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Abstract

Correlation is not causation: this simple and uncontroversial
statement has far-reaching implications. Defining and applying
causality in biomedical research has posed significant challenges to
the scientific community. In this perspective, we attempt to con-
nect the partly disparate fields of systems biology, causal reason-
ing, and machine learning to inform future approaches in the field
of systems biology and molecular medicine.
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Introduction

Correlation is not causation. As simple as this widely agreed-upon
statement may seem, scientifically defining causality and using it to
drive our modern biomedical research is immensely challenging.
Since its first description by Aristotle approximately 2500 years ago
(Aristotle and Owen, 2016), causal reasoning (CR) remained
virtually unchanged until it experienced significant formal and
mathematical advancements (Pearl, 2009b; Angrist et al, 1996; Card
and Krueger, 2016) and a recent resurgence in the field of machine
learning (Kaddour et al, 2022; Tejada-Lapuerta et al, 2023;
Chernozhukov et al, 2024). In parallel, biomedicine has made
major leaps in the past century, in particular in the context of the
development of high-throughput and large-scale methods.

In the field of systems biology, great hopes of deriving causal insights
from large-scale omics studies have largely been thwarted by the
complexity of molecular mechanisms and the inability of existing
methods to distinguish between correlation and causation (The 1000
Genomes Project Consortium, 2010; Glocker et al, 2021; Listgarten,
2023). In part, this may be caused by the divergence between two general
approaches to systems biology: bottom-up and top-down modelling. The
bottom-up approach uses detailed mechanistic models that are built
from the ground up, and as such shows parallels to CR. The top-down
approach, on the other hand, is characterised by the use of large-scale
data-driven models, and as such shows parallels to machine learning.

In medicine, randomised clinical trials show that, in a lower-
dimensional context, we can reliably identify causal effects. By
controlling “all” relevant covariates in a trial (via the principle of
the gold-standard, randomised, double-blind, and placebo-
controlled trial), we isolate the causal effect of the controlled
variable, i.e., the treatment. In the language of Pearl’s Do-Calculus
(Pearl, 2012), we measure the outcome of, for instance, do ("Treat
with Vemurafenib") when conducting a clinical trial on V600E-
positive melanoma (Chapman et al, 2011). However, translating
this mode of reasoning into the high-dimensional space of modern
omics poses enormous challenges. The dramatically larger para-
meter space of models at the molecular level leads to problems in
method performance and result identifiability (Squires and Uhler,
2022; Esser-Skala and Fortelny, 2023; Chis et al, 2011), as well as in
model explainability (Carloni et al, 2023). In this perspective, we
discuss the current connections between CR and molecular systems
biology in the context of these challenges. We will elaborate on
three main points:

• Biases and what they mean for CR, particularly in the context of
biomedical data;

• The role of prior knowledge (PK) in CR and how to translate PK
into suitable biases;

• The role of foundation models in molecular systems biology and
their relationship to CR.

Background

Causal discovery and inference

The field of CR distinguishes between causal discovery—the
process of building causal hypotheses from data—and causal
inference—the process of predicting specific outcomes when given
data and the causal relationships known a priori about the system.

Causal discovery is more expensive than inference both computa-
tionally and data-wise, because it involves distinguishing between
correlation and causation and extracting generalisable relationships
from the data (Heinze-Deml et al, 2018; Squires and Uhler, 2022). For
modern systems biology, this means that methods for causal discovery
typically require large amounts of experiments. Highly parameterised
models such as neural networks increase this requirement even further.
As such, many consider causal discovery in molecular biomedicine a
scaling problem (Willig et al, 2022; Branwen, 2020).
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Causal inference, on the other hand, focuses on quantifying the
causal effects of one variable on another within the framework of
already hypothesised causal relationships. This approach leverages
PK about the assumed causal links, which in the causal field are
often encoded using directed graphs. Most inference mechanisms
perform better when including PK at some point in the process, as

has been observed in biomedical research (Hill et al, 2016). This
allows researchers to represent both the causal connections between
variables and their directionality, which is required to understand
how changes in one variable might lead to changes in another. For
instance, in the case of the EGFR-ERK signalling pathway, a graph
would depict Raf activation leading to MEK activation, which in

