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Highlights Impact and implications
� Increasing prevalence of MASLD warrants new cellular
models for drug development.

� In vitro model of steatotic primary human hepatocytes re-
capitulates MASLD phenotypes.

� Firsocostat rescued steatosis and insulin resistance,
providing proof of concept.
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Due to low drug efficacy and high toxicity, clinical treatment
options for metabolic dysfunction-associated steatotic liver
disease (MASLD) are currently limited. To facilitate earlier stop-
go decisions in drug development, we have established a pri-
mary human steatotic hepatocyte in vitro model. As the model
recapitulates clinically relevant MASLD characteristics at high
phenotypic resolution, it can serve as a pre-screening platform
and guide target identification and validation in
MASLD therapy.
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Background & Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic
liver disease. Owing to limited available treatment options, novel pre-clinical models for target selection and drug validation are
warranted. We have established and extensively characterized a primary human steatotic hepatocyte in vitro model system that
could guide the development of treatment strategies for MASLD.
Methods: Cryopreserved primary human hepatocytes from five donors varying in sex and ethnicity were cultured with free fatty
acids in a 3D collagen sandwich for 7 days and the development of MASLD was followed by assessing classical hepatocellular
functions. As proof of concept, the effects of the drug firsocostat (GS-0976) on in vitro MASLD phenotypes were evaluated.
Results: Incubation with free fatty acids induced steatosis, insulin resistance, mitochondrial dysfunction, inflammation, and al-
terations in prominent human gene signatures similar to patients with MASLD, indicating the recapitulation of human MASLD in
this system. The application of firsocostat rescued clinically observed fatty liver disease pathologies, highlighting the ability of the
in vitro system to test the efficacy and potentially characterize the mode of action of drug candidates.
Conclusions: Altogether, our human MASLD in vitro model system could guide the development and validation of novel targets
and drugs for the treatment of MASLD.

© 2024 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
Metabolic dysfunction-associated steatotic liver disease
(MASLD) is the most common liver disease with a prevalence of
25% in the general population.1 Strongly associated with
obesity, type 2 diabetes (T2D), and dyslipidemia, MASLD pa-
thologies range from rather harmless hepatic steatosis (meta-
bolic dysfunction-associated steatotic liver, MASL) to the more
severe form of metabolic dysfunction-associated steatohepa-
titis (MASH), formerly referred to as non-alcoholic steatohe-
patitis (NASH). MASH is characterized by liver inflammation and
fibrosis and can further develop into cirrhosis and hepatocel-
lular carcinoma (HCC) – end-stage liver diseases for which liver
transplantation remains the only cure.

Just recently, the FDA approved the thyroid hormone re-
ceptor agonist resmetirom for the treatment of MASH (clinical
trial no. NCT03900429).2,3 Whether this is sufficient to cure all
stages of MASLD is yet to be seen, as no other drugs are
currently available.4 Treatment strategies usually center around
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lifestyle and dietary interventions; however, patient compliance
is rather low and thus the disease can progress to cirrhosis,
HCC, portal hypertension, encephalopathy, and liver failure.5

As the forecasted number of patients is set to rise to two
billion worldwide in the next 5-10 years,6 the management of
MASLD and its associated complications will cost billions of
dollars, representing an immense socioeconomic burden.
Moreover, MASLD is considered a high-risk factor for meta-
bolic comorbidities strongly associated with the progression of
cardiovascular diseases,7 hypercholesterolemia, and severity
of T2D,8 thus restricting MASLD progression should also have
benefits on other metabolic diseases. Therefore, there is a
strong need for reliable and effective drugs to treat MASLD.
However, many recent attempts to develop new MASH phar-
macotherapies have failed in phase IIb and III clinical trials due
to toxicity and low efficacy, questioning target selection.9

The disease progression to MASH is complex and involves
triglyceride (TG) accumulation, insulin resistance, mitochondrial
dysfunction, and inflammation,10 including activation of Kupffer
ulty Mannheim, Heidelberg University, Mannheim, Germany.
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cells and hepatic stellate cells. However, dietary and environ-
mental factors, genetic predisposition,11 and crosstalk between
the liver and other organs, such as adipose tissue, also
contribute to the development of MASLD.12 Due to the
complexity of the pathogenic mechanism, the discovery of
efficacious cellular targets and pharmaceutical drugs has been
extremely complicated. The translational capability of MASLD-
mimicking dietary studies in mice appears to be limited,13

calling for additional screening strategies and platforms for
more effective drug screening prior to human translation.

