
Pharmacological Advances in Incretin-Based
Polyagonism: What We Know andWhat We
Don’t

The prevalence of obesity continues to rise in both adolescents and adults, in

parallel obesity is strongly associated with the increased incidence of type 2

diabetes, heart failure, certain types of cancer, and all-cause mortality. In rela-

tion to obesity, many pharmacological approaches of the past have tried and

failed to combat the rising obesity epidemic, particularly due to insufficient effi-

cacy or unacceptable side effects. However, while the history of antiobesity

medication is plagued by failures and disappointments, we have witnessed

over the last 10 years substantial progress, particularly in regard to biochemi-

cally optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R)

and unimolecular coagonists at the receptors for GLP-1 and the glucose-de-

pendent insulinotropic polypeptide (GIP). Although the GIP receptor:GLP-1R

coagonists are being heralded as premier pharmacological tools for the treat-

ment of obesity and diabetes, uncertainty remains as to why these drugs testify

superiority over best-in-class GLP-1R monoagonists. Particularly with regard to

GIP, there remains great uncertainty if and how GIP acts on systems metabo-

lism and if the GIP system should be activated or inhibited to improve meta-

bolic outcome in adjunct to GLP-1R agonism. In this review, we summarize

recent advances in GLP-1- and GIP-based pharmacology and discuss recent

findings and open questions related to how the GIP system affects systemic

energy and glucose metabolism.
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Identification of GIP and GLP-1 as
Incretin Hormones

Starting with the observation in 1906 that intestinal
mucosal extracts decrease glucosuria in diabetic
patients (1), the intestine has long been recognized to
control glucose metabolism (2, 3). A seminal discovery
was the demonstration in 1963–1964 that the glucose-
induced rise in plasma insulin is much greater when
glucose is given orally relative to its infusion into the
general circulation (4–6), an effect henceforth known
as the incretin effect. In 1969–1970, Brown et al. (7, 8)
purified a substance from a crude mucosal cholecys-
tokinin (CCK) preparation that showed inhibitory
action on gut motility and gastric acid secretion.
Based on its ability to inhibit gastric acid secretion, the
substance was named gastric inhibitory polypeptide
(GIP) (9). In 1973, GIP was then shown to accelerate

glucose-induced insulin secretion in healthy humans
(10). Since the insulinotropic action of the peptide,
rather than gastric mobility inhibition, prevailed at
physiological doses (9–14), the peptide was renamed
to glucose-dependent insulinotropic polypeptide
(15). In the early 1980s, Habener et al. (16–18) then
identified a glucagon-like sequence in the anglerfish
preproglucagon cDNA, soon followed by the identifi-
cation of two glucagon-like peptides within the pre-
proglucagon sequence of rats (19, 20), hamsters (21),
and humans (22). The novel peptides showed �50%
sequence homology to glucagon and were suc-
cinctly named glucagon-like peptide-1 and -2 (GLP-1
and GLP-2) (21). Studies by Mojsov et al. (23) and
Holst et al. (24) subsequently showed that progluca-
gon processing results in different forms of GLP-1 in
the intestine and the pancreas and that two NH2-ter-
minally truncated intestinal-originating forms, GLP-1
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(7–37) and GLP-1(7-36NH2), stimulate insulin secre-
tion in the isolated perfused pancreas of pigs (24)
and rats (25). Soon after the demonstration by
Drucker et al. (26) that GLP-1 autonomously acts on
the pancreatic b-cells to potentiate glucose-induced
insulin secretion, Bloom et al. (27) then confirmed in
humans that GLP-1 is a physiological incretin hor-
mone. GLP-1 and GIP jointly account for the vast ma-
jority of the incretin effect, as verified by a largely
blunted incretin effect after adjunct antagonization
(28) or concomitant deletion (29) of the GLP-1 and
GIP receptors (GIPRs) in mice.
Notably, while the incretin effect accounts for 50–

70% of the insulin secretory response to oral glucose in
healthy humans (30–34), this effect is largely blunted in
individuals with type 2 diabetes (T2D) (30–33), an ob-
servation that is primarily attributed to a diminished
insulinotropic action of GIP (35–41). Consequential to
this, although the insulinotropic action of GIP is restored
upon normalization of glycemia (42), the pharmacologi-
cal interest in GIP has ever since been overshadowed
by the pharmacology of GLP-1, which over the next dec-
ades emerged as a pleiotropic hormone with therapeu-
tic value far beyond its initially described role as an
insulin secretagogue. The most prominent extrapancre-
atic effect of GLP-1 is its ability to act on brain feeding
centers to decrease body weight via inhibition of food
intake, an effect first described in rats (43, 44) and sub-
sequently confirmed in mice, birds, nonhuman prima-
tes, and humans (45). GLP-1 receptor (GLP-1R) agonists
act in the brain to mediate homeostatic and hedonic
feeding, with particular importance of the hypothalamic
arcuate nucleus, paraventricular nucleus, hindbrain
area postrema/nucleus of the solitary tract, parabrachial
nucleus, and the hippocampus (46, 47). Consistent with
the key role of central nervous system (CNS) GLP-1R
signaling in the control of energy metabolism, GLP-1R
agonists fail to affect food intake after either antagoni-
zation (48) or genetic deletion (49) of central GLP-1R in
rodents. Agonism at GLP-1R in pre- and postsynaptic
neurons within these aforementioned brain regions
modulates the activity of the intracellular energy sensor
AMP-activated kinase (AMPK), promotes enhanced
neural depolarization and firing rate, and may stimu-
late the trafficking of alternative receptor profiles to
the plasma membrane for outcome-specific optimiza-
tion (50–53). These diverse mechanisms, although
unknown at the time, facilitate the CNS-mediated sa-
tiety effects of exogenously administered GLP-1 in
mice and obese individuals (44, 54–56).

