The epithelial sodium channel (ENaC) is a heterotrimeric
ion channel that consists of an a, b, and g subunit and
belongs to the ENaC/degenerin family of ion channels.1–3

ENaC provides the rate-limiting step for transepithelial
sodium absorption in several epithelia. Among these is
the distal nephron comprising the late distal convoluted
tubule (DCT2), the connecting tubule (CNT), and the cor-
tical collecting duct (CCD). Precise ENaC regulation in the
distal nephron is essential for adjusting renal sodium ex-
cretion to oral intake and, hence, for maintaining sodium
homeostasis, extracellular volume, and BP.4,5 Aldosterone
plays a key role in hormonal ENaC stimulation, in partic-
ular in the CNT/CCD transition zone, where ENaC activity
is strictly aldosterone-dependent. By contrast, ENaC activ-
ity is largely aldosterone-independent in the DCT2/CNT
region,6–9 albeit dependent on the mineralocorticoid
receptor.10,11

It is well established that ENaC requires specific pro-
teolytic processing to become an active channel.12–15

Proteolytic cleavage removes autoinhibitory peptide frag-
ments from the extracellular loops of a- and g-ENaC.16–18

According to the currently accepted paradigm, the serine
protease furin and/or related furin-like proprotein conver-
tases target three cleavage sites (two in a- and one in
g-ENaC) during channel maturation in the intracellular
biosynthetic pathway.13,19 Importantly, a final cleavage
event in g-ENaC is required to achieve full channel
activation.20,21 Relevant proteases involved in this piv-
otal last cleavage event in g-ENaC in the kidney remain
elusive.22,23 These may include membrane-anchored pro-
teases expressed by tubular cells or soluble plasma pro-
teases aberrantly filtered in disease states (e.g., nephrotic
syndrome).24–27

Recently, we have demonstrated that transmem-
brane serine protease 2 (TMPRSS2), a membrane-
anchored serine protease with trypsin-like substrate
specificity, proteolytically activates human ENaC in a
heterologous expression system and H441 airway
epithelial cells.28 TMPRSS2 is highly expressed in the
renal distal nephron, where it may functionally interact
with ENaC.29–34 In addition, TMPRSS2 could interact
with ENaC through the secretion of its catalytic domain
or through urinary microvesicles.35–37 Therefore, we
hypothesized that TMPRSS2 may contribute to proteo-
lytic ENaC activation in the kidney. To test this
hypothesis, we explored the effect of TMPRSS2 defi-
ciency on renal ENaC cleavage and function in murine
model systems.

Methods
More methodological details can be found in the
Supplemental Material.

Two-Electrode Voltage-Clamp Experiments in Xenopus
laevis Oocytes
Isolation of oocytes and two-electrode voltage-clamp
experiments were performed essentially as described
previously.28,38,39

TMPRSS2 Knockout in Murine Cortical Collecting Duct
Cells, Ussing Chamber Measurements, and RNA
Sequencing
The murine cortical collecting duct (mCCDcl1) cell line40 was
kindly provided by Bernard C. Rossier and Edith Hummler
(Université de Lausanne, Switzerland). TMPRSS2-knockout
(TMPRSS2-ko) and nontargeting control mCCDcl1 cells were
generated using clustered regularly interspaced short pal-
indromic repeats /Cas9.41,42 Equivalent short-circuit current
(ISC) measurements were performed on mCCDcl1 cells
grown on permeable supports.43–45 mRNA was isolated
using the NucleoSpin RNA kit (Machery-Nagel), and
RNA sequencing (RNA-seq) was performed at the Next
Generation Sequencing Core Unit (Institute of Human Ge-
netics, FAU Erlangen-Nürnberg).

Mouse Studies
An established TMPRSS2-ko mouse model (global consti-
tutive TMPRSS2-ko; background: C57BL/6J)46 was ob-
tained from Jackson Laboratories (B6.129-Tmprss2tm1Psn/J,
JAX stock 026196). The effects of different diets were stud-
ied in metabolic cages. Plasma aldosterone was measured
using an ELISA kit (IBL, Hamburg, Germany).

Immunoblotting
g-ENaC was detected using an established antibody
(Stressmarq; catalog no.: SPC-405) after deglycosylation
(PNGase F, New England BioLabs).47 For TMPRSS2 de-
tection, a commercially available antibody37 was used
(EMD Millipore Corp.; clone P5H9-A3; catalog no.:
MABF2158) and validated (Supplemental Figure 1).

RNAscope Technology and Immunostainings
Tmprss2 mRNA was detected in mouse kidney using the
RNAscope Multiplex Fluorescent v2 kit (Advanced Cell
Diagnostics, Cat. No 323100) according to the manufac-
turer’s protocol.48,49 To detect b- or g-ENaC, a polyclonal
rabbit antibody directed against mouse b-ENaC44 or rat
g-ENaC (see above) was used, respectively.

Preparation of Renal Tubules and Electrophysiology
Tubules were prepared and whole-cell patch-clamp
recordings were performed essentially as described
previously.6,7,10,50 Two tubular regions were distin-
guished according to morphological criteria6: (1) DCT2
and initial CNT (DCT2/CNT) and (2) late CNT and
initial CCD (CNT/CCD).

Statistical Methods
Data are presented as mean6SEM. Normal distribution of
data were assessed using the D’Agostino–Pearson omnibus
or Shapiro–Wilk test. Statistical significance was assessed
using appropriate tests as indicated in figure legends.