To overcome this gap, human hepatic cell lines, hepatocyte-
like cells, and primary human hepatocytes (PHHs) have been
developed as in vitro cell culture models.14 Human cell lines are
widely used in academic research and by the pharmaceutical
industry thanks to their capacity for long-term culture. How-
ever, due to their immortalization they do not maintain meta-
bolic and cell type-specific (hepatocyte-like) functions.15 This
makes them less predictable and usable for drug screening in
MASLD. In contrast, primary hepatocytes, which are directly
isolated from the liver, have the capacity to maintain their
glucose and lipid metabolic profiles. Culturing primary mouse
and human hepatocytes in a 3D collagen sandwich system
ensures their bipolar hepatocyte-like morphology16 and thus
their metabolic functions in glucose and lipid homeostasis.17–19

Although such 3D culture models are used for general drug
toxicology studies on liver function,20 they have not been
applied to a MASLD setup. In addition, no existing MASLD
in vitro system systematically investigates to what extent such
models mimic all aspects of human MASLD pathologies.

In this study, we present a robust 3D human steatotic
hepatocyte in vitro system that recapitulates major hallmarks
of MASLD, including steatosis, insulin resistance, mitochon-
drial dysfunction, and inflammation. Using PHH cultures from
five donors we show that their transcriptome signature is
similar to that of patients with MASLD. Given its reversibility
and a positive proof-of-concept evaluation of the MASLD
drug firsocostat (GS-0976, currently in a phase IIb clinical
trial; no. NCT03449446), our system provides a screening
platform that can be used for validation studies and guide
stop-go decisions in early-phase MASLD therapeu-
tic development.

Materials and methods

Donor information

Cryopreserved PHHs were purchased from Lonza Group Ltd
(Valais, Switzerland) or BioIVT (Westbury, U.S.A; West Sussex,
U.K); information on single-donor hepatocytes is indicated in
Table S1. Usage of PHHs from individual donors per experi-
ment is indicated in Table S2.

Statistical analysis

Statistical analysis was performed in GraphPad Prism (v9.5.1)
using Student’s t test (two-tailed, unpaired), or one-way or two-
way ANOVA. The p values were corrected with multiple com-
parisons via the two-stage step-up method of Benjamini,
Krieger, and Yekutieli. p <0.05 was considered statistically
significant. Data represent group means±SEM. *p <0.05, **p
<0.01, ***p <0.001, and ****p <0.0001, calculated by unpaired
two-tailed t test or two-way ANOVA.
Journal of Hepatology, Janu
More information can be found in the supplementary CTAT
table and supplementary information file.