The Use of GLP-1R Agonists for the
Treatment of Obesity and Diabetes

Endogenous GLP-1 has a short circulating half-life of
�1–2min, which is primarily owed to proteolytic inacti-
vation by dipeptidyl peptidase 4 (DPP4) and rapid re-
nal elimination (57, 58). The short half-life severely

limits the therapeutic potential of native GLP-1 to
improve glucose metabolism, and even more so its
antiobesity indication. However, in 1992, Eng et al.
(59) discovered a potent GLP-1 paralog, exendin-4, in
the saliva of Heloderma suspectum that exhibited
improved circulating stability and proteolytic protec-
tion due to a unique alanine to glycine substitution at
the 2nd N-terminal position of the peptide, resulting
in a half-life of �2h (60). The improved half-life of
exendin-4 led to the pharmaceutical development of
an injectable application, which demonstrated anti-
diabetic and certain satiety-inducing effects in
patients with T2D (61–64). A variety of biochemically
optimized GLP-1R agonists were subsequently devel-
oped, using alternative half-life extension strategies
that include increasing the size of the peptide
through either linkage of two GLP-1 molecules (dula-
glutide and albiglutide), or via fatty acid acylation of
the glp-1 backbone (liraglutide and semaglutide).
Such fatty acid acylation allows the peptide to rever-
sibly bind to circulating albumin, with the conse-
quence of delayed renal excretion and the unique
ability of albumin to escape endosomal degradation
(65). In the case of liraglutide, C16 fatty acid acylation
of the GLP-1 backbone allowed for once-daily (QD)
dosing and for a greater focus on achieving antiobe-
sogenic endpoints (66–69). Liraglutide was regis-
tered in 2014 for the treatment of obesity in adults
and in 2020 for obesity in adolescents aged 12–
17 years. When given over 56weeks at the indicated
dose of 3mg QD in obese patients without diabetes,
weight loss attributed to liraglutide is still in the sin-
gle-digit range, but with 33% and 14% of patients los-
ing >10% and >15% body weight, respectively (70).
Semaglutide, an “advanced” form of liraglutide, dif-
fers from liraglutide in that it contains a nonnatural
amino acid [aminoisobutyric acid (AIB)] at position 2
to protect from DPP4 recognition and a C18 fatty
diacid to further enhance albumin binding (65, 71).
These modifications result in a circulating half-life of
�160 h and hence allow for once-weekly (QW) dos-
ing. Semaglutide (2.4mg) was approved by the FDA
for the management of obesity in 2021 and undoubt-
edly has performed successfully on antidiabetic and
antiobesogenic endpoints (72, 73). In phase III trials,
semaglutide (2.4mg QW treatment) over 68weeks
decreased body weight in obese patients without di-
abetes by �14.9%, relative to �2.4% in placebo con-
trols (73). The continued maintenance of body weight
reduction is reliant on continued treatment, as treat-
ment discontinuation results in a rapid rebound of
body weight (74). Yet impressively, the SELECT
phase III trial demonstrates continued semaglutide
treatment (2.4mg) to maintain an approximate �10%
reduction in body weight even over the course of up
to 221weeks, indicating the lack of tachyphylaxis and
sustained weight loss during long-term treatment
(75). This long-term reduction in body weight during
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continued semaglutide treatment is associated with
decreased occurrence of fatal cardiovascular (CV)
events in nondiabetic obese patients with preexisting
CV disease (75). Although Semaglutide sets the
stage for a new era in antiobesity medication, its abil-
ity to decrease body weight in obese patients with
concurrent diabetes is still limited, with placebo-cor-
rected weight loss, after 68weeks of treatment, still
in the single-digit range (76). In summary, biochemi-
cally engineered long-acting GLP-1R agonists testify
as a premier tool for the treatment of obesity and dia-
betes, but the weight loss efficacy of GLP-1R monoa-
gonism remains limited in patients with concurrent
obesity and diabetes.

Is GIPR Signaling a Valuable
Pharmacological Target for the
Treatment of Obesity and Diabetes?

Overshadowed by the pharmacological success of bio-
chemically optimized GLP-1R agonists, GIPR agonism
has traditionally been granted very little, to no, pharma-
cological value for the treatment of obesity and diabe-
tes (45, 77). This is not only attributed to the dampened
insulinotropic action of the hormone under conditions
of T2D (35–41) but also to the observation that GIPR-
deficient mice are protected from diet-induced obesity
(78–81). In line with this observation are reports show-
ing that GIP, particularly under low to absent levels of
insulin, promotes lipogenesis and adipocyte lipid depo-
sition via increased action/secretion of lipoprotein
lipase (82–84). GIP further promotes insulin-induced
glucose uptake (85–87) and conversion of glucose into
lipids (85) by stimulating adipocyte GLUT4 translocation
(87) and by increasing adipocyte insulin receptor affinity
(85–87). In line with these data indicating that GIP has
an energy-conserving nature, genetic, or pharmacolog-
ical inhibition of GIPR signaling decreases intramuscu-
lar lipid accumulation in aged mice (78), and genome-
wide association studies have identified common
genetic loss-of-function variants in the GIP receptor
(GIPR) to be associated with both higher and lower
body mass indexes (88–90). Consistent with this is the
observation that certain GIPR antagonists decrease
body weight and food intake in diet-induced obese
(DIO) mice and nonhuman primates (91), particularly
when given in adjunct to GLP-1R agonism (91, 92).
However, while these data argue that the GIP receptor
should be inhibited rather than activated for the treat-
ment of obesity, in the absence of insulin (or under
baseline insulin levels) GIP stimulates lipolysis in iso-
lated rat adipocytes (93) and differentiated 3T3L1 adipo-
cytes (94) and in humans with T1D (95). This lipolytic
action of GIP is mediated via its ability to promote
cAMP production and can be antagonized by the addi-
tion of insulin, which inhibits cAMP production, or upon
direct inhibition of adenylate cyclase (94). In line with
this notion, GIPR is a Gas-coupled G protein-coupled