Results
Coexpression of Mouse TMPRSS2 Increased Mouse ENaC
Currents in Xenopus laevis Oocytes
To test whether murine TMPRSS2 proteolytically activates
murine ENaC, we expressed murine abg-ENaC in Xenopus
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laevis oocytes with or without coexpression of murine
TMPRSS2. In oocytes coinjected with 0.1 ng/subunit
ENaC complementary RNA and TMPRSS2 complemen-
tary RNA (0.2 ng), baseline amiloride-sensitive currents
were about twice as high as in oocytes expressing ENaC
alone (Supplemental Figure 2, A–C). Importantly, ENaC
currents were not further stimulated by chymotrypsin
application, unlike in oocytes expressing ENaC alone
(Supplemental Figure 2, A–D). Consistent with these func-
tional results, we demonstrated that TMPRSS2 coexpres-
sion converted partially cleaved g-ENaC (approximately
60 kDa) at the cell surface into its fully cleaved active form
(approximately 55 kDa) (Supplemental Figure 2E). Thus,
using murine orthologs, we confirmed that TMPRSS2
activates ENaC by g-ENaC cleavage.

TMPRSS2 Contributed to Proteolytic ENaC Activation in
mCCDcl1 Cells
To investigate whether TMPRSS2 is involved in pro-
teolytic ENaC activation in mCCDcl1 cells, we generated
TMPRSS2-ko cells. Successful TMPRSS2-ko was con-
firmed using Western blot analysis (Figure 1A and
Supplemental Figure 3). TMPRSS2-ko mCCDcl1 cells
formed tight epithelial monolayers but had a signifi-
cantly lower transepithelial resistance compared with
control mCCDcl1 cells (Supplemental Figure 4A). How-
ever, overall epithelial monolayer integrity was pre-
served, as evidenced by immunofluorescence staining
for the tight junction marker zona occludens protein 1
(Supplemental Figure 4B).

Using a fluorogenic substrate assay, we assessed
trypsin-like proteolytic activity in the apical medium col-
lected from mCCDcl1 cells (Figure 1B). A high degree of
proteolytic activity was detected in the medium collected
from control mCCDcl1 cells. Importantly, this proteolytic
activity was significantly reduced in the medium col-
lected from TMPRSS2-ko cells. In line with this, using
protein precipitation, we detected the catalytic domain of
TMPRSS2 in the apical medium of control but not of
TMPRSS2-deficient cells (Supplemental Figure 5).

Reduced endogenous protease activity may impair
ENaC cleavage and activation in TMPRSS2-deficient
mCCDcl1 cells. To investigate this, we assessed ENaC-
mediated transepithelial transport by ISC measurements.
Average baseline ISC values were higher in control than
in TMPRSS2-deficient cells (Figure 1, C and D). Applying
chymotrypsin to the apical bath solution did not signif-
icantly alter ISC in control cells. This indicated that en-
dogenous proteases were sufficient for full proteolytic
ENaC activation at the cell surface. By contrast, in
TMPRSS2-ko mCCDcl1 cells, apical application of chymo-
trypsin substantially stimulated ISC by 2.360.2 mA/cm2,
to a level similar to baseline ISC of control cells (Figure 1, C
and E). Thus, in TMPRSS2-deficient cells, proteolytic
ENaC activation at the cell surface was incomplete. In
the presence of amiloride, chymotrypsin failed to stimu-
late ISC in mCCDcl1 cells with TMPRSS2 deficiency
(Supplemental Figure 6). Furthermore, we demonstrated
that apical application of aprotinin, a broad-spectrum
serine protease inhibitor, reduced ISC in control but not

in TMPRSS2-deficient mCCDcl1 cells. The inhibitory effect
of aprotinin on ISC in control mCCDcl1 cells could be
rescued by chymotrypsin (Supplemental Figure 7). These
results demonstrated a substantial contribution of apical
TMPRSS2 activity to proteolytic ENaC activation in
mCCDcl1 cells, whereas the role of other proteases
seemed to be negligible. The finding that proteolytic
ENaC activation was incomplete in TMPRSS2-deficient
mCCDcl1 cells was confirmed by Western blot detection
of g-ENaC cleavage fragments in the apical membrane of
these cells. Indeed, compared with control cells, the
fraction of fully cleaved cell surface g-ENaC was de-
creased in TMPRSS2-deficient mCCDcl1 cells, whereas
the partially cleaved g-ENaC fraction was increased
(Figure 1F and Supplemental Figure 8).

Taken together, these results indicated that endog-
enously expressed TMPRSS2 contributed to proteo-
lytic g-ENaC processing and channel activation in
mCCDcl1 cells.

TMPRSS2-ko Reduced the Stimulatory Effect of
Aldosterone in mCCDcl1 Cells
Next, we studied whether TMPRSS2 deficiency altered
the stimulatory effect of aldosterone on ENaC in this cell
line. In control cells, aldosterone (3 nM) increased ISC
over 2 hours from 4.360.9 to 21.062.4 mA/cm2.
Subsequent addition of chymotrypsin to the apical
compartment had no significant additional stimulatory
effect on ISC (Figure 2, A and C). Thus, ENaC was
fully proteolytically activated at the cell surface of
aldosterone-treated cells. Exposure of TMPRSS2-
deficient mCCDcl1 cells to aldosterone also resulted in
an ISC increase. However, the degree of stimulation (from
3.960.8 to 14.562.3 mA/cm2) seemed to be reduced
compared with control cells (Figure 2, B and C). Impor-
tantly, in aldosterone-treated TMPRSS2-deficient cells
subsequent apical application of chymotrypsin caused a
substantial additional rise in ISC of 5.060.7 mA/cm2