Results

Treatment with free fatty acids induces steatosis and
lipotoxicity in PHHs

Induction of steatosis in hepatocytes is usually achieved by
incubating these cellswith relatively high amounts of palmitic acid
(PA) and oleic acid (OA), themost abundant free fatty acids (FFAs)
in the human diet.21 This treatment is known to induce steatosis
but also cytotoxicity and cell death in primary cultures of rat and
human hepatocytes.21 However, human MASLD development
starts by accumulation of neutral lipids and TG, stored in lipid
droplets (LD), without causing cell death of hepatocytes in early
stages.22 To better mimic the human disease condition, we
established an in vitro system that develops steatosis while
maintaining cell viability. We cultured PHHs from amale Hispanic
donor, with normal body mass index, no alcohol consumption,
and no diabetes (Table S1). The cells were cultured in a 3D
collagen sandwich system, known to be essential for hepatocel-
lular polarity and liver-likemetabolic functions.17 After attachment
and sandwich formation, the cells were incubated with a mixture
of PA andOAat 1:5 ratio at different concentrations of FFA of 150,
300, and 600 lMor BSA alone for 3 and 7 days (Fig. 1A) and their
LD formation and TG accumulation was assessed over time.
Confocal imaging and quantification of the size and occupancy of
LD stained with boron-dipyrromethene (BODIPY) showed pro-
gressive steatosis induction in a time-and dose-dependent
manner (Fig. 1B,C). Consistent with the formation of LD, TG
accumulation also increased (Fig. 1D). To evaluate the effect of
FFA mixtures on cytotoxicity, we measured cell viability and
caspase-3 activity in PHHs and observed an activation of
apoptosis only with high FFA concentrations and lipopolysac-
charide (Fig. 1E,F), but not with the low-concentration FFA
mixture of 25 lMPA and 125 lMOA. Importantly, culturing PHHs
for 7 days did not induce hepatocellular de-differentiation, as al-
bumin release was maintained (Fig. S1A) and no changes in the
expression of de-differentiation markers were observed
(Fig. S1B,C). These data indicate that treatment with low con-
centrations of FFA recapitulates hepatic steatosis without
increasing cytotoxicity and hepatic de-differentiation.

Steatotic PHHs recapitulate insulin resistance leading to
sustained hepatic glucose production

The progression of MASL to severe disease stages is charac-
terized by induction of insulin resistance, mitochondrial
dysfunction, and inflammation.23,24 However, most in vitro
models do not consider these different hallmarks of the dis-
ease. To study to what extent our in vitro system recapitulates
different MASLD pathologies, we first evaluated whether the
incubation of PHHs with low concentrations of FFAs for 7 days
results in insulin resistance. Indeed, induction of steatosis was
associated with an approx. 60% decrease in insulin-induced
phosphorylation of the insulin receptor (IR) and protein kinase
B (AKT) (Fig. 2A–D). Consequently, insulin failed to suppress
hepatic glucose production from steatotic PHHs measured by
glucose release into the medium (Fig. 2E). These data indicate
that steatotic PHHs indeed recapitulate insulin resistance with
the consequence being sustained hepatic glucose production.
ary 2025. vol. 82 j 18–27 19
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Fig. 1. Free fatty acids induce steatosis and lipotoxicity in PHHs. PHHs were treated for up to 7 days with BSA (CTR) or FFA (steatotic PHHs). (A) Representative
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Steatotic PHHs show mitochondrial dysfunction and
induction of pro-inflammatory and fibrotic states

As lipid accumulation and insulin resistance in the liver are
associated with mitochondrial dysfunction,25 we next evaluated
the oxygen consumption rate (OCR) in steatotic PHHs vs. BSA-
treated controls. Interestingly, steatotic hepatocytes exhibited
a reduction in OCR, basal respiration, and ATP production
(Fig. 3A,B) by approx. 30 to 35%. Moreover, fatty acid beta-
oxidation (FAO) was reduced by 44% (basal FAO) and 42%
(maximal FAO) (Fig. 3C,D), indicating impaired mitochondrial
function. This coincided with a fragmentation of the mito-
chondrial network, as assessed by staining of the mitochondrial
outer membrane with TOM20 (Fig. 3E–G). This was consistent
with commonly found mitochondrial abnormalities in mouse18
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and human cases of MASLD.26 Interestingly, mitochondria
have been shown to adapt and increase oxidative capacity in
obese patients with simple hepatic steatosis. However, with
more advanced stages of MASLD, hepatic mitochondrial
function declines,27 suggesting that our system recapitulates a
more severe stage of MASLD.