receptor and hence not only stimulates cAMP produc-
tion in the pancreatic b-cells (96, 97) but also in insulin-
deprived isolated rat adipocytes (93) and differentiated
3T3L1 adipocytes (94). Consistent with the ability of GIP
at the Gas-coupled GIPR to promote cAMP-driven lipol-
ysis under low insulin conditions, adipocyte-specific
DREADD-mediated Gas activation similarly reduces
body fat and enhances adipocyte lipolysis (98). A single
administration of a long-acting fatty acid acylated (acyl)
GIP further induces fatty acid oxidation in DIO mice
(99), and mice with overexpression of GIP are lean and
show decreased fat mass when chronically exposed to
a high-fat diet (HFD) (100). In summary, GIP differentially
acts on the adipose tissue by stimulating lipolysis under
baseline conditions but by accelerating the antilipolytic
effect of insulin under conditions of hyperinsulinemia
(FIGURE 1).
Notably, data related to GIPR signaling in the adi-

pose tissue are not undisputed, given that mice with
targeted deletion of Gipr in the adipose tissue do
not recapitulate the obesity-protecting phenotype
seen in mice with global Gipr deficiency (101–103).
Reasonable evidence further indicates that Gipr in
the heterogenous adipose tissue is predominantly
expressed in nonadipocyte cell types, including me-
sothelial cells and pericytes (102). The latter is impli-
cated in the regulation of tissue vascularization (104,
105), and as such GIP promotes adipocyte lipid dep-
osition, at least in part, by increasing adipose tissue
blood flow (106, 107). However, these nonadipocyte
effects of GIP on adipose tissue function cannot explain
the various reports that testify to GIP’s direct cell-auton-
omous effect on adipocyte lipid metabolism, as has
been shown in 3T3L1 adipocytes (82–84, 87), as well
as in adipocytes isolated from humans (83, 108) and
rats (85–87, 109). Nonetheless, in contrast to mice with
adipocyte-specific deletion of Gipr (101, 102), mice with
targeted deletion of Gipr in the brain (99), and specifi-
cally in GABAergic neurons (110), show decreased body
weight and fat mass when fed with an HFD. However,
even these neuron-specific Gipr-deficient mice re-
capitulate only a mere fraction of the obesity-pro-
tecting phenotype seen in mice with global Gipr
deficiency (78–81). However, the source of addi-
tional protection against DIO remains unknown, as
tissue-specific knockdown of Gipr in brown adipose
tissue, pancreatic b-cells, and adipose-localized
immune myeloid cells all fail to recapitulate the nor-
malization of body weight seen in the global knock-
out (KO) mice (FIGURE 2) (111–114). In summary, while
a series of studies show GIP promotes lipid storage
under conditions of hyperinsulinemia, GIPR agonism
accelerates cAMP-mediated lipolysis under hypo- or
normo-insulinemic conditions. Additionally, a series
of genetic studies show that protection of diet-
induced obesity in Gipr-deficient mice is partially
mediated via central mechanisms but is unrelated to
GIPR presence in adipose tissue.
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Apart from GIP effects on the adipose tissue,
which seem to vary depending on the presence of
insulin, long-acting GIPR agonists act in the brain to
decrease body weight via inhibition of food intake
(99). Chemogenetic activation of GIPR neurons in ei-
ther the hypothalamus (115, 116) or the hindbrain (116)
decreases food intake, and central administration of
acyl-GIP into the hypothalamic third ventricle dose-
dependently decreases body weight and food intake in
DIO wild-type mice but not in mice with Nestin Cre-
mediated neuronal loss of Gipr (99). In the hypothala-
mus and the hindbrain, Gipr is colocalized with vesicular
GABA amino acid transporter (Vgat), a marker indicative
of inhibitory GABAergic neurons, and deletion of Gipr
specifically in Vgat-expressing neurons is sufficient to
fully block the ability of acyl-GIP to decrease body
weight and food intake in DIOmice (110).
It warrants clarification as to why both activation

and inhibition of the GIP receptor decrease body
weight and fat mass in experimental animals. A pop-
ular hypothesis is that GIPR agonism desensitizes
the GIP receptor and hence leads to functional GIPR
antagonism (117). Chronic GIPR agonism has indeed
been shown to result in reduced GIPR sensitivity in
DIO mice, and in isolated adipocytes (103), but simi-
lar results have been shown for GLP-1 in rat

insulinoma INS-1 cells (118) and for both incretins in
hamster b-cell HIT-T15 cells (119). In addition, even
chronic treatment of DIO mice with acyl-GIP does
not decrease the expression of Gipr in the hypothal-
amus or the adipose tissue (99). While there is cur-
rently no evidence indicating that GIPR agonism
decreases body weight through functional GIPR an-
tagonism, it seems possible that GIPR agonists and
antagonists affect body weight through different
mechanisms and target tissues, with long-acting
GIPR agonists acting on brain satiety centers to affect
food intake, while GIPR antagonists may compete with
endogenous GIP in the periphery to inhibit the lipo-
genic action of endogenous GIP in the adipose tissue
(120). Another possibility is that while GIPR agonism
acts centrally to decrease food intake via activation of
GABAergic neurons (110), GIPR antagonismmay inhibit
GABAergic input into the anorectic GLP-1R positive
glutamatergic neurons, thereby reducing food intake
via unrestrained glutamatergic effect analogous to
GLP-1R agonism. Consistent with this is the observa-
tion that GIPR antagonists primarily decrease food
intake when given together with GLP-1 (91, 92), while
GIPR agonists also decrease food intake and body
weight in mice deficient for GLP-1R (99, 121). While
these hypotheses warrant experimental verification,