Glossary

Attention (deep learning)
A mechanism in deep learning that allows the model to focus on specific
parts of the input data. Attention mechanisms are often used in natural
language processing to focus on specific words in a sentence but can also
be used in other domains.
Bias (machine learning)
Bias can be understood in two ways in the context of machine learning. (1)
The first definition, and the one predominantly used in this article, is also
referred to as statistical bias; a technical term referring to the assumptions
made by a model to make predictions. This bias is a necessary part of any
machine learning model. A model with high bias (low variance) pays very
little attention to the training data and oversimplifies the model, which can
lead to underfitting. This means it does not capture the complexity of the
data and fails to learn the underlying patterns effectively. Conversely, a
model with low bias (high variance) makes complex assumptions to fit the
data closely, which can lead to overfitting, where the model captures noise
in the data as if it were a true pattern. See also the bias-variance tradeoff.
(2) The second definition is also known as algorithmic bias, and refers to
the systematic and repeatable errors in a model due to faulty assumptions
or data. It often reflects existing biases in the real world that the training
data are derived from, but can also result from architectural choices in the
model. As such, algorithmic bias can result from any stage in model
training, from data collection to model deployment.
Bias-variance tradeoff
The concept in machine learning that bias and variance of a model are
inversely related. The term implies that an optimal model finds a balance
between bias (impact of the model on predictions) and variance (impact of
the data on predictions). This balance depends on the complexity of the
model and data.
Deductive vs. Inductive Reasoning
Deductive reasoning involves drawing specific conclusions from general
statements or premises, whereas inductive reasoning involves making
broad generalisations from specific observations. Deductive reasoning is
often seen as more logically sound but less informative about the real
world, while inductive reasoning is more exploratory but can lead to less
certain conclusions.
Do-Calculus
Developed by Judea Pearl, Do-Calculus is a formal mathematical frame-
work used in causal inference. It provides a set of rules for calculating the
effects of interventions in probabilistic models, allowing researchers to
infer causality from observational data.
Foundation model
A model that is trained on a large amount of data and can be used as a
starting point for further model development (also referred to as fine-
tuning). Foundation models are assumed to have learned generalisable
patterns from their input data. To achieve this, they require large amounts
of data and computing power.
Large Language Models
Large Language Models are advanced AI models trained on extensive text
data. They are capable of understanding and generating human-like text,
making them useful in various applications like translation, summarisation,
and conversation. LLMs leverage vast amounts of training data to grasp
nuances of language, context, and even some elements of human
communication. They are the first commercially successful examples of
foundation models.
‘No Free Lunch’ Theorems
These theorems in optimisation and machine learning suggest that no
single algorithm is best for every problem. The performance of an algorithm

is contingent on the specificities of the task and data at hand. This
highlights the importance of choosing or designing algorithms that are well-
suited to the particular characteristics of the problem being addressed.
Related to the bias-variance tradeoff, partly opposed to the scaling
hypothesis and foundation models.
Overfitting
A technical term referring to a model that captures noise in the data as if it
were a true pattern. Overfitting tends to lead to high performance on the
training data but poor performance on the test data. If a model has
overfitted also to the test data, it will also perform poorly on new data, i.e.,
it will not generalise well.
Prior knowledge
A term referring to information that is available to inform a learning
process. Often, this is the result of previous research.
Randomised Clinical Trials
Randomised clinical trials are experiments designed to test the efficacy of
medical interventions. Participants are randomly assigned to groups
receiving different treatments, including a control group, which typically
receives a placebo or gold-standard treatment. To further minimise
confounding factors, participants and administering doctors are often
blinded to the treatment given. This method is considered the gold
standard in clinical research for its ability to minimise bias and establish
causality between a treatment and its outcomes.
Scaling hypothesis
The scaling hypothesis posits that the performance of a model increases
with the amount of data it is trained on. Recently, it has come to describe
the idea that, given enough data, complex model behaviours can emerge.
The enormous success of current Large Language Models has been
attributed to scaling, with the emergence of human-like language
capabilities around the time of GPT-3. The ability to scale depends on
several factors: the availability of data, parallelisation of training, adequate
compute power with a parallel architecture, and a model architecture that
can digest large amounts of data effectively.
Self-supervised learning
A type of machine learning where the model learns from the data itself,
without the need for human labelling. This is achieved by training the model
to predict certain properties of the data, such as the next word in a
sentence, or the next frame in a video. Self-supervised learning is often
used in the pre-training of foundation models. It typically requires a specific
mechanism in the model to account for the lack of labelled data, such as
the masking applied in the training of Large Language Models.
Structural Causal Models (SCMs)
SCMs are a type of statistical model used to represent and analyse causal
relationships. They consist of variables and equations that describe how
these variables interact causally. SCMs are particularly useful in causal
inference as they allow for the analysis of how changes in one variable may
cause changes in another.
Underfitting
A technical term referring to a model that does not capture the complexity
of the data. Underfitting tends to lead to poor performance on both the
training and test data.
Variance (machine learning)
A technical term referring to the sensitivity of a model to the training data.
Describes how much the predictions of a model vary given different
training data. High variance (low bias) in a model can lead to overfitting
and thus harm generalisation. Conversely, low variance (high bias) can lead
to underfitting and thus to a model that does not capture the complexity of
the data. See also the bias-variance tradeoff.
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turn leads to ERK activation (Fig. 1A). This clear representation of
directionality is important for causal inference, as it ensures that
analyses focus on the effect of upstream changes on downstream
outcomes. For example, when analysing phosphoproteomic data to
assess the impact of inhibiting MEK, a graph-based approach
would guide researchers to correctly attribute subsequent changes
in ERK to this specific intervention (Fig. 1B). Without this causal
framework, one might mistakenly interpret correlations as bidirec-
tional influences or overlook confounding factors, leading to
incorrect conclusions (Fig. 1C). However, the inference is also
very sensitive to the completeness of the PK that is applied, and
most biomedical PK is far from complete (Garrido‐Rodriguez et al,
2022). For instance, the function of more than 95% of all the known
phosphorylation events that occur in human cells is currently
unknown (Needham et al, 2019; Ochoa et al, 2019). In contrast to
causal discovery, scaling plays a smaller role in causal inference.
Here, the main problems are incompleteness and identifying the
“right” biases to apply.