(Figure 2C), essentially rescuing the full stimulatory effect
of aldosterone. Indeed, in aldosterone- and chymotrypsin-
treated TMPRSS2-deficient cells, application of amiloride at
the end of the experiments caused an ISC decrease similar to
that observed in control mCCDcl1 cells having received the
same treatment. Thus, in TMPRSS2-deficient cells, the total
amount of ENaC present at the cell surface after aldoste-
rone treatment was similar to that in control cells
(Figure 2C). It is noteworthy that in TMPRSS2-deficient
mCCDcl1 cells, the stimulatory effect of chymotrypsin on
ISC after aldosterone treatment was enhanced by approx-
imately 2.2-fold compared with that observed in the ab-
sence of aldosterone (5.060.7 mA/cm2 in the presence
versus 2.360.2 mA/cm2 in the absence of aldosterone;
P 5 0.008, two-sided t test; Figures 1, C and E, and 2,
B and C). This indicated that aldosterone increased ENaC
at the cell surface also in TMPRSS2-deficient cells, but that
proteolytic activation of newly inserted channels re-
mained incomplete because of TMPRSS2 deficiency.

To summarize, TMPRSS2 deficiency impaired the stim-
ulatory effect of aldosterone by partially preventing pro-
teolytic channel activation.
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Figure 1. TMPRSS2 contributed to proteolytic ENaC activation in mCCDcl1 cells. (A) Left: representative Western blot analysis of
whole-cell mCCDcl1 lysates to assess endogenous expression of TMPRSS2 in wild-type, nontargeting control (Control), and TMPRSS2-ko
cells. Gray and black arrowheads indicate TMPRSS2 in its activated (catalytic chain, approximately 26 kDa) or zymogen form (ap-
proximately 60 kDa), respectively. Similar protein loading in all lanes was confirmed using Ponceau S total protein staining
(Supplemental Figure 3). Right: densitometric evaluation of TMPRSS2 expression from similar blots as shown in the left. In each blot, the
density value of the approximately 26 kDa band was normalized to the corresponding density value from wild-type cells. The dotted line
indicates a normalized density value of one (no effect). Mean6SEM and data points for individual samples are shown; n56–10, Two-
sided one-sample t test of log-transformed values with Bonferroni correction for multiple testing. (B) Progress curves of trypsin-like
proteolytic activity in medium taken from the apical compartment of nontargeting control (blue, n542) or TMPRSS2-ko mCCDcl1 cells
(red, n560) are shown (mean6SEM). Freshly prepared medium served as control (gray, n554). In each sample, the recorded RFU values
were normalized to the RFU value at the beginning of the measurement. A dotted line indicates a relative effect of one (no change). The
Kruskal–Wallis test (P value, 0.001) with Dunn’s multiple comparisons test of log-transformed values was used to calculate P values for
comparisons with the RFU at time point 180 minutes obtained in control cells. (C) Representative equivalent short-circuit current (ISC)
traces recorded from nontargeting control (left, n521) or TMPRSS2-ko mCCDcl1 cells (right, n520) are shown. Chymotrypsin (chymo,
20 mg/ml) and amiloride (ami, 10 mM) were present in the apical bath solution as indicated by gray and black bars, respectively. The
dotted lines indicate zero current levels. Summary data from similar experiments are shown to the right of the representative traces. ISC
values were obtained immediately before application of chymotrypsin or amiloride and at the end of the experiment. Values obtained in
the same measurement are connected with a line. Mean6SEM and data points for individual measurement are shown. ANOVA
(P values: ,0.001 for control; ,0.001 for TMPRSS2-ko) with the Bonferroni post hoc test. (D) Summary data from the same experiments
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Aldosterone Did Not Upregulate TMPRSS2 Transcription,
and TMPRSS2 Deficiency Was Not Associated with a
Substantial Transcriptional Upregulation of Other Serine
Proteases
Using RNA-seq analysis of mCCDcl1 cells, we demon-
strated that TMPRSS2 had the highest level of mRNA
expression among transmembrane serine proteases de-
tected (Table 1 and Supplemental Figures 9, E and F,
and 12C). To investigate whether aldosterone regulates
TMRPSS2 expression, mCCDcl1 cells were treated for 2
or 24 hours with 3 nM aldosterone (Supplemental
Figure 10) before RNA isolation. After a 2-hour aldoste-
rone exposure, we observed transcriptional upregulation
of known aldosterone target genes,51 but not of Tmprss2
or any other serine protease (Table 1, Supplemental
Figure 9C, and Supplemental Table 1). With a 24-hour
aldosterone treatment, only a minor 1.09-fold transcrip-
tional upregulation of Tmprss2 could be detected (Table 1,
Supplemental Figure 9D, and Supplemental Table 2). In
line with the RNA-seq data, TMPRSS2 protein expres-
sion at the cell surface (Figure 2D and Supplemental
Figure 11A), trypsin-like proteolytic activity, and the
amount of TMPRSS2 in the apical medium were not
significantly affected by aldosterone exposure (Figure 2E
and Supplemental Figure 11B). To conclude, aldosterone
had no substantial effect on expression or activity of
TMPRSS2 in mCCDcl1 cells.

Finally, RNA-seq analysis of TMPRSS2-deficient cells
provided no evidence for marked compensatory upreg-
ulation of mRNA expression of other highly expressed
transmembrane serine proteases in these cells, except
for a modest (approximately 20%) increase of Prss23
transcription (Table 1, Supplemental Figure 12, and
Supplemental Table 3).