FIGURE 1. Schematic of different activation statuses of Gas-coupled G protein-coupled receptors (GPCR) in white adipose tissue, and
the subsequent metabolic effects
A: agonism of the Gas pathway, as mediated by a white adipocyte-specific Gas-coupled DREADD receptor, leads to enhanced cAMP/PKAmediated lipolysis
and decreased lipogenesis in DIO mice. B: agonism of the Gas pathway, as mediated by white adipocyte-specific glucose-dependent insulinotropic polypep-
tide receptor (GIPR), has resulted in contradictory results, with reports of enhanced lipolysis and decreased lipogenesis akin to the Gas-coupled DREADD re-
ceptor, and opposing reports of enhanced lipogenic and decreased lipolytic effects; additionally, there has been conflicting evidence whether GIPR agonism
in the white adipocyte increases intracellular cAMP.C: antagonism of the GIPR, which prevents ligand binding and subsequent Gas pathways activation, has
suprisingly been linked to increases in lipolysis and decreases in lipogenesis. AC, adenylate cyclase.
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GIPR agonism clearly depends on GIPR signaling in the
CNS to decrease body weight and food intake (99, 110),
and while the greatest body weight-lowering effects of
GIPR antagonists are observed using antibody-based
GIPR antagonists (91), antibodies have generally a very
limited ability to reach the brain (122). Nonetheless,
when administered directly into the brain, antibody-
based GIPR antagonists also decrease body weight in

DIO mice, an effect paralleled by improved leptin sensi-
tivity (123). The obesity-protecting phenotype seen in
mice with global GIPR deficiency however cannot be
solely explained by improved leptin sensitivity, as dele-
tion of Gipr in leptin-deficient ob/ob mice reduces body
weight relative to ob/ob controls (81).
Another open question is why pharmacological

GIPR agonism has not been as clearly delineated

FIGURE 2. Schematic on the metabolic phenotype of conditional and global glucose-dependent insulinotropic polypeptide receptor
(Gipr) knockout (KO) mice
Simplified chart describing the role of tissue-specific GIPR knockouts on the degree of protection against body weight gain under chow and high-fat diet or its
requirement for mediating GIPR-based pharmacological-induced weight loss. CNS, central nervous system; DIO, diet-induced obese; GLP-1R, glucagon-like
peptide-1 receptor; RT/TN, room temperature/thermoneutral; VGAT, vesicular GABA amino acid transporter; WAT, white adipose tissue.
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relative to GLP-1R agonism. An important realization is
that the GIP system is evolutionary less conserved
than the GLP-1 system, and human GIP is only a weak
and partial agonist at the mouse GIP receptor (124).
The importance of this has recently been demon-
strated for the GIPR:GLP-1R coagonist tirzepatide,
which is based on the human GIP sequence and stim-
ulates islet insulin secretion in mice predominantly via
the GLP-1 receptor but in human islets via the GIP re-
ceptor (125). In light of this notion, and given that nei-
ther human GIP nor tirzepatide is capable of fully
activating the mouse GIP receptor (124), it is hence not
overtly surprising that tirzepatide decreases body
weight in mice exclusively via the GLP-1 receptor (126).
Consequentially, as tirzepatide shows only weak ago-
nism at the mouse GIP receptor, these data do not
allow for the conclusion that tirzepatide also decreases
body weight in humans exclusively via the GLP-1 recep-
tor. Consistent with this, the GIPR:GLP-1R coagonist
MAR709 is far more potent at the mouse GIP receptor
relative to tirzepatide, and treatment of DIO mice with
MAR709 leads to greater weight loss and further inhibi-
tion of food intake relative to mice treated with a phar-
macokinetically matched GLP-1R agonist (99, 110). In
line with intact GIPR signaling in MAR709, its superiority
to a matched GLP-1R agonist vanishes in mice with neu-
ronal loss of Gipr (99) or when Gipr is specifically
deleted in Vgat-expressing GABAergic neurons (110). In
summary, GIPR agonists that are based on the human
GIP sequence (including tirzepatide) are insufficiently
potent at the mouse GIP receptor and are hence inca-
pable of studying the mode-of-action of GIP-based
drugs in rodents. Nonetheless, if sufficiently active at
the mouse receptor, GIPR agonism decreases body
weight via inhibition of food intake (99, 110) and can be
a vital constituent in unimolecular formulations with
GLP-1R agonism (99, 110, 127, 128). Consistent with this,
central coadministration of low-dose GIP and GLP-1 syn-
ergistically reduces food intake (127), and this effect
correlates with synergistic increases in neural activation
of pro-opiomelanocortin in the hypothalamic arcuate
nucleus (129).
Fatty acid acylation of GLP-1 and GIP has further pro-

ven to be an appreciable biochemical tool to enhance
CNS-driven satiety effects of both GLP-1 and GIP.
Whether such fatty acid acylation increases metabolic
outcome simply by the extended half-life, or maybe
also due to increased brain penetrance, and exposure
of deeper brain structures implicated in energy metab-
olism control, remains to be determined (130, 131). The
observation that neither liraglutide (132) nor semaglu-
tide (133) can cross the blood-brain barrier, however,
suggests that these molecules rather act on the cir-
cumventricular organs to inhibit food intake, and
recent evidence indicates that this is also the case for
GIP (110, 134). Nonetheless, the body weight-lowering
effects of acyl-GIP are preserved in GLP-1R KO mice
(99, 121) but vanish in mice with deletion of Gipr in

either CNS neurons (99) or specifically in GABAergic
neurons (110), hence clearly demonstrating the
involvement of central GIPR signaling in mediating
these effects. In summary, there is ample evidence
indicating that GIP as a single or combination therapy
decreases food intake via central mechanisms, that
these effects are GLP-1R independent, and that these
effects are likely enhanced via acylation.
The pharmacological value of GIP is not restricted to