The ladder of causality

Orthogonally to the distinction between causal discovery and
inference, we can also distinguish between different levels of
causality. Pearl’s ladder of causality roughly distinguishes three
types of CR in increasing order of power: observation, intervention,
and counterfactuals (Pearl and Mackenzie, 2018). While the
inferences we wish to make in biomedical research are often of
the counterfactual type (e.g., “would Raf inhibition lead to a
decrease in ERK activation if the media contained Epidermal
Growth Factor?”), the data we have available are typically
observational (e.g., “the levels of Raf and MEK activity are
correlated”) and sometimes interventional (e.g., “targeting Raf
with CRISPR leads to a decrease in ERK activity”). Generating
interventional or even counterfactual inferences from observational
data is a major challenge, if not impossible, depending on the
characteristics of the system under study (Pearl, 2009a).

There are approaches to delineate interventional inference from
observational data, such as the “natural experiments” framework
(Angrist et al, 1996; Card and Krueger, 2016). However, these
approaches are by nature even more data-hungry than using
interventional data, as they often do not use the full breadth of the
dataset (Imbens and Lemieux, 2008). Therefore, in biomedical
research, there has been a push towards generating large-scale
interventional data, for instance by performing CRISPR/
Cas9 screens with single-cell resolution (Dixit et al, 2016). Current
developments of CR in the biomedical field thus mostly focus on
these types of data.

Deduction and induction

In CR, we can also distinguish between deductive and inductive
reasoning. Deductive reasoning is the process of deriving a
conclusion from a set of fixed and known premises. “All men are
mortal, Socrates is a man, therefore Socrates is mortal” is a classic
example of deductive reasoning. In biomedical research, this is
typically the process of deriving a conclusion from a set of PK. For
instance, having PK of the linear activation cascade (Fig. 1A), and
that Vemurafenib will inhibit Raf activity, allows us to deduce that

giving Vemurafenib will inhibit growth of cancer cells (Fig. 1C)
(Chapman et al, 2011).

Inductive reasoning, on the other hand, involves making
generalisations from specific observations. Testing the hypothesis
above, we apply Vemurafenib in a clinical trial of V600E-positive
melanoma and find that it is clinically efficacious (Chapman et al,
2011). Commonly, we then use induction to infer from this limited
cohort that the treatment may be effective in the entire population.
We could further infer that Vemurafenib may be an effective
remedy in other V600E-positive cancers as well, or that inhibiting
this cascade may be a general mechanism of action of anti-cancer
agents in cancers that display ERK pathway overactivation (Bollag
et al, 2012). In the molecular realm, we could further infer that the
inhibition of other components of the cascade, such as EGFR or
MEK, may also be promising target leads (Savoia et al, 2019).

The main difference between deduction and induction is that
the former is logically complete—i.e., if the premises are true and
the argument is valid, the conclusion must also be true. However,
deduction is also more limited in scope than induction. In
biomedical research, we often have to rely on inductive reasoning
because we cannot feasibly test all hypotheses in a deductive
manner. As a result, the inductive biases we introduce into our
models (i.e., those mechanisms in the model that help with
inductive reasoning) are a pivotal part of performing CR in
biomedical research.