In Tmprss22/2 Mice, Proteolytic Processing of Renal g-
and a-ENaC Was Altered
To study the role of TMPRSS2 in ENaC cleavage in vivo,
we used constitutive TMPRSS2-ko mice (Tmprss22/2).46

The successful knockout of Tmprss2 in kidneys was
confirmed using RNAscope technology (Figure 3 and
Supplemental Figure 13). Moreover, combining this ap-
proach with an immunofluorescence staining for b-ENaC,
we demonstrated that Tmprss2 mRNA was present in
renal tubular cells with b-ENaC protein expression

(Figure 3). Tmprss2 mRNA was not restricted to ENaC-
positive cells but demonstrated a ubiquitous expression
pattern along the renal tubule.

Next, we detected g- and a-ENaC cleavage fragments
in membrane-enriched fractions obtained from kidney
cortex of Tmprss21/1 and Tmprss22/2 mice. Similar to
our observations in mCCDcl1 cells (Figure 1F), knockout
of TMPRSS2 in mice resulted in a significant increase of
the partially cleaved g-ENaC fraction (Figure 4 and
Supplemental Figure 14). By contrast, the signal of un-
cleaved or fully cleaved g-ENaC in Tmprss22/2 mice was
similar to that in wild-type (Tmprss21/1) mice. We also
observed altered proteolytic processing of a-ENaC in
kidneys from Tmprss22/2 mice with a significantly in-
creased portion of (furin-)cleaved a-ENaC at the expense
of uncleaved a-ENaC (Supplemental Figure 15).

In summary, TMPRSS2 deficiency altered proteolytic
processing of renal g- and a-ENaC in vivo.

Reduction of Renal Sodium Excretion in Response to
Dietary Sodium Restriction Required Higher Plasma
Aldosterone Levels in Tmprss22/2 Mice than in Wild-Type
Controls
Using immunohistochemistry, we found a similar tubu-
lar expression pattern of g-ENaC in both genotypes
(Figure 5A, top). Moreover, in Tmprss22/2 mice, the
acute natriuretic response to amiloride (Supplemental
Figure 16), as well as baseline plasma Na1 and K1

concentrations (Supplemental Figure 17, A and B),
were not different from those in wild-type controls. Taken
together, this indicated that ENaC-mediated sodium
transport was not substantially altered in Tmprss22/2

mice under baseline conditions.
Intriguingly, both Tmprss21/1 and Tmprss22/2 mice

responded in a similar manner to dietary sodium restric-
tion with trafficking of ENaC to the apical membrane
(Figure 5A, bottom) and an appropriate reduction of
urinary sodium excretion (Figure 5B, left) to maintain
sodium balance. Consistent with this finding, the acute
natriuretic response to amiloride was higher in mice
kept on a low-sodium diet compared with that on a
control diet, but was similar in both genotypes
(Supplemental Figure 16). With similar food intake
and fecal Na1 excretion, Tmprss22/2 and Tmprss21/1

mice maintained similar body weight under low-salt

Figure 1. Continued. as shown in (C) and in Supplemental Figure 6. Baseline ISC at the beginning of the experiment. Mean6SEM and

data points for individual measurements are shown. Two-sided unpaired Wilcoxon-signed rank test. (E) Summary data from the same

experiments as shown in (C). The effect of chymotrypsin (chymo) on ISC (DISC) was calculated by subtracting the ISC value measured

immediately before chymotrypsin application from the current level reached in the presence of chymotrypsin immediately before

amiloride application. The effect of amiloride (ami) on ISC (DISC) was calculated by subtracting the ISC value measured immediately

before amiloride application from the current level reached at the end of the recording. Mean6SEM and data points for individual

measurements are shown. A two-sided unpaired t test with Bonferroni correction for multiple testing. (F) Left: representative Western

blot showing cell surface expression of g-ENaC in mCCDcl1 cells. Uncleaved (approximately 70 kDa), partially cleaved (ap-

proximately 60 kDa), and fully cleaved (approximately 55 kDa) g-ENaC are indicated by black, dark gray, and light gray arrowheads,

respectively. Right: densitometric evaluation of the Western blot shown in the left and additional blots shown in Supplemental

Figure 8. The densitometric signal of uncleaved, partially cleaved, and fully cleaved g-ENaC was normalized to the total signal of all

three bands. Mean6SEM and data points for individual Western blots are shown (n56). A two-sided unpaired t test with Bonferroni

correction for multiple testing. ENaC, epithelial sodium channel; mCCDcl1, murine cortical collecting duct cell line; RFU, relative