its insulinotropic and body weight-lowering effects.
GLP-1R monoagonism is frequently associated with
gastrointestinal (GI) adverse effects, predominantly
nausea and vomiting (135, 136). Adverse GI effects are
predominantly observed in the early treatment period
and can be minimized by careful gradual dose escala-
tion (137, 138). The increased rate of GI adverse
events, despite plateauing metabolic benefits, caps
the maximal tolerable dose of semaglutide at 2.4mg
(73). This registered dose of semaglutide is chosen
based on projected pharmacokinetic modeling of a
daily 0.4-mg dose, which exhibited greater than dou-
ble the GI events leading to trial discontinuation than
the next lower dosage of 0.3mg/day (139). It appears
that GIPR agonism in adjunct to GLP-1R agonism miti-
gates the GI adverse event profile of GLP-1R pharma-
cology to ultimately increase both patient compliance
and maximal practical dosage. Coadministration of
both GLP-1 and GIP eliminates the occurrence of GLP-
1-induced emetic episodes in musk shrews (140), dem-
onstrating GIP’s capacity for complimentary antinau-
sea effects. In line with the antiemetic effect of GIP,
the maximal dosing of QW tirzepatide is as high as
15mg, with an adverse event and discontinuation pro-
file comparable to QW semaglutide at 2.4mg (76, 141).
However, given that tirzepatide is a 5:1 unbalanced
GIPR:GLP-1R coagonist that favors the GIP receptor, it
warrants clarification how much of the greater toler-
ability originates from the demonstrated lower po-
tency of tirzepatide at the GLP-1 receptor (142–144)
and/or from the antiemetic effect of GIPR agonism
(140). Also, the mechanism behind the antiemetic
effects of GIPR agonism warrants further clarification.
Recent evidence indicates that the anorectic and aver-
sive effects of GLP-1R agonism are mediated via hind-
brain CCK neurons, and although GIP does not
directly target these neurons, GIPR agonism reduces
conditioned taste avoidance through diminished GLP-
1-induced activation of these neurons (134). The area
postrema/nucleus of the solitary tract is hence sug-
gested to mediate satiety and satiety-related emesis,
and single-cell transcriptomic profiling of the dorsal
vagal complex has revealed that a significant portion
of GABAergic neurons in this region express Gipr (145,
146). It may be coincidental that also the body weight-
lowering effect of GIPR agonism is mediated by Gipr
expressing GABAergic neurons (110), and these neu-
rons may hence not only contribute to the body
weight-lowering effect of the GIPR:GLP-1R coagonist
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tirzepatide but also explain its greater tolerability, and
hence the allowance of higher doses, relative to sem-
aglutide. In summary, central GIPR agonism not only
decreases body weight via centrally mediated inhibi-
tion of food intake, it further decreases the emetic
effect of GLP-1R agonism, an appreciable observation
that may accelerate tolerability and higher dosing of
GLP-1R agonism.

Performance of Tirzepatide versus
Semaglutide on Body Weight in
Humans

Ironically, while no GIPR antagonist has yet been
approved for the treatment of obesity, GIPR agonism
has proven remarkably efficacious in accelerating the
metabolic outcome of GLP-1R agonism, either as
cotherapy (127) or in unimolecular formulation (127,
128). The first unimolecular GIPR:GLP-1R coagonist
was developed in 2013 by DiMarchi et al. (127). The 1st
generation of these molecules (NNC0090-2746/
MAR709) outperformed exendin-4 and liraglutide in
body weight reduction when given at equimolar doses
in obese rodents (127). The GIPR:GLP-1R coagonist tir-
zepatide has been derived from the GIP backbone
and favors GIPR over GLP-1R by approximately fivefold
in binding affinity, and �13-fold in a cAMP reporter
assay (128). In vitro models have demonstrated tirze-
patide to activate both the human GLP-1R and GIPR
differentially within subsequent steps of the signal
cascade to minimally recruit b-arrestin to the GLP-1R,
to possess differential GLP-1R internalization and
endosomal trafficking dynamics, and to ultimately
potently reduce body weight in DIO mouse models
(FIGURE 3) (128, 142, 143). The beneficial metabolic
effects of tirzepatide have been verified in a series of
human studies (147–150) and have resulted in the ap-
proval of tirzepatide for the treatment of T2D in 2022
and for the management of obesity in 2023. Very
recently, the metabolic efficacies of tirzepatide and
semaglutide were compared in real-world settings in
patients with obesity (151). The study included data from
over 41,000 individuals, from which 32,030 received
semaglutide and 9,193 tirzepatide. After 1 year of treat-
ment, weight reduction�5% was achieved in 81.8%
and 64.6% of patients receiving either tirzepatide or
semaglutide, while weight loss�10% was achieved in
62.1% and 38.0%, and�15% in 42.3% and 19.3% of
patients (151). The superiority of tirzepatide over sema-
glutide was reflected by additional weight loss of
�2.3% after 3months of treatment, �4.3% after
6months, and �7.2% after 12months, with no changes
between tirzepatide and semaglutide on the occur-
rence of GI adverse effects at any time point (151).
Collectively, these data demonstrate that tirzepatide
outperforms semaglutide in body weight endpoints
without compromising its tolerability. In line with these
data, the SURMOUNT-1 trial demonstrates �11.9%,