Bias

Meaning and examples of biases

Biases are systematic prejudices of a model towards certain
outcomes. Humans make frequent use of biases so that they can
function in a complex world with limited cognitive resources
(Gopnik et al, 2004). In fact, we often presume causality from
observation (i.e., we “jump to conclusions”), which is indicative of a
strong inductive bias (Tenenbaum et al, 2011). A good heuristic is
the application of a suitable bias to a problem, such that the
solution can be considered acceptable despite limited resources.

In machine learning, we can distinguish between useful and
harmful biases. Harmful biases are common issues in the technical
process of training models; they include, for instance, sampling
bias, selection bias, and confirmation bias (Mehrabi et al, 2019;
Squires and Uhler, 2022). While addressing harmful biases is a
crucial part of machine learning, we will not discuss them further in
this perspective.

Useful biases, on the other hand, are biases that are introduced
into a model to improve its performance. Since most models
developed in biomedical research and the broader machine learning
community are inductive models, one of the most discussed useful
biases is inductive bias (Baxter, 2000). For instance, PK on protein
interactions can impact inference on activation cascades; only
upstream proteins can activate downstream proteins, not vice versa.

Why do we need biases?

Humans will be the gold standard for common-sense reasoning for
the foreseeable future. However, human reasoning is limited by our
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sensory and mnemonic capacity; we cannot reason about high-
dimensional data since we can neither perceive it nor keep it in
memory. Machine learning offers a promising solution for
addressing these complexities. However, the “No Free Lunch”
theorems present a fundamental challenge: no single learning
algorithm may be universally superior across all problem domains
(Wolpert and Macready, 1995). Although they have recently been
challenged (Goldblum et al, 2023), these theorems highlight the
inherent difficulty in designing algorithms that generalise well from
specific training data to new, unseen data. Inductive biases guide
algorithms in making educated guesses about unseen data, thereby
improving their generalisation capabilities (Goyal and Bengio,
2022).

This need for inductive biases is particularly apparent in the
realm of biomedicine (Sapoval et al, 2022). Biomedical research
operates within a framework constrained by limited and often high-
dimensional data, stemming from the high costs of experiments,
the scarcity of samples, and the inherent complexity of biological
systems. Coupled with the natural variability of biological
measurements, these factors result in a low signal-to-noise ratio,
making it challenging to discern meaningful patterns. Inductive
biases direct the learning process towards more relevant solutions
by incorporating assumptions that enable more effective learning
and interpretation, ensuring that models are not just statistically
sound but also biologically meaningful.

Some central questions then arise:

• How explicit should we be in introducing biases, i.e., should the
model determine its own biases, or do we force them on
the model?

• How do we choose the right biases to introduce?
• How do we evaluate the biases we introduce?

Bias from prior knowledge

The first question alone is highly debated in the wider field of
machine learning and is related to the concept of the bias-variance
tradeoff. The frequently quoted “Bitter Lesson” posits that we
should refrain from inducing all but the most basic biases in our
models, and that we should not view metrics as the ultimate
measure of performance, but rather whether the model gets us
closer to some truth (Sutton, 2019). However, it has been argued
that many improvements that led to the models of today, such as
convolution or attention, disprove this theory (Vaswani et al,
2017), and that the intrinsic complexity of real-world systems does
not obviate, but rather necessitate, the integration of human

insight into our learning frameworks (Brooks, 2019; Whiteson,
2019).

In systems biology, specifically, there is much interest in finding
models with suitable biases to deal with constraints specific to the
field, such as data availability and the incompleteness of PK
(Locatello et al, 2018; Scholkopf et al, 2021; Aliee et al, 2021;
Listgarten, 2023; Goyal and Bengio, 2022). Considering these
constraints, the question is not whether to include PK in our
reasoning, but which knowledge, when, and how (Whiteson, 2019).

Prior knowledge

PK refers to information or data that is available to inform a
learning process, enhancing the performance of the trained models
and their ability to generalise. It can be used to inform the inductive
biases of a model, either explicitly through the design choices and
assumptions embedded into the models, or implicitly through the
data and methods used in training. For this to be possible,
biomedical entities and relationships must be clearly defined and
represented unambiguously. Additionally, the diversity in our tasks
and knowledge sources requires a flexible representation. Knowl-
edge representation frameworks can aid in this process (Loben-
tanzer et al, 2023a).