fluorescent unit; TMPRSS2, transmembrane serine protease 2; TMPRSS2-ko, transmembrane serine protease 2–knockout.
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Figure 2. TMPRSS2-ko reduced the stimulatory effect of aldosterone in mCCDcl1 cells. (A and B) Left: representative equivalent short-circuit
current (ISC) recordings from nontargeting control (A) or TMPRSS2-ko mCCDcl1 cells (B) are shown. Aldosterone (aldo, 3 nM, apical and
basolateral), chymotrypsin (chymo, 20 mg/ml, apical), and amiloride (ami, 10 mM, apical) were present in the bath solution as indicated by
white, gray, and black bars, respectively. The dotted lines indicate zero current levels. Right: summary data from similar experiments as
shown in the corresponding left. Values were obtained immediately before application of aldosterone, chymotrypsin, or amiloride and at the
end of the experiment. Values obtained in the same measurement are connected with a line. Mean6SEM and data points for individual
measurements are shown. (A) n510, (B) n58. ANOVA (P values:,0.001 [A], ,0.001 [B]) with a Bonferroni post hoc test. (C) Summary data
from the same experiments as shown in (A) and (B). DISC was calculated essentially as described in Figure 1E. Mean6SEM and data points for
individual measurements are shown. A two-sided unpaired Wilcoxon signed-rank test with Bonferroni correction for multiple testing.
(D) Left: Western blot analysis of the apical cell–surface fraction of mCCDcl1 cells to assess endogenous expression of TMPRSS2 in
nontargeting control (control, blue bars) and TMPRSS2-ko (red bars) cells. A black arrowhead indicates TMPRSS2 in its activated (catalytic
chain, approximately 26 kDa) form. The absence of the approximately 26 kDa TMPRSS2 band in TMPRSS2-ko cells confirmed the specificity
of TMPRSS2 detection. Before harvesting, cells were maintained for 3 hours in the presence (1) or absence (2) of 3 nM aldosterone (aldo) as
indicated. Right: densitometric evaluation of TMPRSS2 expression in control cells fromWestern blots shown in the left and an additional blot
shown in Supplemental Figure 11A. In each blot, the density value of the approximately 26 kDa TMPRSS2 band obtained from aldosterone-
treated mCCDcl1 cells was normalized to the corresponding TMPRSS2 signal obtained from vehicle-treated mCCDcl1 cells. The dotted line
indicates a normalized density value of one (no effect). Mean6SEM and data points for individual samples are shown (n55). Two-sided one-
sample t test with log-transformed values. (E) Progress curves of trypsin-like proteolytic activity in medium taken from the apical com-
partment of nontargeting control (blue, n542) or TMPRSS2-ko mCCDcl1 cells (red, n560) are shown (mean6SEM). Freshly prepared medium
(with or without aldosterone) served as control (gray, n554). In each sample, the recorded RFU values were normalized to the RFU value at
the beginning of the measurement. Cells received either standard medium (Ø aldo, open symbols) or medium supplemented with 3 nM
aldosterone (closed symbols) on apical and basolateral sides. Samples were taken 3 hours after medium exchange, which probably explains
lower normalized RFU values compared with Figure 1B where samples were taken after 12 hours. A dotted line indicates the relative effect of
one (no change). Two-way ANOVA (P values: ,0.001 [effect of cell type], 1 [effect of aldosterone]) of log-transformed values.
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diet (Supplemental Figures 17D and 18, A and B). In
addition, in both genotypes, plasma Na1 and K1 con-
centrations, as well as renal K1 excretion, were unaf-
fected by low-sodium diet (Supplemental Figure 17,
A–C). Water intake and urine volume were slightly
higher in Tmprss22/2 mice (Supplemental Figure 18, C
and D). Tmprss21/1 and Tmprss22/2 mice also respon-
ded in a similar manner to dietary sodium restriction

in combination with an increased potassium intake
(Figure 5B, right, and Supplemental Figures 19 and 20).
Consistent with previously reported evidence,47,52–55 we
detected a trend toward an increase in the cleaved
g-ENaC fragments in kidneys from sodium-restricted
wild-type mice (Supplemental Figure 21). Interestingly,
under sodium restriction, no obvious differences
in proteolytic processing and overall expression of
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Figure 3. Tmprss2 mRNA was expressed in cells positive for b-ENaC protein. Representative microscopic images from mouse kidney cortex
of Tmprss21/1 (top row) and Tmprss22/2 (bottom row) mice are shown. RNAscope staining for Tmprss2 mRNA (left, red) and immuno-
fluorescence staining for b-ENaC protein (middle, green) are merged with nuclear 49,6-diamidin-2-phenylindol-staining (blue) in right.

Table 1. Effects of aldosterone treatment and transmembrane serine protease 2 deficiency on the expression of serine
proteases in murine cortical collecting duct (mCCDcl1) cells

Gene
Name Gene Description

Average
Expression in
Control (TPM)

2-h Aldo 24-h Aldo TMPRSS2-ko

Fold
Change

Adj.
P Value

Fold
Change

Adj.
P Value

Fold
Change

Adj.
P Value

Tmprss2 Transmembrane protease,
serine 2

266625 1.03 0.95 1.09a 7E23a 0.37a ,9E299a

St14 Suppression of tumorigenicity
14 (matriptase)

11062 1.00 1.00 1.00 1.00 0.91a 4E23a

Prss23 Protease, serine 23 10265 0.99 0.75 0.99 0.46 1.20a 6E23a

Furin Furin (subtilisin-like proprotein
convertase 1)

9262 1.00 0.98 1.00 0.92 1.00 0.90

Prss8 Protease, serine 8 (prostasin) 8664 1.02 1.00 1.02 0.85 0.99 0.36

Listed are five genes encoding serine proteases with the highest expression in control cells from the RNA sequencing analyses
shown in Supplemental Figures 9 and 12 and Supplemental Tables 1–3. Fold change in RNA levels after 2 hours (n56) or 24 hours
exposure to 3 nM of aldosterone (n57) or in transmembrane serine protease 2–knockout cells (n56) compared with respective
control cells are given with adjusted P values. Please note that despite residual expression of altered transmembrane serine
protease 2 transcripts, on protein and functional level transmembrane serine protease 2–knockout was successful as shown in
Figures 1, A and B, and 2, D and E, and Supplemental Figures 5 and 11B. Adj., adjusted; TPM, transcripts per million.
aSignificant changes (adj. P value , 0.05).
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g- and a-ENaC were observed between Tmprss21/1

and Tmprss22/2 mice (Supplemental Figures 21 and
22). Collectively, these data demonstrated that the ability
of Tmprss22/2 mice to adjust renal sodium excretion to
low-sodium diet was fully preserved.