�16.4%, and �17.8% placebo-corrected body weight
loss at the used doses of 5, 10, and 15mg of tirzepatide
in nondiabetic obese patients over the course of
72 weeks of treatment (152). The lowest dose (5mg)
hence achieves roughly the same degree of body
weight reduction as semaglutide 2.4mg (�12.4%) (152).
Interestingly, when considering the 10-mg and 15-mg
groups pooled, the averaged placebo-corrected body
weight loss for tirzepatide is �17.1% with 6.6% patient
discontinuation due to adverse events out of a total
1,266 total patients. This is compared to semaglutide, in
which out of 1,306 total patients, a placebo-corrected
�12.4% reduction in body weight was achieved with
7.0% patient discontinuation (73, 152). Together, this
suggests an approximate 4.5-5% enhancement in body
weight loss with 10/15mg tirzepatide relative to 2.4mg
semaglutide, with approximately the same degree of
adverse events that lead to treatment discontinuation.
These findings suggest that the chemical structure of
tirzepatide, whether it be the GIP-dependent engage-
ment of complementary satiety signals, GIP’s potential
for antiemesis-mediated escalation of GLP-1 compo-
nent dosage, or intrinsic GLP-1R biased agonism, or all
of them, leads to substantial improvements in body
weight-lowering efficacy in nondiabetic obese
individuals. Similarly, the SELECT phase III clinical
trial with semaglutide demonstrates an approxi-
mate �10% reduction in body weight maintained
over a maximum of 221 weeks, and the SUPRASS 4
phase III trial reports tirzepatide’s maintenance of
body weight loss at approximately �26% through
88weeks (75, 153). Importantly, in obese patients
with concurrent T2D, 72 weeks of 10-mg and 15-mg
tirzepatide treatment resulted in �9.6% and �11.6%
reduction in body weight, which is almost double that
of the �6.2% by semaglutide in 68weeks (76, 141).
Similarly, in the SURPASS trials which evaluated the
antidiabetic capacity of tirzepatide in patients with
T2D, secondary end point changes from baseline
body weight by 15mg tirzepatide were as follows:
�11.1% (SURPASS 1: 40weeks), �13.1% (SURPASS 2:
40weeks), �13.7% (SURPASS 3: 52weeks), �12.8%
(SURPASS 4: 52weeks), and �9.2% (SURPASS 5:
40weeks). Together, theSURPASS 1–5andSURMOUNT
2 clinical trials suggest a double-digit average of induced
body weight loss in T2D individuals, despite slight differ-
ences in trial durations (147–150, 154). As mentioned, it is
unknown why tirzepatide performs better on weight loss
within the context of T2D; however, despite the aspects
of GIP’s antiemetic allowance of GLP-1 component dose
escalation, and the potential for intrinsic GLP-1R biased
agonism, it is considerable that the plateau in maximum
HbA1c reduction by tirzepatide occurs within 24weeks,
while reductions in body weight do not plateau until
week 60 (141). Hence, according to the potential for GIPR
resensitization during recovery toward normoglycemic
conditions, these additional weight loss benefits as time
continues may be attributed to the synergistic action
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between GLP-1R and GIPR coagonism on reductions in
food intake and body weight (42, 127–129). In summary,
tirzepatide outperforms semaglutide to achieve greater
weight loss, but itwarrants clarification in human studies if
and to what extend GIPR agonism contributes to better
weight lossefficacyandenhanced tolerability.

GLP-1R Agonism/GIPR Antagonism

Notably, genetic or pharmacological modulation of
the GIP system, whether through loss/gain-of-function
or agonism/antagonism, results in different degrees of
weight loss and protection from obesity (100, 155). In
particular, antimurine GIPR antibodies (muGIPR-Ab)
and peptide-based GIPR antagonists, while not strong
stimulators of body weight loss in DIO mice, hint at
some degree of induced weight loss or protection
against the onset of obesity (91, 92). Nonetheless, it is
clear that antibody- or peptide-based GIPR antagonist

coadministration with GLP-1R monoagonists synergisti-
cally reduces body weight (91, 92). In DIO mice, liraglu-
tide coadministration with a muGIPR-Ab (BWD: �27%)
was superior to liraglutide alone at 80nmol/kg (�15%)
(91) and semaglutide coadministered with a peptide-
based GIPR antagonist (�28%) outperformed semaglu-
tide alone at 3nmol/kg (�12%) (92). As an antihuman
GIPR antibody (hGIPR-Ab) was found to reduce body
weight both as a single therapy and as a combinatorial
therapy with dulaglutide in nonhuman primates (91), a
DPP4-protected GLP-1 was conjugated with a GIPR anti-
body (GIPR-Ab/GLP-1) and developed into the molecule
AMG 133, exhibiting a half-life between 5 and 9days
depending on the species and route of administration
(156). In DIO mice, mGIPR-Ab/GLP-1 reduced body
weight by approximately �30%, approximately double
that of GLP-1 conjugated to a nonspecific antibody (156).
Similar findings were obtained in obese nonhuman pri-
mates, in which 2.5mg/kg of hGIPR-Ab/GLP-1 induced