In the biomedical field, there is a rich tradition of documenting
biological knowledge at various levels of detail and focusing on
different aspects of biology. Detailed mechanistic models provide
mathematical descriptions of the dynamic interactions at a
molecular, cellular, or organismal scale. Genome-scale networks,
including metabolic and gene regulatory networks, offer compre-
hensive views of metabolic processes and gene interactions (Le
Novère, 2015). Protein–protein interaction databases recapitulate
either causal or non-causal interactions between proteins (Le
Novère, 2015).

Modelling on prior knowledge

The integration of PK into models is a non-trivial but essential
process for moving from correlation to causation. PK can be used
to derive inductive biases either explicitly or implicitly.

The explicit case typically involves a mathematical framework
where a set of assumptions is explicitly stated and integrated into
the model. Ordinary Differential Equation (ODE) models, logic-
based models, rule-based models, and constraint-based models
(Bordbar et al, 2014), all of which are commonly used in systems
biology, explicitly incorporate different types of PK, can be fitted to
data, and then be used to answer different types of causal questions.
In the field of CR, Structural Causal Models can be used when

Figure 1. The EGFR-ERK pathway.

(A) The EGFR, upon activation, leads to growth via a linear cascade of activations. Displayed are several direct causal (mechanistic) interactions, such as activation via
protein-protein interactions (blue) and inhibition by drugs (red); and two indirect causal interactions (green), which occur via molecular intermediates. (B) Blue
boxes: Observational correlations between protein activities of components of the pathway do not allow concrete conclusions regarding the exact causal structure of the
pathway, leading to a class of equivalent explanations for the observations (not all are shown). Orange boxes: Upon intervention, we can exclude certain possibilities,
closing in on the true structure of the causal graph. (C) The clinical implications of causal reasoning in molecular systems biology. The independent activation of Raf via the
V600E mutation leads to cancerous growth, which can be treated by inhibiting the overactive Raf protein. Mechanistic explanations are often not required in the presence
of causal knowledge. MEK mitogen-activated protein kinase kinase, ERK extracellular signal-regulated kinase, EGFR epidermal growth factor receptor.
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mechanisms are unknown (Tejada-Lapuerta et al, 2023; Squires and
Uhler, 2022). Their advantage is high efficiency in the face of scarce
data, but they are highly reliant on the quality and comprehen-
siveness of the underlying PK (Gilpin, 2023).

In contrast, implicit integration of PK in models involves
learning useful representations directly from the data, without the
explicit inclusion of biological assumptions or causal knowledge.
Learning mechanisms introduced as implicit biases can be simple
(e.g., sparsity) or elaborate. Simple implicit biases include
regularisation techniques that help models generalise by preventing
overfitting (Tibshirani, 1996), or decisions about the types of prior
distributions in Bayesian models (Risso et al, 2018). More elaborate
are neural networks which employ specific architectural designs,
such as Convolutional Neural Networks (CNNs) (LeCun et al,
1989), Recurrent Neural Networks (RNNs) (Hochreiter and
Schmidhuber, 1997), or Transformers (Vaswani et al, 2017). Their
advantages and disadvantages are inverse to those of explicit
models (Gilpin, 2023), and their performance relies on the quality
of collected data and the suitability of the experimental design.

As a result, choosing the best way to derive inductive biases
from PK is not straightforward. Models that explicitly incorporate
PK are more interpretable and can generalise effectively even when
data are scarce (Gilpin, 2023). However, they are constrained by the
accuracy of the existing knowledge and often struggle to scale to
larger datasets (Kaplan et al, 2020; Ghosh et al, 2022). Models with
implicit biases, on the other hand, particularly those typically found
in deep learning architectures, excel at learning from large, high-
dimensional datasets and offer flexibility across diverse domains.
Yet, they suffer from limited interpretability, are prone to
overfitting, and typically do not generalise well to scenarios not
encountered during training, such as predicting the effects of new
drugs or drug combinations, largely due to their lack of causal
knowledge.

Hybrid models make a tradeoff between those extremes, which
is why they have been found to be useful in systems biology, where
data are currently scarce (AlQuraishi and Sorger, 2021; Nilsson
et al, 2022; Faure et al, 2023; Roohani et al, 2023; Fortelny and
Bock, 2020; Lotfollahi et al, 2023; Yuan et al, 2021). While some
methods base their architecture on PK, others employ two learners
side-by-side; one which is driven by explicit biases from PK, and
one which learns from data. Frequently, these learners are also
coupled in an end-to-end learning process, i.e., they “learn
together.” This mode of learning aims to benefit from the “bias-
free” nature of neural networks while simultaneously improving
model performance in the face of scarce data via the added
explicit bias.