When animals were maintained on standard diet, there
was a nonsignificant trend for slightly higher plasma
aldosterone values in Tmprss22/2 mice compared with
Tmprss21/1 mice (Figure 5C), averaging 187624 and
138619 pg/ml, respectively. After 4 days of dietary so-
dium restriction, there was a trend toward elevated
plasma aldosterone levels (210641 pg/ml) in Tmprss21/1

mice (Figure 5C). This was consistent with previously
reported data38 and seemed sufficient to downregulate

renal sodium excretions adequately. Importantly, in
Tmprss22/2 mice, plasma aldosterone increased in re-
sponse to dietary sodium restriction to 482677 pg/ml,
a value 2.3-fold higher than in Tmprss21/1 mice
(Figure 5C). Plasma aldosterone values reached even
higher values in Tmprss22/2 mice after 4 days of dietary
sodium restriction when combined with an increased
potassium intake (565699 pg/ml, Figure 5C). This
clearly indicated that in response to dietary sodium re-
striction, in particular in combination with increased
potassium intake, Tmprss22/2 mice needed to upregu-
late aldosterone to much higher levels, probably to com-
pensate for incomplete proteolytic ENaC activation
because of TMPRSS2 deficiency.
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Figure 4. In Tmprss22/2 mice, proteolytic processing of g-ENaC was altered. (A) Western blot analysis shows expression of endogenous
PNGase-treated g-ENaC in membrane-enriched fractions obtained from mouse kidney cortex lysates. Uncleaved (approximately 70 kDa),
partially cleaved (approximately 60 kDa), and fully cleaved (approximately 55 kDa) g-ENaC are indicated by black, dark gray, and light
gray arrowheads, respectively. Vertical lines represent positions at which the original blot images were cut to reorder the lanes for clarity.
Original blots are shown in Supplemental Figure 14. (B) Densitometric evaluation of similar Western blots as in (A). The densitometric
signal of uncleaved, partially cleaved, and fully cleaved g-ENaC in each lane was normalized to the Ponceau S total protein staining from
the same lane. Mean6SEM and data points for individual Western blots are shown. Data points from female and male mice are rep-
resented with open and closed symbols, respectively. TMPRSS2 and ENaC have been reported to be modulated by sex hormones including
testosterone68 and estrogens,69 respectively. However, we observed no sex-specific differences in all our analyses, and therefore, the data
from male and female mice were pooled together. A two-sided Wilcoxon signed-rank test with Bonferroni correction for multiple testing.
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The Stimulatory Effect of Trypsin on ENaC Activity in
Microdissected Tubules Was More Pronounced in
Tmprss22/2 than in Wild-Type Mice
To explore the relevance of TMPRSS2 for ENaC function
in native renal tubules, we performed whole-cell patch-

clamp recordings in DCT2/CNT and CNT/CCD from
Tmprss22/2 and wild-type control mice (Figure 6 and
Supplemental Figure 23). Repeated amiloride applications
were used to monitor ENaC-mediated currents (DIami). To
reveal the presence of incompletely cleaved channels at
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Figure 5. Tmprss22/2 mice required significantly higher plasma aldosterone levels than wild-type mice to maintain sodium balance
under dietary sodium restriction with or without increased potassium intake. (A) Representative immunohistochemical staining of
g-ENaC in fixed kidney tissue from Tmprss21/1 versus Tmprss22/2 mice, shown in 203 magnification (scale: 20 mm) and 633
magnification (scale: 10 mm). In both genotypes, there is an increased apical staining under low-sodium diet (n53 each). (B) Time
course of urinary sodium excretion, normalized to food intake, during dietary sodium restriction without (left) or with increased
potassium intake (right). Mean6SEM (n514–36) are shown. Data are pooled from both sexes. Red and blue P values indicate
comparisons with day 0 (Friedman test with Dunn’s multiple comparison test). Black P values indicate comparisons between genotypes
(Mann–Whitney test). (C) Plasma aldosterone concentration under control diet and after 4 days of a low-sodium diet with or without
increased potassium intake. Data points from female and male mice are represented with open and closed symbols, respectively.
Mean6SEM and individual data points (n510–22) are shown. A Kruskal–Wallis with Dunn’s multiple comparison test.
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the cell surface, the current response to apical trypsin
application was investigated using a previously estab-
lished protocol.56

In both genotypes, average initial DIami values in CNT/
CCD were significantly lower than corresponding values
in DCT2/CNT (Figure 6, A and C). In DCT2/CNT,
we observed a trend toward reduced baseline DIami in
Tmprss22/2 mice (372681 pA) compared with control
mice (449675 pA; Figure 6C). Apical application of trypsin
to DCT2/CNT from Tmprss22/2 mice increased DIami on
average by approximately 75% within about 3 minutes
(Figure 6, B and D). By contrast, no trypsin response
was observed in DCT2/CNT from wild-type animals (Fig-
ure 6, A, B, and D, and Supplemental Figure 23B). In CNT/
CCD, baseline ENaC currents were significantly lower in
Tmprss22/2 mice (45613 pA) than those in wild-type mice
(78615 pA; Figure 6C). The latter currents were slightly
stimulated by application of trypsin (approximately 40%).
Importantly, in CNT/CCD from Tmprss22/2 mice, the
stimulatory effect of trypsin was much larger with an
average increase of ENaC currents by approximately
280% within 3 minutes (Figure 6, B and D).