FIGURE 3. Tirzepatide as a “super” glucagon-like peptide-1 receptor (GLP-1R) agonist?
A–D: simplified schematic describing the alternative intracellular signaling and trafficking dynamics of the GLP-1R at the single receptor level or the global cellular
level elicited by GLP-1R monoagonists such as GLP-1-(7-36NH2) and semaglutide (A and B) or tirzepatide and exendin4-Phe1 (EX4-Phe1) (C andD). GLP-1R signal-
ing and trafficking dynamics following ligand binding and receptor activation by mono-agonists such as GLP-1-(7-36)amide and semaglutide. A1: GLP-1R activation
on the level of direct G-protein interaction is maximal, which includes maximal G protein-coupled receptor (GPCR)-mediated GDP to GTP exchange on the Gas
subunit, and maximal recruitment of GDP-bound Gas to the GLP-1R for continued signaling. A2a: the “activated”GTP-bound Gas is subsequently recruited to ade-
nylate cyclase where it stimulates the amplified production of cAMP. A2b: Simultaneously, b-arrestin is recruited to the GLP-1R to facilitate a braking mechanism
on continued GDP-boundGas recruitment to the ligand-bound GPCR to prevent further signaling. A3: internalization carries the GLP-1R away from the plasma
membrane into the intracellular space, where it continues to transiently signal but also is redirected into desensitizing endolysosomal pathways. B: global sche-
matic view at the cellular level of total GLP-1R dynamics resulting from the sum of unique single receptor signaling and trafficking dynamics elicited by GLP-1R ago-
nists such as GLP-1-(7-36)amide and semaglutide. C: GLP-1R signaling and trafficking dynamics following ligand binding and receptor activation by “biased”GLP-
1R agonists such as tirzepatide and EX4-Phe1. C1: GLP-1R activation on the level of direct G-protein interaction is minimal. C2a-C2c: maximal cAMP signaling effi-
cacy (C2a) is achieved through minimal b-arrestin recruitment brake on signaling (C2b) and greater GLP-1R retention at the plasma membrane leading to less
endolysosomal colocalization and higher receptor exposure to further extracellular ligands (C2c).D: global schematic view at the cellular level of total GLP-1R dy-
namics resulting from the sum of unique “biased” single receptor signaling and trafficking dynamics elicited by tirzepatide and exendin4-Phe1.
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approximately �10% body weight loss after 43days of
treatment (156). Interestingly, at the GLP-1R, both the
conjugated muGIPR-Ab/GLP-1 and hGIPR-Ab/GLP-1 are
prominently less potent than unconjugated GLP-1 for
cAMP production, a profile similar to that of tirzepatide
(128, 156). However, when both GLP-1R and GIPR are
coexpressed, the cAMP potency of the antibody-GLP-1
conjugate is surprisingly greater than that of the uncon-
jugated GLP-1, in which the improvement is suggested
to occur via enhanced ligand proximity via GLP-1R/GIPR
colocalization and altered endosomal signaling (156).
Indeed, it is suggested that GLP-1R and GIPR interac-
tions at the plasma membrane upon GLP-1R agonism
allow for a unique signaling profile, which is demon-
strated as a reduction in both Gaq and b-arrestin recruit-
ment to the GLP-1R, while Gas activity remains fully
intact (157). Although clinical data has not yet been pub-
lished, a press release from Amgen has indicated AMG
133 to achieve up to �14.5% body weight reduction af-
ter 12weeks in a phase I clinical trial and has additionally
indicated the start of a phase II clinical trial in early 2023
(158). However, questions remain as to how antagonism
of the GIPR will influence the adverse event profile of
GLP-1R agonism, particularly considering the potential
for GIPR agonism’s involvement in antiemetic effect. In
summary, GIPR agonism and antagonism both have
therapeutic potential in adjunct to GLP-1R agonism, but
it warrants clarification whether GIPR antagonism pro-
motes its additional weight loss efficacy via GLP-1R-de-
pendent or -independent mechanisms.

Is Tirzepatide a “Super” GLP-1?

A consideration of the enhanced efficacy of tirzepa-
tide over semaglutide is that tirzepatide, for all intents
and purposes, may be an incidental super GLP-1R ago-
nist due to a signaling bias incurred by amino acid
modifications implemented into the peptide backbone
originally meant to confer dual agonism. Tirzepatide
does activate the human GIPR, but this attribute is sug-
gested to be inconsequential to the in vivo metabolic
benefits relative to its biased attributes at the GLP-1R
(142–144). Interestingly, at the GLP-1R, tirzepatide
recruits minimal b-arrestin despite a concurrent cAMP
Emax equivalent to that of semaglutide and GLP-1 (142,
143). Additionally, minimal GLP-1R internalization from
the plasma membrane into the intracellular space, and
the subsequent reduction in lysosomal targeting, sug-
gest tirzepatide’s influence on GLP-1R trafficking to be
protective against canonical G protein-coupled recep-
tor (GPCR) desensitization (142, 143). Together these
attributes indicate a capacity for tirzepatide to maxi-
mally stimulate a cAMP response, recruit minimal sig-
naling inhibition, and simultaneously retain more GLP-
1R at the plasma membrane (FIGURE 3). In relation, a
Phe1-substituted exendin-4 (EX4-Phe1) peptide demon-
strates super efficacy for both antiglycemic and antio-
besogenic measures (159–161). Similar to tirzepatide at

the GLP-1R, EX4-Phe1 exhibits maximal cAMP efficacy
and minimal b-arrestin recruitment, receptor internal-
ization, and receptor desensitization (159, 160). EX4-
Phe1-induced insulin secretion within the rat b-cell
model INS-1 832/3 outperforms exendin-4, liraglutide,
dulaglutide, and semaglutide, suggesting a superior
capacity to elicit an insulinotropic response (159). In
vivo administration of the unacylated EX4-Phe1 eviden-
ces superior glucoregulatory control relative to exen-
din-4 during glucose tolerance tests (GTT) performed
4hours and 8hours after peptide administration (159).
Similarly, in a GTT performed 72hours posttreatment,
an acylated version of Ex4-Phe1 outperforms a PK-
matched alternative analog of exendin-4 characterized
as favoring b-arrestin recruitment and GLP-1R internal-
ization, suggesting enhanced long-term glucoregula-
tory efficacy of EX4-Phe1 to be likely due to sustained
receptor sensitization and a lack of receptor internal-
ization (160). Importantly, dose escalation of 10 to
20nmol/kg EX4-Phe1 over the course of 15days dem-
onstrates superior body weight-lowering effects rela-
tive to the aforementioned exendin-4 analog that
favors b-arrestin recruitment and GLP-1R internalization,
henceforth suggesting minimal b-arrestin recruitment
and GLP-1R internalization as a successful strategy for
enhancing GLP-1R-centric body weight-lowering effects
(160). This strategy has further been refined as the GLP-
1R monoagonist SRB107 and has hinted at promising
pre-clinical results (162). Importantly, with respect to tir-
zepatide’s enhanced efficacy relative to semaglutide,
EX4-Phe1 cotreatment with a DPP4-protected GIP ana-
log in DIO mice demonstrates superior enhancements
in body weight reduction relative to EX4-Phe1 alone,
suggesting GIPR coagonism to remain a potentiator of
metabolic improvements even within the context of
super GLP-1R agonism (163). In summary, it warrants
clarification if and to what extent the favorable GLP-1R
trafficking and b-arrestin recruitment profile of tirzepa-
tide contributes to its observed greater weight loss effi-
cacy, and how GIPR co-agonism likely contributes to a
vital biochemical liaison with biased GLP-1R agonism.