Causality in foundation models

There has been an enormous spike of interest in attention-based
neural network models, in large part due to the success of Large
Language Models (LLMs). While the high performance of LLMs is
based on myriad technical improvements, the introduction of
attention as an architectural bias has been a major contributor to
their success (Vaswani et al, 2017). This has inspired the
development of attention-based molecular models, most commonly
for gene expression (Avsec et al, 2021; Theodoris et al, 2023; Cui
et al, 2023). Some of these models are encoder-based, following the

BERT architecture (Devlin et al, 2018), while others are decoder-
based, following the GPT architecture (Brown et al, 2020).
Encoder-based models are designed to learn embeddings from
the pre-training process, which can be used to, for example, classify
or cluster cells. Decoder-based models, in contrast, are generative
and can be used to predict gene expression profiles directly. In both
encoder- and decoder-based models, attention as a learning
mechanism enables the integration of non-local information in a
flexible manner. In a molecular model that reasons about gene
expression, attention allows the integration of distant regulatory
elements (Theodoris et al, 2023). However, this mechanism comes
with a computational cost that increases exponentially with respect
to the length of the input sequence (Han et al, 2023).

The generalist capabilities of LLMs have led to the designation
of “foundation models” (Stanford CRFM, 2021). Foundation
models are models that achieve high performance by training a
generic architecture on extremely large amounts of data in a self-
supervised manner. They can be fine-tuned for more specific tasks,
because they are thought to derive generalisable representations
and mechanisms by training on an amount of data large enough to
learn the complexity of real-world systems. However, recent
molecular foundation model benchmarks highlight clear discre-
pancies between the “foundational” aspirations of the pre-trained
models and the real-world evaluation of their performance
(Kedzierska et al, 2023; Boiarsky et al, 2023). Briefly, the
benchmarks found that, on single-cell classification tasks, the
proposed foundation models did not outperform simple baselines
consistently when applied “zero-shot,” i.e., without fine-tuning.
State-of-the-art methods such as scVI (Lopez et al, 2018) and even
the mere selection of highly variable genes was often statistically
indistinguishable from the highly parameterised methods, and
sometimes even yielded better classification outcomes. However,
these are early models, and it could still be argued that, in line with
the scaling hypothesis, models may improve via a combination of
the right architecture with sufficient amounts of data (Roth et al,
2024).

Indeed, molecular foundation models lag behind in size: while
current-generation LLMs have around 100 billion parameters or
more and are trained on enormous text corpuses (hundreds of
billions to trillions of tokens), molecular foundation models have
tens of millions of parameters (scGPT: 53 M, Geneformer: 10 M)
and are trained on corpuses of tens of millions of cells, which
(optimistically) yields hundreds of billions of individual data
points. Thus, LLMs are currently about 2000 times larger than
molecular foundation models, while arguably also dealing with a
less complicated system. The question whether scaling will lead to
the emergence of “foundational behaviour” in molecular models is
still a matter of much debate (Schaeffer et al, 2023).

Attention—and large amounts of data—is all you need?

Given enough data to train on - and ample funds for compute - is
attention “all you need” to induce reliable biases in your model?
While there are doubts regarding the reasoning capabilities of
LLMs, GPT arguably “understands” language very well already, to
the point where it can flawlessly communicate and synthesise
information (Biever, 2023). This is what the term “foundation
model” implies: the model has derived a generalisable representa-
tion of language, a tool that can be fine-tuned for a variety of
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language-related tasks. This behaviour is not possible without
assuming some form of causality, even if it is not explicitly encoded
in the model (Willig et al, 2022; Nichani et al, 2024).

In this light, what are the reasons to be sceptical about the
capacity of molecular foundation models to understand the
“grammar” of the cell?

Explainability
For one, large transformer models (i.e., billions of parameters) are
not explainable due to their high complexity. As such, there is often
no way to scrutinise their reasoning beyond the output they
produce (Bommasani et al, 2021; Ennab and Mcheick, 2022). What
seems simple in the case of language models—the famous Turing
test can be performed by any human with a basic understanding of
language—is exceedingly difficult in the molecular space, where
many causal relationships are still unknown (Biever, 2023). Yet the
only way to scrutinise and subsequently improve the reasoning
capabilities of a model is precisely this explicit validation of its
predictions in an interpretable setting.