The progression of MASH is driven by the occurrence of
inflammation, which is a key clinical hallmark of severe fatty liver
disease. Although hepatic stellate and Kupffer cells are the main
drivers of liver inflammation,28 their activation and recruitment
also depend on the inflammatory state of hepatocytes. Inter-
estingly, FFA treatment for 7 days increased gene expression of
pro-inflammatory cytokines in steatotic PHHs (Fig. 3H) and
enhanced TNF-a (Fig. 3I) and TGF-b (Fig. 3J) secretion into the
L
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Model of steatosis in primary human hepatocytes
medium, even in the absence of immune cells. Pro-inflammatory
cytokines caused an intrinsic activation of fibrotic gene
expression of pro-collagens and their transcription factor SOX9
(Fig. 3H), supporting an advanced inflammatory state of the
PHHs. Importantly, this was not caused by hepatic stellate cell
contamination of our cell culture system. As determined by
RNA-Seq, stellate cell-specific genes were either expressed at
very low levels (ACTA2 and LRAT) or could not be detected at all
(VIM and DCN) in both control and FFA-treated cells relative to
hepatocyte marker genes (ALB and TF) (Fig. S2). Furthermore,
none of these genes were upregulated in FFA-treated compared
to control cells, indicating that the increased pro-collagen gene
expression could be attributed to hepatocytes, rather than he-
patic stellate cells. In fact, we observed an increased release of
alanine aminotransferase and aspartate aminotransferase into
the medium from the PHHs (Fig. 3K,L), demonstrating detri-
mental effects of long-term lipid exposure on hepatocellular
health. To elucidate the underlying molecular mechanisms of
the observed MASLD phenotypes, we analyzed cell stress and
injury pathways. Interestingly, expression of endoplasmic re-
ticulum (ER) stress-related marker genes and proteins (Fig. S3A-
C), cleavage of caspase-3 (Fig. S3D,E), and reactive oxygen
species (ROS) production (Fig. S3F) were all elevated in stea-
totic PHHs. This strongly suggests that induction of cell stress
and injury upon FFA treatment contributes to MASLD devel-
opment. Altogether, these data demonstrate that the steatotic
PHH in vitro system recapitulates major hallmarks of MASLD
and can be used to evaluate drugs targeting specific features of
the human disease.
Development of fatty liver pathologies is reversible,
predictive, and reproducible

Essential for an in vitro system for effective drug and target
validation are 1) reversibility, 2) predictability, and 3) repro-
ducibility of the observed disease phenotypes. For this, we first
tested whether steatosis and insulin resistance could be
rescued by simply removing FFAs from the medium. Hence,
PHHs were cultured for 3 days with 150 lM FFAs followed by
incubation with FFA-free medium for an additional 4 days vs.
full treatment with FFAs for 7 days. As expected, exposure to
FFAs induced LD accumulation and insulin resistance already
after 3 days, which could be reduced by changing the medium
to BSA alone (Fig. S4). Interestingly, although the removal of
FFAs only partially reduced LD size and occupancy (Fig. S4A-
C), it completely rescued the effect of FFAs on insulin resis-
tance (Fig. S4D-H), suggesting that lipid accumulation may not
directly cause insulin resistance and lipotoxicity.

To further examine its potential utility as a drug validation
platform, we tested whether findings from clinical and rodent
studies can be phenocopied within the human MASLD in vitro
system. Drugs against MASLD are designed to either block
excessive lipid deposition or decrease hepatic inflammation
and fibrosis.29,30 Thus, a potent drug candidate is firsocostat,
an inhibitor of acetyl-CoA carboxylases (ACC) 1 and 2. These
rate-limiting enzymes cause lipid accumulation by promoting
de novo lipogenesis (ACC1) and by blocking fatty acid beta-
oxidation (ACC2).31 Indeed, inhibition of ACC1/2 by firsoco-
stat reduces hepatic steatosis in humans32 and improves in-
sulin resistance in animal models.33 Treating PHHs, where
steatosis was induced for 3 days, with medium containing FFA
22 Journal of Hepatology, Janu
plus 10 lM firsocostat for an additional 4 days remarkably
reduced the area and size of LDs (Fig. 4A–C). In addition, TG
levels were significantly reduced (Fig. 4D), in agreement with
the human patient data. As firsocostat was shown to improve
insulin sensitivity in rodents, but has not been evaluated in
humans, we assessed the ability of steatotic PHHs to respond
to insulin stimulation after firsocostat treatment by measuring
phosphorylation of the IR. Interestingly, exposure to firsocostat
for 4 days reduced insulin resistance by approx. 50%
(Fig. 4E,F), indicating a positive effect of firsocostat on insulin
sensitivity in steatotic PHHs.