Chronic GIPR Agonism as a Driver of
Functional Antagonism?

A hypothesis to explain the enhanced efficacy attrib-
uted to the GIPR:GLP-1R coagonist tirzepatide is the
suggestion that the onset of chronic GIPR agonism
desensitizes the GIPR as to no longer elicit intracellular
responsiveness. Through this functional antagonistic
effect, tirzepatide’s long-term mechanism is suggested
to be analogous to coadministration of a GLP-1R mono-
agonist and a GIPR antagonist. GPCR desensitization
over a longer course of action (ie. repeated drug expo-
sure) is generally mediated by receptor internalization,
ubiquitination, lysosomal targeting, and ultimately re-
ceptor degradation (164). Interestingly, there has been
disagreement as to the extent of tirzepatide-induced
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GIPR internalization (142, 143). Nonetheless, native GIP
(1–42) demonstrates an ability to induce GIPR receptor
internalization, while related variants including a Gly2-
subtituted GIP and an AIB2-subtituted “acyl GIP,” do
not (142, 165). Relative to the GLP-1R however, the
ligand-bound GIPR internalizes less, internalizes slower,
is completely absent from Rab5þ early endosomes,
exhibits reduced endosomal signaling and enhanced
receptor recycling, and is minimally targeted to lyso-
somes for degradation (166). In short, it seems the
GIPR is capable of undergoing some ligand-induced
internalization; however, this effect does not result
in substantial lysosomal targeting, and the degree
of internalization seems to be especially sensitive to
ligand modifications. These reflexive properties of
GIPR trafficking bring into question canonical GPCR
degradation as a mediating pathway to the occur-
rence of GIPR functional antagonism. Nonetheless, it is
important to not discount differential GIPR dynamics in-
herent within alternative tissue types and to consider
the role GIPR variants may have on these trafficking
processes (167, 168).
Alternatively, GIPR desensitization has been suggested

to occur via persistent b-cell membrane depolarization,
an attribute representative of b-cells in the diabetic state
(169). In this model, persistent membrane depolarization
desensitizes the Gas-cAMP pathway, while alternatively
preserving the efficacy of the Gaq-IP3 pathway (169).
Indeed, the GLP-1R is both Gas and Gaq coupled while
the GIPR is only Gas-coupled, giving potential reason to
GIPR’s observed inefficacy, and a potential Gaq-medi-
ated explanation for GLP-1R’s continuing glucoregulatory
efficacy, in the human diabetic state. Regarding an alter-
native pathway toward agonism-induced GIPR functional
antagonism, it is speculatively possible that chronic con-
current agonism of both the GLP-1R and GIPR Gas subu-
nits in b-cells desensitizes Gas action and thus further
GIPR agonism. Yet, this analogous situation of agonism-
induced functional antagonism due to Gas desensitiza-
tion has yet to be fully explored.

Conclusions and Future Directions

With the discovery, clinical implementation, and/or
commercialization of semaglutide, tirzepatide, and
AMG 133, the ground has been broken in implementing
the next era of antidiabetic and antiobesogenic phar-
macology. Despite major clinical success, further refine-
ment in both understanding and approach will be
needed to open pathways for future investigation, not
only toward higher understanding of the associated bi-
ological dynamics, but also in the hope of optimizing to-
ward more advanced next-generation therapeutics.
Advancements in GLP-1R biology have yielded fruitful
therapeutic value that has only now escalated toward
revolutionizing the treatment of diabetes, obesity, and
its comorbidities. Along the way, proteolytic protection
and half-life extension have been key to capturing the

antiobesogenic efficacy of the GLP-1 peptide. In the
way these modifications are critical to the success of
semaglutide, we are similarly now acknowledging the
profound potential of polypharmacology in maximizing
the therapeutic utility of GLP-1-centric approaches.
While semaglutide has set the stage for clinical GLP-1R
monoagonist approaches against diabetes and obesity,
tirzepatide and AMG 133 represent novel options that
pertain to GIPR-mediated complimentary enhance-
ments of GLP-1R efficacy. Dual or triple modes of action
in therapy, while allowing maximal benefit, exponen-
tially increase the difficulty in understanding the mech-
anisms underpinning their enhanced efficacy. For
tirzepatide, while the mechanistic resolution of GIPR
biology is coming of age, the pharmacological utility of
GIPR is still under debate and leaves to question, what
mediates tirzepatide’s superior effectiveness: syner-
gies of GLP-1R/GIPR coagonism, synergies of GLP-1R/
GIPR functional antagonism, or biased GLP-1R ago-
nism? Similarly to AMG 133, how will antagonism of a
canonical Gas-coupled system involved in multiple
systemic processes that include satiety, emesis, and
adipocyte lipid metabolism counterintuitively amplify a
therapeutic GLP-1 receptor response? There are many
advancements and questions listed and not listed
here that will gratuitously fill research advancement
for the coming years.n
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