While the creation of explicit molecular models (e.g., logic,
structural causal, or ODE-based models) and the self-supervised
training of molecular foundation models are methodologically very
different, both can provide a hypothesis on causal structure that can
be formulated as a network. Theodoris et al explore the attention
layers of their Geneformer foundation model to explain the model’s
reasoning (Theodoris et al, 2023). While some layers show clear
patterns of attention, such as attending to highly connected or
highly expressed genes, other layers are not as readily interpretable,
much less so than explicit molecular models. Improving the
explainability of methods regardless of their underlying mathema-
tical formalisms will likely also increase our understanding of the
biological processes that drive their predictions.

Benchmarking
Whether these complex layers reflect the true complexity of the
underlying biology or are rather evidence for overfitting to the
training data is not clear. One argument in favour of overfitting is
the poor generalisation of the model in independent benchmarks
(Kedzierska et al, 2023; Boiarsky et al, 2023). To determine whether
molecular foundation models indeed capture generalisable causal
representations of biology, dedicated benchmarks are needed. If
possible, these should be run in an unbiased and crowdsourced
manner (Saez-Rodriguez et al, 2016; Chevalley et al, 2022).

Causal bias
The GPT architecture that led to the recent breakthrough in LLM
capabilities employs “causal self-attention,” describing an implicit
architectural bias that prevents the model from “looking into the
future”: for predicting the next token, only the previous tokens in the
sentence can be used (Han et al, 2023). This leverages the implicit
causality present in language, which incidentally is similar to one of
the earliest formal descriptions of causality (in 1748), that “the effect
has regularly followed the cause in the past” (Hume and Millican,
2007). Compared to language, the data that form the input of
molecular foundation models do not implicitly contain causal
information. The individual cells are in general not on a known
trajectory, and the genes that are masked as part of the training
objective are masked at random (Theodoris et al, 2023) or according
to their information value (Cui et al, 2023), not because they are

downstream (in some form) of the genes used for prediction. This
fundamental difference between language and molecular models has
so far not been explored theoretically or empirically.

Causal latent spaces

Due to the fundamental limitation of human perception, dimen-
sionality reduction is a popular workflow for data interpretation,
typically via methods such as PCA, t-SNE, or UMAP (Nanga et al,
2021). The hope is that exploration and explanation in the lower-
dimensional embedding space may be less challenging than in the
original data, which assumes that the most important aspects of
variability in the original data are captured in the reduced
dimensions (Dyer and Kording, 2023). However, without explicit
supervision, which is uncommon in biomedical datasets, the
resulting latent spaces are rarely interpretable, and do not lend
themselves to causal interpretation. In addition, they often suffer
from biases that result from technical rather than biological factors
(Chari and Pachter, 2023). In consequence, biological insight
during the exploration of these latent spaces is often challenging
due to the dominance of biases over the biological generative
mechanism.

Performing causal inference in latent spaces could potentially
solve some of these issues, but this requires that the latent space can
be meaningfully navigated. “Moving through the latent space”
reduces the number of variables that change upon intervention,
making exploration simpler in theory. In practice, however, ease
and sensibility of exploration depend completely on whether the
inductive biases in the embedding process capture the underlying
biology. In addition, latent spaces have no trivial connection to the
real-world measurements they are based on. Each model instance
generates its own, independent latent space; in consequence, the
exploration of latent spaces is challenging and time-consuming.

Even if a given latent space can be explored, there is often no
guarantee that interpolation between sensible latent representations
also leads to sensible results. As an example, consider a prevailing
issue of visual generative models in drawing human hands: images
of hands typically involve mangled anatomy and an incorrect
number of digits (Chayka, 2023). Even though there is a section in
the latent space that represents hands, this does not represent the
concept of a hand, but rather is guided by learning on many diverse
pictures of hands. A section of this latent space may represent only
a finger, and carry some information that next to a finger there
usually is another finger. However, when generating the image,
there is no mechanism to keep track of how many digits to add to
any generated hand, leading to wrong anatomy.