As our PHH culture recapitulates additional features of
MASLD development, we tested whether firsocostat influences
mitochondrial function, FAO, and inflammation. Interestingly,
treatment with firsocostat strongly enhanced mitochondrial
OCR (Fig. 4G,H), had no effect on basal beta-oxidation, but
restored maximal FCCP-induced oxidation (Fig. 4I,J) and
partially improved pro-inflammatory markers, especially TGF-b
and CCL2 (Fig. 4K).

As there are genetic variations between patients with
MASLD, it is essential to establish an in vitro system that can
reproduce the different disease phenotypes independently of
ethnicity and sex.34 Thus, we expanded our analysis to four
additional hepatocyte donors, including Asian, Caucasian, and
African American ethnicities, coming from two female and two
male donors (Table S1). All were selected to have normal body
mass index, no diabetes, and no or only social alcohol con-
sumption, similar to the male Hispanic donor used to establish
the MASLD in vitro system (Fig. 1-4). Thus, we tested the
MASLD phenotypes side-by-side in those donors with or
without firsocostat and indeed observed a robust induction of
LD formation (Fig. 5A–C), TG accumulation (Fig. 5D), and insulin
resistance (Fig. 5E,F) when treated with a 150 lM FFA mixture
for 7 days. Interestingly, a reduction in OCR in response to FFA
treatment was only observed in PHHs from male, but not fe-
male donors, suggesting a sex-dependent difference in lipid-
induced mitochondrial dysfunction (Fig. S5A-D). Indeed, stea-
totic PHHs from female donors exhibited no fragmentation of
the mitochondria, in agreement with unchanged OCR
(Fig. S5E-J). Importantly, firsocostat was able to improve both
steatosis and insulin sensitivity in all donors, albeit to different
degrees. As expected, firsocostat only restored mitochondrial
respiration in male donors (Fig. 5C,D). To exclude the possible
contribution of technical variations to the observed donor-to-
donor heterogenetic responses, we estimated the standard
deviations between independently measured induction of
steatosis, TG accumulation, and insulin resistance and their
improvement upon firsocostat treatment of PHHs from the
Hispanic donor. Interestingly, technical variations fluctuated
only slightly but not significantly between different experiments
(Fig. S6) and thus could not contribute to the variations be-
tween donors. Altogether, these data provide a proof of
concept of the steatotic PHH in vitro system to recapitulate
clinical findings of MASLD drugs and to evaluate additional
parameters associated with MASLD pathologies.
Steatotic PHH in vitro system recapitulates gene signatures
associated with MASLD/pre-MASH from patient samples

To elucidate to what extent the steatotic PHH in vitro system
reproduces known gene signatures of patients with MASLD, we
ary 2025. vol. 82 j 18–27
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conducted RNA sequencing (RNA-Seq) of PHH samples from
five donors treated side-by-side with FFA vs. BSA control over
a 7-day period. The principal component analysis (PCA)
revealed a clear separation between samples from donors of
different sexes, as well as different ethnicities (Fig. S7). How-
ever, we still observed a separation between BSA- and FFA-
treated samples within the cluster of single donors, indicating
the effect of FFA was reflected also on a transcriptional level
(Fig. S7). We found 405 transcripts to be differentially
expressed in PHHs, where the LD coating protein perilipin-2
(PLIN2) was most highly up-regulated,35 confirming massive
lipid accumulation (Fig. 6A). Interestingly, in combination with
clinical parameters, the PLIN2 protein in monocytes is a novel
liquid biopsy biomarker for MASH, superior to clinically used
indexes of MASLD.36 Pathway enrichment analysis of the 405
Journal of Hepatology, Janu
transcripts identified multiple pathways linked to fatty acid
metabolism and signaling (Fig. 6B), consistent with tran-
scriptome data from liver samples of patients with MASLD.37

As genetic predisposition is a strong driver of MASLD, we
used RNA-Seq to assess the occurrence of genetic variants
potentially driving the fatty liver development. Among the
detected risk alleles GCKR, TM6SF2, PNPLA3, and SERPINA1
(Table S3), we observed a clear heterogeneity among the five
donors. These data indicate that the induction of MASLD is
independent of risk variants.