Discussion
Key findings of this study were the following: (1) coex-
pression of murine TMPRSS2 proteolytically activated mu-
rine ENaC by cleaving its g-subunit consistent with our
previous findings with the human orthologs28; (2)
TMPRSS2 deficiency reduced baseline ENaC activity in
mCCDcl1 cells and the stimulatory effect of aldosterone
because of incomplete g-ENaC cleavage; (3) in Tmprss22/2

mice, renal ENaC cleavage was compromised, and animals
required a much larger increase in plasma aldosterone to
reduce renal sodium excretion adequately in response to
dietary sodium restriction, in particular when combined
with increased potassium intake; and (4) renal ENaC
whole-cell currents could be stimulated by trypsin to a
larger extent in Tmprss22/2 mice than in wild-type mice,
particularly in the CNT/CCD. This indicated that
TMPRSS2 deficiency reduced average open probability of
ENaC probably because of impaired proteolytic channel
activation. Collectively, our results support the conclusion
that TMPRSS2 is a functionally important protease coex-
pressed with ENaC in distal tubular epithelial cells.

The additional stimulatory effect of chymotrypsin on
baseline ISC provided functional evidence for incomplete
proteolytic ENaC activation in TMPRSS2-deficient
mCCDcl1 cells. The finding that the fraction of fully cleaved
g-ENaC at the cell surface of TMPRSS2-deficient cells was
lower than in control cells further confirmed the concept
that TMPRSS2 is essential for complete g-ENaC cleavage.
Importantly, the stimulatory effect of aldosterone on ISC
was reduced in TMPRSS2-deficient mCCDcl1 cells. ENaC
regulation by aldosterone is highly complex3,9 and involves
the stimulation of channel trafficking to the apical mem-
brane and enhanced proteolytic ENaC cleavage.47,52–55 Our
findings indicated that TMPRSS2 deficiency did not impede
the stimulatory effect of aldosterone on channel insertion
into the apical membrane, but prevented full proteolytic
activation of the newly inserted channels. This was evi-
denced by the finding that in TMPRSS2-ko mCCDcl1 cells,

the stimulatory effect of chymotrypsin was enhanced after
a 2-hour exposure to aldosterone. RNA-seq analysis did
not reveal a prominent regulatory effect of aldosterone
on the transcriptional expression of TMPRSS2 or any
other serine protease detected, in line with previous
research.51,57,58 Moreover, aldosterone treatment did
not enhance TMPRSS2 expression or proteolytic activity
detected in the apical medium from mCCDcl1 cells. To
conclude, increased TMPRSS2 expression or function
was not required to achieve full proteolytic ENaC acti-
vation after aldosterone stimulation. Thus, in mCCDcl1

cells, proteolytic activity of constitutively expressed
TMPRSS2 seems to be sufficient to process all channels
trafficking to the cell surface under baseline and
aldosterone-stimulated conditions. This supports the
concept that ENaC cleavage depends on the regulation
of channel trafficking.53,54 However, this does not rule
out the possibility that long-term stimulation of ENaC
activity in vivo also involves upregulation of prote-
ase activity.

Importantly, we demonstrated in microdissected tu-
bules that ENaC could be stimulated by trypsin to a larger
extent in Tmprss22/2 mice than in wild-type mice. Indeed,
the approximately 280% stimulation of ENaC currents by
trypsin in CNT/CCD of Tmprss22/2 mice was much more
pronounced than in wild-type mice, where trypsin had
only a modest (approximately 40%) stimulatory effect on
ENaC, consistent with previously reported findings.55,56

Interestingly, in DCT2/CNT of wild-type mice, trypsin
had no apparent effect but significantly increased ENaC
currents in DCT2/CNT of Tmprss22/2 mice by approxi-
mately 75%. The different responsiveness of ENaC currents
to trypsin in DCT2/CNT versus CNT/CCD in the presence
and absence of TMPRSS2 suggests a site-specific role of
TMPRSS2 in proteolytic ENaC processing. This implies that
in addition to TMPRSS2, other proteases contribute to pro-
teolytic ENaC activation, possibly in a site-specific manner.
Site-specific differences in renal ENaC regulation are in-
creasingly being recognized. In this context, it is notewor-
thy that in Tmprss22/2 mice, like in wild-type mice,
baseline ENaC currents in DCT2/CNT were significantly
larger than those in CNT/CCD. This is in good agreement
with the emerging concept that, unlike in CNT/CCD,
baseline ENaC currents in DCT2/CNT are aldosterone-
independent, albeit not independent of the mineralocorti-
coid receptor.6–11,59 In conclusion, our patch-clamp
studies in microdissected tubules indicated that in
TMPRSS2-deficient mice, proteolytic ENaC activation at
the apical surface of tubular cells was incomplete mainly
in CNT/CCD but also in DCT2/CNT.