Similarly, when exploring the latent space of a model of
molecular signalling, there may be no guarantees that the model
respects the concept of a given pathway when generating the
signalling molecules involved. For instance, compare the human-
made diagram of the EGFR-ERK pathway (Fig. 2A) to the one
made by generative AI (Fig. 2B). While it is obvious that the DALL-
E model simply retrieves nonsensical information from its latent
space to synthesise a visually plausible image, it is not obvious how
the transition from the clear and correct human visualisation to
enabling foundation models to do the same should proceed. Of
note, GPT-4 has excellent knowledge on all components of the
EGFR-ERK pathway (Appendix Note), but still fails to instruct
DALL-E to generate a sensible image.
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If mastered, exploring and performing interventions in latent
spaces promises many benefits: better generalisation and improved
sample efficiency (Scholkopf et al, 2021), predicting the outcomes
of interventions not observed at training time (Saengkyongam et al,
2023), or insights into the effect of different inductive biases in the
model (Xia et al, 2021). However, to achieve this, it is essential to
gain a better understanding of the properties of the learned
embeddings and variables, for instance by performing “imagined
interventions” in the latent space (Leeb et al, 2021) or by using
model uncertainty for guiding the optimisation process in the latent
space (Notin et al, 2021). Of note, many of the proposed solutions
for more explainable latent spaces depend on architectures that
may scale significantly worse than transformers (Kaplan et al, 2020;
Ghosh et al, 2022).

Conclusions

The debate between adopting scaling strategies versus the injection
of biases from prior knowledge highlights a fundamental tension in
modern biomedical research. The “Bitter Lesson” suggests a
preference for general-purpose learning algorithms that implicitly
learn biases from data. However, complex models often pose
significant computational challenges (Squires and Uhler, 2022;
Chevalley et al, 2022). Conversely, explicitly injecting biases from
PK can lead to more specialised and efficient models that can
generalise using relatively little training data, but may not scale.
Hybrid models represent a promising middle ground. Researchers
often rely on intuition to determine which biases to inject and,
while no single model may universally excel (reflecting the

“No Free Lunch” theorems), the blend of generalisation through
scaling and specialisation through bias injection might provide a
robust framework.

Theoretical work emphasises the need for interventions in
causal discovery but does not yet address the influence of inductive
biases (Eberhardt et al, 2012). The number of required interven-
tions might be reduced significantly when complemented with
high-quality observational data and appropriate biases, as suggested
by neural causal models (Ke et al, 2019). Foundation models have
embraced causal self-attention as a step towards integrating
causality, but this alone may be insufficient.

In terms of data, large-scale collection is vital. Observational
data are more readily available, but interventional data provide
clearer causal pathways and can greatly enhance the model’s
understanding of underlying biological processes (Lyle et al, 2023;
Tigas et al, 2022). While the inclusion of a temporal axis can
improve the amenability of observational data to causal inference,
incorporating both observational and interventional data, coupled
with mechanisms for deciding the right number and type of
interventions, might improve model robustness and interpretabil-
ity. The complexity and high cost of collecting good-quality data
requires an efficient experimental design to maximise causal
discovery with limited resources.

Foundation models challenge the “No Free Lunch” theorems by
suggesting that certain architectural biases, learned from vast
amounts of data, can yield generalisable and high-performing
models (Goldblum et al, 2023). These biases, and how to transfer
them from LLMs to systems biology, necessitate careful evaluation.
As the biomedical field looks to these models for answers, it
becomes crucial to develop frameworks that facilitate rapid

Figure 2. Pathway confabulation by generative AI model.

(A) Figure of the EGFR-ERK pathway from (Miyamoto et al, 2017) (licensed under CC BY-SA 4.0). (B) Figure generated by OpenAI generative AI (ChatGPT 4 and DALL-E
3) upon request to “draw a minimalistic 2D schema of the EGFR pathway for growth involving MEK and ERK” (paraphrased).

Sebastian Lobentanzer et al Molecular Systems Biology

© The Author(s) Molecular Systems Biology Volume 20 | Issue 8 | August 2024 | 848 –858 855



development and exploration of ideas (Lobentanzer et al, 2023a;
Lobentanzer et al, 2023b; Chevalley et al, 2022). A crucial aspect of
these frameworks will be establishing benchmarks in the face of
missing biological ground truth.

Systems biology has historically followed both knowledge-driven
(bottom-up) and data-driven (top-down) approaches. Bottom-up
systems biology, aiming to understand specific molecular mechan-
isms driving biological phenomena, has de facto been implementing
CR, despite the two fields being largely disconnected. Meanwhile,
top-down systems biology, inspired more by machine learning
principles, has struggled with moving from correlation to causality.
The methods and models described here offer the potential to
converge these complementary approaches and scale our under-
standing to larger, more complex systems. However, it remains to
be seen whether the future of biological modelling will be
dominated by generalist models trained on vast datasets or by
more nuanced, bias-inclusive architectures, informed by deep
domain knowledge and specific data types (observational or
interventional). We should explore these possibilities, balancing
the drive for large-scale data with the need for precision
and specificity, to realise the full potential of modern systems
biology.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-024-00041-w.
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