To test if the observed transcriptional changes recapitulate
changes in patients with MASLD, we aligned 405 differentially
expressed genes (DEGs) from our dataset against 870 MASLD
liver samples from expression studies available at the GENE-
VESTIGATOR expression database(38). Strikingly, we observed
ary 2025. vol. 82 j 18–27 23
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Model of steatosis in primary human hepatocytes
a high similarity of the steatotic PHHs with many MASLD
studies, with a Pearson correlation starting at 0.797 (Fig. 6C
and Table S4), indicating a profound similarity of our PHH
system to the transcriptional profiles of patients with MASLD.
To verify expression changes related to fatty acid metabolism,
we assessed individual gene alterations using qPCR, and
indeed observed a strong increase of de novo lipogen-
esis (Fig. 6D).

Moreover, the principal component analysis clustered the
steatotic PHHs with MASLD transcriptomes (Fig. S7B). Inter-
estingly, our unbiased GENEVESTIGATOR analysis also indi-
cated some similarities of the PHH gene signatures to human
MASH studies. By comparing the 405 DEGs to MASH tran-
scriptomes, we identified 41 genes (Fig. S7C), with many
24 Journal of Hepatology, Janu
associated with extracellular matrix regulation (CDHR2,
TM4SF5), epithelial-mesenchymal transition (PHLDB2, FUT6,
CHI3L1), or cancer (TM4SF5, FUT6, B3GNT3, SEMA4B)
(Table S5). Interestingly, we also detected SLC17A4, a novel
thyroid hormone transporter3,38 amongst the commonly altered
genes. Given the newly approved MASH drug Rezdiffra
(resmetirom),2,3 these data further support the PHHs as a po-
tential tool for MASH drug development.

To allow for an accurate prediction of expression changes
related to impaired insulin sensitivity and elevated lipid storage
in steatotic PHHs, we applied a machine learning approach, the
LASSO regression. The 405 DEGs were tested in 1,000 random
prediction models in relation to these two phenotypes. A model
was designated successful if the estimated phenotype values
ary 2025. vol. 82 j 18–27
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were less than 10% different from the measured ones in at least
50% of the samples. LASSO regression identified seven
models for the effect on insulin sensitivity and nine for
increased TG concentration. The ranking of the genes to be
predictive of changes in phosphorylation of the IR and TG
content is based on their occurrence in successful models. In
total, 60 genes were estimated to be predictive of decreased
insulin sensitivity (Fig. S8A) and 103 genes of elevated TG
content (Fig. S8B). Interestingly, 39 genes were among suc-
cessful models for both phenotypes and focusing on those that
are detected in at least 50% of the models are nine candidates,
which are all well established in MASLD (Fig. S8C). Also, the
lists of genes exclusively predicting insulin sensitivity and TG
content contain genes known to participate in fatty liver
development. However, there are also genes that may be novel
prediction markers (DEFB1, TCIRG1, TMEM37, and TMEM45A)
and involved in MASH progression.

Discussion
Here, we present an in vitro 3D culture system of primary hu-
man steatotic hepatocytes that recapitulates clinically relevant
characteristics of MASLD at high phenotypic resolution,
including parameters of insulin resistance, mitochondrial
dysfunction, and increased inflammation. Expression profiling
and pathway analyses confirmed the resemblance of
Journal of Hepatology, Janu
transcriptional changes to those in patients at different stages
of MASLD, supporting the robust FFA-induced alterations on
the gene level. Furthermore, LASSO regression identified both
well-known and novel prediction marker genes for impaired
insulin sensitivity and increased lipid storage.