In kidney tissue from Tmprss22/2 mice maintained on
standard diet, the fraction of partially cleaved g-ENaC was
increased compared with wild-type controls. It is tempting
to speculate that a pool of incompletely cleaved g-ENaC
builds up to compensate for the insufficient generation of
fully cleaved g-ENaC because of TMPRSS2 deficiency. In-
deed, TMPRSS2-deficient mice had no overt phenotype and
adequately reduced their renal sodium excretion when
challenged with a low-sodium diet. Moreover, under base-
line conditions as well as under sodium restriction, their
natriuretic response to acute administration of amiloride
was similar to that of wildtype mice. Thus, overall ENaC
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Figure 6. Whole-cell current recordings in microdissected tubules revealed impaired proteolytic ENaC activation in Tmprss22/2 mice.
(A) Representative whole-cell current traces are shown from DCT2/CNT and CNT/CCD isolated from Tmprss21/1 and Tmprss22/2 mice,
as indicated. Presence of amiloride (4 mM) and trypsin (20 mg/ml) in the bath solution is indicated by black and gray bars, respectively.
Unless trypsin was added, all bath solutions contained 2 mg/ml SBTI to reduce the risk of a contamination with trypsin. A dotted line
indicates zero current level. Timepoint of trypsin application or of mock solution exchange in time-matched control experiments is
referred to as 0 minute and marked with a dashed vertical line. (B) Summary of normalized amiloride-sensitive current values (DIami) from
similar experiments as shown in (A) with trypsin application (filled circles) and from time-matched control recordings shown in
Supplemental Figure 23 (crosses) displayed on a logarithmic scale. For each cycle of amiloride washout and reapplication, DIami was
calculated by subtracting the current value measured immediately before amiloride application from that reached in the presence of
amiloride. DIami values determined at different time points in each individual recording were normalized to the DIami obtained in the
second cycle of the same experiment (at t521), that is, from the amiloride application just before trypsin application or mock solution
exchange. Absolute DIami values are shown in Supplemental Figure 23B. It is noteworthy that the slow time course of spontaneous current
runup observed in time-matched control recordings in CNT/CCD was clearly different from the rapid stimulatory response to trypsin,
which usually reached a maximum within 3 to 5 minutes followed by a gradual current decline. The latter probably resulted from ENaC
degradation during prolonged trypsin exposure. Mean6SEM are shown with symbols and error bars. P values from the Kruskal–Wallis test
of log-transformed values comparing trypsin application and time-matched control: 0.1 (first), ,0.001 (second), 0.6 (third), 0.02 (fourth).
(C) Summary of baseline DIami values obtained in the second cycle of amiloride washout/reapplication (t521) from the same experiments
shown in (A) and (B) and in Supplemental Figure 23. Mean6SEM and individual data points are shown. Sex is indicated with open (female)
and closed (male) symbols. One-sided Wilcoxon signed-rank test with Bonferroni correction for multiple testing. (D) Summary of
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activity in TMPRSS2-deficient mice was similar to that in
wild-type mice. This indicated that animals were able to
compensate for impaired g-ENaC cleavage caused by
TMPRSS2 deficiency.

Compensation for TMPRSS2 deficiency was probably
achieved by an increased stimulation of the renin-
angiotensin-aldosterone axis. This was evidenced by
the significantly higher aldosterone levels reached in
TMPRSS2-deficient mice compared with control mice
when animals were challenged with a sodium-deficient
diet, in particular in combination with a high potassium
intake. The latter combination is a particularly strong
stimulus for aldosterone secretion and ENaC activation.
In this context, it should be noted that a local increase in
basolateral potassium concentration may also directly
stimulate renal ENaC activity.60 Moreover, angiotensin
II can stimulate ENaC by aldosterone-independent
mechanisms in particular in DCT2/CNT,59 and addi-
tional factors independent of g-ENaC cleavage may
modulate ENaC open probability.61,62

Interestingly, Western blot analysis of kidney tissue
from sodium-restricted mice did not reveal differences in
overall ENaC expression and g-ENaC cleavage pattern
between wild-type versus TMPRSS2-deficient mice. How-
ever, with our experimental approach, we cannot distin-
guish between ENaC in the cytosol and at the apical
membrane. Moreover, unlike our patch-clamp experiments
in microdissected tubules, our Western blot analysis could
not distinguish between ENaC expression in DCT2/CNT
versus CNT/CCD. Thus, we may have missed subtle dif-
ferences between wild-type and Tmprss22/2 mice regard-
ing the expression level and cleavage state of g-ENaC, in
particular at the apical cell surface in CNT/CCD. More-
over, additional endogenous proteases may contribute to
ENaC activation in sodium-restricted mice and may at least
in part compensate for the loss of TMPRSS2 activity, in
particular in the DCT2/CNT.

During preparation of this article, a study was published
on TMPRSS2-ko mCCDcl1 cell lines generated by clonal
selection.34 TMPRSS2 deficiency in these cell clones was
associated with a strong downregulation of a-ENaC
mRNA expression that essentially abrogated ENaC cur-
rents.34 By contrast, in our study, we generated polyclonal
TMPRSS2-ko cells to avoid any clonal off-target effects.
In our TMPRSS2-ko mCCDcl1 cells, we could reliably detect
amiloride-sensitive ISC and observed no transcriptional
downregulation of a-ENaC. Thus, the different methods
of cell line generation might explain the different results
obtained in the two studies. Importantly, our Western
blot analysis (Figure 4 and Supplemental Figures 14, 15,
21, and 22) and immunostaining experiments in mouse
kidney (Figures 3 and 5A), as well as the observation
that the natriuretic response to amiloride was simi-
lar in Tmprss21/1 and Tmprss22/2 mice (Supplemental

Figure 16), argue against a substantial downregulation of
ENaC expression by TMPRSS2-ko in vivo.

Increased ENaC activity is likely to contribute to the
pathophysiology of essential hypertension, in particular in
a subset of patients with salt-sensitive hypertension.63

TMPRSS2 may emerge as novel pharmacological target
to reduce ENaC activity in the context of hypertension.
Indeed, previous studies have demonstrated a BP-lowering
effect of the protease inhibitor camostat mesylate in Dahl
salt-sensitive rats.64,65 This was attributed to an attenuation
of proteolytic ENaC activation.

In summary, our data show that TMPRSS2 contributes
to proteolytic ENaC activation in the kidney, particularly in
CNT/CCD where ENaC activity is aldosterone-dependent.
In the future, the development of specific TMPRSS2
inhibitors66,67 may open new therapeutic perspectives
to limit proteolytic ENaC activation in the kidney in
disease states with inappropriately high ENaC activity.
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