The tremendous increase in numbers of patients with fatty
liver diseases, inflammation, and associated metabolic dis-
eases poses an unmet demand for new therapeutic ap-
proaches. Unfortunately, there is currently no drug approved
for this indication, mainly because of the lack of efficacy,
occurring toxicity, or limited usability for the different clinical
aspects of MASLD. This is primarily due to the use of drug
screening approaches that are incapable of phenocopying
complex hepatic functions under disease development. Most
of the normally used screening models involve short-term
cultures (12-48 h) of hepatic cell lines or primary cells with
excess FFA concentrations (up to 600 lM).39 However, such
high concentrations exceed physiological levels and thereby
develop artificial cytotoxicity as well as inappropriate drug re-
sponses.40 In addition, normal 2D cultures of hepatocytes lose
their in vivo identity within 24 h and undergo epithelial-
mesenchymal transition, thus changing their metabolic pro-
gram away from a metabolically specialized cell.41 In contrast,
cultures of primary mouse and human hepatocytes in 3D
collagen sandwiches maintain hepatocellular polarity and thus
ary 2025. vol. 82 j 18–27 25
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liver-like metabolic functions.17–19 Combining this with low
concentrations of FFA (150 lM) given over longer periods of
time (up to 7 days) to induce steatosis allows for an in vitro
MASLD model system with low intrinsic toxicity and high he-
patocellular functionality.

As our system is purely based on hepatocytes, complete
MASH development cannot be mimicked due to the lack of
multicellular crosstalk with intrahepatic immune cells. Never-
theless, manifestation of liver steatosis can exacerbate hepatic
inflammation, leading to the release of pro-fibrotic and pro-
inflammatory cytokines.42 Interestingly, we observe an in-
crease in pro-inflammatory gene expression and an induction
of TNF-a and TGF-b secretion, emphasizing an intrinsic acti-
vation of the inflammatory program towards MASH transition.
This was associated with the release of alanine aminotrans-
ferase and aspartate aminotransferase and mitochondrial
dysfunction, further strengthening the progression of the PHHs
to a pre-MASH state. Having these well-known MASLD bio-
markers in place, this screening platform can also be used for
lipotoxicity testing of novel drugs in a human setting.

The use of different donors allowed us to define the most
robust phenotypes of MASLD. Despite the differences in sex
and ethnicity, the induction of steatosis and insulin resistance
are conserved amongst all donors and represent the most
robust readouts for drug efficacy. This system also allows for
predictions of potential differences in patients’ long-term re-
sponses to drugs, which can be followed up and would have
been overlooked when using pooled hepatocytes of multiple
26 Journal of Hepatology, Janu
donors, which is common practice in the pharmaceutical in-
dustry.39 Interestingly, we observed that none of the female
donors showed FFA-induced mitochondrial dysfunction, sug-
gesting an effect of sex on mitochondrial sensitivity to FFA. This
agrees with patient data, where the susceptibility for developing
MASLD is lower in females than in males.43,44 However, due to
low numbers of donors used here, these are only individual
observations. Using cells from higher numbers of donors of
similar ethnicity, sex, and age would help to draw stronger
conclusions on individual genetic-based mechanisms on donor
responses to treatments. In addition, employing hepatocytes
differentiated from induced pluripotent stem cells from individ-
ual patients grown in spheroids39 could be used to develop
strategies for personalized treatment against MASLD.45

The current understanding is that dietary fat, FFAs from
adipose tissue, and de novo liver lipogenesis triggered by
carbohydrates, are the main contributors to the pathophysi-
ology of MASLD. These factors may further contribute to the
progression of fibrosis by inducing insulin resistance and
inflammation. Our system demonstrates that FFAs alone are
sufficient to realistically mimic MASLD in vitro. In future studies,
our system will be used to investigate the precise role of other
substrates, including high levels of glucose, fructose, and
cholesterol in the pathogenesis of MASLD. At the current stage,
this platform represents a pre-clinical validation system for
addressing efficacy and toxicity of MASLD drugs in a human
setting, thereby potentially reducing the reliance on animal
experiments and helping to guide clinical trials.
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